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40Hz transcranial alternating current stimulation (tACS) has gained attention in
cognitive rehabilitation due to its potential to modulate neural oscillations and
enhance synaptic plasticity. Most previous studies have focused on single-target
stimulation, but post-stroke cognitive impairment (PSCI) involves dysfunction
across multiple brain networks. Therefore, multi-target synchronous
intervention may offer greater benefits. This case report presents the results of
a patient with PSCI who underwent a combined intervention of 40Hz multi-
target tACS concurrently with intensive cognitive rehabilitation. The tACS
targeted the dorsolateral prefrontal cortex (DLPFC), primary motor cortex (M1),
and supplementary motor area (SMA), to address PSCI. Cognitive scales (MOCA;
Trail Making Test-A\B (TMT-A\B); Clock Drawing Test; Digit Span Test),
sequential reaction time task (SRTT) combined with EEG, transcranial magnetic
stimulation (TMS), and magnetic resonance imaging (MRI) were used to evaluate
the effects of the intervention. After two weeks of the combined treatment, the
patient's MoCA score improved by 10 points, and the completion time for both
TMT-A and B and the reaction time of SRTT was shortened. TMS results indicated
reduced resting motor threshold (RMT) and central motor conduction time
(CMCT), suggesting increased cortical excitability and enhanced synaptic
plasticity. Both EEG and MRI showed increases in activation and functional
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connectivity in the targeted brain regions, implying improved synchronisation of
neural networks. These findings suggest that 40Hz multi-target tACS, when
applied as an adjunct to intensive rehabilitation, may be a promising approach for

alleviating PSCI.

40Hz, transcranial alternating current stimulation (tACS), multi-target, stroke, cognitive

1 Introduction

Post-stroke cognitive impairment (PSCI) affects about 30%-
50% of survivors, mainly manifesting by impairments in attention,
memory, and information processing speed, which seriously affects
the rehabilitation process and quality of life (1). Traditional
cognitive rehabilitation training combined with drug therapy has
limitations such as large individual differences in efficacy and
obvious drug side effects. In recent years, non-invasive brain
stimulation techniques (NIBS) based on the principle of
neuroplasticity (2), such as transcranial direct current stimulation
(tDCS), have shown some potential (3). Still, their limitations in
regulating neural network synchronisation have prompted
researchers to turn to more frequency-specific transcranial
alternating current stimulation (tACS). The 40Hz gamma
frequency was selected for its established role in supporting
cognitive functions through the modulation of gamma oscillations
(4, 5). This rationale is underpinned by evidence demonstrating that
40Hz stimulation can induce synaptic plasticity (6) and enhance
neural network connections (7), providing a theoretical basis for
clinical translation. as evidenced in neurological entrainment
paradigms (8). Consequently, 40Hz tACS was employed to
specifically target the patient’s primary deficit in executive
function following post-stroke cognitive impairment (PSCI).

Existing studies have mostly used single-target transcranial
electrical stimulation (e.g., left dorsolateral prefrontal cortex) (9),
ignoring the multi-node damage characteristics of post-stroke
cognitive networks. Studies have confirmed that dual-target tDCS
can improve cortical excitability and motor learning ability in
healthy people more than single-target tDCS (10, 11), and more
effectively improve the cognitive function and motor function of
Parkinson’s patients (12, 13). Multi-target synchronous stimulation
strategies may more effectively reconstruct impaired cross-network
functional connections by simultaneously regulating key nodes of
the default mode network (DMN) and the central executive
network (CEN), such as the prefrontal-parietal cortex. However,
the current clinical research on multi-target 40Hz tACS for PSCI is
still blank, and its safety, tolerability, and impact on specific
cognitive domains need to be explored on a case-by-case basis.

This report records the application process of 40Hz multi-target
tACS (dorsolateral prefrontal DLPFC, primary motor cortex M1,
and accessory motor area SMA) in patients with PSCI through
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multi-dimensional cognitive assessment, including MOCA, Trail
Making Test-A (TMT-A), Trail Making Test-B (TMT-B), Clock
Drawing Test (CDT), and Digit Span Test (DST). Combined with
transcranial magnetic stimulation (TMS), electroencephalography
(EEG), and magnetic resonance imaging (MRI), the changes in
brain activation value and brain network connection value were
further analyzed to further analyse the underlying neural
mechanism and explore the improvement effect of this
intervention on cognitive function, memory function, executive
function, and information processing speed.

The results will provide key parameters (such as stimulation
duration and target combination scheme) for subsequent randomised
controlled trials and provide translational medical evidence for
understanding the mechanism of 40Hz nerve oscillations in
cognitive rehabilitation, which has important implications for the
development of new neuromodulation therapies.

2 Case description

A 75-year-old female was admitted with “left limb movement
impairment and cognitive dysfunction for 3 months.” On 2025.3.30,
she suddenly developed speech arrest, mouth deviation, and left-
sided weakness without headache or consciousness disturbance.
Initial CT showed right frontal hypodensity. Subsequent MRI
(2025.3.31) revealed acute infarcts in left frontoparietal regions
and corona radiata. DSA demonstrated right internal carotid artery
occlusion distal to ophthalmic artery and M1 segment occlusion
with moyamoya collaterals. Despite antithrombotic therapy, infarct
expansion was noted on repeat MRI (2025.4.6), prompting
conservative management.

Chronic conditions included: Hypertension (30 years, max
190+/90 mmHg, controlled with valsartan/amlodipine); Type 2
diabetes (7 years, HbAlc 6% on empagliflozin/sitagliptin-
metformin); Dyslipidemia (on atorvastatin);Previous stroke with
residual deficits; Neurological Examination; Intact ocular
movements and cranial nerves; Left hemiparesis: Upper limb
Medical Research Council (MRC) scale 4-4-3-2 (shoulder/elbow/
wrist/hand), lower limb MRC 4-4-4-4; Mild left-sided sensory
reduction; Impaired coordination (finger-nose and heel-shin
tests); Normal muscle tone (Modified Ashworth Scale 0); Reflex
asymmetry: Left biceps/triceps 2+, right plantar equivocal.
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Rehabilitation-related assessment content: @ motor function:
Brunnstrom Stage: Upper limb IV, hand IV; Fugl-Meyer
Assessment: Upper extremity 30, lower extremity 40; Berg
Balance Scale: 36; @Cognitive Function: MoCA: 13; TMT-A:
3’19739, TMT-B: 3’55”81; CDT: 7/10 (Rouleau’s 10-Point Scale)
The CDT was administered and scored according to the widely used
and validated 10-point quantitative scoring system developed by
Rouleau et al. (14). This standardized method evaluates the integrity
of the clock face, the presence and correct placement of all numbers,
and the presence and correct placement of the hands, with a total
score ranging from 1 to 10 (higher scores indicating better
performance). Its reliability and applicability in clinical research
have been well-documented (6); DST: Forward 5, Backward 2;
SRTT: RT 933.02ms; ® Neurophysiology: TMS: Resting motor
threshold (RMT) 69% MSO, CMCT 15.38ms. Clinical
examination and baseline assessment findings are concluded in
Table 1.

3 Methods
3.1 Routine rehabilitation treatment

During the 40Hz multi-target tACS intervention, the patient
maintained the original rehabilitation plan in the Rehabilitation
Department of Shanghai Seventh People’s Hospital every day,
Monday to Friday, 2 times/day, 30 minutes/time, a total of 2
weeks, including: 1) physical therapy (PT): 30 minutes a day,

TABLE 1 Clinical examination and baseline assessment findings.

Domain Assessment tool

Neurological Examination Cranial Nerves

Motor Strength (MRC Scale) - Left Side

10.3389/fpsyt.2025.1682068

including Brunnstrom stage III. upper limb training (10-15
times/groupx3 groups), balance function training (center of
gravity shift/incline board training) and gait correction; 2)
Occupational therapy (OT): 30 minutes a day, using task-oriented
training (e.g., building blocks, simulating the use of tableware) and
environmental adaptation training. All daily rehabilitation
treatments are carried out by the same rehabilitation team.

3.2 40Hz multi-target tACS

By selecting the electrodes required for stimulation and the
intensity of the stimulation current in NervioWeb Online Brain
Regulation Experimental Platform 1.1.0, the distribution of electric
field (envelope electric field) intensity in the MNI152 standard head
model under different stimulation methods is simulated and
calculated as shown in Figure 1A. Using a portable transcranial
electrical stimulator (tCE-E2000, Shenzhen Ying Zhi), the tACS
session was delivered to the cortex via surface sponge electrodes
(diameter of 5cm) soaked in 0.9% NaCl, which were employed and
secured in place using a gauze head cover. The anodal electrodes
were positioned over the right DLPFC (F4), right primary motor
cortex (C4), and the right SMA region (approximately 2 cm anterior
to the Cz electrode site along the sagittal midline) according to the
international 10-20 EEG system (15). The cathode is placed in the
corresponding position of the contralateral brain region. The
rationale for simultaneously targeting the right DLPFC, M1, and
SMA is based on their synergistic roles within a commonly

Finding/score
Intact ocular movements

UL: 4-4-3-2 (shoulder/elbow/wrist/hand); LL: 4-4-4-4 (hip/knee/ankle/toes)

Sensory Function

Coordination

Muscle Tone (Modified Ashworth Scale)
Reflexes

Motor Function Brunnstrom Stage

Mild left-sided reduction

Impaired (finger-nose, heel-shin tests)

0 (Normal)

Left biceps/triceps 2+; Right plantar equivocal

Upper Limb: IV; Hand: IV

Fugl-Meyer Assessment

Upper Extremity: 30; Lower Extremity: 40

Berg Balance Scale
Cognitive Function Montreal Cognitive Assessment (MoCA)
Trail Making Test (TMT)
Clock Drawing Test (CDT)
Digit Span Test (DST)

Serial Reaction Time Task (SRTT)

36

13/30

Part A: 3’19”39; Part B: 3’5581
7/10 (Rouleau system)
Forward: 5; Backward: 2

Reaction Time: 933.02 ms

Neurophysiology Transcranial Magnetic Stimulation (TMS)

RMT: 69% MSO; CMCT: 15.38 ms

MRC, Medical Research Council; UL, Upper Limb; LL, Lower Limb; MSO, Maximum Stimulator Output; RMT, Resting Motor Threshold; CMCT, Central Motor Conduction Time.
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FIGURE 1

(A) The electric field (envelope electric field) intensity in the MNI152 standard head model under multi-target stimulation methods. (B) Schematic
diagram of wearing multi-target tACS head electrode. (C) Schematic diagram of transcranial magnetic stimulation (TMS) evaluation of cerebral
cortex motor evoked potential (MEP). (D) Schematic diagram of target placement for TMS assessment of central motor conduction time (CMCT).
(E) Schematic diagram of sequence reaction task time (SRTT) and electroencephalogram (EEG) synchronous acquisition.

impaired cognitive-motor network post-stroke. The DLPFC serves
as a core hub for executive functions; M1contributes not only to
motor execution but also to learning; and the SMA is integral for
motor planning and initiation (16). We hypothesize that concurrent
40Hz tACS over this distributed network will enhance gamma-band
synchronization and functional connectivity among these nodes,
thereby yielding synergistic improvements in post-stroke recovery
by modulating the cognitive-motor interface, an effect surpassing
that of isolated stimulation. The parameters are set as follows:
stimulation frequency 40Hz, sine wave; Peak current 1mA.
Schematic diagram of actual tACS operation (Figure 1B).

3.3 Transcranial magnetic stimulation TMS

Transcranial magnetic stimulation (TMS) figure-eight coil
(Xiangyu Medical, China) to assess the resting movement
threshold (RMT, Figure 1C) (17) and central conduction time
(CMCT, Figure 1D) (18). Electromyography recorded the evoked
potential (MEP) of the right dorsal first dorsal interosseous muscle.
The TMS coil is placed tangentially on the scalp area corresponding
to the left first-hand motor area, with the coil handle 45° backwards
and pointing laterally with the sagittal plane. The recording
electrode is attached to the abdomen of the abductor brevis
muscle of the right thumb, the reference electrode is placed at the
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abductor brevis tendon, the grounding electrode is set at the wrist,
and the target recording muscle is the abductor brevis muscle of the
finger (18). The subject sits comfortably and keeps the head and
arms relaxed. An independent evaluator placed the coil in the M1
region of the right brain. The cortical stimulation point was
localized as follows: take the intersection of the ear connection
and the nasal base-epioccipital trochanter and move 5-7 cm to the
left along the ear connection and move forward 1.5 cm (M1 area),
the coil and the midbrain line are at a 45° angle, and the handle is
facing backward (19). RMT was the lowest stimulation intensity
that could induce more than 50 uV MEP waves in 5 out of 10
stimuli. The operator will adjust the intensity of the magnetic
stimulation to induce MEPs with an average amplitude of 1mV
(peak-to-peak), and perform 5 sequence stimulations at each
intensity level, and finally take the average of the 5 MEP
waveforms as the data analysis index.

3.4 Sequence reaction task combined with
EEG

The series reaction time test task (SRTT) is the most used method
for assessing motor learning function. Deary-Liewald software was
applied in this study (20)To evaluate the changes in motor learning
ability before and after tACS intervention. Before starting SRTT,
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subjects will sit in front of a 15.6-inch computer screen with a long
space bar on the keyboard with their left hand on it. A white square
will be positioned in the center of the computer screen, contrasting
with the blue background. The task is to react to the appearance of
diagonal crosses within each square by quickly using the
corresponding keyboard keys. Subjects were trained on keystrokes
before the official start until the subjects were familiar with the
experimental process. During the experiment, the subjects were asked
to relax, concentrate, sit upright at 75cm from the monitor, blink less,
and keep their heads as still as possible (Figure 1E). Participants need
to press the keys as soon as possible after each cross appears. The task
included 10 practice tests and 80 experimental attempts, and the total
experimental time of each subject did not exceed 10 minutes. The
stimulus interval (in milliseconds, refers to the duration between a
response and the subsequent cross) will be randomly set in the range
of 1000 ~ 3000 ms. The computer program records the reaction time
and stimulus interval time for each trial. on day 0 (T0); the seventh
day of the intervention (T1); Measured on the 14th day of the
intervention (T2).

The EEG signal was recorded according to the electrode
position of the international 10-20 system (Figure 1E). EEG data
collection uses the 32-conduct EEG recording and analysis system
produced by Zhentai Company, the grounding electrode is AFz, the
reference electrode is the left papillae, and the ocular electrode is
recorded with Fpl and Fp2 electrodes. The bandpass filter is
0.01~100 Hz, the sampling rate is 1000 Hz, and the scalp
impedance is less than 10 kQ. In this study, a wireless 32-channel
EEG acquisition system (32-channel Zhentai Technology Co., Ltd.)
was used to record the EEG activity of the subjects during SRTT
(Figure 1E). Before starting the experiment, the researcher will
provide the following instructions to the participants: (1) ensure
that the smallest movements (except for hand button movements),
especially the head should not be swayed left or right; (2) Avoid
swallowing and other actions when performing button operations;
(3) Turn off communication devices, such as mobile phones, or set
them to silent or airplane mode to mitigate external interference.

The EEG data were acquired and exported in EDF format, with
preprocessing and spectral analyses were performed using the
EEGLAB toolbox (https://sccn.ucsd.edu/eeglab/index.php)
running in the MATLAB (Version 2016b, The MathWorks, Inc.,
Natick, MA, United States) environment. The processing flow of
EEG power spectral density (PSD) data is as follows: (1) After
importing the raw data, filtering (1-30 Hz bandpass filter) is
applied, and methods such as ICA decomposition are used to
remove artifacts like eye movements and electromyographic
(EMG) signals; (2) The cleaned continuous data is then divided
into shorter, non-overlapping or overlapping epochs, with window
functions (e.g., Hanning window) set for subsequent analysis; (3)
The power spectrum is calculated using the spectopo function from
EEGLAB or related plugins, performing FFT on each data segment
to obtain the PSD estimate for each channel; (4) Finally, absolute or
relative power values for standard frequency bands (Gamma-band
power 30-50 Hz and 50-80 Hz) are extracted, statistical
comparisons are performed, and spectral curves or topographic
maps are plotted for visualization.
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3.5 Resting state functional magnetic
resonance fMRI

MRI data were acquired using a 3T Siemens Verio scanner
(Siemens, Erlangen, Germany). The scanning sequences were
performed as follows: (1) resting functional MRI (rs-fMRI):
repetition time (TR) = 2100 ms, echo time (TE) = 30 ms, flip angle
= 90°, voxel size = 3.1 x 3.1 x 4.0 mm?®, 42 layers of axial section, field of
view (FOV) = 200 mmx 200 mm, matrix size = 64 X 64, slice thickness
= 4.0 mm, no gap; (2) High-resolution T1-weighted structural image
(TIWI): TR = 8.2 ms, TE = 3.2 ms, flip angle = 12°, FOV = 220
mmx220 mm, matrix=256x256, slice thickness=1 mm, yielding a voxel
size of approximately 0.9 x 0.9 x 1.0 mm?®. The total duration of the
scanning session was approximately 25 minutes. The subject was asked
to close their eyes but remain awake during the scan, and provided with
soundproofing earplugs to reduce noise interference. Before the scan
began, the subject was informed to prepare for the scan and instructed
to keep their body stable and avoid head movements and limb
movements as much as possible.

The spatial preprocessing and analysis procedures performed
on imaging data analyses utilized the RESTplus V1.2 (the Resting-
State fMRI Data Analysis Toolkit plus V1.2, http://www.rfmri.org)
carried out on the MATLAB (Version 2016b, The MathWorks, Inc.,
Natick, MA, United States) (21). The Data preprocessing consisted
of removing the first five time points, slice timing, realignment,
reorientation, normalization, smoothing, detrending, nuisance
covariates regression, filtering (0.01 Hz-0.08 Hz), and ALFF/
Degree Centrality (DC) calculation. Both ALFF and DC values
were transformed into Z-scores for group-level analysis. Using
MRICron (https://www.nitrc.org/projects/mricron) overlay the
pre-processed ALFF and DC maps for each subject. Then, create
a composite visualization that highlights brain regions where these

values increased post-intervention in red.

4 Results

4.1 40Hz multi-target tACS improves
cognitive function in patients

The 2-week 40 Hz multi-target tACS increased the score of
MoCA in this patient (Figure 2A), reduced the completion time of
the TMT-A (reduced 28.49%) and TMT-B (reduced 34.77%) as
shown in Figure 2B, and the results of the Clock Drawing Test
(CDT) were shown in Figures 2C-E (7-7-8). The improvement
effect of the Digit Span Test (DST)results is shown in Table 2.

4.2 40Hz multi-target tACS improves the
motor learning ability of patients

The reaction time (RT) in SRTT was shortened by 6.75% and
16.43% on day 7 and day 14, respectively (Figure 3A), indicating
that the patient’s reaction speed and motor learning ability
improved after 14 days of 40Hz multi-target tACS intervention.
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FIGURE 2

(A) The results of Montreal Cognitive Assessment (MOCA, score). (B) The results of the Trail Making Test-A/B (TMT-A/B, s). (C) The score of the
Clock Drawing Test (CDT) at day 0. (D) The score of the CDT at day 7. (E) The score of CDT at day 14.

TABLE 2 Test questions for memory breadth.

Test content

First Set Forward Span

Second Set Forward Span

Result

Day O

5-digit: first attempt wrong, second
correct

5-digit correct, 6-digit wrong

Only passed 5-digit

Day 7

5-digit: first attempt wrong, second
correct

5-digit correct, 6-digit wrong

Only passed 5-digit

Day 14

5-digit: first attempt wrong, second
correct

5-digit correct, 6-digit wrong

Only passed 5-digit

First Set Backward Span

3-digit: both attempts wrong

3-digit: first wrong, second correct

3-digit: first wrong, second correct

Second Set Backward Span

3-digit correct

3-digit correct

3-digit correct

Backward Span Result

Only passed 2-digit

Only passed 3-digit

Only passed 3-digit

A B C
= 950 - RT 80 20
E 900
® —~ 60 _15
E 0 3 g
= £
) § o 51
5 750 20 5
700-L T T T o o
8§° 6'5{\ b’*\b day 0 day 7 day14 day 0 day 7 day14
FIGURE 3
(A) The results of sequence reaction task time (SRTT, ms). (B) The results of Resting Motor Threshold (RMT, %MSQ). (C) The results of the Central
Motor Conduction Time (CMCT, ms).
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TABLE 3 A summary table including all neuropsychological test scores.

10.3389/fpsyt.2025.1682068

Neuropsychological test DEYAY) Day 7 Day 14 Notes
MoCA
© 13 16 23 Higher scores indicate better function.
(Total score/30)
TMT-A (second) 193 180 138 Lower times indicate better processing speed.
TMT-B (second) 235 206 147 Lower times indicate better executive function.
CDT (Score/10, Rouleau system) . . s High?r scores indicate better visuoconstruction and executive
function.
DST . Lo .
5 5 5 Higher numbers indicate better attention.
(Length, Forward Span)
DST 2 3 3 High bers indicate bett: ki
igher numbers indicate better working memory.
(Length, Backward Span) 8 8 Ty
SRTT . Lo .
L - 933.025 870.300 727.183 Lower times indicate better procedural learning.
(Reaction time, milliseconds)
RMT (% MSO) 69 64 44 Lower times indicate higher cortical excitability
CMCT (ms) 15.38 12.87 12.7 Lower times indicate faster central conduction velocity

Data presented as raw scores. MoCA, Montreal Cognitive Assessment; TMT, Trail Making Test; CDT, Clock Drawing Test; DST, Digit Span Test; SRTT, Serial Reaction Time Task; RMT, Resting
Motor Threshold; CMCT, Central Motor Conduction Time; ms, milliseconds; % MSO, Percentage of Maximum Stimulator Output.

4.3 40Hz multi-target tACS improves
cortical excitability in patients

The TMS results showed that the RMT (Figure 3B) and CMCT
(Figure 3C) of the patient on the first day and day 14 were lower than
the baseline, and the decrease was most obvious on the 7th day,
indicating that 40Hz multi-target tACS improved the patient’s cortical
excitability and nerve conduction efficiency. All the neuropsychological
test scores are concluded in Table 3.

4.4 40Hz multi-target tACS increases the
power spectral density of the target brain
region

EEG results showed that the PSD value of the target brain region
(right DLPFC, SMA) increased (Figures 4A, B), and the PSD value of
slow_gamma (30-55Hz) of all channels increased most after 7 days of
intervention (Figure 4C) and decreased slightly on day 14. MRI results
showed that after 14 days of intervention, the activation value of the
prefrontal brain region increased (Figure 4D), and the local connection
value of the frontoparietal increased (Figure 4E). These changes
demonstrate modulation of both local activity and functional
connectivity patterns following tACS stimulation.

5 Discussion

In this study, 40Hz multi-target tACS (DLPFC-M1-SMA
combined stimulation) was used for the first time to intervene in
patients with post-stroke cognitive dysfunction. The application of
40Hz multi-target tACS was associated with improvements in cognitive
scores (the MoCA score increased by 10 points) and executive function
(task response speed was accelerated during SRTT), but the
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improvement of memory was relatively limited, suggesting that tACS
may be selective in improving cognitive function. This finding provides
a new non-invasive neuromodulation strategy for post-stroke
cognitive rehabilitation.

In terms of neural mechanisms, multimodal detection results
(TMS/EEG/fMRI) showed that tACS may improve neural network
functional connectivity by enhancing gamma band (30-55 Hz)
neural oscillations, increasing cortical excitability (manifested by
reduced RMT), and promoting prefrontal activation (BOLD signal
enhancement). This is consistent with the mechanism by which
gamma oscillations promote synaptic plasticity reported in previous
studies (22). However, the EEG data at 14 days after the
intervention showed a slight decline in efficacy, suggesting that
the sustained effects of the current treatment regimen still need to
be optimized, stimulation therapy may need to be adjusted, or
maintenance intervention strategies may be adopted.

The selection of neuromodulation targets was based on the
patient’s specific multi-domain deficits, as identified through our
comprehensive diagnostic and assessment workup. First, to ensure
the cognitive decline was primarily of vascular origin, other common
etiologies, including metabolic disorders, nutritional deficiencies, and
major depression, were ruled out via laboratory testing, neuroimaging,
and clinical assessment. The rationale for target selection was then
directly derived from the patient’s profile: M1 stimulation aimed to
address left hemiparesis and poor hand function (evidenced by
Brunnstrom and Fugl-Meyer scores); DLPFC stimulation targeted
profound executive dysfunction (as indicated by the MoCA, TMT,
and DST scores); and SMA modulation was chosen to improve motor
planning and cognitive-motor integration, which underpin
coordinated movement and daily activities.

Despite this rationale, several limitations must be acknowledged.
As a single-case investigation, the findings of this study are inherently
limited in their generalizability, and while the observed functional
improvements were temporally correlated with the 40Hz tACS
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Spectrum - 1, 1-100Hz

FIGURE 4

Spectrum - 2, 1-100Hz

10.3389/fpsyt.2025.1682068

(A) Topographic map of gamma-band (1-100Hz) power spectral density (PSD) before intervention (day 0). (B) Topographic map of gamma-band (1-
100Hz) power spectral density after intervention (day 14). (C) The PSD value of slow_gamma (30-55Hz) of brain’s all channels. (D) Changes in zALFF
values of MRI after 14 days of intervention compared to before (red areas indicate increased values). (E) Changes in Degree Centrality (DC) of MRI
after 14 days of intervention compared to before (red areas indicate increased values).

intervention, they may have been influenced by concurrent intensive
rehabilitation and spontaneous neurological recovery during the
subacute phase of stroke—approximately three months post-onset—
when the intervention was initiated. The pragmatic study design, which
integrated tACS within a conventional rehabilitation program to reflect
real-world clinical practice, precludes definitive attribution of the
outcomes solely to tACS. Neurophysiological data indicated a
transient neuromodulatory effect characterised by a sharp increase in
gamma-band PSD that peaked at day 7 but declined to near-baseline
levels by day 14, suggesting an acute yet unsustained response that may
require ongoing or long-term follow-up in the later stages to verify the
effectiveness of stimulation protocols in achieving long-term plasticity.

Despite these limitations, this study provides crucial
preliminary evidence supporting the feasibility, safety, and
potential benefit of administering 40Hz tACS as a novel adjunct
to conventional rehabilitation during a critical recovery window.
The promising results underscore the necessity of future sham-
controlled trials to conclusively determine the specific additive effect
of tACS. Future research can be explored in depth from the
following directions: (1) individualized target localization:
combined with functional image navigation, to increase precise
stimulation of memory-related brain regions (such as the
hippocampus); (2) Joint intervention strategy: simultaneous
implementation of tACS and computerized cognitive training
may produce synergistic effects; (3) Mechanism deepening
research: multimodal imaging techniques (such as fNIRS-EEG
combination) were used to analyze the dynamic coupling
relationship between gamma oscillations and whole-brain
functional networks. (4) Long-term efficacy verification: Conduct
a multicenter randomized controlled trial (RCT) to evaluate the

Frontiers in Psychiatry

long-term effects of different treatment regimens on
cognitive function.

6 Patient perspective

The multi-target tACS intervention was well-tolerated, with only
transient scalp tingling reported during sessions. Subjectively, I noticed
gradual improvements in attention and short-term memory recall
within 2 weeks, particularly during daily activities like medication
management. While persistent deficits remained, the treatment
provided measurable functional benefits without adverse effects.

7 Conclusion

In conclusion, our study provides preliminary evidence that
40Hz multi-target tACS, when combined with intensive
rehabilitation, is associated with cognitive improvement in stroke
patients, potentially through modulating neurophysiological
mechanisms. However, the respective contributions of tACS and
conventional therapy cannot be distinguished in this design,
necessitating further investigation with sham-controlled protocols.
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