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Hippocampal deviations are a hallmark of schizophrenia, yet their regional

specificity remain unclear. Neuroimaging studies have reported smaller

volumes for each hippocampal subfields in schizophrenia compared to healthy

controls but affected regions differ between studies. These conflicting findings

highlight substantial heterogeneity within psychosis, which may be elucidated

through more detailed sub-regional analyses. In this study, we aimed to

determine whether patients with schizophrenia exhibit distinct volumetric

alterations in specific hippocampal subfields compared to healthy controls. We

analysed T1-weighted MRI data from the MCICShare project, employing the

ComBat algorithm to harmonize data across multiple MRI platforms.

Hippocampal subfields were segmented and quantified using the “Bayesian

Segmentation with Histological Atlas”. All computational analyses were

performed on Google Colab Pro+ with Nvidia A100 GPUs. Multiple ANCOVAs

were then conducted, with diagnosis as the independent variable and each

hippocampal subfield volume as the dependent variable, controlling for sex, age,

and estimated intracranial volume. To mitigate type I error inflation, a 5% false

discovery rate (FDR) threshold was applied. After excluding segmentation errors,

we included 108 patients with schizophrenia and 94 healthy controls in the final

analysis. Among the examined subfields, only the right CA2 showed a significant

volumetric difference after FDR adjustment (F = 8.562, PFDR =0.048, h2p=0.042).
Our findings underscore the value of high-granularity segmentation approaches

and highlight the potential importance of CA2 alterations in schizophrenia’s

pathophysiology, thereby guiding future research directions and

clinical applications.
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1 Introduction

Emil Kraepelin, initially characterized schizophrenia as a

progressive condition leading to cognitive decline, and termed

this disorder dementia praecox (1). This nomenclature was later

revised by Eugen Bleuler, who introduced the term “schizophrenia”

that is widely recognized today (2). Both Kraepelin and Bleuler

emphasized the organic and “tangible” aetiologies of the disorder,

attributing the pathology to toxic and anatomical damage to cortical

cells, rather than to “psychic” influences (3). Their perspectives have

significantly influenced the understanding and treatment of the

disorder since that time.

This complex neuropsychiatric disorder, with a global lifetime

prevalence of roughly 0.75% (4) and contributing to reduced

lifespan, is characterized by a multifaceted aetiology. Insights into

its neurodevelopmental origins have emerged from early

neurobehavioral indicators observed in the children of affected

parents, suggesting that the disorder may originate during early

developmental stages (5–7). The structural brain abnormalities

observed in patients with schizophrenia, including thinning of the

cerebellar cortex (8) and alterations in the thalamus (9), and

striatum (10) highlight the disorder’s profound impact on brain

structure. Notably, the hippocampus, essential for memory and

other cognitive functions, shows significant morphological and

functional deviations, underscoring its critical role in the

pathology of schizophrenia (11). Recent insights suggest the

importance of examining specific hippocampal subfields,

particularly the anterior region, for a more nuanced

understanding of volume changes related to psychosis (12).

The hippocampal formation comprises three primary sections:

the hippocampus proper (alternatively called Ammon’s horn or

cornu ammonis), the dentate gyrus, and the subiculum (referred to

as the subicular cortex) (13). The Cornu Ammonis (CA) defines the

different layers of the hippocampus and there are four hippocampus

subfields (CA1, CA2, CA3 and CA4) (14). The hippocampus, a

central element of the brain’s limbic system, plays a critical role in

learning, memory, and emotional regulation. It comprises several

distinct subfields, each contributing uniquely to its overall function:

I) CA1 Region: Essential for the consolidation of long-term

memories (15), II) CA2 Region: Plays a role in social memory

and behaviors, distinguishing it from other hippocampal areas (16),

III) CA3 region of the hippocampus plays a crucial role in the swift

encoding of memories (17), IV) and the CA4 region is an important

anatomic crossroad for innervation by perforant and mossy fiber

pathways connecting hippocampus with several other sites in the

brain (18). The dentate gyrus, as the primary recipient of sensory

input from the entorhinal cortex, serves as the initial processing

stage for episodic memory formation, uniquely processing and

transmitting information to the hippocampal CA3 field due to its

distinct neuroanatomy (19). Besides being a recipient of

hippocampal inputs, the subiculum is crucial for learning and

memory, particularly through its unique projections to the

anterior thalamic nuclei that facilitate the resolution of complex

memory tasks (20).
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The role of the hippocampus in schizophrenia is not yet fully

understood. Neuroimaging studies have reported smaller volumes

for each hippocampal subfields in schizophrenia compared to

healthy controls but affected regions differ between studies. (21).

The studies evaluating the relationship between hippocampal

subfield volumes and symptomatology have also reported varied

results. Kühn et al. (22) reported that patients with stronger positive

symptoms had smaller CA2/3 and CA1 subfields. It has also been

reported that positive psychotic symptoms, defined by

hallucinations and delusions, are associated with CA1 deformity,

CA1 contraction, larger CA1 volume, and smaller CA2/3, CA4/DG,

presubiculum, and subiculum volumes. For negative psychosis

symptoms, smaller CA2/3 and CA4/DG volumes, smaller

subicular volume and subicular contraction have been associated

in different studies (21). Cognitive problems, one of the core areas

of impairment in schizophrenia, have been examined in a small

number of studies related to hippocampal subfields morphometry,

and these studies highlight the lower subiculum volumes (21, 23).

The structure, tight connections, and functions of the

hippocampus are quite complex therefore there is no clear

consensus on the delimitation of hippocampal subfields according

to segmentation protocols. Research on the refinement and

validation of the hippocampal subfields’ methods are also actively

ongoing; therefore, it is recommended that preliminary findings be

interpreted with caution (24). In addition to volumetric reductions,

morphological abnormalities in the hippocampus are also known in

schizophrenia, including incomplete inversion patterns (IHI) and

inward deformations (11). IHI can challenge the performance of

automated hippocampal segmentation methods (25, 26).

Recent research employing the automated hippocampal

segmentation technique developed by Iglesias et al. (27) has

demonstrated that individuals with schizophrenia exhibit significantly

reduced volumes in the bilateral CA1 andmolecular layers compared to

healthy controls (28). The team, also responsible for this initial

segmentation technique, has introduced the NextBrain, a next-

generation tool for 3D histological mapping (29). This advanced

method enables highly detailed examination of hippocampal subfields

in vivo, which we employ in our current study for further analysis.

Our study leverages this advanced method to explore the

intricate anatomy of the hippocampus in living individuals,

aiming to identify significant structural deviations in individuals

with schizophrenia compared to healthy controls. We hypothesized

that such detailed examination will reveal volume reductions in

hippocampal subfields in patients with schizophrenia compared to

healthy controls, which may serve as biomarkers for the disorder

and therapeutic targets.
2 Materials and methods

The study was conducted in accordance with the ethical

principles of the Declaration of Helsinki and approval for the

study was granted by the SANKO University Non-Interventional

Research Ethics Committee on 27/08/2024, with no: 2024/8.
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2.1 Study design

In our cross-sectional study, we investigated patients diagnosed

with schizophrenia using magnetic resonance imaging (MRI) data

obtained from the MCICShare study repository. Following the

reconstruction process, we conducted a comparative analysis to

examine the differences in hippocampal sub-regions volume

measurements in these patients and control group.
2.2 Data collection

SchizConnect (http://schizconnect.org/) is an open-access

repository for neuroimaging data, consisting of MRI scans from

schizophrenia subjects and healthy controls collected across

multiple research studies. Our study utilizes the MCIC Collection

project (30) to investigate volumetric differences hippocampal

subfields among individuals with schizophrenia and healthy

controls. We obtained the MRI images from schizconnect.org

through online data requests. Participants in these projects

undergo extensive baseline evaluations, including T1-weighted

MRI acquisitions and systematic clinical assessments.

For the T1-weighted MRI scans utilised in this study, the

imaging parameters varied based on the scanner’s magnetic field

strength. For 3T scanners, the repetition time (TR) was set at 2530

ms, echo time (TE) at 3.79 ms, flip angle (FA) at 7, inversion time

(TI) at 1100, and bandwidth at 181. For 1.5T scanners, the TR was

12 ms, TE 4.76 ms, FA 20, and bandwidth 110. Both scanner types

shared a voxel size of 0.625 × 0.625 mm and a slice thickness of 1.5

mm. The field of view (FOV) was established at a 256 × 256 ×128

cm matrix, with a baseline FOV of 16 cm, which could be increased

to 18 cm for full brain coverage. In terms of site-specific equipment,

site A used a 1.5 T Siemens Sonata for all structural imaging, while

site C employed a 3T Siemens Trio. Site D conducted structural

imaging using a 1.5T Siemens, and site B performed all structural

scans with a 1.5T GE SIGNA. This overview provides a concise

summary of the structural imaging parameters used in our study.

For detailed information on the imaging protocols readers are

encouraged to refer to the original data publication (30).
2.3 Study participants

Our query included all anatomical images of participants

classified as “Schizophrenia Broad” within MCICShare project.

This search yielded imaging results and clinical characteristics of

204 subjects (HCs: healthy controls, SCZ: patients with

schizophrenia). The distribution of these subjects across different

sites was as follows: Site A (n =88 [HCs =44/SCZ =44]), Site C (n

=58 [HCs =26/SCZ =32]), Site D (n=58 [HCs =25/SCZ =33]).
2.4 Volumetric segmentation of
hippocampal formation into its sub-regions

We employed the ‘full’ Bayesian version of the “Bayesian

Segmentation with Histological Atlas ‘NextBrain’” (31).
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This software suite also incorporates algorithms from previous

studies (32–34), and is integrated within the Freesurfer image

analysis framework (http://surfer.nmr.mgh.harvard.edu/).

Computational analyses were conducted using a paid subscription

to Google Colab Pro+ with Nvidia A100 GPUs and a paid Google

Drive plan.

In order to ensure quality control of segmentation, we utilized

Freeview, a FreeSurfer-embedded program designed for viewing

and manipulating structural anatomical scans in multiple planes

and 3D, allowing us to create and edit layered volumes on the

original scans, manually inspect segmented hippocampi from

various orientations, visually assess the segmentation quality,

identify inconsistencies, and make any necessary adjustments.
2.5 Variables

The primary explanatory variable was diagnosis: binary categoric

as the independent variable, contrasting healthy controls with

schizophrenia patients. Primary dependent variables were

hippocampal subfields volumes. While the NextBrain can segment

hippocampus into numerous subfields (several of which are illustrated

in Figure 1), our analyses focused on the primary subfields of interest;

CA1, CA2, CA3, CA4, the subiculum, and the dentate gyrus; by

aggregating and summing the fine-grained segmentation outputs. We

also collected demographic data (age, gender, education, e.g.) and

clinical characteristics (drug-naive status [TRUE/FALSE], duration of

illness, etc.) to account for potential confounding factors in our study.
2.6 Statistical methods

Continuous variables were presented asmeans (standard deviation)

if normally distributed, and asmedians [25th–75th percentile] otherwise.

Between-group comparisons for continuous variables were performed

using t-tests for normal distributions and Mann-Whitney U test for

non-normal distributions. Categorical variables were expressed as

frequencies and percentages, with Pearson’s c² test or Fisher’s exact
test employed according to theoretical frequency thresholds.

Technical variability is a significant problem in multicenter

neuroimaging studies. There are two main types of technical

variability: density unit effects and scanner effects. Scanner-related

effects can be eliminated with image-level and regional-level

harmonization techniques (35). In this study, we applied the

ComBat batch-adjustment algorithm (36–38) to harmonize

hippocampi volumes and estimated intracranial volume (eTIV)

across three distinct MRI platforms. After post-harmonization

analyses, variability attributable to MRI scanners for hippocampal

sub-region volumes was not significant, indicating successful

mitigation of site-related bias.

We favoured univariate models (multiple ANCOVAs) over

multivariate approaches (MANCOVA) (39) to emphasize metrics

at the sub-regional level, thereby facilitating more precise

localization of structural differences. Each ANCOVA modelled

hippocampal sub-regions as dependent variables, controlling for
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sex, age, and eTIV. Prior to performing ANCOVAs, we verified that

standard assumptions, including normally distributed residuals,

homogeneity of variances, linear relationships between covariates

and dependent variables, and homogeneity of regression slopes,

were met. To mitigate type I error inflation associated with multiple

comparisons, the false discovery rate (FDR) was controlled using

the Benjamini-Hochberg procedure, with the FDR set at 5%.

All statistical tests were two-tailed, with an a error of up to 5%

considered acceptable to define the statistical significance of any

results. All analyses were conducted using R software version 3.6.0 (R

Core Team, 2019; R Foundation for Statistical Computing, Vienna,

Austria). To implement the ComBat batch-adjustment algorithm, we

utilized the sva package (40), univariate analyses and ANCOVAs

were performed with base R functions and the car package (41),

adjustments for multiple comparisons via the Benjamini-Hochberg

false discovery rate were carried out using the stats package’s built-in

p.adjust function, and all visualisations were created using Keynote

version 13.0 (7036.0.126) (Apple Inc., Strobe Inc. – [SproutCore]).
3 Results

3.1 Demographics and clinical
characteristics

Initially, our study included 116 schizophrenia patients and 96

healthy controls. Due to segmentation errors in the NextBrain

pipeline affecting 8 patients and 2 control in the MCICShare

dataset, our final analysis was conducted with 108 patients and 94

controls. The patient group had a mean age of 34.5 (± 11.1) years

and was predominantly male. The healthy control group had a

mean age of 33.2 (± 12.2) years, with a male predominance as well.

A comprehensive descriptive analysis can be found in Table 1.
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3.2 Multiple ANCOVAs

Following multiple ANCOVAs, which controlled for sex, age,

and eTIV, and subsequent FDR adjustments, the right hemisphere

CA2 region exhibited a significant effect (F = 8.562, PFDR = 0.048,

h2p = 0.042) (Table 2).
4 Discussion

The main findings of this study suggest that, among the left

hemisphere hippocampal subfields examined, no significant

volumetric differences emerged after adjusting for multiple

comparisons. Similarly, for most right hemisphere subfields, group-

level differences did not reach the established FDR threshold. Notably,

the right hemisphere CA2 subfield demonstrated a statistically

significant mean difference, indicating a potential region-specific

structural alteration. The magnitude and direction of this effect,

while requiring cautious interpretation, may reflect underlying

neuropathological processes localized within the CA2 area that

could be associated with schizophrenia. This finding provides robust

evidence for the anatomical specificity of hippocampal alterations and

underscores the importance of sub-regional analyses, as broader

hippocampal measures may obscure subtle changes.

CA2 is probably the most enigmatic of the hippocampal

subfields (42). The studies on physiological properties and

behavioral correlates of CA2 demonstrated that this small

subregion has remarkably distinct properties compared to the rest

of the hippocampus. The unique connectivity and physiological

properties of CA2 pyramidal cells make this region a computational

hub at the core of hippocampal information processing (43). One of

the important hypotheses in the etiopathogenesis of schizophrenia

is changes in the regulation of kainate-sensitive glutamate receptors
FIGURE 1

Segmented hippocampal subfields generated by NextBrain (29)for a representative subject from our dataset. Axial (A) and coronal (B) view of a
segmented brain image: the left hemisphere is labeled according to NextBrain's lookup table, while the right hemisphere remains unlabeled for
comparison. (C) Sagittal view of a segmented brain image. *rostral subiculum, †stratum pyramidale of rostral CA1, ‡stratum lacunosum moleculare of
rostral CA1, § molecular layer of rostral DG, || pyramidal cells of rostral CA4, ¶ stratum pyramidale of rostral CA3, ** stratum pyramidale of uncal CA1,
†† polyform layer of rostral dentate gyrus, ‡‡ stratum lacunosum moleculare of caudal CA1.
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(kainate receptors) in the hippocampus. An important finding was

that a post-mortem study testing this hypothesis reported that the

decrease in GluR5,6,7 immunoreactivity density in apical dendrites

in the stratum radiatum and stratum lacunosum-moleculare

compared with healthy controls was more pronounced in CA2

than in CA3 or CA1 (44).

The current findings, indicating a selective volumetric

difference in the right hemisphere CA2 subfield, underscore the

value of examining discrete hippocampal subfields rather than

relying solely on whole-structure metrics. Although most left and
Frontiers in Psychiatry 05
right hemisphere subfields did not yield significant differences after

stringent FDR adjustments, the CA2 alteration suggests a potential

localized neuropathological process in schizophrenia. While these

findings generally resonate with existing literature that highlights

hippocampal alterations in schizophrenia, the specific involvement

of the right CA2 subfield presents a more nuanced pattern than

some previous reports, which have frequently emphasized other

hippocampal subfields. In an early investigation employing

stereotaxic space and surface-based mesh modelling, the mid-to

antero-lateral hippocampal regions displayed pronounced

volumetric alterations accompanied by corresponding increases in

peri-hippocampal cerebrospinal fluid in first episode schizophrenia

(45). In another study employing both FreeSurfer v5.1 and manual

segmentation methods—each yielding highly correlated findings—

individuals with schizophrenia or schizoaffective disorder exhibited

reduced hippocampal volumes relative to controls when examining

the whole hippocampus (46). In a study using FreeSurfer 6.0 and its

development version, several hippocampal subfields, including

bilateral presubiculum and molecular layer, the left hippocampal

tail, subiculum, and CA1, as well as the right parasubiculum, have

been reported to show smaller volumes in patients with

schizophrenia (47). In a study employing FreeSurfer 5.3 and

MAGeT (48), chronic patients demonstrated bilateral volume

reductions in CA4/DG, CA2/CA3, and the stratum, as well as

decreased volume in the right subiculum when compared to older

healthy controls. However, no subfield volume differences were

observed between recent-onset patients and younger healthy

controls in either hemisphere (49). In a recent study employing

the Automated Segmentation of Hippocampal Subfields software

with the Penn PMC atlas (50), individuals in the early stages of

psychosis exhibited lower volumes in the anterior CA1 and DG

subfields compared to healthy controls, while no differences were

observed in CA2/3 or the subiculum. A more recent investigation

reported that volume deficits in CA1 and the presubiculum were

evident at baseline, and that atrophy extended to the GC/ML/DG
TABLE 2 Results of multiple ANCOVAs assessing the effect of diagnosis
on hippocampal subfield volumes, controlling for sex, age, and eTIV.

Dependent
variable

Mean
difference

F P*

Subiculum - lh 8.18 0.751 0.668

CA1 - lh 13.8 0.741 0.668

CA2 - lh 6.87 4.353 0.120

CA3 - lh 8.81 4.569 0.120

CA4 - lh 1.03 0.440 0.746

Dentate gyrus - lh 6.21 1.071 0.668

Subiculum - rh 1.99 0.055 0.815

CA1 - rh 4.14 0.066 0.815

CA2- rh 9.69 8.563 0.048

CA3 - rh 7.54 4.289 0.120

CA4 - rh 0.73 0.341 0.746

Dentate gyrus - rh 1.81 0.117 0.815
Values considered statistically significant are denoted in bold.
*All reported P values have been adjusted using the Benjamini-Hochberg procedure to control
the false discovery rate.
CA, Cornu ammonis, lh, left hemisphere, rh, right hemisphere.
TABLE 1 Demographics and clinical characteristics of the participants of the MCICShare.

Variable HCs n = 94 Schizophrenia n = 108 Test P

Age, years 33.2 (12.2) 34.5 (11.1) 0.788* 0.432

Sex, female 30 (31.9%) 26 (24.1%) 1.54† 0.214

Highest education achieved, years 15.5 (2.47) 12.9 (2.64) 7.06* <.001

Handedness, right 86 (91.5%) 94 (87.0%) 3.69† 0.297

Years of schizophrenia — 7 [2 - 19] — —

Positive symptoms — 5 [3 - 7] — —

Negative symptoms — 7 [5 - 10] — —

Disorganised symptoms — 1 [0 - 2] — —

e-TIV 1.61e+6 1.57e+6 2.10* 0.037

Neuroleptic naïve — 5 (4.9%) — —
Data are presented as mean (± standard deviation) or median [25th percentile - 75th percentile] for continuous variables and number (percentage) for categorical variables.
*independent samples t-test, † contingency tables X2 test.
HCs, healthy controls; eTIV, estimated total intracranial volume.
statistically significant values are shown in bold.
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and CA4 by week 16 (51). Schizophrenia’s underlying heterogeneity

may partly explain why our findings differ from previous reports.

Nonetheless, by enabling researchers to analyze brain MRI scans

with unprecedented granularity (29), NextBrain allows for more

detailed and region-specific insights. Its application here may have

facilitated the detection of the selective right CA2 volumetric

alteration, thereby providing a more refined understanding of

hippocampal involvement in schizophrenia.

This study is subject to several limitations. First, its cross-sectional

design precludes drawing conclusions about the longitudinal

trajectories of hippocampal subfield changes and their potential

causal roles in schizophrenia. Second, although the ComBat

algorithm reduced site-related variability, residual differences in MRI

acquisition parameters and scanner characteristics may still influence

volumetric measures. Third, while the NextBrain segmentation tool is

robust and fine-grained, it relies on probabilistic atlases and histological

references that may not fully capture inter-individual anatomical

variability. Fourth, the absence of direct histological validation

constrains the interpretability of the detected sub-regional alterations.

Moreover, the predominance of antipsychotic treatment in our patient

cohort; with only 4.9% of patients being drug-naive, raises concerns

that medication effects might influence the associations between

diagnosis and hippocampal morphology. However, some evidence

suggests that pre-treatment hippocampal enlargements can return to

normal following antipsychotic therapy (52). Furthermore, in a study,

initial volume deficits in CA1 and the presubiculum at baseline

expanded to include the molecular and granule cell layer of the

dentate gyrus (GC/ML/DG) and CA4 by week 16 with a risperidone

treatment (51). Additionally, reliance on existing data repositories may

introduce selection biases or other unforeseen confounders. Finally,

although the “full” NextBrain processing approach can technically be

executed using CPU-based methods, its reliance on advanced GPU

capabilities may limit reproducibility and scalability in resource-

constrained settings. Since the inception of this manuscript, however,

a “fast” version of NextBrain has been introduced, wherein atlas

deformation is pre-computed via a neural network and remains fixed

throughout the optimization process, thereby reducing computational

demands (31). Finally, IHI is more common in schizophrenia

compared to healthy controls, and the presence of IHI may affect

segmentation accuracy (25, 26, 53). Our segmentation method may

have been inadequate in characterizing IHI.

Evidence indicates that volumetric deficits originate in the CA1

subfield during the early stages of the illness and then extend to

other hippocampal regions as schizophrenia progresses (24, 54).

Conversely, other evidence suggests that hippocampal volume loss

peaks in chronic schizophrenia, without clear progression within

the first two to five years of illness (12). Given that our cohort

(MCICShare) had a median illness duration of seven years, and the

cross-sectional design of our study our findings neither confirm nor

refute these trajectories, yet their unexpected nature does not render

them unprecedented. Taken together, these observations, alongside

our own results underscore the substantial heterogeneity within the

psychosis population, a complexity that may be more thoroughly

elucidated through the fine-grained, detailed analyses afforded

by NextBrain.
Frontiers in Psychiatry 06
5 Conclusions

Considering our study limitations and the novelty of the 3D

histological mapping method, our results support the value of

high-granularity segmentation approaches and raise new

questions about the specific role of CA2 alterations in

schizophrenia’s pathophysiology, potentially guiding future

research and clinical applications.
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