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Serum lactate and LDH
are related with theta and
gamma activities in bipolar
disorder: a band-specific
metabolic coupling
Sermin Kesebir1* and Rüştü Murat Demirer2

1Üsküdar University School of Medicine Department of Psychiatry Üsküdar University, NPİstanbul
Brain Hospital, İstanbul, Türkiye, 2Natural and Engineering Sciences, Üsküdar University, İstanbul,
Türkiye
Objective: Bipolar disorder includes features of a biphasic energy disregulation.

Lactate and LDH have been suggested as biomarkers for mitochondrial

dysfunction, which has a role in its etiology. This study aims to examine the

correlation between electrophysiological brain dynamics, quantified by Entropy

Doubling and Ruzsa Distance derived from EEG data, and peripheral lactate and

lactate dehydrogenase (LDH) levels in patients with bipolar disorder in remission.

Methods: In this study, 20 individuals diagnosed with Bipolar Disorder Type I

following DSM-V criteria were consecutively assessed throughout their

remission phase while attending our outpatient unit for routine evaluations.

Metabolic syndrome and the usage of conventional antipsychotics serves as an

exclusion criterion. We examined serum LDH and lactate levels and did EEGs. All

EEG data is arranged with a sample rate of 125 Hz. The additive combinatorial

entropy of the electrodes is what makes up the entropic Rusza Distance. The

Hilbert-based Entropy Doubling approach was used to process the analytical

signals for each EEG channel.

Results: Energy dysregulation includes theta and gamma frequency bands, both

in relation to lactate and LDH. Lactate and LDH levels in the F7 theta band were

linearly correlated. A negative correlation was found between the levels of lactate

and LDH levels in the O1, Fz, and Cz gamma bands.

Conclusion: Our findings suggest that there is a unique relationship between

electrophysiological brain dynamics and mitochondrial dysfunction mediated

metabolic stress in bipolar disorder.
KEYWORDS

bipolar disorder, mitochondrial dysfunction, lactate, LDH, metabolic syndrome, EEG
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1695916/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1695916/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1695916/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1695916/full
https://www.frontiersin.org/articles/10.3389/fpsyt.2025.1695916/full
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyt.2025.1695916&domain=pdf&date_stamp=2025-10-09
mailto:sermin.kesebir@uskudar.edu.tr
https://doi.org/10.3389/fpsyt.2025.1695916
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://www.frontiersin.org/journals/psychiatry#editorial-board
https://doi.org/10.3389/fpsyt.2025.1695916
https://www.frontiersin.org/journals/psychiatry


Kesebir and Demirer 10.3389/fpsyt.2025.1695916
Introduction

The brain’s high-energy activity necessitates glucose, a 6-carbon

monosaccharide, for ATP generation (1). Glucose penetrates the

parenchyma via glucose transporter 1 (GLUT1) located in the

endothelial cells of the blood-brain barrier. Neurons uptake it

through GLUT3 and GLUT4. Monocarboxylate transporters

(MCTs), located in brain endothelial cells, neurons, and glia,

facilitate the utilization of alternate energy substrates,

including lactate.

Lactate is a three-carbon monosaccharide that can be produced

and released by a variety of cells, including immune cells. The

discovery of the lactate shuttle revealed that lactate is not a waste

product but a metabolic fuel (2, 3). It is also an intercellular

messenger and plays a role in gene expression (4). In

mitochondria, the metabolism of two molecules of lactate yields

30 ATP, while one molecule of glucose yields another 2 ATP

through glycolysis. In neurons, the majority of ATP is consumed

to drive ion pumps for signaling and conduction.

Lactate for ATP generation is associated with oxidative

phosphorylation in the cell’s mitochondria (4). This metabolic

process necessitates the conversion of lactate to pyruvate by

lactate dehydrogenase (LDH), a bidirectional redox enzyme. The

conversion is facilitated by the tricarboxylic acid cycle (TCA) and

molecular oxygen, which acts as the terminal electron acceptor in

the respiratory chain. Consequently, cellular oxygen consumption

rises linearly with the complete oxidation of lactate.

Lactate is conveyed from the circulation, astrocytes,

oligodendrocytes, and activated microglia to neurons (1). This

amount is significantly elevated relative to the output of neuronal

glucose metabolism. At this juncture, it is crucial to ascertain

whether the transferred molecule serves as a more fundamental

source of pyruvate.

A key goal is to elucidate the relationship between lactate

oxidation and cortical functions such as perception, motor

activity, and memory formation, and its role in fueling neuronal

excitation and signal transmission. This exciting topic has been

studied ex vivo in hippocampal slice preparations using electrical

stimulation, optogenetic tools, and receptor-ligand applications.

Electrophysiological experiments allowing the induction of

different neural networks have shown that, in the absence of

glucose, only lactate disrupts gamma and theta-gamma

oscillations, which require high energy requirements (5–7),

during which time the cerebral oxygen metabolic rate is fully

regulated. This disruption is characterized by moderate

hyperexcitability and reflects excitation-inhibition dysregulation.

This dysregulation is suppressed by increasing the glucose

fraction of the energy substrate. In contrast, lactate alone

preserves the lower-energy, intermittent sharp wave activity when

the cerebral oxygen metabolic rate is around 65%. Another

consideration is that lactate slows neurotransmission in pyramidal

cells and fast-firing GABAergic interneurons by reducing

neurotransmitter release from presynaptic terminals, whereas in

the axon, the generation and propagation of action potentials

are regular.
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The aim of this study is to investigate the relationship between

electrophysiological brain dynamics obtained from EEG signals and

peripheral lactate and lactate dehydrogenase (LDH) levels measured

by Entropic Ruzsa Distance and Entropy Doubling methods in

patients with bipolar disorder in remission.

Indeed, bipolar disorder exhibits the characteristics of a

biphasic energy disorder (8–10). It is characterized by depressive

and manic episodes, characterized by mood swings, and increased

and decreased psychomotor activity. Furthermore, cognitive

impairment is also observed during periods of remission in these

patients (11). Mitochondrial dysfunction is a current and important

area of research in the etiology of this neuroprogressive disorder

(12, 13).

The initial study conducted in 1990 by Swartz and Breen

revealed that serum LDH levels during manic episodes were

elevated compared to healthy controls (14). It has been

demonstrated that bipolar cases can be differentiated from

unipolar cases among 2,470 inpatients in Shanghai (15). A

comparable outcome was observed in a concurrent study

involving 261 adolescent cases (16).

In bipolar cases, elevated lactate levels were observed in the

brain via Magnetic Resonance Spectroscopy (MRS) in six studies

and in cerebrospinal fluid (CSF) in two studies (17). There are two

positive and two negative results in peripheral measurements. Guo

and colleagues indicated that increased serum lactate correlates with

depressive episodes (18). Vieira et al. demonstrated the reversibility

of this elevation with lithium (19). Serum lactate levels, indicative of

bipolar disorder, were elevated in patients relative to healthy

controls, whereas cct-mtDNA levels, another proposed biomarker

for mitochondrial dysfunction, showed no significant difference

(20). It has been observed to correlate with lactate in bipolar cases,

but not in healthy controls, and to exhibit a negative correlation

with depressive symptoms.

Animal studies indicating elevated lactate levels in the brain

propose that, alongside bipolar disorder, it may function as a

transdiagnostic endophenotype associated with cognitive deficits

in schizophrenia, autism, epilepsy, and Alzheimer’s (21). The

shared characteristic of the five studies involving 2,294 animals is

the correlation between elevated lactate levels and diminished

working memory performance.
Methods

In this study, 20 patients diagnosed with Bipolar Disorder Type

I according to DSM-V were consecutively evaluated during their

routine outpatient follow-up visits to our outpatient unit. Metabolic

syndrome was an exclusion criterion because multivariate

regression analyses have shown that lactate is associated with

triglycerides, blood glucose, and systolic and diastolic blood

pressure (22). Mitochondrial markers differ between patients with

metabolic syndrome with normal and elevated lactate levels.

Another exclusion criterion was the use of typical antipsychotics,

as a potential elevation in creatine kinase would affect lactate and

LDH levels (14).
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Our university’s ethics committee gave us the green light, and

we used the project-based research grant from our university as the

source. We examined serum LDH and lactate levels and did EEGs

on patients who gave their informed consent.

The additive combinatorial entropy of the electrodes is what

makes up the entropic Rusza Distance (23). The Hilbert-based

Entropy Doubling approach was used to process the analytical

signals for each EEG channel.

All EEG data was recorded in a quiet, subtly lit room, in sitting

position, with eyes closed. Nineteen scalp electrodes were placed

according to the 10–20 system. Linked mastoid electrodes (A1–A2)

were used for reference. EEG was recorded at a sample rate of 125

samples/s. Recording time was 3 min. Impedances for each

electrode referring channels were kept below 30 kΩ. EEG

processed offline for artifact rejection. A high pass filter was

applied at 0.1 Hz and a low pass filter was applied at 70 Hz.
Mathematical approach

We employed entropy-based metrics recently formalized in

additive combinatorics to quantify hidden structural redundancy

in EEG signals. We go through the steps, histogram definition,

convo lu t ion , entropy-doub l ing equat ions and zero-

phase guarantee.

EEG preprocessing and band definition
Raw EEG recordings were imported from EDF format and

preprocessed using the FieldTrip toolbox (24). Data were sampled

at 125 Hz, which was the acquisition rate for all patients. Signals

were re-referenced to the common average reference after removal

of non-EEG channels.

Continuous data were segmented into non-overlapping epochs

of 2s (250 samples per epoch). Each epoch was then bandpass

filtered into canonical frequency bands. Filters were designed as

linear-phase finite impulse response (FIR) filters using the

windowed sinc method, implemented with zero-phase forward-

backward application (filtfilt command in MATLAB/FieldTrip) to

avoid phase distortion (25). Stopband attenuation was at least 40

dB, with transition widths of ∼ 10% of the passband

edge frequency.

Entropy doubling
Entropy doubling features were computed by adapting the

entropic doubling constant

sent½X� = exp(H(X1 + X2) −H(X))

where X1,X2 are independent copies of the discretized EEG

signal and H( · ) denotes Shannon entropy, following the

formulation (26, 27). For each EEG epoch, the empirical

distribution pX (histogram) is estimated from amplitude or phase

samples, and entropy is computed for both the original and doubled

distributions. This procedure highlights repetitions and hidden

organizational patterns beyond random variability.
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Entropic Ruzsa distance
We further evaluated the entropic Ruzsa distance based on the

same classical Shannon entropy.

dent(X,Y) = H(X0 − Y 0) −
1
2
H(X 0) −

1
2
H(Y 0)

where X 0,Y 0 are independent copies of X,Y , respectively. In our

adaptation, EEG epochs were discretized into empirical probability

distributions, and pairwise entropic distances were computed

between channels in a 10–20 electrode system. This measure

captures the degree of independence or redundancy among

brain regions.

Theoretical link between entropy doubling and
entropic Ruzsa distance

The two measures are mathematically related by

sent½X� = exp(dent(X,−X))

which provides a unified framework for assessing both within-

channel structural complexity and cross-channel dependence in

EEG dynamics.

Smoothing window
We stabilize empirical distributions within each epoch Ek =

½tk, tk + T), apply a symmetric kernel gt (t):

~ab(t) = (gt *ab)(t)

~fb(t) = unwrap((gt *fb)(t))
Vectorization operator
For each epoch Ek with sample grid tj

� �N
j=1

ab,k = ~ab(tj)
� �N

j=1∈ RN

fb,k = ~fb(tj)
� �N

j=1∈ RN
• where tj
� �N

j=1 are the discrete sampling points inside epoch

Ekab,k is simply the vector of amplitude samples in epoch

Ek.

• fb,k is the vector of phase samples in epoch Ek.
Independent-copy property is guaranteed on only circular shifts.

We generate two approximately independent surrogates by applying

circular shifts to the amplitude and phase vectors within each epoch.
• Epoch integer index k: each trial or segment is labeled by k.

• Sample index n ∈ 0,…,N − 1f g: denotes the discrete time

sample inside epoch Ek. For example 2 sec. epoch

corresponds to N = 250 samples in the case of sampling

frequency of fs = 125  Hz :Shift amount s is an integer

(uniformly chosen in ½1,N − 1�) representing how many

samples we circularly rotate.
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Formally, for the amplitude vector ab,k½n�:

(Tsab,k)½n� = ab,k½(n − s)modN�
and for the phase vector fb,k½n�:

(Tsfb,k)½n� = fb,k½(n − s)modN�
we define surrogates:

X(a)
1 = Ts1ab,k

X(a)
2 = Ts2ab,k

We can write the surrogates similar analogously for phase. This

avoids block-bootstrap operators (28). The circular shift ensures all

samples are preserved, only permuted. Using two different random

shifts creates two copies of the same distribution that are

decorrelated enough to act as independent samples. This

procedure avoids block-bootstrap resampling (no cutting/

rejoining of time series) while preserving amplitude and phase

statistics within each 2-sec epoch.

Distribution-level convolution
Let X denote a vector of values from one epoch, either

amplitude samples ab,k½n�
� �N

n=1 or phase samples jb,k½n�
� �N

n=1. To

estimate its probability distribution, we construct an empirical

histogram with nBins  = 50 equal-width bins (linear for amplitude,

circular for phase). The normalized histogram yields the discrete

distribution

pX ½j� =
1
N
# n :X½n� ∈ binj
� �

,  j = 1,…, nBins 

This pX represents the probability distribution of a single

surrogate copy of the data. Since X1 and X2 are generated by

independent circular shifts of the same signal, their distributions are

identical, both equal to pX . The distribution of their sum is then

defined by discrete convolution: pS = pX*pX

pS½k� =oipX ½i�pX ½k − i�
Entropy is then estimated for both pX and pS using the Shannon

estimator, yielding the entropy-doubling statistic. This step follows

the entropy-doubling framework (27).
Entropy-doubling estimators
With equal-width bins (n Bins = 50 for amplitude; circular bins

for phase):

ŝent ½ab� = exp(Ĥ(X(a)
1 + X(a)

2 ) − Ĥ(X(a))),

ŝent ½fb� = exp(Ĥ(X(f)
1 + X(f)

2 ) − Ĥ(X(f))) :

Here, Ĥ( · ) is Shannon entropy from empirical histograms (pX ,

pS), as in Dembo et al. (28).

Zero-phase guarantee must be provided for guaranteeing the

entropy doubling. Since hb is linear-phase (applied zero-phase) and

gt is symmetric, the sequence x → xb → zb → (ab, fb) → (~ab, ~fb)
→ (ab,k, fb,k) introduces no phase distortion (29, 30).
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Results

The mean age of the 13 female and 7 male cases was 34.7 ± 12.8

years, and the disease duration was 14.9 ± 9.6 years. The average

lactate levels were calculated to be 1.8 ± 0.3 mmol/l, and the average

LDH levels were calculated to be 210.1 ± 60.1 u/l.

Energy dysregulation includes theta and gamma frequency

bands, both in relation to lactate and LDH (Figure 1). Each

heatmap cell represents correlation coefficient (red=positive,

blue=negative), with statistically significant correlations (p<0.05)

marked by black asterisks. The barcode-like vertical stripes in the

heatmaps correspond to frequency-specific effects: each frequency

column shows a distinct pattern of correlations across electrodes.

Strong red or blue ‘bars’ indicate band-driven effects, confirming

that metabolic coupling is frequency-specific rather than diffuse.

Lactate and LDH levels in the F7 theta band were linearly

correlated (r= 0.644, p= 0.027 ve r= 0.638, p= 0.029). A negative

correlation was found between the levels of lactate (r= - 0.514, p=

0.038; r= -0.863, p< 0.001; r= -0.801, p< 0.001) and LDH levels (r= -

0.436, p= 0.042; r=.-0.684, p= 0.023; r= -0.579, p= 0.037) in the O1,

Fz, and Cz gamma bands (Table 1). The false discovery rate (FDR)

was computed using methodology described by Benjamini and

Hochberg. Significant results were determined based on an FDR-

adjusted p-value of ≤ 0.05.
Discussion

A major finding of this study is the strong negative correlation

between serum lactate and LDH levels and gamma oscillations

(Figure 1). Functional MRI studies have consistently shown that

lactate levels increase during intense neural activation, and that

EEG high-frequency power generally covarys with extracellular

lactate dynamics (31). The strong correlations we observed

between lactate and LDH and entropy at central electrodes may

reflect changes in neuronal oxidative capacity and energy trafficking

driven by lactate- and LDH-mediated metabolism. In fact, gamma

oscillations are also observed as enveloped within theta oscillations,

as has been demonstrated optogenetical ly in ex vivo

experiments (32).

Gamma oscillations occur in many cortical areas during

perception, psychomotor activity, and memory formation (33).

They are a dialogue between glutamatergic pyramidal cells and

GABAergic interneurons. Several hippocampal and neocortical

GABAergic interneuron subtypes exert rhythmic perisomatic

inhibition on pyramidal cells via GABA release. Rhythmic

perisomatic inhibition is extensively produced by fast-spiking

interneurons, such as parvalbumin-positive GABAergic basket

cells. Fast-spiking interneurons possess unique electrophysiological

properties, including extensive axonal arborization and high-

frequency presynaptic GABA release (34). It has been suggested

that the impairment of gamma oscillations during metabolic/

oxidative stress originates primarily from fast-spiking interneurons

rather than pyramidal cells (35). This is countered by an increase in

theta activity.
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In our study, there was a linear relationship between serum

lactate and LDH levels and theta oscillations (Figure 1), which bears

traces of theta-gamma coupling, suggesting a band-specific

metabolic coupling. High lactate levels and associated metabolic

acidosis have been associated with EEG slowing (36). This finding is

consistent with meta-analyses showing that theta-beta power is

associated with lactate clearance during sleep and cortical

activation (37).

During low-energy network activity, lactate is an adequate

substitute for glucose (38). Gamma activity, however, is

attenuated at low glucose concentrations. In this rhythm, lactate

can only be a supplementary fuel. Only moderate hyperexcitability,

superimposed on gamma oscillations by lactate utilization, has been

observed (5). This state, reflecting a type of excitation-inhibition

imbalance, is suppressed by glucose utilization. The impairment in

gamma oscillations occurring at low glucose concentrations is not

accompanied by hyperexcitability. At this point, it is thought that

the neural excitation-inhibition balance can be maintained as long

as the rate of decline in glucose concentration is not too rapid.

Given the dual role of lactate as a fuel and signaling molecule
Frontiers in Psychiatry 05
involved in neuroplasticity and gene regulation, EEG-metabolite

relationships may reflect integrated neuroenergetic and

neuroprotective processes potentially related to stress

susceptibility and neurodegenerative risk.

Lactate-induced impairment of gamma and theta-gamma

oscillations is associated with i) decreased neuronal excitability, ii)

decreased neurotransmitter release, iii) altered postsynaptic

glutamatergic and GABAergic receptor activation. This may result

in i) ATP deficiency resulting from decreased glycolysis and limited

lactate oxidation, ii) partial inhibition of mitochondrial respiration

by neuronal NO synthesis, iii) intracellular acidification mediated

by ATP hydrolysis and H-linked neuronal MCTs, iv) shifts in the

cytosolic NAD/NADH ratio, v) lactate-mediated HCAR1

activation, and vi) activation of purinergic and adenosine

receptors (39).

ATP synthesis by aerobic glycolysis at excitatory and inhibitory

synapses, or aerobic glycolysis itself, may be essential. Lactate is less

effective than glucose. Its long-term use during high-energy-cost

neural network rhythms can even be potentially harmful after a

certain point.

Consequently, the effects of high lactate/glucose ratios on mood

and cognition appear to depend on the pathophysiological context.

These exciting fundamental concepts and their clinical implications

require comprehensive collaborative studies involving

morphological , biochemical , electrophysiological , and

neuroimaging methods.

Our limitation is that correlation cannot confirm causation: i)

EEG captures millisecond-scale activity, while lactate- and LDH-

related changes are slower, which future simultaneous fMRI-EEG

protocols will clarify temporal coupling. ii) EEG energy
TABLE 1 Correlation table.

r, p (FDR p) Lactate LDH

F7 Theta

O1 Gamma

Fz Gamma

Cz Gamma

0.644, 0.027 0.638, 0.029

-0.514, 0.038 (NS) -0.436, 0.042 (NS)

-0.863, 0.001 -0.684, 0.023

-0.801, 0.001 -0.579, 0.037 (NS)
FIGURE 1

Correlation heatmaps between EEG entropy doubling (amplitude-based) and peripheral metabolic markers (Lactate, left; LDH, right). The vertical axis
denotes electrode sites and the horizontal axis denotes canonical frequency bands. Warm colors indicate positive correlations, cool colors indicate
negative correlations. Black asterisks mark statistically significant correlations (p< 0.05). Confidence intervals (CI = 95%) were calculated using
nonparametric bootstrap resampling (N = 10,000 iterations).
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measurements likely combine multiple processes. Complementary

studies using MCT inhibitors or LDH isoform assays may be able to

distinguish between the contributions of lactate transport and

its conversion.

In this study, we asked a simple, yet valid and important question.

This is true because we found highly significant correlations. This is

important because it was investigated for the first time in patients

diagnosed with bipolar disorder. We demonstrated a relationship

between peripheral metabolic markers (lactate, LDH) and EEG signal

complexity. The lack of a control group should have been emphasized

as a significant limitation. At this point, we would like to point out

that our patients being in remission would bring our findings closer

to those of healthy controls.

Our findings are also intriguing in terms of the connections

revealed along the brain-body axis. The fact that our patients were

in remission brings the associations we found closer to those found

in the healthy population. Future studies are intriguing, given the

nature and severity of depressive and manic episodes. Both

peripheral metabolic measurements and EEG changes, and

particularly the relationship between them, are potential

biomarkers reflecting mitochondrial dysfunction in bipolar

disorder and illness episodes.
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