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The gut–brain–circadian
axis in anxiety and depression:
a critical review
Jhommara Bautista, Camila Hidalgo-Tinoco,
Miranda Di Capua Delgado, Juliana Viteri-Recalde,
Antonio Guerra-Guerrero and Andrés López-Cortés*

Cancer Research Group (CRG), Faculty of Medicine, Universidad de Las Américas, Quito, Ecuador
Anxiety and depressive disorders rank among the most prevalent psychiatric

conditions worldwide, yet remission rates remain unsatisfactory despite

advances in pharmacological and psychotherapeutic interventions. The gut–

brain axis has emerged as a transformative framework for understanding these

disorders, emphasizing bidirectional communication between the central

nervous system, the enteric nervous system, the endocrine and immune

systems, and the gut microbiota. Preclinical studies demonstrate that germ-

free or dysbiotic states exaggerate hypothalamic–pituitary–adrenal (HPA)

reactivity, remodel synaptic plasticity, and induce anxiety- and depression-like

behaviors, while fecal microbiota transplantation confirms the causal influence of

microbial communities. Mechanistically, neural (e.g., vagal), endocrine (e.g.,

cortisol), immune (e.g., cytokine), and metabolic (e.g., short-chain fatty acids,

tryptophan metabolites, bile acids) pathways converge to regulate mood and

stress resilience. An underappreciated yet critical dimension of this model is

circadian rhythmicity. Both host endocrine cycles and microbial communities

exhibit diurnal oscillations that synchronize metabolism, immune activity, and

neural signaling. Disruption of these rhythms, through factors such as sleep

disturbance, irregular feeding, or shift work, alters microbial diversity, dampens

metabolite oscillations, destabilizes HPA regulation, and enhances

neuroinflammation, thereby amplifying vulnerability to psychiatric disorders.

Collectively, evidence supports a model in which anxiety and depression are

systemic conditions arising from integrated neural, immune, endocrine,

metabolic, and circadian dysregulation, rather than isolated brain-based

pathologies. This reconceptualization positions microbial taxa and metabolites

as candidate biomarkers and therapeutic targets. Precision interventions,

ranging from diet and psychobiotics to fecal microbiota transplantation,

chrononutrition, and immune-modulatory strategies, offer promising avenues

for personalized psychiatry.
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Introduction

Anxiety and depressive disorders are among the most prevalent

and debilitating psychiatric conditions, collectively affecting nearly

10% of the global population and ranking as leading causes of

disability worldwide (1, 2). Despite advances in pharmacological

and psychotherapeutic strategies, remission rates remain

disappointingly low, underscoring the need for novel mechanistic

frameworks to explain disease onset, persistence, and treatment

resistance (3). Over the past two decades, the gut–brain axis has

emerged as one such paradigm, emphasizing the bidirectional

interplay between the central nervous system (CNS), the enteric

nervous system (ENS), the endocrine and immune systems, and the

intestinal microbiota (4, 5) (Figure 1).

The human gastrointestinal tract harbors nearly 1014 microbes,

outnumbering human cells and carrying a gene pool vastly

exceeding the host genome (6–8). These commensals contribute

to digestion, immune maturation, and host metabolism, but

accumulating evidence reveals their equally critical role in

shaping CNS development and behavior (4, 9). Germ-free mice

display exaggerated hypothalamic–pituitary–adrenal (HPA)

reactivity, anxiety-like phenotypes, and altered synaptic plasticity,

which normalize upon colonization with commensals (9, 10).

Converging lines of evidence, antibiotic-induced dysbiosis with

behavioral rescue after recolonization, monoassociation with

specific taxa (e.g., Bifidobacterium infantis) that normalizes HPA

output, and metabolite supplementation that restores microglial

maturation and synaptic function, support a causal role for

microbiota–brain signaling without relying solely on fecal

microbiota transplantation (FMT) models (11, 12).

Multiple biological pathways mediate this crosstalk. Neural

signaling is exemplified by the vagus nerve, which conveys

microbial cues to mood-related brain circuits; indeed, vagotomy

abolishes the behavioral effects of probiotics and FMT (6, 13).

Endocrine routes converge on the HPA axis, where dysbiosis

disrupts glucocorticoid rhythms, elevates cortisol, and exacerbates

stress sensitivity (3, 14). Immune signaling provides another

conduit: lipopolysaccharide (LPS) and other pathogen-associated

molecular patterns can breach a compromised gut barrier,

triggering cytokine release such as IL-1b, IL-6, and TNF-a, which
activate microglia and remodel synapses (9, 15, 16). Metabolic

signaling represents a further layer of complexity, as microbiota-

derived short-chain fatty acids (SCFAs) regulate blood–brain

barrier (BBB) integrity, synaptic plasticity, and anti-inflammatory

tone, while tryptophan metabolites influence serotonin biosynthesis

and kynurenine pathway flux (11, 17, 18). Together, these pathways

establish a framework in which microbial imbalance, or dysbiosis,

contributes to psychiatric vulnerability.

Importantly, SCFAs and tryptophan metabolites exert convergent

but mechanistically distinct influences on the CNS. SCFAs primarily

act via G-protein–coupled receptors (FFAR2/FFAR3) and histone

deacetylase inhibition, modulating microglial maturation,

neurotransmission, and neuroinflammation (19). In parallel,

tryptophan-derived metabolites access the brain through LAT1
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transporters and act via serotonin receptors, kynurenine–N-methyl-

D-aspartate (NMDA) signaling, and the aryl hydrocarbon receptor

(AhR), ultimately producing overlapping outcomes such asmodulation

of mood, synaptic function, and stress reactivity (20–22). Alterations in

bile acid pools further modulate dopaminergic and noradrenergic

circuits, affecting limbic regions such as the prefrontal cortex and

amygdala that are critical for mood regulation (23). Concurrently, these

metabolic shifts enhance systemic inflammation by amplifying IL-6

and TNF-a release, priming microglia, and compromising the BBB

integrity, mechanisms long implicated in depression and other affective

disorders (24). Collectively, these findings establish a mechanistic link

between microbial dysbiosis, aberrant neurotransmission, and

neuroimmune dysfunction.

Historically, depression was viewed primarily through

neurochemical models, but immunological perspectives now

dominate (25). Peripheral immune activation induces “sickness

behavior,” an adaptive, cytokine-driven syndrome characterized by

anhedonia, fatigue, and social withdrawal, that overlaps strikingly

with core features of depression (15, 26). Proinflammatory cytokines

cross the BBB and modulate neurotransmitter systems including

serotonin, dopamine, and glutamate, thereby precipitating behavioral

and cognitive changes (3, 24). Evolutionary theories posit that

depressive behaviors, while maladaptive in modern societies, once

conferred survival benefits by conserving energy during infection or

injury (3). Contemporary studies confirm that individuals with

heightened inflammatory responses to psychosocial stressors are at

greater risk of developing depression, reinforcing the gut–immune–

brain axis as a central mechanism (9, 27).

Human studies now provide strong evidence for these links.

Large-scale metagenomic analyses, such as those from the Flemish

Gut Flora Project, revealed that butyrate-producing genera like

Faecalibacterium and Coprococcus are associated with improved

quality of life, whereas their depletion, along with reduced Dialister,

correlates with depression (11). In contrast, enrichment of pro-

inflammatory taxa such as Eggerthella and Enterobacteriaceae has

been reported in MDD patients. Multi-omics studies consistently

demonstrate that these microbial signatures are mirrored by

metabolic shifts, reduced SCFAs, indoles, and serotonin precursors

alongside elevated kynurenine pathway metabolites, that converge to

impair neurotransmitter balance and promote chronic

neuroinflammation (11, 18, 28, 29). These microbial signatures are

paralleled by metabolic shifts, including reduced SCFAs and indoles

and increased kynurenine pathway metabolites, all of which influence

neurotransmitter signaling and immune activation (4, 11). Clinically,

many patients with depression and anxiety also present with

gastrointestinal comorbidities, highlighting the translational

relevance of the microbiota–gut–brain axis (4).

An often-overlooked dimension in this model is the role of

circadian rhythms. Both host endocrine cycles, such as cortisol and

melatonin secretion, and microbial communities display diurnal

oscillations that synchronize metabolic and neural processes (9, 30).

Disruption of these rhythms through factors such as shift work,

irregular feeding, or sleep disturbances alters microbial diversity,

dampens SCFA oscillations, and destabilizes HPA regulation (4,
frontiersin.org

https://doi.org/10.3389/fpsyt.2025.1697200
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org


Bautista et al. 10.3389/fpsyt.2025.1697200
31). Experimental evidence now shows that circadian rhythm

disruption (CRD) induces disturbed expression of the intestinal

epithelial gene Per2, drives gut microbiota dysbiosis, and via FMT,

transfers depression-like phenotypes to naïve recipients, thereby

implicating microbiota circadian misalignment as a causal driver of

mood vulnerability (9, 32, 33). Recent studies further reveal that

circadian disruption not only exacerbates neurotransmitter
Frontiers in Psychiatry 03
dysregulation but also heightens systemic inflammation, thereby

creating a temporal dimension to gut–brain–immune interactions

(31, 34, 35). These findings integrate circadian biology into the gut–

brain–immune framework and open the door to chronotherapeutic

and microbiota-targeted interventions.

Together, this evidence converges on the conclusion that

microbial dysbiosis contributes causally to the onset and
FIGURE 1

Gut–brain–circadian axis in anxiety and depression. Schematic focusing on risk-enriched microbial signals and their downstream effects across the
neural, endocrine (HPA), immune, and metabolic arms of the gut–brain axis: barrier compromise facilitates translocation of PAMPs/LPS, activating
TLR pathways and pro-inflammatory cytokines (IL-1b, IL-6, TNF-a) that drive microglial activation, synaptic remodeling, and dysfunction of mood-
relevant circuits, contributing to anxiety- and depression-related phenotypes; in parallel, inflammatory signaling diverts tryptophan toward
kynurenine via IDO/TDO, diminishing serotonergic tone and generating neuroactive metabolites; stress engages the HPA axis, and cortisol feedback
further weakens barrier function and reshapes microbial ecology, creating a feed-forward loop; circadian rhythms and peripheral clocks gate the
timing of microbial composition shifts and metabolite fluxes, as well as time-of-day windows for barrier permeability, cytokine responsiveness, vagal
tone, and cortisol dynamics; circadian misalignment desynchronizes these rhythms, increases LPS leakage and inflammatory set points, and amplifies
risk-associated signaling to the brain.
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persistence of anxiety and depression (6, 29). This reconceptualizes

psychiatric disorders as systemic conditions arising from the

intersection of neural, endocrine, immune, metabolic, and

circadian networks, all shaped by the microbiota, rather than

isolated brain-based pathologies. Beyond mechanistic insights,

these findings have translational implications: microbial taxa and

metabolites are emerging as biomarkers for disease risk and

treatment response, while interventions such as psychobiotics,

FMT, precision diets, chrononutrition, and immune-modulatory

therapies hold promise for individualized psychiatric care (9, 36).
The gut–brain axis in the
pathophysiology of anxiety and
depression

The gut–brain axis has emerged as a central conceptual

framework for understanding anxiety and depressive disorders,

emphasizing the bidirectional communication between the CNS,

the ENS, the endocrine and immune systems, and the gut

microbiota (6, 37, 38). Communication across this axis occurs

through neural, endocrine, immune, metabolic, and circadian

pathways that collectively orchestrate stress responses, emotional

regulation, and systemic homeostasis. Neural signaling is

exemplified by the vagus nerve, which transmits microbial cues

directly from the gut to the brain; indeed, vagotomy abolishes

depression-like behaviors induced by FMT from depressed

individuals into rodents, demonstrating a causal link between

microbial signals and mood regulation (39, 40). Endocrine

pathways converge on the HPA axis, where microbial alterations

influence glucocorticoid rhythms, cortisol secretion, and stress

reactivity (41–43). Immune mechanisms provide another conduit:

LPS and other microbial components can cross a compromised gut

barrier, triggering systemic cytokine release such as IL-1b, IL-6, and
TNF-a, which activate microglia, remodel synaptic function, and

promote neuroinflammation (19, 41). In parallel, microbial

metabolites such as SCFAs enhance BBB integrity and synaptic

plasticity, while tryptophan metabolites regulate serotonin and

kynurenine pathways that influence mood and cognition (6, 23).

Importantly, these neural, endocrine, immune, and metabolic

pathways are not temporally static, they are entrained by

circadian clocks, and disruption of daily rhythmicity amplifies gut

dysbiosis, HPA hyperactivity, and neuroinflammatory tone,

ultimately heightening vulnerability to anxiety and depression

(31, 44–47) (Table 1).

Preclinical studies have established that the microbiota is an

active regulator of stress circuitry rather than a passive correlate.

Germ-free mice exhibit exaggerated HPA responses and anxiety-like

behaviors that normalize following colonization with commensal

microbiota, demonstrating that microbial input is essential for

appropriate stress regulation (6, 37, 48). Complementary strategies,

perturbation, replacement, and rescue, further reinforce causality:

antibiotic-induced dysbiosis elicits anxiety- and depression-like

phenotypes reversible by recolonization; monoassociation with
Frontiers in Psychiatry 04
Bifidobacterium infantis or selected Lactobacillus species

recalibrates HPA tone and reduces behavioral despair;

supplementation with microbial metabolites such as butyrate or

indole derivatives restores microglial maturation, BBB integrity,

and synaptic plasticity; and vagal deafferentation abolishes

probiotic-specific behavioral effects, confirming that neural

pathways mediate microbial influence on mood (39, 49). These

converging lines of evidence highlight that gut microbial signals

actively shape affect-related neural circuitry through endocrine and

immune cross-talk.

Beyond these mechanisms, emerging data reveal that the gut

microbiota and the host circadian system are dynamically

intertwined. The microbiota exhibits robust diurnal oscillations in

composition, localization, and metabolic activity that align with

host feeding–fasting cycles and hormonal rhythms. These microbial

rhythms, in turn, entrain peripheral clocks within intestinal,

hepatic, and immune tissues, coordinating metabolic and

neuroendocrine homeostasis (31, 46). Microbial depletion

through antibiotics disrupts rhythmic gene expression in the

hippocampus, amygdala, and SCN, alters corticosterone

rhythmicity, and produces time-of-day–dependent changes in

stress reactivity, indicating that microbial cues synchronize

neuroendocrine rhythms (50). Transcriptomic analyses further

show enrichment of dysregulated genes related to BBB

permeability, circadian timing, and stress adaptation, revealing a

molecular bridge between microbial signals and host clock

machinery (50). Likewise, gut microbes drive daily oscillations in

tryptophan metabolism: microbial regulation is required for the

diurnal production of serotonin and kynurenine metabolites that

modulate mood-related neurotransmission (51). Conversely,

chronic stress flattens microbial rhythmicity; in depression-model

mice, restraint stress abolishes circadian oscillations of key

microbial taxa and metabolic pathways (52). Loss of host clock

genes such as Clock or Bmal1 produces parallel effects, erasing

microbial oscillations and disrupting metabolic synchrony (31).

At the systems level, meal timing emerges as a dominant

synchronizer of microbiota–clock interactions. Irregular feeding

schedules blunt microbial oscillations and propagate circadian

misalignment across the gut–brain–immune axis, leading to

metabolic, inflammatory, and behavioral dysregulation (53).

Together, these findings indicate that gut dysbiosis in mood

disorders reflects not only compositional imbalance but also a

loss of temporal order, flattened microbial rhythms, mistimed

metabolite release, and desynchronized clocks across host tissues.

This concept redefines dysbiosis as a dynamic, time-sensitive

disruption of microbiota–host synchrony rather than a static state

of imbalance.

Clinical studies reinforce these mechanistic insights. Large-scale

metagenomic analyses in major depressive disorder (MDD) reveal

depletion of butyrate-producing genera such as Faecalibacterium

prausnitzi i and Coprococcus , alongside enrichment of

proinflammatory taxa including Enterobacteriaceae (41, 54, 55).

These microbial shifts correlate with systemic inflammation,

impaired intestinal barrier integrity, and altered connectivity in

emotion-related brain regions (42, 56). Moreover, microbial and
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TABLE 1 Integrated gut–brain–circadian axis in anxiety and depression: mechanisms, microbial signatures, and therapeutic opportunities.
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metabolite signatures correlate with treatment response, suggesting

their potential as biomarkers to stratify patients and predict

therapeutic outcomes (54, 56). When integrated with circadian

evidence, these findings suggest that psychiatric vulnerability

arises from temporal desynchrony across microbial, immune, and

neural systems, and that restoring rhythmic harmony through

interventions such as time-restricted feeding, chrononutrition, or

circadian-timed psychobiotics may enhance therapeutic efficacy.

Collectively, evidence from animal models and human cohorts

supports a model in which gut microbial dysbiosis contributes

causally to the onset and persistence of anxiety and depression

through integrated neural, endocrine, immune, metabolic, and

circadian pathways. This time-sensitive systems framework

redefines psychiatric disorders as dynamic, body-wide conditions

shaped by microbiota–clock co-regulation. It also underscores the

need for chronobiologically optimized interventions, ranging from

diet and microbiome modulation to light–sleep alignment, to re-

entrain disrupted microbial and host rhythms for improved mental

health outcomes.
Neural circuits and neurotransmitter
modulation in the gut–brain axis

The microbiota shapes anxiety- and depression–relevant

emotional and cognitive functions through well-defined

neuroanatomical circuits that connect the gut with the CNS (57).

The vagus nerve represents the most prominent communication

pathway, transmitting microbial and luminal signals from the

gastrointestinal tract to brainstem nuclei implicated in mood

regulation and projecting to limbic/prefrontal targets that govern

fear, negative affect, and stress coping (58). Experimental studies

show that probiotics alter vagal afferent activity, while vagotomy

abolishes these effects, eliminating anxiolytic/antidepressant-like

behavioral responses and confirming vagal dependency (6, 59).

Complementing this route, spinal and sympathetic pathways

convey microbial cues related to visceral nociception, stress

responsiveness, and autonomic regulation which can amplify

hyperarousal and stress reactivity typical of anxiety and depressive

phenotypes (4, 60). Within the ENS, microbial metabolites modulate

neuronal excitability and gut motility, reshaping interoceptive

signaling that feeds forward to affective circuits and helps explain

frequent GI comorbidity in anxiety and depression (61, 62). In what

follows, we focus specifically on how the microbiota modulates core

neurotransmitter systems that mechanistically link gut signals to

anxiety and depressive symptom domains.

Beyond structural connectivity, the microbiota exerts profound

effects on neurotransmitter systems. Several bacterial taxa directly

synthesize or regulate bioactive amines. Lactobacillus and

Bifidobacterium species produce g-aminobutyric acid (GABA), a

key inhibitory neurotransmitter strongly linked to anxiety

phenotypes (60, 63, 64). Reduced abundance of GABA-producing

taxa is associated with heightened amygdala reactivity and anxiety-

like behavior, whereas probiotic supplementation that increases
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microbial GABA production correlates with decreased behavioral

despair and reduced physiological stress markers in preclinical and

clinical settings (60, 63, 64). Microbiota also influence serotonergic

tone through interactions with enterochromaffin cells: spore-

forming bacteria stimulate peripheral serotonin biosynthesis,

which constitutes a major portion of circulating serotonin that

regulates both gut motility and central serotonergic signaling (6, 9).

In depressive phenotypes, dysbiosis diverts tryptophan away from

5-HT synthesis toward the kynurenine pathway, contributing to

anhedonia and low mood; restoration of eubiotic communities or

targeted psychobiotics increases 5-HT–related signaling and tracks

with symptom improvement (6, 9, 65). Dopaminergic and

noradrenergic systems are similarly modulated by microbiota-

derived metabolites, including SCFAs and tryptophan catabolites,

which alter catecholamine synthesis and receptor sensitivity in

mood-related brain regions such as the prefrontal cortex and

amygdala (7, 28, 61). These catecholaminergic effects map onto

motivational deficits, psychomotor slowing, and heightened arousal

commonly observed in depression and anxiety, linking microbial

metabolite availability to reward processing and stress responsivity

(66, 67).

Microbial regulation of neurotransmission extends beyond

production to the modulation of synaptic plasticity and receptor

signaling. Indole derivatives and bile acid metabolites cross the

intestinal barrier and act on neuronal and glial targets, reshaping

synaptic connectivity in cortical and limbic regions (60, 62). Indole–

AhR signaling supports serotonergic and glutamatergic balance and

dampens microglial activation, thereby constraining anxiety-like

behavior and depressive affect; loss of indole producers removes this

brake on excitatory tone and neuroinflammation (68, 69). SCFAs

also play a pivotal role in restoring microglial maturation and

dampening neuroinflammation in germ-free mice, suggesting that

microbial metabolites not only influence neurotransmitter

availability but also support cellular processes fundamental for

CNS homeostasis (9, 17). Functionally, butyrate’s histone

deacetylase (HDAC) inhibition enhances expression of

GABAergic and neurotrophic genes, normalizes synaptic plasticity

in stress-responsive circuits, and is repeatedly linked to reductions

in anxiety- and depression-like behaviors (70).

Glutamatergic signaling provides a key convergence point for

anxiety and depression. Microbiota-driven activation of indoleamine

2,3-dioxygenase (IDO) shifts tryptophan toward kynurenine

metabolites; quinolinic acid (NMDA agonist) promotes

excitotoxicity and anxiety/depressive behaviors, while kynurenic

acid (NMDA antagonist) can be neuroprotective (71–74). Elevated

Kyn/Trp ratios in dysbiosis thus index a neurotransmitter imbalance

(low 5-HT, high Glu/NMDA) that correlates with symptom severity

and treatment resistance. Interventions that restore SCFAs and

indoles, or reduce peripheral inflammation (which drives IDO),

rebalance this axis and improve affective outcomes (75, 76).

Neurotransmitter dynamics are further synchronized by

circadian clocks, which regulate their synthesis and release (34).

Microbial metabolites such as SCFAs and indoles exhibit daily

oscillations that tune GABAergic, serotonergic, and dopaminergic
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signaling. Disruption of these rhythms compromises stress

resilience and mood stability, providing an additional temporal

dimension to gut–brain interactions (44, 77, 78). Accordingly,

timing interventions (chrononutrition, circadian-aligned

psychobiotics) to coincide with peak microbial metabolite release

enhances GABAergic tone and stabilizes monoaminergic balance,

offering a mechanistic rationale for time-of-day–specific treatment

windows in anxiety and depression (35, 79–81).

Importantly, the relationship between neurotransmission and

microbiota is reciprocal. Stress and altered neural activity reshape

gut microbia l compos i t ion , which in turn modifies

neurotransmitter availability and signaling efficacy (4, 6). Chronic

stress reduces microbial diversity and disrupts metabolic outputs

such as SCFAs and indoles, thereby reinforcing maladaptive

neurotransmission patterns underlying anxiety and depression (7,

82). This creates a feed-forward loop, stress hormones remodel the

microbiota, microbial outputs skew neurotransmitters (low GABA,

low 5-HT, high Kyn/Trp, high Glu/NMDA), and these shifts

intensify anxiety and depressive symptoms, highlighting

neurotransmitter modulation as the proximate pathway through

which the microbiota shapes affect. Thus, microbial control of

inhibitory (GABA), monoaminergic (5-HT/DA/NE), and

glutamatergic (NMDA) systems provides a direct, mechanistic

bridge from gut dysbiosis to the core symptom dimensions of

anxiety and depression, and a tractable target for biomarker-

guided interventions (60, 83–85).
Microbiota–endocrine crosstalk and
hpa axis dysregulation

The HPA axis is the central coordinator of the stress response,

and its dysregulation is strongly implicated in anxiety and

depression (86). Emerging evidence indicates that the gut

microbiota critically shapes HPA axis activity through endocrine

and metabolic pathways, creating a reciprocal loop in which

microbial communities influence stress hormones while

glucocorticoids remodel the gut ecosystem (87, 88).

Preclinical studies provide direct behavioral evidence that

microbiota–endocrine interactions modulate anxiety- and

depression-like outcomes. In rodent models, adolescent stress not

only induces hippocampal BDNF downregulation and cognitive

impairments but also produces pronounced anxiety- and

depression-like behaviors, such as increased immobility in the

forced swim test (FST), reduced sucrose preference (SPT), and

enhanced avoidance in the elevated plus maze (EPM), changes that

parallel gut microbial dysbiosis (89, 90). Dietary interventions with

omega-3 polyunsaturated fatty acids or vitamin A attenuate these

affective phenotypes, restoring exploratory behavior and anhedonia

scores, normalizing hippocampal BDNF expression, and partially

reestablishing microbial composition, suggesting that microbial–

endocrine signaling buffers against HPA hyperactivation (63, 90).

Similarly, administration of Mycobacterium vaccae confers robust

anxiolytic and antidepressant-like effects, reducing immobility in
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FST, improving open-field exploration, and normalizing

corticosterone levels, through Treg-mediated immunomodulation

and glucocorticoid dampening, thereby enhancing resilience to

chronic stress and inflammation (91).

Clinical findings parallel these experimental observations.

Patients with depression and anxiety frequently show altered gut

microbial signatures associated with hypercortisolemia and

disrupted diurnal cortisol rhythms (92, 93). Translational models

confirm that microbiota perturbations heighten HPA axis reactivity

and aggravate depressive phenotypes (6).

Importantly, probiotic supplementation with Bifidobacterium

and Lactobacillus strains reduces cortisol levels and improves both

mood and stress responsiveness (94, 95). Randomized controlled

trials further demonstrate that specific probiotic formulations, such

as Lactobacillus casei Shirota, Lactobacillus gasseri CP2305, and

Bifidobacterium longum 1714, lower salivary cortisol and attenuate

anxiety or stress-induced physiological responses in humans (96–

98). Additionally, a multi-strain combination of L. helveticus R0052

and B. longum R0175 has been shown to reduce urinary cortisol and

psychological distress in both preclinical and clinical models

(99, 100).

The mechanistic basis of this crosstalk lies partly in microbial

metabolites. SCFAs modulate glucocorticoid receptor sensitivity and

neurotransmitter release, directly linking bacterial fermentation

products to stress hormone regulation (101). Developmental

studies add another layer of complexity: germ-free animals display

exaggerated ACTH and corticosterone responses to stress, which

normalize only when colonization with Bifidobacterium infantis

occurs during early life, revealing a sensitive period for microbiota-

driven endocrine programming (102). In humans, early-life adversity

correlates with persistent microbial alterations and long-term cortisol

dysregulation, suggesting that developmental disruptions in

microbiota–endocrine communication may predispose individuals

to psychiatric vulnerability (90). These developmental findings

emphasize that timing of microbial exposure, particularly during

critical windows such as infancy and adolescence, can have enduring

consequences on HPA-axis regulation and stress resilience.

Notably, the HPA axis is tightly regulated by circadian clocks.

Dysbiosis-driven cortisol abnormalities often coincide with flattened

diurnal rhythms, reinforcing maladaptive stress responses and

increasing susceptibility to anxiety and depression (103–105).

Circadian misalignment not only alters cortisol rhythmicity but also

disrupts gut microbial oscillations, amplifying systemic inflammation

and stress sensitivity. Chronotherapeutic interventions that restore

circadian–microbial synchrony, such as time-restricted feeding,

chrononutrition, and light–sleep alignment, are now being

investigated as strategies to recalibrate endocrine and microbial

rhythms in mood disorders (31, 44, 106). Together, these findings

establish the microbiota as an active regulator of HPA axis function. By

integrating endocrine, immune, and circadian control, microbial

communities determine the threshold and recovery of stress

responses. Dysbiosis amplifies stress hormone release and psychiatric

vulnerability, whereas targeted interventions, including psychobiotics,

prebiotics, dietary supplementation, and timing-aligned (chronobiotic)
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interventions, offer promising avenues to restore endocrine balance and

enhance resilience against anxiety- and depression-related

disorders (107).
Neuroimmune mechanisms linking
gut dysbiosis to anxiety and
depression

Gut dysbiosis profoundly influences the immune system,

triggering a cascade of neuroimmune alterations that extend to

the CNS (108, 109). Perturbations in microbial composition

promote chronic low-grade inflammation through the release of

pathogen-associated molecular patterns (PAMPs) and danger-

associated molecular patterns (DAMPs), which engage pattern

recognition receptors such as Toll-like receptors and NOD-like

receptors (110). These signals activate inflammasomes and

upregulate proinflammatory cytokines, including IL-1b, IL-6, and
TNF-a, which in turn modulate microglial activity and neural

plasticity, fostering vulnerability to psychiatric disorders (110–

112). Seminal frameworks now link sustained peripheral

inflammation to “sickness behavior” and depression via immune-

to-brain signaling, anchoring dysbiosis-driven inflammation within

modern depression pathophysiology (15).

A study demonstrates that gut microbiota disturbances

compromise the BBB, facilitating peripheral immune mediators’

access to the brain (113). Chronic social stress reduces tight-

junction protein claudin-5, breaches the BBB, and enables

peripheral IL-6 infiltration into limbic circuits, driving

depression-like behaviors; convergent work confirms stress-

induced BBB pathology across models (114). Beyond animal

models, vascular activation markers, including soluble adhesion

molecules, are altered in depression, and in women with MDD,

circulating sE-selectin is significantly elevated, underscoring sex-

linked endothelial contributions to neuroimmune dysregulation

(115). Cytokines can also access or signal across the BBB via

endothelial and perivascular routes, providing direct channels by

which peripheral immune tone shapes CNS function (116).

At the cellular level, gut-derived metabolites further orchestrate

neuroimmune interactions. SCFAs, normally protective, become

depleted in dysbiosis, removing a key brake on histone deacetylases

and G-protein-coupled receptor signaling (117, 118). This loss

enhances microglial reactivity and reduces regulatory T cell

function, driving maladaptive inflammatory signaling (17, 119).

Additionally, kynurenine pathway metabolites, shaped by microbial

metabolism of tryptophan, engage the AhR to promote Treg

expansion and dampen cytotoxic T cell activity, thereby linking

metabolic disturbances to immune escape and neurodegeneration

(120–123). Microglial NLRP3 inflammasome activation has

emerged as a central node that converts stress and metabolic

danger signals into IL-1b-driven neuroinflammation and

depressive-like behavior, highlighting druggable checkpoints

within the gut–immune–brain axis (124, 125).

Sterile inflammation, independent of pathogens, can be

initiated by psychological stress and gut dysbiosis, culminating in
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increased NLRP3 activation and IL-1b release in both the periphery

and the CNS (125–127). These processes compromise neuronal

survival and synaptic plasticity, fostering cognitive and mood

disturbances. Furthermore, peripheral immune activation

translates into CNS changes via vagal and humoral routes, with

immune-to-brain signaling shaping behavioral responses to stress

and contributing to depression and anxiety phenotypes (128).

Importantly, human molecular-imaging studies show increased

brain TSPO binding, a proxy for microglial activation, during

major depressive episodes, providing in vivo evidence that

heightened neuroinflammation accompanies symptom

severity (129).

Microglia, the resident immune cells of the brain, are especially

sensitive to gut microbial signals. Dysbiosis-induced priming of

microglia amplifies proinflammatory cytokine release and impairs

phagocytic clearance of pathological proteins. This dysfunctional

state is closely linked to aberrant synaptic pruning and neuronal

circuit remodeling (3). Crucially, systemic immune alterations

dictate microglial phenotypes: chronic elevations of IL-6, TNF-a,
and IL-1b “prime” microglia, lowering activation thresholds and

exaggerating responses to subsequent stressors, whereas IL-10 and

TGF-b bias microglia toward homeostatic states. This systemic-to-

central coupling reframes microglia as sensors of peripheral

immune tone, not merely local responders (3). Microbiota are

indispensable for normal microglial maturation and function, and

their depletion disrupts microglial transcriptional homeostasis,

further connecting gut ecology to central immune set-points

(130). Parallel evidence shows that immune-cell trafficking into

the CNS, facilitated by BBB disruption and chemokine gradients,

intensifies neuroinflammation and exacerbates behavioral deficits

(114, 131, 132).

Clinical and translational evidence corroborates these

mechanistic insights. Patients with depression exhibit systemic

inflammation, BBB leakage, and altered immune signatures in

brain tissue, providing convergent evidence that gut dysbiosis-

driven neuroimmune dysregulation is not a secondary

phenomenon but a mechanistic driver of psychiatric pathology

(133, 134). Finally, circadian control powerfully shapes these

processes: immune transcripts and cytokines oscillate across the

day, and circadian misalignment amplifies pro-inflammatory

output and microglial reactivity, linking disrupted temporal

organization to persistent neuroinflammation in mood disorders

(135–138).
Metabolic mediators of microbiota–
brain communication

The gut microbiota generates a wide array of metabolites that

directly and indirectly influence brain physiology, many of which

have been implicated in the pathophysiology of anxiety and

depression (139, 140). Among the most studied are SCFAs such

as acetate, propionate, and butyrate. These molecules act as

epigenetic regulators by inhibiting histone deacetylases, thereby

modulating the transcription of genes involved in neuroplasticity
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and stress responses (130, 141, 142). In parallel, SCFAs interact with

G protein–coupled receptors, including GPR41 and GPR43,

shaping systemic immune activity and favoring the production of

anti-inflammatory cytokines, which in turn influence mood

regulation (11, 143). Evidence from animal models shows that

depletion of SCFA-producing bacteria heightens anxiety-like

behaviors, while butyrate supplementation restores synaptic

integrity and normalizes HPA axis function (29, 144).

Tryptophan metabolism constitutes another crucial microbiota-

controlled pathway linking the gut and brain (18). Beneficial

microbes such as Bifidobacterium and Lactobacillus spp. enhance

serotonin biosynthesis by stimulating enterochromaffin cells,

influencing central serotonergic signaling through vagal and

circulatory routes (18, 145). However, in the context of dysbiosis,

tryptophan is preferentially metabolized via the kynurenine

pathway through activation of IDO, leading to the accumulation

of neuroactive metabolites such as quinolinic acid, which acts as an

NMDA receptor agonist and exerts neurotoxic effects, and

kynurenic acid, which functions as an NMDA antagonist with

neuroprotective properties (11, 146). This imbalance has been

linked to excitotoxicity, chronic neuroinflammation, and

depressive symptomatology, and clinical studies consistently

report altered kynurenine-to-tryptophan ratios in patients with

MDD (146).

Beyond these classical metabolites, bile acids have recently

emerged as key modulators of microbiota–brain communication.

Primary bile acids synthesized in the liver undergo microbial

transformation into secondary bile acids such as deoxycholic acid

and lithocholic acid, which can cross the BBB and act on receptors

including FXR and TGR5 (147, 148). These receptors influence

systemic metabolism, immune signaling, and microglial activation,

processes that collectively shape neural plasticity and emotional

regulation. Dysregulated bile acid pools have been associated with

impaired hippocampal function, altered energy balance, and

enhanced anxiety-like behavior, positioning bile acid signaling as

an additional therapeutic target in mood disorders (149, 150).

Microbial catabolism of tryptophan also yields indole derivatives

such as indole-3-acetic acid and indole-3-aldehyde, which activate the

AhR in epithelial and immune cells (151). Activation of this receptor

supports intestinal barrier integrity and restrains pro-inflammatory

cascades that otherwise propagate systemic inflammation and brain

dysfunction. Reduced levels of indole-producing microbes are

frequently observed in anxiety and depression, suggesting that

impaired indole–AhR signaling contributes to disease pathology

and may be restored through microbiome-targeted interventions

(151). Lactate, another microbial metabolite, is increasingly

recognized not only as a byproduct of glycolysis but also as a key

neuroenergetic shuttle. Microbiota-derived lactate fuels astrocyte–

neuron metabolic coupling, thereby sustaining synaptic plasticity

and modulating neuronal excitability (152). Animal studies

indicate that higher microbial lactate production correlates with

resilience to stress-induced behavioral alterations, underscoring its

neuroprotective role (153). Many of these metabolites, including
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SCFAs, bile acids, and kynurenine pathway intermediates, exhibit

circadian oscillations synchronized with host feeding–fasting cycles.

Disruption of these rhythms contributes to metabolic misalignment,

impaired neurotransmission, and mood dysregulation (154, 155).

Taken together, these metabolites constitute an interconnected

signaling network that links gut microbial activity to brain function.

Anxiety and depression are consistently associated with a metabolic

signature characterized by reduced SCFAs and indoles, elevated

kynurenine pathway metabolites, and disrupted bile acid profiles

(142, 146, 150, 156). Therapeutic approaches aimed at restoring

microbial balance, through prebiotics, probiotics, or dietary

strategies, have demonstrated the capacity to reestablish metabolite

production, normalize neurotransmission and inflammatory tone,

and ultimately alleviate mood-related symptoms (5).
Circadian rhythm disruption and the
gut–brain axis

Circadian rhythms, generated by transcription–translation

feedback loops of core clock genes such as CLOCK, BMAL1, PER,

and CRY, orchestrate nearly all aspects of physiology, including

sleep–wake cycles, hormone secretion, metabolism, and immune

responses (157, 158). While the suprachiasmatic nucleus (SCN)

serves as the central pacemaker, peripheral clocks in the gut, liver,

and immune system also display robust oscillations that

synchronize host metabolism and stress responsivity to

environmental cues (157). Importantly, the gut microbiota itself

undergoes pronounced diurnal oscillations in composition,

localization, and metabolite production, which are tightly

entrained by host feeding–fasting cycles and circadian signaling

(159, 160).

Seminal studies demonstrated that intestinal bacteria coordinate

with the circadian system to shape host gene expression and

metabolic rhythms. For instance, diurnal microbial relocation along

the gut epithelium and rhythmic metabolite fluxes program

oscillations in the host liver transcriptome and epigenetic landscape

(160). Similarly, the microbiota programs HDAC3-dependent

diurnal transcription in the intestine, controlling lipid uptake and

energy balance (44). Perturbation of these rhythms, either by

antibiotics, germ-free conditions, or arrhythmic feeding, disrupts

circadian gene expression and increases susceptibility to obesity

and inflammation (50, 161).

Circadian disruption also alters gut–immune interactions.

Segmented filamentous bacteria (SFB) exhibit rhythmic

attachment to epithelial cells, driving ILC3–STAT3–mediated (80)

antimicrobial protein oscillations that enhance time-of-day–specific

resistance to infection. These microbiota–immune interactions are

synchronized with feeding rhythms, underscoring the integration of

diet, circadian clocks, and microbial dynamics. In parallel, the

microbiota regulates diurnal corticosterone secretion, modulating

HPA axis activity and stress responsiveness (81). Microbial

depletion abolishes rhythmicity of corticosterone and stress
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pathway gene expression in the hippocampus and amygdala,

leading to time-of-day–specific impairments in stress resilience

(81, 162).

Disruption of circadian rhythmicity, through shift work, jet lag,

high-fat diets, or sleep disturbance, induces microbial dysbiosis,

dampens metabolite oscillations, and desynchronizes host clocks

(50, 158, 161). Human studies show that such misalignment

exacerbates anxiety and depression, as circadian disruption not

only destabilizes sleep but also amplifies neuroinflammatory

signaling and HPA hyperactivity (35). This bidirectional

dysfunction creates a feed-forward loop in which stress and

microbial imbalance reinforce circadian misalignment,

heightening psychiatric vulnerability (81, 160). Integrating

circadian biology into the gut–brain research opens promising

therapeutic avenues. Chrononutrition and time-restricted feeding

restore microbial rhythmicity and improve host metabolic and

mood outcomes (50, 159). Likewise, probiotics such as

Lactobacillus reuteri have been shown to normalize glucocorticoid

rhythms and stress responsivity (81). Emerging chronotherapeutic

strategies suggest that aligning microbial interventions such as

psychobiotics, FMT, or engineered microbiomes with circadian

windows may maximize efficacy for anxiety and depression (35,

157, 160).
Microbial signatures and biomarkers

The gut microbiome has emerged as a central determinant of

neuropsychiatric health, with specific microbial taxa and their

metabolites increasingly recognized as candidate biomarkers for

anxiety and depression (163). Multi-omics studies demonstrate that

microbial dysbiosis directly correlates with immune activation, host

metabolism, and brain structure. For example, clinical cohorts

revealed altered abundance of Ruminococcus bromii, Lactococcus

chungangensis, and Streptococcus gallolyticus in individuals with

MDD, with these taxa increasing pro-inflammatory signaling via

LPS- and peptidoglycan-mediated TLR/NOD pathways, elevating

IL-1b and perturbing lipid oxidation, and reductions in grey matter

volume in the inferior frontal gyrus (164). Notably, these microbial

shifts were associated with functional brain imaging readouts,

including altered fronto-limbic connectivity that tracks peripheral

cytokine load, providing neuroanatomical correlates of dysbiosis.

Extending this, large population-level data from the Flemish Gut

Flora Project identified butyrate-producing Faecalibacterium and

Coprococcus as positive correlates of quality of life and inverse

correlates of depression scores, where butyrate inhibits HDACs,

activates FFAR2/FFAR3, tightens epithelial junctions, and

suppresses IL-6/TNF-a, establishing these genera as reproducible,

population-scale candidates for biomarker panels (165).

Meta-analyses reinforce these findings by showing consistent

depletion of butyrate-producing genera such as Butyricicoccus,

Coprococcus, and Faecalibacterium, alongside enrichment of pro-

inflammatory taxa including Eggerthella , Enterococcus ,

Flavonifractor, and Streptococcus in depressive patients (41, 166).

Loss of SCFA producers reduces mucosal butyrate, weakens
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claudin/occludin expression, increases microbial translocation,

and amplifies NLRP3-IL-1b signaling, both of which are critical

drivers of HPA axis overactivation and mood disturbances (167).

Such immune-related microbial signatures are increasingly

proposed as stratification tools to identify patients likely to benefit

from anti-inflammatory or microbiota-directed interventions.

Recent systematic syntheses confirm these compositional trends

across studies and tie them to quantitative biomarker thresholds

(e.g., low fecal butyrate, high kynurenine/tryptophan ratio, elevated

LBP/CRP), supporting their use as putative diagnostic and

prognostic markers rather than mere correlates (168).

Specific taxa repeatedly appear as microbial signatures of

psychiatric dysfunction. Bifidobacterium and Lactobacillus are

frequently diminished in major depression, which reduces

microbial GABA production and attenuates enterochromaffin 5-

HT biosynthesis via TPH1 stimulation, thereby linking gut

dysbiosis to neurotransmitter imbalance (11, 169). Conversely,

expansion of Actinobacteria and Proteobacteria has been

correlated with inflammatory cytokine release and oxidative stress

pathways (170, 171), with Proteobacteria enriching endotoxin load

that activates TLR4/NF-kB and elevates IL-6/TNF-a. Importantly,

these compositional imbalances have been shown to normalize

following probiotic supplementation or targeted diets,

accompanied by restored fecal SCFAs, lower Kyn/Trp ratios, and

reduced circulating sICAM-1/sVCAM-1, underscoring their

translational potential. Causality is supported by FMT: transfer of

“depression microbiota” increases hippocampal quinolinic acid,

decreases butyrate, and induces microglial priming and

depressive-like behavior, whereas healthy-donor microbiota does

not, functionally validating these signatures (169).

Integrative omics has further advanced biomarker discovery.

Metagenomic and metabolomic studies highlight disrupted

tryptophan metabolism as a central pathway, with microbial

activation of the kynurenine pathway via IDO/TDO diverting

tryptophan from 5-HT, accumulating neuroactive kynurenines

(quinolinic > kynurenic), and potentiating NMDA-dependent

excitotoxicity (164, 165). At the same time, SCFA depletion and

altered phosphoethanolamine levels suggest lipid and energy

metabolism as crucial biomarker domains for depression and

anxiety (165, 168). Across psychiatric cohorts, elevated

kynurenine-to-tryptophan ratios and shifts in neuroactive

kynurenines (e.g., quinolinic vs. kynurenic acid) are among the

most consistent metabolic readouts, and are mechanistically tied to

glutamatergic signaling and neuroinflammation (84). Additional

axes include bile-acid remodeling, microbial deoxycholic/

lithocholic acids that activate FXR/TGR5 and modulate microglial

tone, and indole-AhR signaling, where reduced indole-3 derivatives

diminish barrier and permit pro-inflammatory drift (172).

Collectively, these findings define an evidence-based biomarker

panel that includes butyrate-producing genera such as

Faecalibacterium and Coprococcus, consistently associated with

improved quality of life and reduced depressive symptoms (11);

depletion of Bifidobacterium and Lactobacillus, which are linked to

diminished production of GABA and serotonin precursors and thus

to neurotransmitter imbalance; and enrichment of pro-
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inflammatory taxa including Eggerthella and Enterobacteriaceae,

which correlate with heightened cytokine release and

neuroinflammation. Metabolically, reduced levels of SCFAs and

indole derivatives together with elevated kynurenine-pathway

intermediates, long implicated in glutamatergic dysregulation and

neurotoxicity, represent reproducible molecular signatures across

psychiatric cohorts. Importantly, these microbial and metabolic

profiles correlate with clinical outcomes and can transfer depressive

phenotypes in FMT models, providing causal validation. Beyond

these canonical markers, recent studies highlight bile-acid

remodeling and microbial-derived lactate as novel metabolic

signatures influencing limbic activity and resilience to stress.

Finally, because microbial taxa and metabolites exhibit diurnal

oscillations entrained by host circadian rhythms, biomarker

sampling and interpretation must account for temporal dynamics,

as circadian misalignment can confound associations and obscure

their diagnostic and prognostic value (35).

Taken together, these biomarkers not only delineate

mechanistic pathways but also serve as direct entry points for

therapeutic targeting, bridging discovery with intervention.
Therapeutic strategies targeting the
gut–brain axis in anxiety and
depression

The gut–brain axis is increasingly recognized as a modifiable

therapeutic target in anxiety and depression, with interventions

spanning diet, microbial modulation, targeted microbiota

transfers, and host-directed anti-inflammatory strategies (173).

Collectively, these approaches demonstrate that reshaping

microbiota–brain communication can produce measurable effects

on emotional, cognitive, and systemic outcomes. Importantly, such

interventions align with the microbial, metabolic, and immune

biomarkers described above, offering a foundation for precision

psychiatry (Table 1).

Among the available strategies, dietary modification remains the

most robustly supported intervention. In the landmark SMILES

randomized controlled trial, adjunctive dietary support led to a

marked reduction in clinician-rated depression (MADRS; Cohen’s

d ≈ −1.16) and quadrupled remission compared with an active social-

support control (32.3% vs 8.0%) (174). A meta-analysis of 16

randomized clinical trials (RCTs) further confirmed a small-to-

moderate pooled benefit of dietary interventions for depressive

symptoms (g≈0.28) but not for anxiety, underscoring phenotype-

specific effects (175). Long-term prospective evidence from 180,446

UK Biobank participants demonstrated that greater adherence to the

EAT-Lancet dietary pattern significantly reduced the risk of

depression and anxiety (HR for depression 0.71–0.84) (176).

Mechanistic studies reveal that such dietary patterns enrich

butyrate-producing taxa, including Faecalibacterium and

Coprococcus, thereby restoring SCFA-mediated signaling and

countering the microbiome deficits observed in depressive disorders.
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Probiotic and prebiotic supplementation, collectively referred to

as psychobiotics, has emerged as a promising adjunctive approach

rather than a stand-alone therapy. A comprehensive meta-analysis

showed that probiotics significantly reduced depressive symptoms

when co-administered with antidepressants (SMD = 0.83), whereas

no significant effect was observed in isolation (177). Mechanistic

RCTs provide convergent evidence: in MDD, a four-week course of

multi-strain probiotics added to standard therapy reduced

Hamilton Depression Rating (HAM-D) scores more than placebo,

preserved microbial diversity, increased Lactobacillus abundance

correlated with symptom improvement, and attenuated putaminal

reactivity during emotion-processing tasks (178). Similarly,

Bifidobacterium longum NCC3001 improved depressive

symptoms in patients with irritable bowel syndrome and reduced

amygdala and fronto-limbic reactivity to negative stimuli, linking

peripheral microbial modulation to central neural changes (179).

Collectively, these studies support the capacity of psychobiotics to

recalibrate neuroimmune and neuroendocrine pathways that

underpin mood regulation (180).

FMT is transitioning from proof-of-concept to early clinical

application. Preclinical studies demonstrate that transplantation of

“depression microbiota” from affected individuals to rodents

induces depressive-like behavior, establishing causality between

dysbiosis and mood pathology (181). The first double-blind pilot

RCT in adults with moderate-to-severe MDD confirmed the

feasibility and safety of FMT via enema, reporting improved

gastrointestinal symptoms and quality of life with no major

adverse events (181). Future studies are moving toward precision-

matched donor–recipient approaches based on specific biomarker

signatures, such as low SCFA or indole levels and elevated

kynurenine pathway activity, thereby translating mechanistic

findings into personalized interventions.

Host-targeted anti-inflammatory strategies are gaining

attention, particularly for inflammation-driven subtypes of

depression. In a pivotal trial in treatment-resistant MDD, the

TNF-a antagonist infliximab produced no overall advantage over

placebo. However, patients with elevated baseline hs-CRP (> 5 mg/

L) exhibited significantly greater reductions in HAM-D scores and

higher response rates, while those with low CRP worsened on

treatment, highlighting the potential harm of non-stratified

immunotherapy (182). These results emphasize the necessity of

integrating inflammatory biomarkers into treatment algorithms

and reserving biologic agents for well-defined, inflammation-

positive subgroups.

A rapidly advancing frontier integrates circadian biology into

gut–brain therapeutics, aligning microbial and host rhythmicity to

optimize efficacy. Chrononutrition and time-restricted eating (TRE)

restore microbial diurnal oscillations, re-establish SCFA

rhythmicity, and improve metabolic and mood-related

parameters. Although meta-analyses report variable outcomes,

consistent early-day feeding schedules (eTRE; 8 a.m.–4 p.m.) have

been shown to enhance circadian synchrony and lower stress

reactivity (155, 183–185). In parallel, chrono-probiotics,

specifically Lactobacillus gasseri CP2305, exhibit stress-buffering
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and sleep-regulating properties, reducing salivary cortisol and

improving subjective sleep quality in chronically stressed adults

(186, 187). These findings indicate that synchronizing probiotic

administration with host circadian cycles may potentiate

neuroendocrine resilience and mood stability.

Beyond microbial interventions, circadian behavioral therapies are

now a core component of integrated treatment frameworks. Morning

bright-light therapy (BLT) acts as a circadian phase-advancing

intervention that accelerates antidepressant response and improves

outcomes in nonseasonal depression, with meta-analyses confirming

enhanced remission and response rates when combined with

pharmacotherapy or cognitive behavioral therapy (Lieverse et al.,

2022; Legenbauer et al., 2024; Perera et al., 2016). These

interventions normalize melatonin and cortisol rhythmicity, thereby

complementing microbiota- and metabolism-targeted strategies.

When these findings are considered together, a coherent

therapeutic hierarchy emerges. Dietary modification represents a

scalable, evidence-based foundation for depression prevention and

treatment, while anxiety may require more targeted or multimodal

approaches (174–176). Psychobiotics serve as effective adjuncts that

modulate neurocircuitry and immune tone (177, 178). FMT remains

investigational but increasingly feasible, emphasizing donor selection

and mechanistic alignment (179, 181). Inflammation-stratified

biologics may benefit well-defined inflammatory subgroups (182).

Finally, circadian-aligned strategies, chrononutrition, chrono-

probiotics, and BLT, extend these interventions into the temporal

dimension, restoring synchronization across the gut–brain–immune

axis. Across modalities, precision gut microbiota modulators,

encompassing diet, probiotics, engineered consortia, bacteriophages,

and targeted delivery systems, should be conceptualized as

biomarker- and rhythm-guided tools rather than one-size-fits-all

therapies (188).

Despite these advances, important limitations persist. Probiotic

and FMT studies remain small, heterogeneous in strains, dosing,

and duration, and often confounded by comorbidities and

concomitant medications (178, 179). Dietary interventions

consistently demonstrate antidepressant efficacy but less impact

on anxiety (175), and anti-TNF strategies illustrate the risks of non-

stratified application (182). These limitations reinforce a stepped,

integrated model: optimize diet as the foundational layer;

incorporate psychobiotics with biomarker and behavioral

monitoring; introduce circadian-aligned interventions such as

light therapy, regular feeding rhythms, and sleep regulation; and

reserve immunomodulation for biomarker-defined inflammatory

phenotypes. Altogether, these therapeutic layers anchor treatment

to the molecular, microbial, and temporal signatures of psychiatric

disease, defining a roadmap for biomarker- and chronobiology-

informed precision psychiatry (189).
Conclusions and future perspectives

The collective evidence presented across current studies

underscores that the gut–brain–circadian axis is a central
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regulatory hub for mental health, particularly in the context of

anxiety and depression (190, 191). Mechanistic insights consistently

demonstrate that microbial metabolites such as SCFAs, bile acids,

and tryptophan derivatives influence neuronal signaling, immune

activity, and endocrine homeostasis, ultimately shaping stress

responses and emotional regulation (4, 6, 11). Dysbiosis-driven

alterations in vagal, HPA-axis, and immune pathways provide a

causal basis for mood-related disorders, while circadian disruption

emerges as a critical modifier that amplifies these effects by

desynchronizing host–microbiome rhythms (15, 36). Together,

these findings highlight the necessity of considering circadian

alignment as an integral component in gut–brain research and

therapy design.

Therapeutically, the data indicate that multiple strategies hold

promise in modulating the gut–brain axis. Diet remains the most

clinically validated intervention, with trials demonstrating robust

improvements in depression following structured dietary

modifications (3). Beyond diet, probiotics, prebiotics, and

psychobiotics target microbial communities with the potential to

restore balanced signaling through neuroimmune and

neuroendocrine pathways (4). More advanced modalities such as

FMT, engineered microbial consortia, and bacteriophage-based

interventions are gaining attention, though their long-term

efficacy and safety require further validation (14). Anti-

inflammatory and immunomodulatory strategies targeting

microbiota-driven neuroinflammation also show preclinical

efficacy, opening an avenue for adjunctive therapies in patients

with treatment-resistant depression and anxiety (3).

A critical frontier lies in multi-omic integration and systems

biology approaches. Current multi-omic platforms have begun to

delineate disease-associated microbial modules that link species,

pathways, and metabolites into coherent signatures predictive of

psychiatric outcomes (9, 192). However, challenges persist in

harmonizing complex datasets across cohorts, accounting for

inter-individual variability, and defining causality rather than

correlation. Artificial intelligence and machine learning pipelines,

applied to large-scale, longitudinal microbiome and host-omic

datasets, will be essential to establish predictive biomarkers and

patient-tailored interventions (7, 193).

Importantly, developmental and aging trajectories define

sensitive “age windows” during which microbiota–brain–circadian

interactions exert disproportionate influence on psychiatric

vulnerability. Early-life stages such as the perinatal period and

adolescence represent critical windows for microbial and

circadian programming of the HPA axis and neuroimmune

circuits, with disruptions during these phases leading to long-

term effects on stress responsivity and mood regulation (194,

195). In contrast, midlife transitions and aging are characterized

by inflammaging, reduced microbial diversity, and dampened

circadian amplitude, processes that compromise resilience and

increase vulnerability to anxiety and depression (19, 196). These

life-stage–specific vulnerabilities also open therapeutic

opportunities: early interventions with breastfeeding, structured

diet, and chrononutrition may prevent maladaptive trajectories,
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while targeted psychobiotics, dietary polyphenols, and circadian-

aligned sleep–light hygiene may restore resilience in midlife and

older age. Thus, “when” to intervene becomes as critical as “what”

intervention is applied.

Looking forward, three research avenues appear most critical.

First, precision psychiatry must integrate circadian biology,

microbial ecology, and life-stage–specific vulnerabilities with host

genetics to optimize interventions for individual patients (197).

Second, longitudinal and life-course studies are required to capture

the developmental windows during which microbiota–brain

interactions exert the strongest influence, particularly in

childhood, adolescence, and aging (6). Third, clinical translation

should focus on designing controlled, reproducible interventions

that bridge dietary, microbial, and pharmacological approaches,

while monitoring adverse outcomes such as immune-related side

effects or unintended microbial shifts (36). In conclusion, the gut–

brain–circadian framework offers a transformative paradigm for

understanding and managing anxiety and depression. By advancing

mechanistic dissection, leveraging integrative omics, and

prioritizing translational research, this field is poised to deliver

personalized, biologically grounded interventions that could

reshape psychiatric care in the coming decade.
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Unraveling the gut-brain-immune interplay in herpes simplex virus-associated
neurodegeneration. J Med Virol. (2025) 97:e70504. doi: 10.1002/jmv.70504

124. Pan Y, Chen X-Y, Zhang Q-Y, Kong L-D. Microglial NLRP3 inflammasome
activation mediates IL-1b-related inflammation in prefrontal cortex of depressive rats.
Brain Behav Immun. (2014) 41:90–100. doi: 10.1016/j.bbi.2014.04.007

125. Pinzón-Fernández MV, Saavedra-Torres JS, López Garzón NA, Pachon-Bueno
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