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Using time-varying covariates in multilevel growth models
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This article provides an illustration of growth curve modeling within a multilevel framework. 
Specifically, we demonstrate coding schemes that allow the researcher to model discontinuous 
longitudinal data using a linear growth model in conjunction with time-varying covariates. 
Our focus is on developing a level-1 model that accurately reflects the shape of the growth 
trajectory. We demonstrate the importance of adequately modeling the shape of the level-1 
growth trajectory in order to make inferences about the importance of both level-1 and level-2 
predictors.
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point. The person level residuals, r
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 and r
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 represent the devia-

tion of person i’s intercept and slope from the overall intercept 
and slope. In the unconditional linear growth model above, the 
variance covariance matrix of r

0i
 and r

1i
 provides estimates of the 

between-person variability in the intercept, the slope, and the cov-
ariance between the slope and the intercept. Because the intercept 
represents the value of Y

it
 when time = 0, the interpretation of the 

intercept depends upon the way in which time is coded. Commonly, 
analysts code time so that the initial time point equals 0. That way, 
the intercept represents person i’s initial status or his/her score at 
the start of the study. In this simplest linear growth model, when 
time is coded so that initial status = 0, the between-person variance 
in the intercept (τ

00
) can be interpreted as the between-person vari-

ability in initial status. In other words, this parameter captures how 
much between-person variability exists in terms of where they start. 
The between-person variance in the time slope (τ

11
) represents the 

variability between people in terms of their linear growth rates. In 
the unconditional linear growth model, the covariance parameter 
(τ

01
), when standardized, represents the correlation between peo-

ple’s initial scores (or intercepts) and their growth rates.

Often, psychologists and social scientists are interested in under-
standing the development or growth, decline, or decay of certain 
processes or behaviors. When a researcher wishes to capture sys-
tematic change over time, growth curve models are often the best 
analytical choice. Growth curve models allow for the exploration 
of both intra-individual change and individual differences in the 
nature of that change. The use of growth curve models to ana-
lyze longitudinal data has exploded over the last several years. For 
instance, a search of PSYCHINFO using the keywords “growth 
model-” produced only 18 articles for the publication year 1998. 
By 2008, a similar search netted 98 articles.

Growth curve data can be analyzed using either multilevel/mixed 
model approaches (i.e., Singer and Willet, 2003) or structural equa-
tion modeling approaches (i.e., Bollen and Curran, 2006). This article 
provides an illustration of growth curve modeling within a multilevel 
framework. Specifically, we demonstrate coding schemes that allow 
the researcher to model discontinuous longitudinal data using a linear 
growth model in conjunction with time-varying covariates (TVCs). 
Our focus is on developing a level-1 model that accurately reflects the 
shape of the growth trajectory. The importance of correctly modeling 
the level-1 growth trajectory cannot be overstated. Failing to cor-
rectly model the shape of the growth trajectory represents a serious 
specification error. Further, any inferences that a researcher makes 
about inter-individual differences in growth that are based on incor-
rect assumptions or specifications about the shape of that growth may 
be incorrect. It is common for analysts to fit polynomial models to 
accommodate non-linear growth trajectories. However, we demon-
strate that non-linear growth trajectories can also be accommodated 
using a linear growth trajectory in combination with TVCs.

The mulTilevel model for growTh
Within the multilevel framework, the simplest growth curve model 
is a linear model, in which individual i’s score at time t is predicted 
by an intercept, π

0i
, and a linear growth slope, π

1i
 at level 1.The 

subscript i indicates that the model estimates a separate intercept 
and a separate linear growth slope for each person in the sample. 
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Time-varying covariates are variables whose values can change 
across time. Although the value of the TVC changes across time, the 
parameter value estimating the effect of the TVC on the depend-
ent variable is assumed to be constant across time. For example, 
in a study of vocabulary growth in children, the number of hours 
of TV that the child watches per week could be a TVC. At every 
time point, the researcher measures both the dependent variable 
(expressive vocabulary), and the independent variable (number of 
hours of TV the child watches per week). Although the number of 
hours of TV the child watches per week can change at each data 
collection point, the estimated relationship between TV viewing 
and vocabulary development remains constant across time. There 
are ways to ease this assumption. For example, one can build inter-
action between time and the TVC by creating a variable that equals 
the product of the two variables (Singer and Willet, 2003).

illusTraTion
The data for this demonstration (Reis, 2010) consist of reading flu-
ency data measured on 277 elementary school students over four time 
points across two school years. The assessments were administered 
in the fall and spring of two consecutive school years. In addition, 
treatment also varied across time. Students were randomly assigned to 
either the treatment or the control group during year-1. During year-2, 
students were again randomly assigned to either the treatment group 
or the control group. Therefore, some students in the sample received 
the treatment during year-1 only, some students in the sample received 
treatment during year-2 only, some students received the treatment 
both years, and some students never received the treatment.

A preliminary inspection of the data revealed the non-linear 
nature of the average growth trajectory. Figure 1 plots four ran-
domly selected students’ observed fluency scores across the four 
time points. In general, students’ observed reading fluency increased 
substantially from fall to spring of both school years. However, 
students’ observed fluency scores actually decreased between the 

As the name implies, a linear growth model assumes a  straight-line 
growth trajectory. However, many growth processes do not follow 
a linear trajectory. For example, imagine that a researcher collects 
reading data on elementary students in the early fall and late spring 
every year for 2 years. Therefore, the time between points 1 and 2 and 
points 3 and 4 captures the change in reading scores across the school 
year, whereas the time between points 2 and 3 captures the change in 
reading scores during the summer (non-instructional) months. The 
slope of reading achievement is likely to be steeper during instruc-
tional months and flatter (or perhaps even negative) during the 
summer, when students receive no reading instruction. Assuming a 
linear growth trajectory is very limiting, and it may result in a serious 
misspecification of the growth model or the growth process. When 
the level-1 model is misspecified, this can lead to incorrect param-
eter estimates and serious errors of inference in the level-1 model. 
Further, it can result in incorrect parameter estimates and errors of 
inference for the effects of the level-2 variables on the slope and the 
intercept, as well as the effects of level-2 variables on other level-1 
(time-varying) covariates (Raudenbush and Bryk, 2002; Singer and 
Willet, 2003; Snijders and Berkhof, 2008).

In our example, fitting a linear growth trajectory would force the 
reading growth rate to be the same during both instructional and 
non-instructional months, which is not a very realistic model of read-
ing growth. Figure 1 contains four actual reading growth trajectories 
from the sample data and also shows the mean linear trajectory for 
the data. It is clear by examining the individual growth plots that a 
linear model does not fit the reading data displayed in Figure 1.

This article demonstrates the use of TVCs to model discontinu-
ous growth in a longitudinal dataset. A variety of other strategies 
exist to model non-linearities or discontinuities in the growth tra-
jectory. Other shapes are accommodated easily using a variety of 
strategies. These include estimating piecewise models, polynomial 
models, or other non-linear models, as well as introducing TVCs 
(Singer and Willet, 2003).
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Figure 1 | Four individual growth plots from four randomly selected participants and the average linear trajectory of all students across four time points.
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estimate t − 1 random effects, where t is the number of time points 
in the data set. Because there are four time points in this dataset, 
we can estimate three random effects. This allows us to estimate 
a random effect for the intercept, a random effect for the linear 
trajectory, and one other random effect. If we wanted to estimate 
a polynomial model, we could estimate a random effect for the 
quadratic term. However, we could not estimate a random effect 
for the cubic term. This means that we would have to assume that 
the cubic parameter was the same for every person in the sample, 
which seems an unlikely scenario. Thus, given that there were only 
four time points, estimating a cubic model seemed ill-advised.

spring of year-1 and the fall of year-2. Figures 2–5 plot the actual 
and predicted fluency scores for all of the students in the sample 
across four time points, broken out by treatment group.

Given the unusual shape of the growth trajectory, it was clear 
that a linear model was inappropriate. However, using a polynomial 
model would not solve our problem. A quadratic model would 
allow for a change in the rate of change. However, a quadratic model 
could only capture the shape of a growth trajectory with one bend. 
To capture the shape of this growth trajectory, which has two bends, 
would require a cubic model. The cubic model allows for a change 
in the change in the rate of change. In growth modeling, we can 
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Figure 2 | Actual and predicted growth trajectories for students who never received the treatment as well as 95% confidence intervals around the 
predicted growth trajectories.
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Figure 3 | Actual and predicted growth trajectories for students who received the treatment during year-1 as well as 95% confidence intervals around the 
predicted growth trajectories.
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modeling The summer slump
For the coding schemes that we present in this paper, we assume that 
students make the same amount of growth during each of the two 
school years. To do this, we constrained the growth from time 0 to 
time 1 and the growth from time 2 to time 3 to be equal1. Thus, we 
estimate one growth slope for both school years. However, we allow 

Further, our goal was to simultaneously model the time-
varying nature of the treatment and to capture the “summer 
slump effect” that was evident in the students’ growth trajectories. 
Thus, we needed to create a coding system that would capture 
the sharp discontinuity between the school years and the sum-
mer and would also allow us to model treatment as a TVC. To 
accomplish this, we created two sets of TVCs. The first set of 
TVCs was designed to capture the drop in fluency scores over 
the summer. The second set of TVCs was designed to model the 
treatment effect.
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Figure 4 | Actual and predicted growth trajectories for students who received the treatment during year-2 as well as 95% confidence intervals around the 
predicted growth trajectories.
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Figure 5 | Actual and predicted growth trajectories for students who received the treatment during both years as well as 95% confidence intervals 
around the predicted growth trajectories.

1To be consistent with the literature on growth modeling, we refer to the initial time 
point as time 0 throughout the paper. Thus our four waves of data collection are 
referred to as time 0, time 1, time 2, and time 3.
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summer slope is coded the same way. What differs is the treatment 
of the original time variable. However, because the coding of the 
time variable changes across the two systems, both the parameter 
estimate for and the interpretation of the TVC also change. When 
time is coded 0, 1, 2, 3, and the summer slump variable is coded 0, 
0, 1, 1, then the summer slump variable represents the amount by 
which the linear growth slope must be adjusted downward to capture 
the discontinuity in the trajectory. If the first time variable is coded 
0, 1, 1, 2 and the summer slope is coded 0, 0, 1, 1, then the first time 
variable (β

10
) represents the linear growth during the school year 

and the summer TVC (β
20

) represents the summer growth slope.
We also coded the intervention variable as a TVC. As mentioned 

earlier, students could be in one of four possible groups: those who 
received the intervention during year-1, those who received the 
intervention during year-2, those who received the intervention both 
years, and those who did not receive the intervention either year. Our 
modeling of the treatment effect needed to meet certain criteria. First, 
the students who received treatment both years received twice as 
much treatment as those who received treatment during year-1 only 
or year-2 only. Second, no one received any treatment between the 
spring of year-1 (time point 2) and the fall of year-2 (time point 3). 
Therefore, theoretically, the growth during that time period should 
be unaffected by the student’s intervention group. Third, because 
students were randomly assigned to treatment, the treatment group 
should not have an impact on students’ initial scores. Ideally, students 
from the various groups should have similar values on the intercept. 
However, even if the groups differed in terms of their intercepts, 
those differences could not be attributed to receipt of the treatment 
because the first time point of data collection occurred prior to the 
start of the intervention. Finally, we wanted to model a treatment 
effect that persisted over time, so that any effects attributed to the 
treatment would be maintained even after the treatment was com-
pleted. However, we did not want the treatment effect to continue to 
impact the growth slope after the treatment was complete. In other 
words, any reading gains that students made as a result of the treat-
ment should persist over time; however, we would not expect the 
growth slope of the treatment group to be steeper than the growth 
of the non-treatment group during non-instructional months. To 
capture this process, we created a TVC for treatment. The coding 
scheme this treatment variable is depicted in Table 1. Because the 
treatment did not begin until after the first wave of data collection, 
all students received a 0 during the first wave of data collection. Then, 
a student’s score on the treatment variable increased by 1 for each 
time point during which he or she received the treatment. Therefore, 
a student who was in the control group during both years of data 
collection received a score of 0 at each time point (0, 0, 0, 0). A 
student who was in the treatment group for year-1 received a score 
of 0,1,1,1. This allowed the growth rate from time 1 to time 2 to be 
impacted by the treatment. Coding the third and fourth time points 
as 1’s allowed the effects of the treatment to persist, undiminished 
over time. However, this coding system did not allow the differential 
growth rate that occurred between time points 1 and 2 to continue 
after the end of the intervention. A student who was in the treatment 
group during year-2 was coded 0, 0, 0, 1. Finally, a student who was 
in the treatment group during both years of the study was coded as 
0, 1, 1, 2. Table 1, which contains an excerpt of the data file, illustrates 
this coding scheme.

the growth rate from time 1 to time 2 (our summer slope) to differ 
from our school year slope. In this way, we are estimating a model 
that assumes linear growth during the school year, but allows for a 
completely different (and perhaps even negative) growth rate over 
the summer.

There are multiple ways to conceive of coding the over time data 
to capture the summer slump. First, one could view the trajectory 
in Figure 1 as a linear trajectory with a change in the intercept at 
time 2. This is the approach that we take in this paper. Therefore, 
we fit a linear growth trajectory across the four time points of data. 
To do this, we created a new variable, named time. This variable 
has four possible codes: 0, 1, 2, and 3. A code of time = 0 indicated 
that the data came from the first wave of data collection (in our 
case, fall of year-1); a code of time = 1 indicated that the data came 
from the second wave of data collection (in our case, spring of 
year-1), and so on. We also introduced a discontinuity at time 2 by 
fitting a change in the intercept. To do this, we created another new 
variable, a TVC called summer. This variable took on a value of 0 
for all time points that occurred prior to the summer break (i.e., 
time point 1 (fall of year-1) and time point 2 (spring of year-2)). 
Summer was coded 1 for all time points that occurred after the 
summer break (i.e., time point 3 (fall of year-2) and time point 4 
(spring of year-2)). Thus, the coding scheme for summer across 
the four waves of data collection was 0, 0, 1, 1. Table 1, an excerpt 
from the data file, illustrates the coding for the time and summer 
variables. Using this coding scheme, the time variable captures a 
linear growth rate during the two school years, and the summer 
TVC captures the change in the growth rate that occurs during the 
summer months. Therefore, to obtain the actual summer growth 
rate, one simply adds the parameter estimate for the linear growth 
rate (β

10
) to the parameter estimate for the change in intercept over 

the summer (β
20

).
Alternately, one could model two separate slopes, a school year 

slope and a summer slope. In such a scenario, the school year slope 
would be coded 0, 1, 1, 2 and the summer slope would be coded 0, 
0, 1, 1. In either of these coding systems, the TVC that captures the 

Table 1 | An excerpt of the data file for four sample students.

iD # reading Time Summer Treatment

ID 1 107 0 0 0

 148 1 0 0

 121 2 1 0

 146 3 1 0

ID 2 119 0 0 0

 129 1 0 1

 123 2 1 1

 137 3 1 1

ID 3 97 0 0 0

 137 1 0 0

 122 2 1 0

 137 3 1 1

ID 4 72 0 0 0

 98 1 0 1

 98 2 1 1

 113 3 1 2
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(Raudenbush et al., 2004). Our dependent variable was mean oral 
reading fluency (ORF). Measures of ORF assess the speed, accu-
racy, and efficiency with which a student reads a particular text. All 
s tudents read from three increasingly difficult, 250-word passages 
for three separate 1-min reading trials. Interventionists recorded 
the number of words read correctly for each passage and calculated 
a mean ORF score for each student. The overall mean on ORF was 
123.30 with a standard deviation of 29.29. Scores ranged from a 
low of 9 to a high of 245.

As mentioned previously, this study included 2 years of longitu-
dinal reading intervention program data. Some students received 
treatment during only year-1; some students received treatment 
during only year-2; some students received treatment during both 
in year-1 and year-2, and some students never received the treat-
ment. Table 1 contains coding scheme that we used in our analyses. 
Table 3 contains the descriptive statistics for this example.

We hypothesized that (1) modeling summer as an additional 
TVC would allow us to more accurately capture the shape of the 
students’ growth trajectories, (2) the addition of treatment as a 
TVC would allow us to explore the effect of treatment on reading 
fluency. If the treatment did have an effect on reading fluency, then 
the addition of the treatment TVC should help to explain within-
person change over time more precisely.

model-1: The uncondiTional linear growTh model
The first level-1 growth model (model-1) was a simple linear 
growth model. It contained a linear growth slope (coded 0, 1, 2, 3) 
but did not model the treatment effect or the summer effect. The 
model for the unconditional linear growth model was:

Y
ij
 = π

0i
 + π

1i
(time) + e

it

π
0i
 = β

00
 + r

0i

π
1i
 = β

10
 + r

1i

At Time = 0 in the fall of year-1, the average fluency score was 
108.17. In addition, mean reading fluency increased at a rate of 
10.05 per wave. There was statistically significant variation in 
the intercept across all students in the population (τ

00
 = 1258.79, 

χ2(276) = 2956.2, p < 0.001). This suggested there was variability in 
terms of students’ initial reading fluency scores. The chi-square test 
of the variance components (i.e., τ

00
, τ

11
 presented in this paper) are 

described in Raudenbush and Bryk (2002, pp. 63–64). We use these 
statistical tests, in combination with the chi-square difference test 
(comparing the deviances of two different models) to determine 
whether or not to include a random effect in the model. We do 
not rely on the Wald test, which is reported in statistical packages 
such as SPSS and SAS because using the Wald test to determine 
the statistical significance of variance components is known to be 
inaccurate (Raudenbush and Bryk, 2002).

model-2a: linear growTh wiTh summer as a Time-varying 
covariaTe
In model-2a, we added the summer slope as TVC. We added an addi-
tional time-varying covariate that accounted for the non-instruc-
tional period between time 1 and time 2. Again, this variable was 
coded 0, 0, 1, 1, and time was coded 0, 1, 2, 3. Therefore, the summer 

One could make different assumptions about the effect of the 
intervention across time, and these assumptions would obvi-
ously affect the coding system. For example, one might expect 
the  intervention to permanently impact the slope of the growth 
trajectory. In such a scenario, once a student received the inter-
vention, their growth trajectory would be permanently deflected. 
For example, perhaps certain reading strategy interventions might 
teach students how to become better readers. Perhaps after receiving 
intervention, the student is able to grow more quickly in terms of 
his or her reading skills, and he/she is able to maintain this differen-
tial growth, even after the intervention is complete. If a researcher 
believes that the growth trajectory of the dependent variable is 
permanently altered by the introduction of the treatment, then such 
an effect could be captured by introducing a second time variable 
that “turns on” when the treatment begins and continues to “tick” 
throughout the remainder of data collection. In contrast, one might 
expect that any effects of the intervention are fleeting and diminish 
or disappear once the intervention ceases. Behavioral interventions 
may follow such a pattern. One might see growth in a client’s social 
skills or positive behaviors when he or she is receiving positive 
reinforcement. However, when the reinforcers are withdrawn, the 
client may return to baseline. In such a scenario, there are no last-
ing impacts of treatment once the intervention is withdrawn: the 
intervention effect is fleeting, rather than permanent. To capture 
the fleeting nature of the intervention, one could introduce a TVC 
that allows for a change in slope during the intervention period but 
then goes back to baseline (0) after the intervention is withdrawn. 
Table 2 contains the coding schemes for summer, persistent treat-
ment effects, and fleeting treatment effects.

analysis
To examine the differences in the growth in reading fluency across 
instructional groups at two elementary schools (Jupiter and Keeney), 
we estimated a series of multilevel models using HLM version 6.4 

Table 2 | Coding schemes.

grouping Time Treatment Treatment 

  (persistent (fleeting 

  effect) effect)

No treatment 0 0 0

 1 0 0

 2 0 0

 3 0 0

Year-1 treatment only 0 0 0

 1 1 1

 2 1 0

 3 1 0

Year-2 treatment only 0 0 0

 1 0 0

 2 0 0

 3 1 1

Both years treatment 0 0 0

 1 1 1

 2 1 0

 3 2 1
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summer was statistically significant (β
20

 = −27.23, p < 0.001). This 
means that whereas students were growing an average of almost 
21 points per wave during the school year in terms of their reading 
fluency, they were actually losing about 6.3 points (20.93–27.23) 
over the summer.

Adding summer as a TVC explained an additional 36.43% of 
the within-person variation in reading fluency (over and above the 
linear growth model), suggesting that there was much less error 
in the prediction of students’ level-1 growth trajectories once we 
added the TVC to capture the summer slump.

model-2b: linear growTh wiTh TreaTmenT as a Time-varying 
covariaTe
In model-2b, we added treatment as TVC. Remember that treat-
ment captures whether students were exposed to the treatment 
on varying time points across the study. Table 1 provides the cod-
ing system for the time-varying treatment variable. For pedagogi-
cal purposes, we did not include the summer TVC in model-2b 
so that we could illustrate the problems that can occur when the 
level-1 growth trajectory is not properly modeled. Again, we ran 
the model two ways. First, we allowed the slope of the treatment 
variable to randomly vary across people. Next, we fixed the slope 
of the treatment effect. The variance of the treatment slope was 
not statistically significantly different from 0 (χ2(242) = 249.6, 
p = 0.36) and the chi-square difference test for the difference in 
deviances between the two models was not statistically significant 
(χ2(3) = 1.35). Therefore, the final model presented here and in 
Table 5 is the model with the fixed treatment effect slope.

Y
ij
 = π

0i
 + π

1i
(time) + π

2i
(treatment) + e

it

π
0i
 = β

00
 + r

0i

π
1i
 = β

10
 + r

1i

π
2i
 = β

20

For model-2b, in the fall of year-1, the average fluency score was 
107.74. In model-2b, the intercept for the reading fluency growth 
slope (β

10
) was 6.76. In other words, the predicted reading fluency 

increased at a rate of 6.76 per semester for students who were never 
exposed to the treatment (students who were coded 0, 0, 0, 0 on 
the time-varying treatment variable). This is very different from 
the mean growth rate in model-2a, which predicted 20.93 points of 

slope captured the differential between the school year growth rate 
and the summer growth rate. In other words, the coefficient for this 
slope (β

20
) represents change in the intercept between time points 1 

and 2, and β
20

 indicated how much less (or more) growth we expect 
the student to make over that non-instructional period.

We needed to decide whether to estimate the summer slope as 
fixed or randomly varying. If we fixed the summer slope, then every 
student in the sample would have the same estimate of summer 
gain/loss. If we allowed the summer slope to randomly vary, then 
we would estimate a mean summer slope and a residual for each 
person in the sample. Therefore, the summer effect could take on a 
different value for every person in the sample. At first blush, allowing 
the slope of the summer effect to randomly vary across people might 
seem preferable to fixing the slope. However, Raudenbush and Bryk 
(2002) caution against estimating all slopes as randomly varying by 
default. Instead, the goal is to build the most parsimonious model 
that provides a reasonable fit to the data. Raudenbush and Bryk warn 
that “if one overfits the model by specifying too many random lev-
el-1 coefficients, the variation is partitioned into many little pieces, 
none of which is of much significance” (p. 256). Therefore, we ran 
the model both with and without the random effect for summer and 
compared the fit of the model. When we included the random effect 
for the summer slope, the variance of the summer slope was not 
statistically different from 0 (χ2(275) = 7.14, p > 0.50). In addition, 
including the three additional variance–covariance components to 
the model only decreased deviance by 0.80 points. The chi-square 
difference test (χ2(3) = 0.80) favored the model with the fixed sum-
mer slope. Therefore, the final model that we present here and in 
Table 5 is the model with a fixed summer slope. We describe the 
logic of the chi-square difference test and other model fit criteria in 
more detail later in the paper, in the section on statistical approaches 
for evaluating the adequacy of the level-1 model.

The final equations for model-2a are below.

Y
ij
 = π

0i
 + π

1i
(time) + π

2i
(summer) + e

ij

π
0i
 = β

00
 + r

0i

π
1i
 = β

10
 + r

1i

π
2i
 = β

20

For model-2a, in the fall of year-1, the average fluency score 
was 105.45. In addition, mean reading fluency increased at a rate 
of 20.93 points during the school year. Also, the average effect of 

Table 3 | Descriptive statistics – two schools combined.

 Treatment

Time  No treatment in year-1 only in year-2 only in both years

 Mean SD N Mean SD N Mean SD N Mean SD N

1 105.97 34.75 33 98.50 37.26 53 103.09 32.75 68 102.82 40.62 123

2 130.77 32.38 33 128.01 35.46 53 130.65 31.86 67 129.48 41.74 122

3 122.67 34.59 33 121.63 36.74 53 125.47 31.52 68 122.84 41.16 123

4 140.40 34.65 32 134.76 35.30 51 140.27 28.81 68 137.97 41.37 121
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In model-3, the intercept (β
00

 = 105.45, p < 0.001) represents the 
average fluency of students at the beginning of the study. In addition, 
holding treatment constant at 0, mean reading fluency increased at 
a rate of 21.10 per semester (β

10
 = 21.10, p < 0.001). After control-

ling for treatment, the average effect of summer was −27.39 and 
it was statistically significant from zero (β

20
 = −27.39, p < 0.001). 

Therefore, a non-treatment student’s predicted score in the spring 
of year-1 was 105.45 + 21.10, or 126.55. A non-treatment student’s 
predicted score for fall of year-2 was 105.45 + 2(21.10) + (−27.39), 
or 120.26. Further, we predicted that the average student expe-
riences 6.29 (21.10 + (−27.39)) points of summer fluency loss 
between spring of year-1 and fall of year-2. In other words, regard-
less of the treatment group, the predicted ORF score for a stu-
dent in the fall of year-2 was 6.29 points lower than the predicted 
score for spring of year-1. This is because the negative change in 
intercept (β

20
 = −27.39) outweighs the constant linear slope effect 

(β
10

 = 21.10) that we were modeling across the four time points of 
data collection. This drop represents a “summer slump,” where stu-
dents’ ORF scores actually decreased during the non-instructional 
months. The effect of treatment (β

30
 = −0.25, p = 0.84), our TVC, 

was not statistically significantly different from zero, indicating the 
treatment failed to impact students’ growth in ORF scores. Once 
we included the summer slope as a TVC, the effect of treatment 
was no longer statistically significant. Therefore, misspecifying the 
shape of the level-1 model could have led us to conclude that the 
treatment was effective when in fact, it was not.

The results from final level-1 model (model-3) suggested that 
we were able to reduce the within-person residual variance by 
36.4% over the linear model (model-1) by introducing our two 
TVCs (summer and treatment). Furthermore, the final level-1 
model (model-3) reduced the within-person residual variance 
by 30.8% over the linear model with treatment (model-2b) by 
introducing our summer as TVC. Most importantly, model-4 
more correctly captured the shape of our growth trajectory than 
model-2b did.

In an effort to visualize the meaning of these parameters, we 
calculated the predicted scores for each time point. We then graphed 
these scores and compared them to the mean actual scores. These 
predicted scores are reported in Table 4 and Figures 2–5.

reading growth during the school year and 6.3 points of reading loss 
over the summer. There are two possible reasons for this difference. 
First, β

10
 represents the predicted growth slope for students who 

never received the treatment, not the overall predicted growth slope. 
Second, the summer slope is not included in the model.

In this model, the average effect of treatment was statistically 
significant (β

20
 = 8.26, p < 0.001). However, this was a naïve analysis 

which assumed linear growth rate during both instructional and 
non-instructional periods. When we plotted the average scores in 
each condition across each time point using the descriptive statistics 
from the sample, we could clearly see that the growth trajectory was 
not linear over the time. Thus Model-2b was misspecified; it failed 
to account for the differential growth of students during the non-
instructional months (summer). Fluency scores decreased during 
the summer, yet model-2b failed to capture thus discontinuity. 
Although model-2b suggested that the treatment effect was statis-
tically significant, this finding was estimated using an inappropriate 
level-1 model. Therefore, these results cannot be trusted.

When comparing model-2b to model-1, adding treatment as an 
additional TVC only explained an additional 2.75% of the within-
person variation in reading fluency.

model-3: modeling summer slump and TreaTmenT as Time-
varying covariaTes
In model-3, we combined model-2a and model-2b. Thus, we simul-
taneously modeled two TVCs: treatment and the summer slope. 
Table 1 provides the coding scheme for both TVCs. Because neither 
of the slopes for the TVCs needed to randomly vary in models 2a 
and models 2b, we fixed the slopes for both TVCs in model-3. The 
equations for model-3 appear below.

Y
ij
 = π

0i
 + π

1i
(time) + π

2i
(summer) + π

3i
(treatment) + e

it

π
0i
 = β

00
 + r

0i

π
1i
 = β

10
 + r

1i

π
2i
 = β

20

π
3i
 = β

30

Table 4 | Predicted scores, standard errors, and 95% confidence intervals for the predicted scores.

Time No treatment Treatment in year-1 only Treatment in year-2 only Treatment in both years

 Predicted Se 95% Ci,  Predicted Se 95% Ci, Predicted Se 95% Ci,  Predicted Se 95% Ci 

   L, u   L, u   L, u   L, u

0 105.45 2.24 101.07,  105.45 2.24 101.07, 105.45 2.24 101.07,  105.45 2.24 101.07,  

   109.83   109.83   109.83   109.83

1 126.55 2.34 121.96,  126.31 2.24 121.91, 126.55 2.34 121.96, 126.31 2.24 121.91,  

   131.14   130.71   131.14   130.71

2 120.26 2.33 115.71,  120.02 2.23 115.65, 120.26 2.33 115.71, 120.02 2.23 115.65,  

   124.82   124.39   124.82   124.39

3 141.37 2.71 136.05,  141.12 2.22 136.76, 141.12 2.22 136.76, 140.87 2.34 136.28,  

   146.68   145.48   145.48   145.47

L, lower; U, upper.
See Appendix for computation of the standard errors and confidence intervals.
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treatment as a time invariant predictor of the growth slopes because 
treatment was already added to the model as a TVC (β

20
). The equa-

tions for model-4, the full 2-level model, appear below.

Y
ij
 = π

0i
 + π

1i
(time) + π

2i
(summer) + π

3i
(treatment) + e

ij

π
0i
 = β

00
 + β

01
(school) + β

02
(TRT_yr1)  

         + β
03

(TRT_yr2) + β
04

(TRT_bothyr) + r
0i

π
1i
 = β

10
 + β

11
(school) + r

1i

π
2i
 = β

20
 + β

21
(school)

π
3i
 = β

30
 + β

31
(school)

level-2 model
To examine between-person variability in reading fluency, we intro-
duced several level-2 predictors. We added a dummy coded variable 
representing school (coded as 0 = Keeney and 1 = Jupiter) as a predic-
tor of both the intercept and all three slopes. We also added treatment 
as a time invariant predictor of the intercept. Since there were four lev-
els of treatment, we created three dummy coded variables: treatment 
only during year-1; treatment only during year-2 and treatment in 
both years. Thus the reference group consisted of students who did not 
receive any treatment. Adding treatment as a time invariant predictor 
of the intercept allowed us to test for and model baseline differences 
among the treatment groups. However, it would not make sense to add 

Table 5 | Parameter estimates for the five growth models.

Parameter Model-1, 

coefficient 

(Se)

Model-2a, 

coefficient 

(Se)

Model-2b, 

coefficient 

(Se)

Model-3, 

coefficient 

(Se)

Model-4, 

coefficient 

(Se)

Fixed effects, 

initial status π0i

Intercept β00 108.17*** 

(2.24)

105.45*** 

(2.24)

107.74*** 

(2.24)

105.45*** 

(2.24)

115.04*** 

(6.59)

Slope β01 (school) −15.94* 

(4.36)

β02 (treatment_year1) −4.65 (7.85)

β03 (treatment_year2) 0.25 (7.46)

β04 (treatment_

bothyear)

−1.25 (7.00)

Rate of change, 

π1i(time)

Intercept β10 10.05*** 

(0.37)

20.93*** 

(0.68)

6.76*** 

(0.60)

21.10*** 

(1.06)

19.92*** 

(1.48)

Slope β11 (school) 2.31 (2.07)

Time-varying 

covariate 

(permanent 

treatment) π2i

Intercept β20 8.26*** 

(1.20)

−0.25 (1.22) 2.01 (1.72)

Slope β21 (school) −4.37 (2.38)

Time-varying 

covariate 

(summer) π3i

Intercept β30 −27.23*** 

(1.47)

−27.39*** 

(1.68)

−31.21*** 

(2.36)

β31 (school) 7.45* (3.30)

Variance Var(eij) = σ2 183.52 

(11.15)

116.67 (7.10) 168.60 

(10.25)

116.67 (7.10) 113.63 (6.91)

Var(r0i) = τ00 1258.79*** 

(118.23)

1297.52*** 

(117.37)

1268.11*** 

(118.09)

1297.39*** 

(117.36)

1225.76*** 

(111.09)

Var(r1i) = τ11 10.81** 

(3.27)

3.23 (3.80) 10.81** 

(3.29)

8.20*** 

(2.86)

Model-2 Model-3a Model-3b Model-4 Model-5

Goodness-of-fit AIC 9720.85 9454.38 9680.55 9456.33 9420.77

BIC 9742.59 9479.75 9705.92 9485.32 9475.13

Deviance 9708.85 9440.38 9666.55 9440.33 9390.77

Parameters 6 7 7 8 15

*p < 0.05, **p < 0.01, ***p < 0.001.
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assessing The adequacy of The level-1 model
Again, we cannot overemphasize the importance of correctly mod-
eling the shape of the growth trajectory. To determine whether we 
were adequately capturing the shape of the growth trajectory with 
our level-1 model, we relied on a combination of graphical and 
statistical approaches.

graphical approaches
First, we plotted the average growth across the four time points of 
data collection using our sample statistics and we compared the 
shape of that trajectory to the shape of the trajectory produced by 
our model predicted values. If we have adequately captured the 
form of the level-1 model, the shape of the model predicted growth 
trajectory should strongly resemble the shape of the growth trajec-
tory using actual data. We can also compare the model predicted 
scores to the actual scores using our sample data. Although the 
model predicted scores would not match the actual scores exactly, 
the model predicted scores and the actual scores should approxi-
mate each other. If the model predicted scores are drastically dif-
ferent from the actual scores, this may suggest a misspecification 
of the level-1 model.

To aid in our graphical analyses, we computed the 95% confi-
dence intervals for the predicted scores for each of the treatment 
groups and compared them to the actual mean scores for each of 
the groups. Ideally, the actual scores should fall within the 95% 
confidence intervals approximately 95% of the time. In our exam-
ple, 14 of the 16 datapoints (87.5%) fell within the 95% confidence 
intervals for the predicted scores. The Appendix of this document 
illustrates the computation of these 95% confidence intervals.

In this paper, we have plotted the average predicted trajectory 
and the average actual trajectory. However, researchers should also 
examine the individual empirical growth plots and compare them 
to the ordinary least square estimated individual trajectories (Singer 
and Willet, 2003). The comparison of these plots should provide 
additional evidence that the model has adequately captured the 
shape of the level-1 growth trajectory.

sTaTisTical approaches
We can also compare the deviances and model fit indices such as 
the AIC and BIC for a variety of level-1 models. These model com-
parisons allow us to make inferences about which models appear to 
provide the best fit. Multilevel modeling uses maximum likelihood 
(ML) techniques to produce estimates of the model parameters. The 
likelihood function captures “the probability of observing the sam-
ple data as a function of the model’s unknown parameters” (Singer 
and Willet, 2003, p. 66). Using ML to estimate the parameters of 
the model also provides this likelihood, which is then transformed 
into a deviance statistic (Snijders and Bosker, 1999).

The deviance compares the log-likelihood of the specified model 
to the log-likelihood of a saturated model that fits the sample data 
perfectly (Singer and Willet, 2003, p. 117). Specifically, deviance = −2 
(log-likelihood of the current model − log-likelihood of the satu-
rated model) (−2LL) (Singer and Willet). Therefore, deviance is a 
measure of the badness of fit of a given model; it describes how much 
worse the specified model is than the best possible model (Singer 
and Willet). Deviance statistics cannot be interpreted directly since 

In the full level-2 model, the intercept (β
00

 = 115.04, p < 0.001) 
represents the mean initial reading fluency score for students 
who never received the treatment and who attended Keeney. The 
coefficient for effect of the school on the intercept (β

01
 = −15.94, 

p = 0.001) represents the differential in the initial average reading 
fluency score between students attending Keeney and Jupiter. In 
other words, the students at Jupiter scored 15.94 points lower 
on initial reading fluency than their peers at Keeney; therefore, 
the predicted initial reading fluency score for a student who 
attended Keeney and who was never exposed to the treatment 
was 99.10 (115.04 − 15.94). The differential between students 
who were exposed to treatment only during year-1 and those 
who never exposed to treatment on the initial reading fluency 
score (β

02
) was −4.65. After controlling for school, students who 

never exposed to treatment scored 4.65 points higher on initial 
reading fluency than their peers who were exposed to treatment 
during only year-1; however, this difference was not statistically 
significantly different from zero (β

02
 = −4.65. p = 0.53). After 

controlling for school, the predicted reading fluency scores for 
those students who never exposed to treatment were 0.25 points 
lower than their peers who were exposed to treatment during 
only year-2; again, this difference was not statistically signifi-
cantly different from zero (β

03
 = 0.25, p = 0.97). Lastly, after 

controlling for school, students who never exposed to treatment 
had ORF scores that were 1.25 points higher than their peers 
who were exposed to treatment in both years; however, again, 
this differential was not statistically significantly different from 
zero(β

04
 = −1.25, p = 0.86).

The results suggested that the mean initial reading fluency 
score increased at a rate of 19.92 points per semester (β

10
 = 19.92, 

p < 0.001) for students attending at Keeney when the effect of 
the treatment was held constant. Although school was statisti-
cally significant predictor of students’ initial reading fluency, it did 
not predict the linear rate of growth in students’ reading fluency 
(β

11
 = −2.31, p = 0.27). Again, the effect of the summer slope on 

reading fluency was statistically significantly different from zero 
(β

20
 = −31.21, p < 0.001). In other words, Keeney (the reference 

school) students’ scores increased by 19.92 points between fall 
and spring of year-1, then they decreased by 11.29 points between 
spring of year-1 and fall of year-2. This is because the change 
from time 2 to time 3 would be 19.92 + (−31.21), or −11.29. Thus 
when both treatment and summer effects were taken into account 
simultaneously, right after summer, the reading scores of students 
attending at Keeney who never exposed to treatment were 11.29 
points lower than they had been before the summer. At Jupiter, 
the effect of the summer slope on reading fluency was −23.76 
(−31.21 + 7.45), indicating that the summer slump parameter was 
7.45 points less pronounced at Jupiter (β

21
 = 7.45, p = 0.024). At 

Jupiter, students who were never exposed to treatment had pre-
dicted reading fluency scores after summer break were 1.53 points 
lower than their spring scores (−31.21 + 7.45 + 19.92 + 2.31). The 
average effect of the treatment on reading fluency at Keeney was 
not statistically significantly different from zero nor did the effect 
of the treatment did differ by school (β

31
 = −4.37, p = 0.07). Thus, 

in this particular example, treatment had no effect on reading 
fluency scores.
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deviance is a function of sample size as well as the fit of the model. 
However, for models that are hierarchically nested and use the same 
sample, researchers can compute and interpret differences in devi-
ance for competing models estimated using full maximum likeli-
hood estimation (FIML) (McCoach and Black, 2008). Hierarchically 
nested models that differ only in terms of their random effects can 
be compared using deviances derived from restricted maximum 
likelihood estimation (REML). However, if two hierarchically nested 
models differ in terms of their fixed effects, we must use deviances 
obtained using FIML to make any model comparisons.

If two models are nested and the model is estimated using FIML, 
the deviance statistics of two models can be compared directly. The 
deviance of the simpler model (D

s
) minus the deviance of the more 

complex model (D
c
) provides the change in deviance (∆D = D

s
 − D

c
). 

The deviance of the more complex model must be lower than (or as 
low as) that of the simpler model. In large samples, the difference 
between the deviances of two hierarchically nested models is dis-
tributed as an approximate chi-square distribution with degrees of 
freedom equal to the difference in the number of parameters being 
estimated between the two models (de Leeuw, 2004).

To decide among competing level-1 models, we can compare 
two hierarchically nested models using the chi-square difference 
test. The chi-square difference test helps us determine whether the 
additional parameterizations using TVCs help to improve the fit of 
the model. In our current analysis, we can compare the fit of the 
linear growth model that includes a TVC for treatment (model-2b) 
to the model that includes a discontinuity for the summer period as 
well as a TVC for treatment (model-3). The deviance for model-2b 
(the simpler model) is 9666.55 with seven parameters. The deviance 
for model-3 (the more parameterized model) is 9440.33 with eight 
parameters. Thus, the deviance drops by 226.22 with the addition 
of one parameter, the summer slope parameter. This large decrease 
in the deviance indicates that adding the summer slope parameter 
does indeed improve the fit of the model.

The Akaike information criterion
The formula for the Akaike information criterion (AIC) is shown 
below.

AIC = D + 2p (1)

where D is deviance and p = the number of parameters estimated 
in the model.

To compute the AIC, simply multiply the number of param-
eters by two and add this product to the deviance statistic, com-
puted using FIML. The addition of 2p to the deviance statistic 
imposes a small penalty based on the complexity of the model. 
When there are several competing models, the model with the 
lowest AIC value is considered to be the best model. An advantage 
of the AIC is that it can be used to compare non-hierarchically 
nested models. In our current example, we can use the AIC to 
compare the fit of model-2a to that of model-2b. The AIC for 
model-2a is 9440.38 + 2 × 7 = 9454.38. The AIC for model-3b is 
9666.55 + 2 × 7 = 9680.55. Model-2a (the model with the summer 
slope) has a smaller AIC than model-2b (the model with the treat-
ment TVC); therefore, we would favor model-2a over model-2b.

The Bayesian information criterion (BIC)
The Bayesian information criterion (BIC) is equal to the sum of 
the deviance and the product of the natural log of the sample size 
and the number of parameters. The formula for the BIC is shown 
below.

BIC = D + ln(n) × p (2)

where D is deviance (−2LL),
p = the number of parameters estimated in the model, and
n = the sample size.

Therefore, the BIC imposes a penalty on the number of param-
eters that is impacted directly by the sample size. For these analyses, 
we use the number of people (or level-2 units) as our sample size. 
To illustrate the BIC, we compare models-3a and 4. The BIC for 
model-3a is 9440.38 + 7 × ln(277) or 9479.75. The BIC for model-4 
is 9440.33 + 8 × ln(277) or 9485.32. Thus, using the BIC, we would 
favor model-2a over model-3. All three of the model fit tests we have 
outlined (the chi-square difference, the AIC, and the BIC) favor 
model-2a over model-3. This is because the extra parameter that we 
introduce in model-3 only decreases the deviance by 0.05 over the 
deviance in model-2a. These results suggest that adding treatment 
as a TVC does not improve the fit of the model that includes the 
summer slope. This should not be surprising, given that treatment 
was not a statistically significant predictor of ORF.

Finally, an examination of the residual terms can prove valuable 
in determining the aptness of the level-1 model. Most programs 
can produce files that contain the residuals for all level-1 obser-
vations (e

ti
) and the residuals for all level-2 observations (r

0i, 
r

1i, 

etc.). Checking for the normality of the distribution of level-1 and 
level-2 residuals using exploratory analyses and P–P plots provides 
additional information about the adequacy of the model (Singer 
and Willet, 2003). For more information on residual analyses, see 
Singer and Willet (2003, pp. 128–132).

inTervenTion effecT
In part, the modeling of the intervention effect depends upon the 
assumptions that the analyst makes about the persistence of the 
intervention effect. In our analyses, we modeled an effect which 
persisted over time, but which did not have a lasting impact on the 
growth slope. We call this a persistent effect. There are two other pos-
sible ways to conceive of an intervention effect. One could conceive 
of an intervention effect that deteriorates or dissipates over time. In 
our example, one might hypothesize that any intervention effects 
would decay over the summer vacation. We call this a fleeting effect. 
Table 2 contains a coding scheme that captures a fleeting treatment 
effect, as well as the coding scheme for a persistent treatment effect. 
Notice that the most important difference between the fleeting and 
the persistent treatment effects really occurs between times 2 and 3. 
While the treatment effect “disappears” under the fleeting coding 
scheme, any advantage that the treatment group accrues is main-
tained under the permanent coding scheme. It is possible to fit both 
of these models to the data and compare the coding schemes to each 
other to determine which coding system appears to better fit the data. 
In our example, because the intervention effect was not statistically 
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The variance of the predicted score ŷij  can be calculated from 
the following equation:
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Accordingly, we need the variance–covariance matrix of the 
fixed effect parameter estimates. HLM program (Raudenbush 
et al., 2004) provides this matrix when it is asked as output option. 
When the parameter estimates of variances and covariances were 
inserted into the Eq. A1, we were able to calculate the variance 
of the predicted score of ˆ .yij  For example, based on our cod-
ing scheme demonstrated in Table 1, the variance of predicted 
score of student who was in the year-1 treatment only group at 
time = 1 is
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When the variances/covariances of estimates were integrated 
into the above equation, we calculated the variance of the pre-
dicted score where the square root of this term is equal to its 
standard error.

significant, comparing these two models would not provide any 
additional information about the nature of the intervention effect. 
In reality, it is possible that a treatment effect is neither completely 
maintained, nor does it completely deteriorate over the summer 
break. If one knew the degree of decay a priori, this could be built 
into the coding scheme. For example, if one knew that only 50% of 
the treatment effect were maintained across the summer break, one 
could code the treatment effect as 0, 1, 0.5, 1.5 for a student who 
received treatment during both years of the study.

In conclusion, the multilevel model for change provides a flexible 
way to model a variety of growth trajectories and to incorporate 
time-varying variables into the analysis. In growth curve modeling, 
capturing the shape of the level-1 growth trajectory is essential: mis-
specifications of the level-1 model can lead to errors of inference in 
both the level-1 and level-2 models. Incorporating TVCs provides 
one method of modeling non-linearities or discontinuities in growth 
trajectories. There are a variety of strategies for coding TVCs; we 
have illustrated just a couple of basic coding schemes. Correct and 
creative coding of time-varying variables can help to more adequately 
capture the nature of the change in the phenomenon of interest. We 
hope that our simple illustration serves to alert analysts to the dangers 
of conducting sophisticated statistical modeling without adequately 
understanding the nature and the shape of the data at hand.

appendix
compuTaTion of The sTandard errors of The predicTed scores
To construct the 95% confidence interval of the predicted score, 
one needs not only the predicted scores but also the standard error 
of the predicted scores. Therefore, we calculated the variation of 
the predicted score by using covariance algebra in an effort to find 
the standard error of the predicted score. Our final level-1 model 
(model-4) is
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