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Functional data analysis in brain imaging studies
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Functional data analysis (FDA) considers the continuity of the curves or functions, and is a topic 
of increasing interest in the statistics community. FDA is commonly applied to time-series and 
spatial-series studies. The development of functional brain imaging techniques in recent years 
made it possible to study the relationship between brain and mind over time. Consequently, an 
enormous amount of functional data is collected and needs to be analyzed. Functional techniques 
designed for these data are in strong demand. This paper discusses three statistically challenging 
problems utilizing FDA techniques in functional brain imaging analysis. These problems are 
dimension reduction (or feature extraction), spatial classification in functional magnetic resonance 
imaging studies, and the inverse problem in magneto-encephalography studies. The application 
of FDA to these issues is relatively new but has been shown to be considerably effective. Future 
efforts can further explore the potential of FDA in functional brain imaging studies.
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or even thousands of such time courses. Let us take fMRI as an 
example. As mentioned earlier, fMRI records the hemodynamic 
response in the brain that signals neural activity with high spa-
tial resolution. It records signals at the millimeter scale (2–3 mm 
is typical and sometimes can be as good as 1 mm). These small 
elements of a 3-dimensional brain image are cubic volumes and 
are called “voxels,” which is an extension of the term “pixel” in a 
2-dimensional image. There can be thousands of thousands such 
voxels in a 3-dimensional brain image. Figure 1 shows an example 
of fMRI scan at one time point (from http://www.egr.vcu.edu/cs/
Najarian_Lab/fmri.html). The activity level (signal amplitude) is 
represented by different colors (see the lower right panel for a refer-
ence). The dark red areas are the most active areas; the light yellow 
areas are less active; and the gray areas have very low activity. Note 
that the signal amplitude at each voxel is recorded over time, so 
we will have many images as Figure 1. Therefore, the data volume 
can be huge. The enormous amount of data render many standard 
techniques impractical.

Second, although time courses are considered continuous, cur-
rent functional brain imaging devices can only record the brain 
activity changes discretely. In other words, they measure signal 
amplitudes at a sample of time points, which is usually evenly 
spaced (e.g., every 1–2 s). This temporal sampling is relatively 
sparse, because brain waves for some specific tasks change fast. 
For example, when studying auditory brainstem, the stimuli are 
usually brief (e.g., about 100 ms) with several cycles (Roberts and 
Poeppel, 1996). The change of brain waves is also fast, because 
the response functions in the brain are highly correlated with the 
stimuli. The sparse sampling can hardly capture some character-
istics of the brain activity.

Third, the hypotheses on how the brain activates are sometimes 
difficult to formalize. In some cases, the reference function can 
be used to formulate the hypothesis, but it is not always the case. 
In many studies there is no such reference function (e.g., deci-
sion making, reasoning and emotional processes). In these studies, 

IntroductIon
Functional data refer to curves or functions, i.e., the data for each 
variable are viewed as smooth curves, surfaces, or hypersurfaces 
evaluated at a finite subset of some interval (e.g., some period of 
time, some range of temperature and so on). Functional data are 
intrinsically infinite-dimensional but are usually measured dis-
cretely. Statistical methods for analyzing such data are described 
by the term “functional data analysis” (FDA) coined by Ramsay and 
Dalzell (1991). Different from multivariate data analysis, FDA con-
siders the continuity of the curves and models the data in the func-
tional space rather than treating them as a set of vectors. Ramsay 
and Silverman (2005) give a comprehensive overview of FDA.

Among many of the most popular FDA applications, functional 
neuroimaging has created revolutionary movements in medicine 
and neuroscience. Modern functional brain imaging techniques, 
such as positron emission tomography (PET), functional magnetic 
resonance imaging (fMRI), electro-encephalography (EEG), and 
magneto-encephalography (MEG), have been used for assessing the 
functional organization of the human/animal brain. These tech-
niques allow real-time observation of the underlying brain proc-
esses during different experimental conditions, and have emerged 
as a crucial tool to understand and to assess new therapies for 
neurological disorders. These techniques measure different aspects 
of brain activity at some discrete time points during an experi-
ment using different principles. These measurements, called time 
courses, can be treated as functions of time. Methods designed 
to characterize the functional nature of the time courses are in 
strong demand.

In this paper, we present three problems in brain imaging stud-
ies. Not only FDA has already drawn a great deal of attention and 
become more and more important in these problems, but also 
data analysis in these problems is difficult. First, a brain imag-
ing experiment usually lasts several minutes long and the signal 
amplitudes are recorded every 1–2 s. Normally the total number of 
time points can be 200–1000. In addition, there could be hundreds 
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neural networks (NN)], classification accuracy and computa-
tion cost can be significantly improved by using a small sub-
set of “important” measurements or a handful of components 
that combine in different ways to represent features of the time 
courses. One reason is that consecutive time points are usually 
highly correlated, including too much redundancy may increase 
the noise level and hence mask useful information about the true 
structure of the data.

In addition, it is usually not necessary to manipulate the entire 
time course. For the purpose of model interpretation, using a small 
number of the most informative features may help build a relatively 
simpler model and reveal the underlying data structure. Hence, one 
can better explain the relationship between the input and output 
of the model.

Therefore, dimension reduction (or feature extraction) should 
be applied to compress the time courses, keeping only relevant 
information and removing correlations. This procedure will not 
only speed up but also improve the accuracy of the follow-up analy-
ses. Furthermore, the model may be more interpretable when only 
a handful of important features are involved.

Let x
i
(t) be the ith time course, i = 1,2,…,N, where t

i
 ∈ T

i
 = {t

i,1
, 

t
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,…t
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}. For notational simplicity, we assume that the T
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’s are the 

same for all N time courses. Hence, we denote T = {t
1
, t

2
,…t

M
} for 

all x
i
(t)’s. Suppose that the reduced data are stored in a matrix, 

Z ∈ RN×K, where each row represents a time course and each column 
represents a feature in a new coordinate system.

formulating the hypothetical brain wave has to borrow ideas from 
many disciplines, including cognitive neuroscience, social psychol-
ogy, neuropsychology and so on.

The rest of the paper is constructed as follows. In Sections 
“Dimension Reduction,” “Spatial Classification Problems in fMRI,” 
and “The Inverse Problem in MEG,” we present three of the issues 
in brain imaging studies: dimension reduction, spatial classifica-
tion, and the inverse problem. In each section, we compare differ-
ent commonly used multivariate and functional methods, and our 
results show that using FDA can lead to better results in general. 
The data sets used in this paper are from an fMRI vision study and 
an MEG somatosensory study.

dImensIon reductIon
Functional data is intrinsically infinite-dimensional. Even though 
they are measured discretely over a finite set of some interval, 
the dimensionality (i.e., the number of measurements) is high. 
This introduces the “curse of dimensionality” (Bellman, 1957) 
and causes problems with data analysis (Aggarwal et al., 2001). 
 High-dimensional data significantly slow down conventional 
statistical algorithms or even make them practically infeasible. 
For example, one may wish to classify time courses into different 
groups. Standard classification methods may suffer from difficul-
ties of handling the entire time courses when the dimension is 
high. Even if some advanced techniques can be applied to the 
entire time courses [e.g., support vector machines (SVM) and 

Figure 1 | An example fMri scan showing brain activity.
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However, a large K always results in a complex model which intro-
duces difficulties to follow-up analyses. In addition, interpreting 
a large number of the orthogonal components may be difficult. 
One wishes every eigenfunction can capture a meaningful feature 
of the curves so that the components can be interpretable. Simpler 
models with fewer components are considered more interpretable 
and hence are more preferable. However, this is not always straight-
forward in real life. The most commonly used approach to choose 
K is estimating the number of components based on the estimated 
explained variance (Di et al., 2009).

FIlterIng methods
Another type of approaches that conduct dimension reduction is 
the so-called filtering methods, which approximate each function 
by a linear combination of a finite number of basis functions and 
represent the reduced data by the resulting basis coefficients. Since 
measurement errors may come along with the data, the observed 
curves may contain roughness. Filtering methods are put forth to 
smooth the curve. One can use a K-dimensional basis function to 
transform x

i
(t)’s into new features. We write,

ˆ ( ) ( ) ( ) ,,x t b t ti k i k
k

K
T

i= =
=

∑ θ
1

b θ
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where b(t) = [b
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(t),…,b
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(t)]T is a K-dimensional basis function 

and θ
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]T is the corresponding coefficient vector of 

length K. The coefficients θ
i
’s are usually treated as the extracted fea-

tures. The θ
i
’s can be estimated by using the least squares solution:
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where B is defined as the m-by-K matrix containing the values of 
b

k
(t

j
)’s, S = (BTB)−1BT and x

i
’s are the observed measurements of 

the ith functional curve at time points T. Hence we have,

ˆ ,,θi k k
T

i= s x
 

(5)

where s
k
, k = 1,2,…,K is the jth row of S and ˆ ,θi kc  is the kth estimated 

coefficient of ˆ .θi  This way a filtering method can also be represented 
using the same form of Eq. 1. The ˆ ,θi k is equivalent to z

i,k
 and s

k
 is 

equivalent to the realizations of f
k
 at time points T.

One issue with the filtering methods is the selection of basis 
functions. Commonly used techniques use the Fourier or the wave-
let bases to project the signal into the frequency domain or a tiling 
of the time–frequency plane, respectively. By keeping the first K 
coefficients as features, each time course is represented by a rough 
approximation. This is because these coefficients correspond to 
the low frequencies of the signal, where most signal information 
is located. Alternatively, one can also use the K largest coefficients 
instead, because these coefficients preserve the optimal amount of 
energy present in the original signal (Wu et al., 2000). Criteria for 
choosing K is similar to choosing K eigenfunctions in FPCA.

A clAssIFIcAtIon orIented method
One alternative to the aforementioned methods is the FAC method 
proposed by Tian and James (under review). FAC deals with 
functional dimension reduction problems for classification tasks 

Generally, dimension reduction for functional data can be 
expressed as:

z x t f t dt i N k Ki k i k, ( ) ( ) , , , , , , ,= = … = …∫ 1 1
 

(1)

where z
i,k

 is the (i, k)th element in the reduced data (feature space) Z 
and f

k
(t) is some so-called transformation function that transforms 

x
i
(t)’s to the new coordinate system.

In the following subsections, we briefly describe three popular 
dimension reduction approaches that are widely applied to func-
tional neuroimaging studies.

FunctIonAl prIncIpAl component AnAlysIs
Functional principal component analysis (FPCA) is an extension 
of multivariate PCA and was an critical part of FDA in early work. 
In the context of brain imaging studies, it is especially useful when 
there is uncertainty as to the duration of a mental state induced 
by an experimental stimulus, e.g., a decision making process or an 
emotional reaction. This is because as an explorative technique, FPCA 
does not make assumptions on the form of brain waves. A few studies 
have included FPCA. Viviani et al. (2005) used FPCA to single subject 
to extract the features of hemodynamic response in fMRI studies, 
and showed that FPCA outperformed multivariate PCA. Long et al. 
(2005) used FPCA on multiple subjects to estimate the subject-wise 
spatially varying non-stationary noise covariance kernel.

As with multivariate PCA, FPCA explores the variance–covari-
ance and the correlation structure. It identifies functional principal 
components that explain the most variability of a set of curves by 
calculating the eigenfunctions of the empirical covariance operator. 
FPCA also can be expressed using Eq. 1, in witch the transformation 
functions, f

k
(t)’s are orthonormal eigenfunctions. That is,

f t f t dt
j k

j kj k( ) ( )∫ =
≠
=



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0

1

In the matrix form, Eq. 1 can be expressed as:

zi k k
T

i, ,= f x
 

(2)

where elements in f
k
 and x

i
 are realizations of the kth eigenfunction 

and the ith observed time course, respectively.
There are several issues when applying FPCA. One is to choose 

the form of the orthonormal eigenfunctions. Note that any func-
tions can be represented by its orthogonal bases. The choice of the 
basis decides the shape of the curve. Usually, the bases should be 
chosen such that the expansion of each curve in terms of these basis 
functions approximates the curve as closely as possible (Ramsay 
and Silverman, 2005). That is,

min x t x t dti i
( ) − ( ) ∫ ˆ ,

2

where ˆ ( ) ( ).,x t z f ti k
K

i k k= ∑ =1  Ramsay and Silverman (2005) give a 
detailed explanation of how to solve for f

k
(t).

Another issue is to choose the number of eigenfunctions, K. 
This is an important practical issue without a satisfactory theo-
retical solution. Presumably, the larger the K, the more flexible the 
approximation would be, and hence, the closer to the true curve. 
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primary visual cortex (striate cortex or V1) and the extrastriate 
visual cortical areas (V2, V3, V4, and V5). Among them, the pri-
mary visual cortex is highly specialized for mapping the spatial 
information in vision, that is, processing information about static 
and moving objects. The extrastriate visual cortical areas are used 
to distinguish fine details of the objects. The main goal for this 
study is to identify subareas V1 and V3. Presumably, voxel ampli-
tude time courses in the V1 area are different from time courses 
in the V3 area. Since the boundaries for these two subareas are 
relatively clear, it is reasonable to utilize these data to evaluate the 
performance of the aforementioned dimension reduction methods 
in classification.

The data contain 6924 time courses, where 2058 are from V1 
and 4866 are from V3. These time courses are measured at 404 
time points. These 404 measurements are averages of three trails. 
We sample 600 time courses, evenly spaced, from V1. Then we 
randomly select 500 time courses and put them in the training 
data, and the rest 100 are placed into the test data. We do the 
same process to V3 and obtain 500 training time courses and 100 
test time courses. Hence, the total training and test data contain 
1000 and 200 time courses, respectively. We apply FPCA, filter-
ing methods, and FAC to reduce the dimensionality of the data. 
For filtering methods, we examine B-Spline bases (Filtering1) and 
Fourier Bases (Filtering2). For FAC, we examine the piecewise 
constant version (FAC1) and the piecewise linear version (FAC2). 
That is, FAC1 constrains f

j
(t)’s to be piecewise constant and FAC2 

constrains f
j
(t)’s to be piecewise linear. The final classifier is a stand-

ard logistic regression. Note that other classifiers can be applied, 
but we use logistic regression as an example, since the goal is to 
evaluate dimension reduction methods given a fixed classifier. 
Tian and James (under review) have compared filtering methods 
with FAC in the same setting. Here we extend the comparisons to 
FPCA. We examine when K = 4 and 10. That is, reduce the data to 
either 4 or 10 dimensions, then apply a logistic regression to the 
lower-dimensional data. Table 1 shows test misclassification rates 
on the reduced data. The misclassification rate is defined as the 
ratio of the number of misclassified test time courses to the total 
number of test time courses. Note that other criteria can be used 
to evaluate classification accuracy. Since FAC is a stochastic search 
based method, we apply it 10 times (with each time 100 iterations) 
on these data and compute the average test misclassification rate 
and the standard error (in the parentheses).

As expected, both versions of FAC outperform other methods 
in general. In particular, FAC2 provides the best accuracy. Between 
the other two methods, when K is small FPCA seem to work better 
than filtering methods, but when K is large filtering methods show 
slight advantages over FPCA.

One problem with FAC is that it is a stochastic search based 
method, therefore, the computation cost is more than the other 
two deterministic methods. We investigate the computation time 
of these three methods. All methods are implemented in R and 
run on a 64-bit Dell Precision workstation (CPU 3.20 GHz; RAM 
24.0 GB). For FAC1, we examine one run with 100 iterations. We 
recorded the total CPU time (in seconds) of the R program and list 
it in Table 2. As we can see, the computation cost for FAC is much 
higher than that for FPCA and filtering methods, even though its 
accuracy is high.

specifically. This method is highly interpretable and has been dem-
onstrated effective in different classification scenarios. Similarly to 
FPCA and filtering methods, FAC also follows Eq. 1 and finds a set of 
f
k
(t)’s so that the transformed multivariate data Z can be optimally 

classified. The idea of FAC is expressed as follows:

F t E e x t YF t x t Y F t( ) arg min ( ( )), ,( ) ( ), ( )= ( ) M

subject to some  γ λ( ) .F ≤  (6)

where scalar Y is the group label, F(t) = [f
1
(t), f

2
(t),…,f

k
(t)]T, M

F(t)
 is 

a pre-selected classification model applied to the lower-dimensional 
data, e is a loss function resulting from M

F(t)
, and γ(F) constrains 

the model complexity. By adding this constraint, the solution to 
Eq. 6 can achieve better interpretability. In practice, this constraint 
can be set to constrain the shape of f

j
(t)’s. For example, one can 

let the f
j
(t) be piecewise constant or piecewise linear. These simple 

structures are considered more interpretable than structures involv-
ing more curvature.

Equation 6 is a difficult non-linear optimization problem and is 
hard to solve. Tian and James (under review) proposed a stochastic 
search procedure guided by the evaluation of model complexity. 
This procedure makes use of the group information and produces 
simple relationships between the reduced data and the original 
functional predictor. Therefore, this dimension reduction method 
is particularly useful when dealing with classification problems (see 
Spatial Classification Problems in fMRI).

The aforementioned functional methods assume that x
i
(t)’s 

are fixed unknown functions. When the noise level is high (e.g., 
single-trial EEG/MEG), it is difficult to represent the time course 
properly with a basis expansion having deterministic coefficients. 
A stochastic representation such as the well-localized wavelet basis 
(Nason et al., 1999) or the smooth localized Fourier basis (Ombao 
et al., 2005) may be more preferable.

In many circumstances, the aforementioned dimension reduc-
tion methods can efficiently reduce the data dimension and signifi-
cantly speed up the follow-up analyses. The choice of a dimension 
reduction method should be guided by the follow-up analyses. 
For example, if the final goal is extracting orthogonalized lower-
dimensional features and there is uncertainty of the mental state, 
then FPCA may be a better choice. If the goal is further analyzing 
the data features or feature selections, then filtering methods may be 
a good option. This is because a filtering method can be performed 
in the frequency domain. One then selects low-frequency features 
which contain most signal information. If the final goal is classifying 
different sets of functions, then FAC may dominate others.

An exAmple
In this section, we demonstrate the effectiveness of the aforemen-
tioned dimension reduction approaches on a classification task in 
an fMRI study. Since the goal is classification, we expect that the 
classification oriented FAC method would outperform others in 
terms of classification accuracy. The idea is to reduce the dimen-
sion of the time courses first and then utilize the reduced data as 
the input of a classification model.

The data set came from a vision study that were conducted 
in the Imagine Center at the University of Southern California. 
There are five main subareas in the visual cortex of the brain: the 
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should be selected from the region where the class labels are relatively 
clear, e.g., the center of a subarea. These data are divided into training 
and test sets. The training data are used to fit the model and select 
tuning parameters for the model, and the test data are used to examine 
the performance of the fitted model. Once the model is built, it can 
be applied to new data where the group labels are unknown.

Since the dimension of the vectors (i.e., the number of meas-
urements in the time courses) can be a few hundred, many stand-
ard multivariate classification methods are unsatisfactory. There 
are some advanced methods designed for high-dimensional data 
such as SVM (Vapnik, 1998), treed-based methods (Breiman, 
2001; Tibshirani and Hastie, 2007), and NN (Hertz et al., 1991). 
These methods can be applied to handle time courses classification. 
However, these methods do not consider the functional nature of 
the time courses and thus have disadvantages. As mentioned earlier, 
adjacent measurements in a time course are highly correlated. In 
addition, time courses in functional brain imaging studies contain a 
lot of noise and important classification information usually lies in 
small portions of the time courses, e.g., some peak areas. Therefore, 
it is not necessary to include all measurements in the model.

Another way consists of two parts: dimension reduction and 
classification. More specifically, first reduce the data dimension 
and then apply classification techniques to the reduced data. For we 
have discussed some methods for dimension reduction in Section 
“Dimension Reduction.” These methods transform the data onto 
a new feature coordinate system and select a handful of important 
features in this new coordinate system. Another type of dimen-
sion reduction is selecting a subset of relevant measurements from 
the entire time courses instead of transforming the data. This can 
be done through a variable selection technique, such as the Lasso 
(Tibshirani, 1996; Efron et al., 2004), SCAD (Fan and Li, 2001), 
nearest shrunken centroids (Tibshirani et al., 2002), the Elastic 
Net (Zou and Hastie, 2005), Dantzig selector (Candes and Tao, 
2007), VISA (Radchenko and James, 2008), and FLASH (Radchenko 
and James, 2010). Then a standard classification technique can be 
applied to the selected measurements.

FunctIonAl dIscrImInAnt methods
Functional discriminant methods have also been studied. These 
methods consider the functional nature of the time courses. In 
general, the idea can be viewed as extensions of classical statistics to 
the functional space. One extension is the generalized linear model 
in the functional form, i.e., the functional regression model with a 
scalar response and a functional predictor. Let Y be the categorical 
response variable. Consider the model,

y t x t dt i Ni i i= + + = …∫β β0 1 2( ) ( ) , , , , ,e
 

(7)

where y
i
 is the class label for the ith time course and the unknown 

functional coefficient β(·) measures the dependence of y
i
 on x

i
. Note 

that x
i
(t) is the “true” underlying function for the ith time course 

and it is unobserved. The measurement x
i,j
 is the perturbed value 

of x
i
(t) at time t

j
 and the perturbation is e

i
.

To solve Eq. 7, many methods were proposed. Some examples 
are the generalized singular value decomposition (SVD) method 
(Alter et al., 2000), the linear discriminant method for sparse func-
tional data (James and Hastie, 2001), the parametric method with 

Again, there is not a universal dimension reduction method. This 
example only shows the performance of different methods when the 
final goal is classification. There may be the case that FAC is less pref-
erable when the goal is, say extracting low-frequency features. One 
need to choose an appropriate method based on the ultimate goal. 
Also, computation cost is another factor that needs to be considered. 
One should seek for a balance between accuracy and cost.

spAtIAl clAssIFIcAtIon problems In FmrI
The high spatial resolution of fMRI enables us to obtain more 
precise and better localized information. Therefore, it is usually 
used to analyze neural dynamics at different functional regions 
in the brain. However, it is difficult to identify some small func-
tional subareas for a specific task. One commonly used method is 
based on theories in neurobiology and cognitive sciences. This is 
to assume that different functional subareas have different neural 
dynamic responses (i.e., voxel amplitude functions are different 
in different subareas) given a specific task. Let us use the visual 
example again. Based on the visual transmission theories, the visual 
information is carried out through neural pathways from V1 to V5. 
The information first reaches the V1 area and then V2 and so on. 
The neural response functions in these subareas differ in terms of 
the amplitudes and frequencies. Therefore, by comparing the shape 
of the neural response functions in different subareas, these visual 
cortical subareas can be identified. In many fMRI studies so far, this 
comparison is mostly done by naked eye, which is inefficient and 
inaccurate. In addition, since, for example, the visual transmission 
is a non-linear continuous process (Zhang et al., 2006), there is no a 
clear boundary between two adjacent subareas. The characteristics 
for voxels near the boundary might be very similar. This results in 
large within-group variations and, hence, the naked-eye method 
is unsatisfactory.

Two commonly used techniques for spatial classification 
are machine learning methods and functional discriminant 
methods.

mAchIne leArnIng methods
Machine learning methods are applied in two ways. One way is discard 
temporal orders and treat the time courses as multivariate vectors. 
Then one can apply classification techniques to these “vectors” directly. 
To implement, one obtains the data consisting of the neural dynamic 
response functions and their corresponding class labels. These data 

Table 1 | Misclassification rates on the reduced data (classifier: logistic 

regression).

 FPCA Filtering1 Filtering2 FAC1 FAC2

K = 4 0.287 0.385 0.360 0.100 (0.003) 0.096 (0.004)

K = 10 0.112 0.091 0.105 0.056 (0.004) 0.050 (0.004)

Table 2 | execution time in second.

 FPCA Filtering1 FAC1

K = 4 4.67 3.12 78.18

K = 10 8.24 5.25 129.56
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where λ is some smoothing parameter and L is a linear differential 
operator.

As mentioned earlier, one potential limitation of the afore-
mentioned functional methods is that when the noise level in the 
observed time courses is high. These data cannot be adequately 
represented by FDA when the coefficients are assumed fixed but 
unknown. Stochastic coefficient methods (Nason et al., 1999; 
Ombao et al., 2005) may provide better solutions. For example, 
Ho et al. (2008) utilized the Ombao et al. (2005)’s method to 
capture the transient features of brain signals in the frequency 
domain, then used relevant time–frequency features to distinguish 
between groups.

An exAmple
In this section, we examine the performance of four methods on a 
spatial classification task. The four methods include three machine 
learning methods and one functional discriminant method. First, 
we apply SVM directly to the entire time courses treating them as 
multivariate vectors. Second, we apply a filtering method to reduce 
the data dimension, then apply SVM. The basis used in the filter-
ing method is a 10-dimensional NCS. Third, we apply the Lasso 
(Tibshirani, 1996) to select 10 measurements from the time courses 
and then apply SVM. Finally, we apply the smoothing penalization 
method (Ramsay and Silverman, 2005) to the time courses. This 
method is implemented in the R library fda.

We use the same fMRI vision data as in Section “An Example” 
and the goal is to identify subareas V1 and V3. For each subarea 
600 time courses are selected. Misclassification rates are estimated 
by a 10-fold cross-validation. That is, the data are divided by 10 
parts equally. Each part contains 60 time courses from V1 and 60 
time courses from V2. First, part number one is used as the test 
data and the rest nine parts are used as the training data. Then part 
number two is used as the test data and the rest nine parts as the 
training data. This procedure is conducted 10 times and all parts 
are used as the test data once. The misclassification rate is estimated 
by averaging the 10 test errors.

The results are listed in Table 3, in which full-SVM represents 
applying SVM directly to the entire time courses, filter-SVM 
represents using filtering methods to reduce the data dimen-
sion and then applying SVM to the reduced data, Lasso-SVM 
represents using the Lasso to select measurements first and then 
applying SVM, and Smoothing represents applying the smooth-
ing penalization method. As we can see, filter-SVM produces the 
best result, while full-SVM provides the worst result. Comparing 
Table 3 to Table 1, FAC2 plus logistic regression classifier outper-
forms the four methods listed in this section. This indicates that 
a good dimension reduction method can improve classification 
results. Using filtering methods to reduce the data dimension 
may lose some useful information for classification. Therefore, 
even though SVM is thought to be more advanced than logistic 
regression, it may not be good enough to compensate for the 
loss of information by filtering methods. One may expect that 
the classification accuracy will improve when SVM is applied 
after FAC.

the generalized linear model involved (James, 2002; Müller, 2005; 
Müller and Stadtmüller, 2005), non-parametric methods (Hall 
et al., 2001; Ferraty and Vieu, 2003), the smoothing penalization 
method (Ramsay and Silverman, 2005), the factorial method of 
testing various sets of curves (Ferraty et al., 2007), and the robust 
method with estimation of the data depth (Cuevas et al., 2007).

Many of the aforementioned methods involve a dimension 
reduction step as well. For example, Alter et al. (2000), Hall et al. 
(2001), and Müller and Stadtmüller (2005); Müller (2005) used 
the Karhunen–Loève decomposition to transform the covariance 
function to a diagonalized space. James (2002); James and Hastie 
(2001) used filtering methods to approximate x

i
(t)’s and β(t), i.e., 

using coefficients of basis functions instead of the original meas-
urements. We describe three methods below.

James (2002) used natural cubic spline (NCS) bases to expand 
x

i,j
’s and approximate the β(t).

x z t ti j i k k j i j
k

K

j

T

i i j, , , , ,= ( ) + = ( ) +
=

∑ φ ε ε
1

φ z
 

(8)

β ψ( ) ( ) ( ),t t tl l
T

l

L

= =
=
∑c c ψ

1  
(9)

where φ is a K-dimensional NCS basis, z
i
 is its corresponding coef-

ficient vector, and ψ is a L-dimensional NCS basis. Equation 8 
expands the (i,j)th measurement by its basis functions. Equation 
9 approximates β(t) by its basis. The coefficient vector c can be 
estimated using the maximum likelihood method.

Müller (2005) used the Karhunen–Loève decomposition to 
decompose x

i
(t)’s to a diagonalized space. In this case, Eq. 3 is 

used to approximate x
i
(t)’s, b(t) contains the first K eigenfunctions 

of x
i
(t)’s and θ

i,k
’s are all uncorrelated, i.e., the variance–covariance 

matrix is diagonal. Then Eq. 7 can be written as:

y t b t dt t b t dti k i k
k

K

i k k
k

K

= +








 = +

= =
∑∫ ∫∑β β θ β θ β0

1
0

1

( ) ( ) ( ) ( ), , ..

 

(10)

Let η
k
 = ∫ β(t)b

k
(t) dt. Then η

k
’s can be estimated by regressing 

y
i
 on θ

i,1
,…,θ

i,K

y b ti k i k
k

K

= +
=

∑β θ0
1

( ) .,

Hence, this method is a two-step approach. The first step is 
dimension reduction, then the second step is classification.

Ramsay and Silverman (2005) approximated x
i
(t) and β(t) using 

Eqs 3 and 9, respectively, with a large number of bases for x
i
(t)’s. 

We write,

X(t) = Θb(t)

where the coefficient matrix Θ is N-by-K. Then Eq. 7 becomes

ˆ ( ) ( ) ,y t ti
T= + =∫β0 Θ ΘΩb c cψ

 
(11)

where X(t) = [x
1
(t),…,x

N
(t)]T, Ω = ∫ b(t)c(t)Tdt is a K-by-L matrix. 

Then β(t) can be estimated by minimizing a penalized residual 
sum of squares:
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ties, because the correlation between stimuli and brain responses 
is high. That is, the reconstructed curves should have significant 
activations in the somatosensory area at the corresponding time 
points 85 and 99.

There are two main types of methodologies to formulate and 
solve the inverse problem: the parametric methods and the non-
parametric methods. The parametric methods are also referred to 
as equivalent current dipole methods or dipole fitting methods. 
Examples of these methods include the multiple signal classification 
(MUSIC) method (Mosher et al., 1992), the linearly constrained 
minimum variance (LCMV) beamformer method (VanVeen et al., 
1997) and so on. These methods evaluate the best positions and 
orientations of a dipole or dipoles and are more apt to be physics 
based methods.

The non-parametric methods are also referred to as the 
imaging methods. These methods are more apt to be statistical 
based methods and will be discussed in the following subsec-
tions. The non-parametric methods are based on the assump-
tion that the primary signal sources can be represented as linear 
combinations of neuron activities (Barlow, 1994). Therefore, the 
inverse problem can be formulated through a non-parametric 
linear model,

y X e( ) ( ) ( ),t t t= +β  
(13)

where y(t) = [y
1
(t), y

2
(t),…,y

N
(t)]T is a set of MEG time courses 

recorded by N sensors and β(t) = [β
1
(t), β

2
(t),…, β

p
(t)]T is a set 

of source time courses at the cortical area, where p is the number 
of potential sources. The forward operator X is an N-by-p matrix 
representing the propagation of the magnetic field in the cortical 
surface. The columns of X are called the “forward fields” and the 
rows of X are called the “lead fields.” Each forward field describes 
the effect of one given source to the observed measurements across 

the Inverse problem In meg
Magneto-encephalography is a non-invasive powerful technique 
that can track the magnetic field accompanying synchronous neu-
ronal activities with temporal resolution easily reaching millisecond 
level. Therefore, it is able to capture the rapid change in corti-
cal activity. With recent development of whole-head biomagne-
tometer systems that provide high spatial resolution in magnetic 
field coverage, MEG possesses unique capability to localize the 
detected  neuronal activities and follow its changes millisecond by 
 millisecond when suitable source modeling techniques are utilized. 
Thus it is attractive in cognitive studies of normal subjects and in 
neurological or neurosurgical evaluation of patients with brain 
diseases. In MEG studies, evoked responses are measured over time 
by a set of sensors outside the head of a patient. One of the issues 
is reconstructing and localizing the signal sources of evoked events 
of interest in the brain based on the measured MEG time courses. 
This is the so-called “inverse problem.”

For example, in a somatosensory experiment, data were recorded 
by an MEG device with 247 sensors (channels). Each sensor records 
228 measurements during one trail. One then averages all three 
trails. Figure 2 shows the time courses from the 247 channels (left 
panel) and their corresponding isofield magnetic maps (right 
panel), respectively. Stimuli were presented at time points 85 and 
99. As we can see from the left panel of Figure 2, the evoked activ-
ity time courses achieve the peaks at 85 and 99. We expect that 
the reconstructed source time courses can reflect the peak activi-

Figure 2 | Left panel: measured time series from all sensors; right panel: isofield magnetic map.

Table 3 | estimated misclassification rates by a 10-fold cross-validation.

Full-SVM Filter-SVM Lasso-SVM Smoothing

0.202 0.079 0.174 0.153
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L
2
-penalty, the results from L

2
-penalty based methods are too diffuse 

in the spatial domain and are unsatisfactory in terms of localizing 
sparse active areas.

One alternative to the L
2
-penalty is the minimum current esti-

mate (MCE) and its modifications (Uutela et al., 1999; Lin et al., 
2006), which impose the L

1
-penalty, i.e., L(β) = |β|. MCE can pro-

duce better solutions in terms of identifying sparse active areas due 
to the nature of the L

1
-penalty. However, MCE introduces substan-

tially discontinuities to the source time courses. Hence, the “spiky-
looking” time courses will be observed. As described, the advantages 
and disadvantages of L

2
 and L

1
 methods are complementary.

The aforementioned L
2
 and L

1
 based regularization methods 

were originally designed for parametric regression problems and 
are hardly applied to the non-parametric problems where β

j
(t)’s are 

smooth functions. Functional methods that take into account the 
functional nature of the data are in strong demand. These methods 
involving include the L

1
L

2
-norm inverse solver (Ou et al., 2009) and 

the functional expansion regularization (FUNER) approach (Tian 
and Li, under review). We briefly present these two methods in the 
following subsections.

A spAtIo-temporAl method
The L

1
L

2
-norm method assumes the signal times courses the MEG 

time courses can be represented by their lower-dimensional tem-
poral basis functions. Then it attempts to estimate their temporal 
coefficients instead of estimating the entire time courses. Since 
y(t) is evoked by β(t), it is natural to assume that β(t) and y(t) 
share the same temporal bases. Suppose that y(t) and β(t) can be 
approximated by the same K-dimensional temporal basis. That is, 
we let y i k

K
k i kt t y( ) ( ) ,= ∑ =1 ψ   and β ψ βj k

K
k j kt t( ) ( ) ,,= ∑ =1

  where ψ
k
(t) 

is the kth basis function, yi k,  is the kth coefficient for the ith MEG 
time course and β j k,  is the kth coefficient for the jth source time 
course. Then Equation (14) can be simplified by:

  Y X E= +β ,  (16)

where Y, β, and E are all N-by-K coefficient matrices for their basis 
functions. A smooth temporal domain and a sparse spatial domain 
can be achieved by imposing an L

2
-penalty to the temporal domain 

and an L
1
-penalty to the spatial domain, i.e.,

L N k
k

K

n

N

( ) .,
 β =

==
∑∑ β2

11  

(17)

Then the minimization problem can be treated as a second-order 
cone programming problem and hence solved.

A bAsIs expAnsIon method
The FUNER method also uses basis approximation, and imposes 
L

2
-penalty and L

1
-penalty to the source time courses. But instead 

of applying constraints to the coefficient matrices, FUNER projects 
the source spatio-temporal information onto one hyperplane, 
and imposes an L

2
-penalty to the temporal information and an 

L
1
-penalty to the spatial information on this hyperplane simultane-

ously. Assuming b(t) is a K-dimensional temporal basis for β
j
(t)’s, 

FUNER modifies Model as follows:

y t X e ti it i( ) ( ),= +∗η  (18)

sensors, and each lead field describes the combined effects of all 
sources to a given sensor (Ermer et al., 2001). X can be computed 
by a simple spherical head model (Mosher et al., 1999), and hence, 
it can be treated as known. The vector e(t) = [e

1
(t), e

2
(t),…, e

N
(t) T 

is the noise time series during the experiment. Model (see A Basis 
Expansion Method) is a non-parametric model in which the 
parameters, β

j
(t)’s (j = 1,…,p), are non-parametric smooth func-

tions. The problem is to estimate β
j
(t)’s.

Based on brain anatomical theories, each neuron in the cor-
tical area can be a potential source, so p can be the number of 
neurons. In practice, it is infeasible to reach the neuron level. 
Instead, the cortical area is divided into small regions in the mil-
limeter scale. The head model considers each region as a source, 
and p is the number of these small regions in the cortical area. 
This number can be a tens of thousands. However, present MEG 
devices have at most a few hundred sensors. For example, in the 
somatosensory example showed at the beginning of Section “The 
Inverse Problem in MEG,” there are 247 sensors and hence only 
247 measured time courses. Therefore, p  N and this inverse 
problem is highly ill-posed.

Several methods have been proposed to tackle this problem. 
We describe three types of methods here: regularization methods, 
spatio-temporal methods, and functional methods.

regulArIzAtIon methods
In the matrix form, we write,

Y X E= +β ,  (14)

where Y is an N-by-s matrix representing the N measured EEG/
MEG time courses over s time points. Elements in Y are measure-
ments of the N functions over s time points with perturbations. X is 
still the N-by-p forward operator, β is a p-by-s matrix representing 
realizations for p source time courses at s time points, and E is an 
N-by-s noise matrix.

Since p  N, Eq. 14 cannot be solved directly. Regularization is 
a commonly used technique to solve Eq. 14, and the solution can 
be expressed as:

min ( ) ,
β

β βY X− +{ }F
L

2 λ
 

(15)

where ||·||
F
 is known as the Frobenius norm of a matrix, L is a penalty 

function and λ ≤ 0 is a fixed penalty parameter that controls the 
degree of regularization. Some well-known regularization meth-
ods impose the Tikhonov regularization (L

2
-penalty) on β, i.e., 

L(β) = ||β||
2
, or some modifications of L

2
. These methods include 

the minimum norm estimate (MNE) (Hämäläinen and Ilmoniemi, 
1984; Dale and Sereno, 1993), the weighted minimum norm esti-
mate (WMNE) (Iwaki and Ueno, 1998), the focal underdetermined 
system solver (FOCUSS) (Gorodnitsky and Rao, 1997) and the low 
resolution electrical tomography (LORETA) (Pascual-Marqui et al., 
1994). However, applying L

2
-norm to the entire β space makes the 

solution too diffuse. According to brain anatomical theories, the 
source time courses should be relatively “sparse” in the spatial 
domain for a given task. That is, only some compact subareas are 
active at the same time, while a large area of the brain should stay 
inactive. Time courses in active areas should have significantly larger 
amplitudes than that in inactive areas. Due to the nature of the 
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The two functional methods described in Sections “A  Spatio-Temporal 
Method” and “A Basis Expansion Method” have shown advantages over 
some commonly used multivariate methods in terms of reconstruct 
signal time courses (Ou et al., 2009; Tian and Li, under review).

An exAmple
In this section, we provide comparisons of the FUNER method 
and two regularization methods: MNE and MCE on an real-world 
MEG data. The data were from the somatosensory study described 
in the beginning of Section “The Inverse Problem in MEG.” The 
data were obtained from the Center for Clinical Neurosciences 
at the University of Texas Health Science Center. For the FUNER 
method, we apply two bases: NCS with K = 7 bases functions and 
the first K = 7 bases from SVD of Y.

We are interested in the activation map at time points 85 and 
99. Figure 3 shows side views of the 3-dimensional brain maps 
at time point 85 by the three methods. Among these four figures, 
FUNER with SVD bases is the best because it correctly identifies 
the somatosensory area (located at the left postcentral gyrus) and 
the active area is very focal. MCE is the second best because it also 
correctly identifies part of the somatosensory area but the active 
area is not large enough. The active area from FUNER with a NCS 
basis is too focal, so this method is relatively less satisfactory com-
paring to FUNER (SVD) and MCE. MNE is the worse method 
among the four methods, because the active areas from MNE are 
too broad. It picks out the somatosensory area but also incorrectly 
picks out some inactive areas.

where X x x xit i t
T

i t
T

ipt
T∗ ∗ ∗ ∗= …[ , , , ]1 2  and η = …[ , , , ]η η η1 2

T T
p
T T   containing 

coefficient vectors for b(t). In matrix notation, Eq. 18 can be 
expressed as:

y X e∗ ∗ ∗η= + ,  (19)

where y y y y∗ = …[ , , , ]1 2
T T

s
T T  is an Ns-vector of the new expanded 

response variable, e e e e* = …[ , , , ]1 2
T T

s
T T is an Ns-vector of the new 

white noise variable, and
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,

where each block element, xijtk

∗  (e.g., 
x x b t x b t x b tt K11 11 1 1 11 2 1 11 11

∗ = …[ ( ), ( ), , ( )]), is a K-vector. This way, the 
original inverse problem has been modified as solving a high-dimen-
sional linear regression problem (Eq. 19). Each block in X* contains 
all spatial and temporal information for one source time course. One 
can treat each block as a group and apply some group shrinkage 
techniques, such as the group Lasso (Yuan and Lin, 2006), to Eq. 19 
to shrink coefficients within an inactive group all toward zero.

Figure 3 | reconstructed source maps at time point 85 (the side view). Upper left panel: FUNER (NCS); upper right panel: FUNER (SVD); lower left panel: MNE; 
lower right panel: MCE.
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We also examine the computation cost in this example. All methods 
are implemented in R and the computation time is recorded in Table 4. 
As we can see, the execution time for FUNER is much higher than 
MNE and MCE. This is because FUNER expands the data to a higher-
dimensional space and makes the already large data even larger.

This example shows that some functional methods can provide 
better results than multivariate methods in terms of accuracy, but 
the computation cost may be high.

conclusIons And dIscussIons
Functional data analysis applied on functional brain imaging 
studies has become more and more prevalent nowadays. We have 
briefly discussed three issues, dimension reduction, spatial clas-
sification and the inverse problem, that occur in functional brain 
imaging studies. They are problems with strong demands on FDA 
techniques.

There are three major challenges in applying FDA to functional 
brain imaging studies. First and foremost, the computational cost 
is a big issue due to the large volume of brain imaging data. In 
particular, when some method requires a stochastic search or an 
expansion of the data by their basis functions, the issue will be 
aggravated (see Tables 2 and 4). Although most of the brain imag-
ing problems focus on accuracy rather than real-time processing 
performance, computation efficiency is still an important factor 
to consider. Second, most FDA techniques that deal with brain 
imaging data assume that the error term is independent and 
identically distributed white noise. However, the noise is rarely 
normally distributed. For example, in fMRI studies, sources of 

noise include low-frequency drift due to machine imperfections, 
oscillatory noise due to respiration and cardiac pulsation, residual 
movement artifacts and so on. Further investigation that consid-
ers different noise patterns and dependencies is needed. Third, 
since brain images are naturally 3-dimensional, the observed 
times courses are not independent from each other. Correlations 
are higher between time courses in a neighboring region than 
that between time courses that are far away. Therefore, spatial 
properties should be taken into considerations as well.

There are many other issues and problems also desire FDA, such 
as the EEG/MEG sensor evaluation and fMRI pattern classifica-
tion. The former needs to identify important sensors based on the 
measured time courses from multiple subjects (Coskun et al., 2009). 
One of the most commonly used techniques is the T-test, which is 
far from satisfactory. More sophisticated FDA techniques should 
be investigated and applied. The latter needs to identify brain state 
associated with a stimulus. A large amount of research devoted 
to machine learning methods (see, for example, Martinez-Ramon 
et al., 2006; Pereira et al., 2009; Tian et al., 2010). However, less 
research has been conducted on FDA techniques even though they 
are just as useful as machine learning techniques. FDA methods 
should also be investigated for these problems.
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