
www.frontiersin.org August 2010 | Volume 1 | Article 40 | 1

Original research article
published: 10 August 2010

doi: 10.3389/fpsyg.2010.00040

Mere exposure alters category learning of novel objects
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We investigated how mere exposure to complex objects with correlated or uncorrelated object 
features affects later category learning of new objects not seen during exposure. Correlations 
among pre-exposed object dimensions influenced later category learning. Unlike other published 
studies, the collection of pre-exposed objects provided no information regarding the categories 
to be learned, ruling out unsupervised or incidental category learning during pre-exposure. 
Instead, results are interpreted with respect to statistical learning mechanisms, providing one 
of the first demonstrations of how statistical learning can influence visual object learning.
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1999; Palmeri and Flanery, 2002; Wills et al., 2004). For example, in 
some of this previous work, participants are first exposed to objects 
that belong to one or more structured categories. After exposure, 
they are asked to perform tasks like deciding which objects in a 
test set belong to the exposed category or not, or they are asked to 
discriminate objects in terms of whether they belong in the same 
category or not based on the prior exposure. The interest of most 
of these studies lies in showing that categories are formed during 
pre-exposure. Through some mechanism, participants discover 
that a group of exemplars is similar to each other and dissimilar 
to another group of exemplars. Clapper and Bower (1994), for 
instance, examined how the order of presentation during pre-expo-
sure is critical for eliciting this realization, whereby a new category 
is spontaneously formed when a group of similar exemplars is fol-
lowed by a dissimilar oddball. Family resemblance and other graded 
category structures are well suited to these types of designs because 
they allow categorization of new exemplars based on similarity to 
exemplars of the pre-exposed category or categories.

In contrast to the formation of categories at pre-exposure, our 
concern here is the formation of perceptual chunks that can subse-
quently be used for various purposes, including category learning. 
Prioritized knowledge of such perceptual chunks could facilitate 
or hinder the solution of whatever problem the observer is faced 
with later. To investigate this issue, we needed to depart from family 
resemblance structures, both at pre-exposure and transfer. Indeed, 
the collections of pre-exposed objects in our experiment have no 
category structure relevant to what is learned later. Instead, we 
manipulated the correlational structure of the pre-exposed objects 
such that pairs of dimensions had values that were correlated with 
each other but not with other correlated dimension pairs.

Statistical learning could allow subjects to learn which object 
dimensions “go together” and which do not. During category learn-
ing, participants might then preferentially make use of conjunctions 
of dimensions that went together during pre-exposure. In order to 
test this hypothesis, we needed a category structure in which some 
combinations of dimensions had to be attended while others had to 
be ignored. Furthermore we wanted a structure that was complex 
enough so that participants would be discouraged from  strategies 

IntroductIon
Humans can acquire knowledge about the structure of their envi-
ronment by mere exposure through statistical learning (Saffran 
et al., 1996). This mechanism is thought to divide a nearly infinite 
number of element combinations into a small number of “chunks” 
(Orban et al., 2008). Consistent with statistical leaning, growing 
evidence from artificial scene and artificial grammar learning sug-
gests that information about the visual and auditory environment 
can be learned without feedback through this kind of chunking 
mechanism (Knowlton and Squire, 1996; Saffran et al., 1999; Fiser 
and Aslin, 2001; Lany and Gomez, 2008).

While there is evidence that statistical learning occurs, evidence 
that it facilitates later learning is incomplete. Some role for statistical 
learning has been demonstrated in the speech domain (Graf Estes 
et al., 2007). Here, we investigated whether statistical learning of 
correlations between different dimensions1 of visual objects facili-
tates later learning to categorize those objects with feedback.

Conceivably, exposure could produce familiarity with object 
features, increasing their perceptual differentiation (e.g., Gibson 
and Gibson, 1955; Goldstone and Steyvers, 2001). Alternatively, 
correlations between dimensions of objects could be learned, cre-
ating meaningful “chunks” of visual features. For example, Fiser 
and Aslin (2001) showed that participants formed such chunks 
after unsupervised exposure to artificial “scenes” in which several 
complex shapes were arranged on a grid. Participants were able 
to learn “combos” of shapes whose relative positions in the grid 
were correlated during pre-exposure. They used the term statistical 
learning to describe this phenomenon and this is the terminology 
we continue to use here. A Bayesian model of statistical learning 
that aims to explain this chunk formation has been proposed by 
Orban et al. (2008).

Critically, we are not asking whether people incidentally learn 
object categories from exposure: Prior work suggests they can 
(Knowlton and Squire, 1993; Clapper and Bower, 1994; Ashby et al., 

1Here, dimension refers to a component of an object that can vary systematically 
(e.g., the shape of the body), whereas feature refers to a particular value along a 
dimension (e.g., a square body).
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Participants were randomly assigned to one of four groups. Three 
groups were pre-exposed to humanoids, while the fourth group was 
a no-pre-exposure control. The three pre-exposure object sets varied 
in the kinds of correlations they contained across dimensions, but 
were perfectly matched in the frequency with which individual fea-
tures occurred (abstract dimensional and feature structures for the 
pre-exposure conditions are included in the appendices). Of the six 
dimensions, four (head, wings, body, and arms) were manipulated 
experimentally and two (antennae and legs) were used as individuat-
ing features (specifically, antennae and legs were uncorrelated with 
each other and with any of the other four dimensions and had 
identical statistical properties in all conditions).

In the Correlated (Diagnostic) condition, the values of head and 
body were perfectly correlated and the values of wings and arms 
were perfectly correlated; this Correlated condition is deemed 
“Diagnostic” because during later category learning, the conjoint 
values of either the head and body or of the wings and arms were suf-
ficient for perfect categorization. In the Correlated (Non-Diagnostic) 
condition, the values of head and wings were perfectly correlated and 
the values of body and arms were perfectly correlated; this Correlated 
condition is deemed “Non-Diagnostic” because the conjoint values 
of either the head and wings or the body and arms were insufficient 
for perfect categorization. In fact, this is an understatement: using 
the conjunctions of head and wings or body and arms in a categori-
zation strategy would result in chance performance during category 
learning. There was a total of 32 objects in each Correlated stimu-
lus set. These objects were randomly sampled during pre-exposure 
phase. All five values of each dimension were used in constructing 
the correlated pre-exposure stimulus sets.

In the Uncorrelated condition the pre-exposed objects had ran-
domly assigned feature values along each of the four experimentally 
manipulated dimensions; all five values of each dimension were 
sampled.

Finally, the No-Pre-Exposure group saw no humanoid stimuli 
during pre-exposure; instead, they were exposed to a set of cartoon 
fish that had been used in other experiments.

Category learning objects
All four groups were trained to categorize the same 16 human-
oids. Head, wings, body, and arms each varied across two equally 
frequent values, while antennae and legs varied across four values. 
While all five dimension values occurred during pre-exposure, 
none of the training exemplars had been experienced during pre-
exposure. The humanoid objects could be categorized with perfect 
accuracy using either of two possible two-dimensional “exclusive 
or” rules requiring attention to two dimensions, for instance head 
and body. An object might always be in category A if it had either 
a furry head and square body or a bald head and a round body but 
never in category A if it had a furry head and a round body or a bald 
head and a square body. A rule with the same abstract structure 
could also be applied to the wing and arm dimensions. Critically, 
successful combinations used to categorize stimuli were head and 
body or wings and arms; these were the dimensions correlated in the 
Correlated (Diagnostic) condition of pre-exposure. Two combina-
tions that could not be used to categorize the stimuli were head and 
wings or body and arms; these were the dimensions correlated in 
the Correlated (non-Diagnostic) conditions of pre-exposure.

like forming simple single-dimension rules and remembering 
exceptions (Nosofsky et al., 1994). An “exclusive or” rule applying 
to some feature combinations but not others fitted these require-
ments and allowed us to test the hypothesis of chunk formation 
at pre-exposure. Pre-exposure would facilitate category learning if 
the categorization rule required attention to previously correlated 
dimensions and would be detrimental if the categorization rule 
required attention to previously uncorrelated dimensions.

In this experiment, we manipulated the correlational structure 
of the objects at pre-exposure. Participants in all conditions then 
learned to categorize a set of new objects with feedback; specifically, 
there were two equal-size categories that could be distinguished 
based on an “exclusive or” rule applied to some combinations of 
two object dimensions (diagnostic combinations), but not other 
dimensions (non-diagnostic combinations). Critically, the sta-
tistical structure of the categorized objects was the same in all 
conditions for all participants. All that differed was the kind of 
pre-exposure they received.

MaterIals and Methods
PartIcIPants
A total of 137 Vanderbilt undergraduates and members of the gen-
eral community participated; nine were dropped due to technical 
errors, leaving 128 participants, 79 female, with an average age of 
20.4 and 14.0 years of education.

stIMulI
Pre-exposure objects
Novel objects were artificial humanoids (Figure 1), spanning ≈5.5° 
of visual angle. There were six dimensions (antenna, head, wings, 
body, arms, and legs) with five possible feature values for each one 
(antenna and legs had only four values as these dimensions were 
not manipulated experimentally, see below).

Figure 1 | examples of the objects. Full descriptions of the stimuli are 
shown in the Appendix.
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high-performing and low-performing groups based on a median 
split of accuracy during the last two epochs of category learning 
(epochs 6 and 7). Accuracy and mean correct response time in 
epochs 1–5 were then subjected to a between-subjects ANOVA with 
factors of Pre-exposure condition and Performance Group. This 
ensured that the data analyzed in the ANOVA differed from the 
data used to select groups, while limiting potential ceiling effects. 
Accuracy in high performers during epochs 1–5 was indeed superior 
to accuracy in lower performers [F(1,120) = 132.0, p < 0.0001].

Figure 2 shows that, in the High Performers Group only, accu-
racy was higher for the Uncorrelated and Correlated (Diagnostic) 
pre-exposure conditions than the Correlated (non-Diagnostic) 
and No-Pre-exposure conditions [main effect: F(3,120) = 5.06, 
MSe = 0.010, p < 0.005; Pre-exposure × Performance Group interac-
tion: F(3,120) = 3.52, MSe = 0.010, p < 0.05]. Planned comparisons 
confirmed that, among High Performers, those in the Correlated 
(Diagnostic) and Uncorrelated conditions had higher accuracy than 
those in the Correlated (non-Diagnostic) and No-pre-exposure 
conditions [ts(30) > 2.2, p’s < 0.05]. Participants in the Uncorrelated 
and Correlated (Diagnostic) did not differ from each other, nor did 
those in the No-Pre-Exposure and Correlated (non-Diagnostic) 
conditions [ts(30) < 1]. In contrast, there were no effects of Pre-
exposure among the Low Performers groups (Fs < 1).

While correct response time was longer for high than low per-
formers [F(1,120) = 10.8, MSe = 0.101, p < 0.005], response time 
differed little across pre-exposure conditions and Pre-exposure did 
not interact with Performance Group (Fs < 1).

dIscussIon
Our results suggest an effect of statistical learning during pre-expo-
sure on later category learning. We hypothesize that if two dimen-
sions have correlated values during pre-exposure, they might form 

Procedure
During pre-exposure, participants viewed a sequence of 480 
pre-exposure humanoids. The Correlated (Non-Diagnostic) and 
Correlated (Diagnostic) groups each saw 15 random sequences of 
the 32 pre-exposure humanoids constructed for their respective 
conditions (480 trials). The Uncorrelated group saw a random set of 
480 humanoids. The No-Pre-Exposure group saw a set if imaginary 
fish randomly selected over the 480 trials.

During pre-exposure, we asked participants to press the space 
bar whenever a stimulus was displayed off-center (12.5% of tri-
als). Before pre-exposure, participants viewed a series of examples 
of fish stimuli (the same stimuli viewed in the No-Pre-Exposure 
condition) that were either on-center or off-center, labeled so that 
participants could understand how far off-center the stimuli had 
to be. Pre-exposure stimulus duration and ISI were 700 ms.

Following pre-exposure, participants in all four conditions were 
trained to categorize with feedback the same set of 16 stimuli, pre-
sented randomly over 35 blocks (560 trials). Each stimulus was 
presented for 1 s. “Mog” or “Nib” feedback, shown for 1 s, followed 
300 ms after the response or 300 ms after the disappearance of 
the object.

results
We analyzed accuracy and reaction time during category learn-
ing as a function of learning epoch (seven training epochs). Not 
surprisingly, accuracy increased and reaction time decreased over 
the course of learning [accuracy: F(6,744) = 68.71, MSe = 2.2, 
p < 0.0001; RT: F(6,744) = 23.1, MSe = 1.4, p < 0.0001]. However, 
given the difficulty of the exclusive or rule, accuracy in the last two 
learning epochs was bimodally distributed, with some  participants 
near ceiling while others remained near chance; this occurred in 
all four conditions. Therefore, we divided our participants into 

Figure 2 | Mean accuracy and reaction time for experiment 2, plotted separately for high and low performers. Error Bars are between-subjects 95% 
confidence intervals.
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to the Correlated conditions might have caused an extra boost 
in performance in the Uncorrelated condition; this possibility 
demands future research.

In closing, we investigated the effect of pre-exposure on subse-
quent category learning, when the pre-exposure phase contained no 
information about the categories to be later learned. We focused on 
three possible effects of pre-exposure: perceptual fluency with fea-
tures, acquisition of dimensional structure, and formation of per-
ceptual “chunks” as potential influences. Our results demonstrate 
that pre-exposure to objects can facilitate or impair category learn-
ing. The inferior performance of the Correlated (non-Diagnostic) 
group relative to the Correlated (Diagnostic) and Uncorrelated 
groups demonstrates that participants encoded relationships 
between object features during pre-exposure. Category learning 
can lead to the creation of new object features from combinations of 
subfeatures (Schyns and Rodet, 1997; Goldstone, 2000). Mere expo-
sure can facilitate the recognition of repeated spatial configurations 
of novel shapes embedded in “artificial scenes” (Fiser and Aslin, 
2001). Like in Fiser and Aslin, in this study, perceptual chunks were 
formed during pre-exposure, not during category learning. Also 
like Fiser and Aslin, in our study, the correlated features were clearly 
distinct, somewhat spatially separated parts and their combination 
did not form gestalt wholes, unlike the features used in the studies 
by Goldstone (2000) and Schyns and Rodet (1997). So it may be 
more prudent to interpret our findings in terms of joint attention 
to learned conjunctions rather than in terms of the formation of 
novel single features through “unitization.”

Pre-exposure facilitated category learning in both the 
Uncorrelated and Correlated (Diagnostic) conditions. The advantage 
of the Uncorrelated condition over the No-Pre-Exposure condition 
demonstrates that pre-exposure to the stimulus features themselves 
improved category learning, possibly through familiarization with 
the basic constraints of the stimulus set and learning the dimensional 
structure of the stimuli. More puzzling is the failure of the Correlated 
(Diagnostic) condition to cause better categorization performance 
than the Uncorrelated condition. This might have been caused by 
lack of salience of the particular correlated feature conjunctions in 
the Correlated (Diagnostic) condition or by greater latent inhibition 
in the Correlated than the Uncorrelated conditions.

Clearly, there remains much to learn about the specific mecha-
nisms, perhaps many in kind, that allow unsupervised learning 
during exposure to objects to influence later supervised category 
learning. Therein lie interesting theoretical challenges and promis-
ing avenues in the design of more effective training programs for 
category learning.

aPPendIx
The tables below show the detailed abstract structure of the stimuli 
used in the experiment.

In each of the tables, columns represent a different stimulus 
dimension and rows represent different stimuli. Each number cor-
responds to a feature value for a given stimulus dimension – for 
instance, “1” in the arms column might refer to hairy arms and “2” 
might refer to tentacle arms. As appropriate, in some tables, the 
final column shows the category of the stimulus when the stimuli 
in the table are used within the category learning phase of that 
experiment.

a perceptual “chunk” that can be attended during category learning. 
This in turn could lead participants to test hypotheses about jointly 
attended features, speeding learning in the Correlated (Diagnostic) 
condition and slowing learning in the Correlated (Non-Diagnostic) 
condition. Based solely on the superior accuracy in the Correlated 
(Diagnostic) condition relative to the Correlated (non-Diagnostic) 
condition, statistical learning might have facilitated category learn-
ing, impaired category learning, or both. However, comparison to 
the Uncorrelated and No-Pre-Exposure conditions allows a more 
nuanced interpretation, whereby statistical learning may actually 
impair category learning by directing attention to counter-produc-
tive feature combinations.

First, superior performance of the Uncorrelated group over the 
No-Pre-Exposure group suggests an effect of feature familiarity. 
Because participants in the Uncorrelated group were pre-exposed to 
exemplars with randomly combined features, improvement cannot 
be accounted for by learning to jointly attend to dimensions with 
correlated values. Two possible reasons for this effect fall under the 
rubric of feature familiarity: One possibility is that Uncorrelated 
pre-exposure increased perceptual fluency with the stimulus fea-
tures (e.g., Conroy et al., 2005), providing an advantage in encoding 
and remembering the dimension values. A second possibility is that 
this group acquired knowledge about the dimensional structure 
of the stimuli, and was thereby better able to test hypotheses or 
allocate attention more efficiently. For instance, they could have 
learned that all objects have the same number of parts in the same 
configuration, that hands do not constitute dimensions that are 
separate from arms, etc. Thus, participants in the Uncorrelated 
group might have had a head start relative to the No-pre-exposure 
group in knowing what the stimulus dimensions were and could 
thus test relevant hypotheses more quickly.

But feature familiarity cannot be the whole story. If it was, then 
performance in the Correlated (non-Diagnostic) pre-exposure con-
dition should have been the same as the Uncorrelated condition, 
but it was not. Instead, it appears that statistical learning in the 
Correlated (non-Diagnostic) condition impaired category learn-
ing. Accuracy in the Correlated (non-Diagnostic) condition was 
no better than the No-Pre-Exposure condition, suggesting that the 
benefit of familiarity was counter-acted by some other variable – 
presumably statistical learning.

In our case, statistical learning seemed to impose a cost on later 
category learning, but it did not seem to provide a clear benefit. 
Performance in the Correlated (Diagnostic) condition was no better 
than the Uncorrelated baseline. This finding in itself highlights the 
importance of using both no-exposure controls and uncorrelated 
controls in future studies of possible transfer from statistical learn-
ing onto later explicit learning. Nevertheless, such a null result is not 
straightforward to explain. A lack of power or some complicated 
interaction of feature correlation and of a priori salience of par-
ticular dimensions could potentially explain this finding. Another 
possibility, however, is that something about the Uncorrelated 
condition was highly effective in boosting performance, such that 
it was more than a mere feature familiarity baseline. One possible 
explanation comes from theories of latent inhibition, which posit 
that correlated features are actually less salient than uncorrelated 
features (McLaren et al., 1989; McLaren and Mackintosh, 2000). 
Greater release from latent inhibition in the Uncorrelated relative 
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4 2 4 2 2 4
4 2 4 2 1 3
5 3 5 3 4 1
5 3 5 3 3 4
4 5 4 5 2 3
4 5 4 5 1 2

Head Wings Body Arms Ant. Legs

uncorreLAted condition
(Features randomly assigned, examples only)
1 3 5 4 1 1
4 2 4 2 2 2
2 1 4 1 3 3
2 5 4 5 4 4
1 3 3 4 1 2
3 4 3 3 2 3
4 1 5 1 3 4
5 5 2 3 4 1
2 4 5 5 4 4
1 1 4 2 3 3
1 3 1 5 2 2
3 1 5 2 1 1
4 4 3 2 4 3
4 3 5 2 3 2
5 5 5 1 2 1
3 2 4 4 1 4
5 5 2 1 1 3
5 5 4 4 2 4
5 5 1 4 3 1
2 4 5 5 4 2
1 1 4 4 1 4
4 4 1 4 2 1
2 2 1 5 3 2
4 1 2 5 4 3
5 2 3 1 4 2
1 5 5 3 3 1
2 5 2 4 2 4
3 3 1 3 1 3
5 2 2 5 4 1
5 2 2 2 3 4
3 3 1 1 2 3
3 4 4 5 1 2

Stimuli viewed during category learning with feedback

Head Wings Body Arms Ant. Legs category

1 1 1 1 1 1 Mog
1 1 1 1 2 2 Mog
1 1 1 1 3 3 Mog
1 1 1 1 4 4 Mog
2 2 2 2 1 1 Mog
2 2 2 2 2 2 Mog
2 2 2 2 3 3 Mog
2 2 2 2 4 4 Mog
1 1 2 2 1 1 Nib
1 1 2 2 2 2 Nib
1 1 2 2 3 3 Nib
1 1 2 2 4 4 Nib
2 2 1 1 1 1 Nib
2 2 1 1 2 2 Nib
2 2 1 1 3 3 Nib
2 2 1 1 4 4 Nib

Stimuli viewed during pre-exposure

Head Wings Body Arms Ant. Legs

correLAted(non-diAg) condition
(correlated dimensions: head/wings; body/arms)
1 1 5 5 1 1
1 1 5 5 2 2
5 5 2 2 3 3
5 5 2 2 4 4
1 1 3 3 1 2
1 1 3 3 2 3
1 1 4 4 3 4
1 1 4 4 4 1
5 5 1 1 4 4
5 5 1 1 3 3
2 2 5 5 2 2
2 2 5 5 1 1
2 2 3 3 4 3
2 2 3 3 3 2
2 2 4 4 2 1
2 2 4 4 1 4
3 3 1 1 1 3
3 3 1 1 2 4
3 3 2 2 3 1
3 3 2 2 4 2
3 3 5 5 1 4
3 3 5 5 2 1
5 5 4 4 3 2
5 5 4 4 4 3
4 4 1 1 4 2
4 4 1 1 3 1
4 4 2 2 2 4
4 4 2 2 1 3
5 5 3 3 4 1
5 5 3 3 3 4
4 4 5 5 2 3
4 4 5 5 1 2

Head Wings Body Arms Ant. Legs

correLAted(diAg) condition
(correlated dimensions: head/body; wings/arms)
1 5 1 5 1 1
1 5 1 5 2 2
5 2 5 2 3 3
5 2 5 2 4 4
1 3 1 3 1 2
1 3 1 3 2 3
1 4 1 4 3 4
1 4 1 4 4 1
5 1 5 1 4 4
5 1 5 1 3 3
2 5 2 5 2 2
2 5 2 5 1 1
2 3 2 3 4 3
2 3 2 3 3 2
2 4 2 4 2 1
2 4 2 4 1 4
3 1 3 1 1 3
3 1 3 1 2 4
3 2 3 2 3 1
3 2 3 2 4 2
3 5 3 5 1 4
3 5 3 5 2 1
5 4 5 4 3 2
5 4 5 4 4 3
4 1 4 1 4 2
4 1 4 1 3 1

(Continued)

Stimuli viewed during pre-exposure

Head Wings Body Arms Ant. Legs

correLAted(diAg) condition
(correlated dimensions: head/body; wings/arms)
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