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 As Duncan Luce and other prominent scholars have pointed out on several occasions, testing 
algebraic models against empirical data raises difficult conceptual, mathematical, and statistical 
challenges. Empirical data often result from statistical sampling processes, whereas algebraic 
theories are nonprobabilistic. Many probabilistic specifications lead to statistical boundary 
problems and are subject to nontrivial order constrained statistical inference. The present 
paper discusses Luce’s challenge for a particularly prominent axiom: Transitivity. The axiom of 
transitivity is a central component in many algebraic theories of preference and choice. We 
offer the currently most complete solution to the challenge in the case of transitivity of binary 
preference on the theory side and two-alternative forced choice on the empirical side, explicitly 
for up to five, and implicitly for up to seven, choice alternatives. We also discuss the relationship 
between our proposed solution and weak stochastic transitivity. We recommend to abandon 
the latter as a model of transitive individual preferences.
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 transitive preferences. Then, we proceed to introduce the mixture 
model of transitive preference that we endorse. Next, we review 
Luce’s second challenge and how it can be overcome in the case of 
the mixture model.

NotatioN aNd defiNitioNs
Definition. A binary relation B on a set C is a collection of 
ordered pairs B ⊆ C × C. For binary relations B and R on C, let 
BR = {(x,z) | ∃y ∈ C with (x,y) ∈ B,(y,z) ∈ R}. A binary relation B 
on C satisfies the axiom of transitivity if and only if

 BB B⊆ .  (1)

A binary relation is intransitive if it is not transitive.
At various places in the manuscript, we will use other properties 

of binary relations as well. We define these next.

Definition. Let C be a finite collection of choice alternatives. 
Let IC = {(x,x) x ∈ C }. Given a binary relation B, we write 
B −1 = {(y,x) | (x,y)∈B} for its reverse and B B= ×( )\C C  for its com-
plement. A binary relation B on C is reflexive if IC ⊆ B, strongly 
complete if B ∪ B−1 ∪ I = C × C, negatively transitive if BB B⊆ , 
asymmetric if B B⊆ −1. A weak order is a transitive, reflexive and 
strongly complete binary relation, and a strict weak order is an 
asymmetric and negatively transitive binary relation.

We assume throughout that C is a finite set of choice alterna-
tives. In models of preference, it is natural to write (x,y) ∈ B as xBy 
and to read the relationship as “x is preferred to (better than) y”. 
(For additional definitions and classical theoretical work on binary 
preference representations, see, e.g. Luce, 1956; Fishburn, 1970, 
1979, 1985; Krantz et al., 1971; Roberts, 1979).

iNtroductioN
For algebraic axioms and relevant empirical data resulting from a 
random sampling process, it is necessary to bridge the conceptual and 
mathematical gap between theory and data. This problem has long 
been known as a major obstacle to meaningful empirical axiom testing 
(e.g. Luce, 1995, 1997). Luce’s challenge is to (1) recast a deterministic 
axiom as a probabilistic model, or as a suitable hypothesis, with respect 
to the given empirical sample space and (2) use the appropriate statis-
tical methodology for testing the probabilistic model of the axiom, or 
the corresponding hypothesis, on available behavioral data.

 We concentrate on the axiom of transitivity, a pivotal property 
of “preference” relations. Transitivity is shared by a broad range 
of normative as well as descriptive theories of decision making, 
including essentially all theories that rely on a numerical construct 
of “utility.” The literature on intransitivity of preferences has not 
successfully solved Luce’s challenge in the past (see also Regenwetter 
et al., 2011). We concentrate on the dominant empirical paradigm, 
two-alternative forced choice, which forces two additional axioms 
to hold on the level of the empirical binary choices. Jointly with 
transitivity, these two axioms model preferences as strict linear 
orders. We discuss what we consider the first complete solution 
to Luce’s challenge for (transitive) linear order preferences and 
two-alternative forced choice data for currently up to seven choice 
alternatives. We explicitly provide the complete solution for up to 
five choice alternatives. We endorse and test a model which states 
that binary choice probabilities are marginal probabilities of a 
hypothetical latent probability distribution over linear orders.

 After we introduce notation and definitions, we explain why 
most of the literature has not successfully solved Luce’s first 
challenge of formulating an appropriate probabilistic model of 

Edited by:
Hans Colonius, Carl von Ossietzky 
Universität Oldenburg, Germany

Reviewed by:
Jürgen Heller, Universität Tübingen, 
Germany
Reinhard Suck, University of 
Osnabrück, Germany
Ulf Böckenholt, Northwestern 
University, USA

*Correspondence:
Michel Regenwetter, Department of 
Psychology, University of Illinois at 
Urbana-Champaign, Champaign, IL, 
USA.  
e-mail: regenwet@uiuc.edu



Frontiers in Psychology | Quantitative Psychology and Measurement  December 2010 | Volume 1 | Article 148 | 2

Regenwetter et al. Testing transitivity on 2AFC

relations on C. (Notice that the axiom of asymmetry reflects the 
fact that respondents are not permitted to express indifference 
in 2AFC, and strong completeness reflects that respondents must 
choose one alternative in each 2AFC trial.)

A similar iid sampling assumption can also be made for a sin-
gle respondent who repeatedly provides a full sequence of paired 
comparisons on each of N different occasions. Independence may 
be legitimate if, for example, the experiment separates each of 
the N trials from the others by decoys to avoid memory effects. 
Similarly, if the process by which the decision maker makes the 
paired comparisons does not change systematically (i.e. remains 
“stationary”), then the identical distribution assumption may 
be legitimate.

Most analyses of (in)transitivity in the literature can be inter-
preted as implicitly or explicitly using either this sample space 
or special cases of it. Most tests of transitivity can be cast in the 
form of a hypothesis test that is formulated within a subset of that 
space. For our own statistical analyses, we concentrate on maximum 

 likelihood methods. For any binary choice vector d ∈B = ( ){ , } ,0 1 2
m

 
write P

d
 for the probability of d, and N

d
 ∈ {0,1,…,N} for the number 

times d occurred in a random sample of size N. Writing 


N  for the 
data vector and 



P  for the model parameter vector, the likelihood 
function is given by

 

Lik
N

N
P

N P
d

d
N
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d
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∏
B  

(2)

For a master set of five gambles (and regardless of the value of 
N), this multinomial has 1,023 free parameters. This space is still 
so large that testing models and hypotheses at this level is nearly 
hopeless, as any experiment with a realistic sample size could yield 
on the order of 1,000 empty cells. If we want to analyze cases with 
five or more objects in the master set, it is critical to shrink the 
number of free parameters in the empirical sample space by some 
orders of magnitude.

Researchers often treat a randomly selected participant’s choice 
between objects x and y on a single, randomly selected trial as a 
Bernoulli process: this is a marginal of the above probability distri-
bution (P

d
)

d∈B over vectors of paired comparisons. Writing P
xy

 for 
that marginal probability that a participant chooses element x over 
y, the number of times x is chosen over y in N repeated trials, under 
the above sampling assumptions, is a (marginal) binomial random 
variable with N repetitions and probability of success P

xy
.

More extensive considerations of iid sampling come into play 
when the empirical paradigm inserts decoys between all paired 
comparisons, not just between repetitions of a given paired compar-
ison. Here, for distinct x,y,z, not only are consecutive comparisons 
of the form “x versus y” separated by decoys, but also, comparisons 
of the form “x versus y” are separated by decoys from comparisons 
of the form “y versus z.” The decoys may allow one to assume that 
some or all paired comparisons (not just repetitions for a given pair) 
provide independent observations. Under these more extensive iid 
assumptions the multinomial becomes a product of independent 
binomials. Rewriting 



N N xy x y x y= ∈ ×( )( , ) ,C C ≠  for the frequency vector 
of the number of times each x is chosen over each y in N trials, and 


P Pxy x y x y= ∈ × ≠( )( , ) ,C C  for the vector of binary choice probabilities, the 
likelihood function Lik

N P
 

,
 becomes

the empirical sample space iN empirical studies of 
traNsitivity
To formulate a probabilistic model concisely, it is critical first to 
understand the sample space of possible empirical observations. 
Once that sample space is specified, one can formulate any proba-
bilistic model as a mapping from a suitably chosen parameter space 
(here, this is a probability space that models latent preferences) into 
that sample space. The more restrictive the parameter space and its 
image in the sample space are, the more parsimonious is the model. 
We discuss three hierarchically nested sample spaces.

Suppose that the master set C contains m many different choice 
alternatives, e.g. monetary or nonmonetary gambles. The standard 
practice in the empirical preference (in)transitivity literature is to 
use a two-alternative forced choice (2AFC) paradigm, where the 
decision maker, whenever faced with the paired comparison of two 
choice alternatives, must choose one and only one of the offered 
alternatives. This is the paradigm we study in detail.

In a 2AFC task with m choice alternatives, there are (m
2) possible 

paired comparisons for these choice alternatives, each yielding a 
binary coded outcome. Suppose that either N many respondents 
carry out each paired comparison once, or that a single respond-
ent carries out each paired comparison N many times. In either 
case, the space of possible data vectors can be represented by the 

set U = ×( ){ , } .0 1 2N m

 Therefore, the most unrestricted sample space 
assumes the existence of an unknown probability distribution on 
U. We call this the universal sample space. A version of this sample 
space was used by Birnbaum et al. (1999), Birnbaum and Gutierrez 
(2007), Birnbaum and LaCroix (2008), and Birnbaum and Schmidt 
(2008) in experiments involving N = 2 repeated pairwise choices 
per gamble pair per respondent and m = 3 choice alternatives. In 
addition, multiple respondents were then treated as an independent 
and identically distributed (iid) random sample from that space.

A major difficulty with the universal sample space is the chal-
lenge involved in increasing N and m. For example, for N = 20 
repetitions and a master set containing m = 5 gambles, this uni-
versal sample space has 2200 elementary outcomes. Clearly, trying to 
analyze discrete data statistically at the level of such a large space is 
challenging. Realistic efforts to account for the data are character-
ized by the constraints they impose on that space and/or probability 
distribution. With the exception of the Birnbaum and colleagues 
papers above, all papers we have seen on intransitivity of prefer-
ences implicitly or explicitly operate at the level of the much smaller 
multinomial spaces we discuss next.

When there are N respondents, who each answer each paired 
comparison once, a natural simplification of the universal sample 
space can be derived as follows. One can assume that there exists 
a single probability distribution over the much smaller space of 
asymmetric and strongly complete binary preference relations

B = ( ){ , }0 1 2
m

 such that the N respondents form an independent 
and identically distributed (iid) random sample of size N from 
that distribution. This iid assumption implies that the number 
of occurrences of each vector of (m

2) paired comparisons out of 
N iid draws follows a multinomial distribution with N repeti-

tions and 2 2
m( ) categories. In other words, the participants act 

independently of each other, and they all belong to the same 
population that can be characterized by a single distribution on 
the collection B of all asymmetric and strongly complete binary 
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The crux of this approach is that there can be many different 
notions of the “degree of intransitivity,” and these notions are not 
even monotonically related to each other. For instance, the number 
of cyclical triples in a binary relation is not monotonically related 
to the distance between this relation and the closest transitive rela-
tion, e.g. using the symmetric difference distance (see Regenwetter 
et al., 2011, for an example).

Deterministic preference plus ranDom error
The most canonical approach to modeling variable data circum-
vents substantive modeling of sampling variability. Instead, it 
attributes all variability to imperfect, noisy data (for examples 
and/or discussions, see, e.g. Harless and Camerer, 1994; Hey and 
Orme, 1994; Hey, 1995, 2005; Carbone and Hey, 2000). For indi-
vidual respondent data, this approach allows the participant to be 
extremely unreliable. For example, a person who chooses a over b 
close to 50% of the time is deemed to have a high error rate (see 
also Loomes, 2005).

Birnbaum et al. (1999), Birnbaum and Gutierrez (2007), 
Birnbaum and LaCroix (2008), and Birnbaum and Schmidt (2008) 
used a hybrid model, where different participants were allowed to 
have different preferences, but each participant had a fixed prefer-
ence. Their approach attributed variability in choices within an 
individual to error, and assumed that repeated occurrences of errors 
were mutually independent. It allowed error rates to differ among 
gamble pairs but not across participants or repetitions. The authors 
concluded that their data were consistent with linear order prefer-
ences plus random error, with estimated error rates ranging from 
the low single digits up to, in some cases, more than 20%.

When m = 3, six out of eight asymmetric and strongly com-
plete binary relations are transitive. In contrast, nearly all such 
binary relations are intransitive with large values of m. A strong 
test of transitivity, therefore, relies on values of m that are large, 
if possible. As we saw earlier, to avoid the combinatoric explosion 
in degrees of freedom, we need to move away from the universal 
sample space when m ≥ 5.

We proceed to consider models that provide a quantitative and 
theoretical account for variability within the multinomial sample 
space and its special cases. We first review formulations at the level 
of patterns d of binary comparisons, with sample space B and the 
multinomial distribution that it induces over repeated trials. This 
is the formulation where the likelihood function takes the form of 
(2). This approach predominantly uses multiple participants, with 
each participant providing a data pattern d ∈B consisting of one 
complete collection of all possible paired comparisons.

Intransitivity holds because it occurs significantly more often than 
expected by chance
As before, for any binary choice pattern d ∈B = ( ){ , }0 1 2

m

 we write 
P

d
 for the probability of d. We partition B into a disjoint union, 

B =T ∪ T c, where T is the collection of transitive, asymmetric, 
strongly complete binary relations and T c is the collection of 
intransitive, asymmetric, strongly complete binary relations on 

C. Let τ = |T c|/2 2
m( ). This is the proportion of binary relations in B 

that are intransitive.
One popular approach, similar to pattern counting, casts the 

test of transitivity as the following hypothesis test:
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Since, in 2AFC, N
xy

 + N
yx

 = N and P
xy

 + P
yx

 = 1, for x, y ∈ C, x ≠ y, 
this is
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with κ a constant. Decomposing the multinomial into a product 
of independent binomials reduces the number of parameters very 
substantially. For instance, for a master set of five gambles (and 
regardless of N), the sample space now has 10 free parameters (com-
pared to 1,023 in the multinomial, and compared to a 60-digit 
number in the universal sample space). Thus, as we will reiterate 
from other points of view, it is crucial that the experimenter should 
take all necessary steps to introduce decoys between all gamble 
pairs, with the goal of bringing about independent binomials, and 
thus very dramatically cut down on the statistical complexity of 
the sample space.

The sample space is a critical tool for understanding the formal 
and conceptual underpinnings of the various approaches to testing 
transitivity in the literature. Over the next few sections, we discuss 
the different approaches in the literature towards operationaliz-
ing transitive preference with respect to the given sample space 
and the main statistical methods that researchers have applied to 
these models.

probabilistic moDels for the axiom of (preference) 
transitivity
In this section, we discuss the empirical literature’s main approaches 
to Luce’s first challenge of formulating a probabilistic model for 
the axiom of preference transitivity.

pattern counting
Some papers on intransitive preference collect each paired 
comparison once from each of N respondents and count the 
number of triples a,b,c for which the respondent chose a over b, 
b over c and c over a. This number is used to indicate descrip-
tively the “number of violations” or the “degree of intransitiv-
ity” of that respondent. For multiple respondents, their “total 
degree of intransitivity” is often operationalized as the sum 
of their “numbers of violations” (for examples, see, e.g. May, 
1954; Tversky, 1969; Bradbury and Nelson, 1974; Ranyard, 1977; 
Budescu and Weiss, 1987; Riechard, 1991; Mellers et al., 1992; 
Mellers and Biagini, 1994; Gonzalez-Vallejo et al., 1996; Sopher 
and Narramore, 2000; Treadwell et al., 2000; Chen and Corter, 
2006; Lee et al., 2009). To the extent that respondents and their 
decisions result from a random sampling process, this “degree of 
intransitivity” forms a random variable. This random variable 
appears to circumnavigate Luce’s first challenge of formulating 
a probabilistic model of transitive preference, as transitivity cor-
responds to the single elementary outcome where the random 
variable takes the value zero. In some cases, where respondents 
belong to two or more different experimental conditions, authors 
carry out a statistical test to see whether groups differed in their 
“total degree of intransitivity.”
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i.e. we place probability zero on an even larger set than does the Null 
Hypothesis in (7). Furthermore, we attribute all variability in observed 
choices to variable latent preferences, not to erroneous data.

The predicted cycle holds because it occurs significantly more often 
than its reverse
Several researchers took intransitivity as a given and proceeded to 
explain its specific nature using regret theory (Loomes and Sugden, 
1982). Regret theory predicts a particular cycle and not others. In 
this literature, the standard approach is to support regret theory 
by rejecting a particular Null Hypothesis (e.g. Loomes et al., 1991; 
Loomes and Taylor, 1992; Starmer, 1999). A similar approach was 
used by Kivetz and Simonson (2000) in a different context. For 
the case of regret theory, the Alternative Hypothesis states that the 
(intransitive) cycle predicted by regret theory has higher probability 
than the reverse cycle. Writing r for the cycle predicted by regret 
theory and r−1 for its reverse, this means

 

H P P

H P P
r r

A r r

0 1

1

:

: .

≤
>





−

−
 

(8)

The test (8) will decide in favor of regret theory even if the prob-
ability of the pattern r that is consistent with regret theory is arbi-
trarily close to zero, as long as the reverse pattern has even lower 
probability. Similarly, if the Null were to be interpreted as a model of 
transitive preference, (8) would decide in favor of transitivity even 
if intransitive patterns had probability one, as long as H

0
 held.

Some authors motivated their use of hypothesis test (8) by the 
argument that, if decision makers were transitive, then intransitive 
patterns should only be observed in respondents who are indifferent 
among the choice alternatives in question and who provide cyclical 
answers because they choose randomly in the 2AFC task. From 
this, some authors inferred that all intransitive patterns should 
have equal probability.

The papers of this type usually considered three gamble situ-
ations only. To see the limitations of this approach, it is useful to 
consider how the test would be extended to larger stimulus sets. 
Especially for large gamble sets, the knife-edge Null Hypothesis that 
all intransitive patterns have equal probabilities is biased towards 
favoring any Alternative Hypothesis, whether motivated by regret 
theory or by another theory. A rejection of that Null Hypothesis 
could mean that indifferent respondents do not generate such a 
(conditional) uniform distribution or that other respondents, not 
just the indifferent ones, contribute to the intransitive pattern 
counts. In fact, Sopher and Gigliotti (1993) derived distributional 
constraints from an error model and showed that transitive prefer-
ence need not imply a uniform distribution on observed intransi-
tive relations (see also Loomes, 2005, for a discussion).

The main problem with using (8) to endorse regret theory, as a 
leading theory of intransitive preference, is that the probability of 
cycles predicted by regret theory can be arbitrarily close to zero, as 
long as it is bounded below by the probability of the reverse cycles. 
One should expect a probabilistic model of regret theory to impose 
much stronger constraints, such as, say, Pr ≥ 1/2, i.e. that at least 
half of the respondents act in accordance with the cycle predicted 
by regret theory. Such constraints, if stated as a Null Hypothesis, 
can be rejected by many of the same data that currently support 
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In words, this test concludes that transitivity is violated if intran-
sitive binary relations occur significantly more often (in an iid 
sample from the multinomial) than expected in samples from a 
uniform distribution on B (Bradbury and Nelson, 1974; Bradbury 
and Moscato, 1982; Corstjens and Gautschi, 1983; Peterson and 
Brown, 1998; Humphrey, 2001; Li, 2004). We raise several caveats 
with this approach.

First, if P were in fact a uniform distribution over B, this test 
would conclude that preference is transitive (barring a Type-I 
error). We do not see how a uniform distribution over all binary 
relations in B, including the intransitive ones, can be interpreted to 
mean that transitivity holds. More generally, we question whether 
H

0
 in (5) is a suitable model of transitive preference. It is important 

to realize that lim
m→∞τ = 1, that this limit is approached extremely 

rapidly, and, therefore, the Null Hypothesis becomes vacuously true 
even for just a double-digit number of choice alternatives. Under a 
uniform distribution over B with a moderate or large number of 
choice alternatives, this approach concludes that transitivity holds 
even though nearly all relations in B are intransitive!

Second, this approach suggests the ill defined notion that a class 
of patterns is substantively “true” when it occurs more often than 
“expected by chance.” It is easy, with a small number of choice alter-
natives, to imagine a distribution over B where T c has probability 
greater than τ, yet, at the same time, the transitive relation E that 
orders the choice alternatives (say, monetary gambles) according 

to their expected value has probability greater than ρ = ( )0 5 2. .
m

 In 
that case, the alternative hypothesis in the following test
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also holds. When the alternative hypotheses in (5) and (6) both hold 
at the same time, this cannot mean that preferences are simultane-
ously intransitive and consistent with expected value theory.

Third, if all individuals must be transitive, or a given individual 
must be transitive always, then, logically, the suitable hypothesis 
test is:

 

H P

H P

dd

A dd

c

c

0 0

0

:

: .

=

>






∈

∈

∑
∑

T

T  

(7)

In our eyes, H
0
 in (7) is a conceptually unambiguous probabil-

istic model of transitive preference. Sopher and Gigliotti (1993) 
implemented a version of (7) where intransitive patterns can be 
observed under the Null Hypothesis because paired comparison 
responses are treated as noisy and subject to errors. Using data 
from Loomes et al. (1991), as well as their own experimental data, 
Sopher and Gigliotti (1993) concluded that the observed pattern 
frequencies were consistent with transitive preferences, disturbed 
by noise. However, they had to allow estimated error rates to exceed 
twenty-five percent.

The model class we endorse in this paper also implies H
0
 in (7). Our 

Null Hypothesis is even much more restrictive in that the model we 
endorse states that only strict linear orders have positive probability, 
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x y Pxy ⇔ > 1 2/ ,

 
(9)

 
x y Pxy ⇔ ≥ 1 2/ .

 
(10)

Looking carefully at the mathematical formulation of (9) and 
(10), according to this approach, preference  (respectively ) is 
defined by majority (respectively strict majority) choices, because 
the right hand side is majority rule (Condorcet, 1785) stated 
in terms of a probability measure. As a consequence, a person’s 
 preference  is transitive if their majority choices (over repeated 
trials) are transitive.

Tversky used five choice alternatives in a two-alternative forced 
choice paradigm and assumed that the data were generated via  
(5

2) = 10 independent binomial variables. Using transitivity of  
in (10), he operationalized transitive preference by constraining the 
parameters of these binomials to satisfy “weak stochastic transitiv-
ity” (see Block and Marschak, 1960; Luce and Suppes, 1965). Weak 
stochastic transitivity is the Null Hypothesis in the following test:

H x y z P P P
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While the formulation of (11) is concise, it is important to lay out 
the full complexity of these hypotheses. For m = 3, letting C = {x,y,z}, 
writing ∨ for the logical OR operator, writing ∧ for the logical AND 
operator, the hypotheses in (11) can be spelled out explicitly as fol-
lows (recall that Pyx = 1 − Pxy, Pyz = 1 − Pzy, Pzx = 1 − Pxz, i.e. we have 
three free parameters):
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Geometrically, the Null Hypothesis in (12) consists of a union of 
six cubes of length 1/2, whereas the Alternative Hypothesis in (12) 
consists of a union of two such half-unit cubes. These two hypoth-
eses form a partition of the unit cube [0,1]3 of possible values for 
P

xy
, P

yz
, and P

xz
. The upper right quadrant of Figure 1 displays 

weak stochastic transitivity for the case where m = 3 (ignore the 
other quadrants for now). The two highlighted half-unit cubes are 
a geometric display of the Alternative Hypothesis in (12).

As we move to more than three choice alternatives, matters 
are complicated by the fact that the conditions in (12) are appli-
cable to every possible triple of choice alternatives. Consider, 
for instance, m = 5, as in Tversky’s study. Taking all possible 

regret theory via hypothesis test (8). For example, all 24 conditions 
reported in Loomes et al. (1991) and Loomes and Taylor (1992) 
violate that Null at α = 10−5. Hence, regret theory as a theory that 
predicts a particular type of intransitivity, does not account for 
those data when formulated as such a Null Hypothesis.

While some researchers continue to follow the approach in (8), 
Starmer (1999) moved away from the methods in Loomes et al. 
(1991) and Loomes and Taylor (1992). Instead, he reported viola-
tions of regret theory.

Roelofsma and Read (2000) considered related models on four 
choice alternatives. The focus of their paper was not regret theory, 
but rather whether exponential and/or hyperbolic discounting 
could account for intransitive intertemporal choice. They used 
various parametric choice models to describe the sampling prop-
erties of various indices of intransitivity. They concluded that a 
certain probabilistic choice model of a “lexicographic semiorder” 
explained their data best (see, e.g. Tversky, 1969, for a definition 
of lexicographic semiorders). However, since they essentially com-
pared the occurrence of some intransitive cycles to the occurrence 
of other, nonpredicted intransitive cycles, they tested transitivity 
only indirectly.

Thurstonian models
The class of Thurstonian models, under certain distributional 
assumptions, also operates at the level of the multinomial sample 
space. Many researchers, beginning with Takane (1987), have devel-
oped extensions of Thurstonian models to nontransitive choice pat-
terns, see Böckenholt (2006) and Maydeu-Olivares and Hernández 
(2007) for comprehensive reviews of this literature. Tsai (2003) also 
provides a relevant, technical discussion on the sample space and 
identifiability of various Thurstonian frameworks. Recently, Tsai 
and Böckenholt (2006) developed a Thurstonian model to test weak 
stochastic transitivity (WST) allowing for stochastic dependencies 
between different item pairs. They concluded that observed intran-
sitive choice patterns could be well-accounted for by a Thurstonian 
model with pair-specific dependencies.

This completes our discussion of major approaches that operate 
at the level of a general multinomial sampling distribution. So far 
we have pointed out various problems for approaches that operate 
in the multinomial sample space: (1) The empirical space has so 
many degrees of freedom that it is impractical to move beyond three 
or four choice alternatives. (2) Pattern counting is plagued by the 
fact that different indices of intransitivity are not monotonically 
related to each other. (3) Deterministic preference plus random 
error models in the multinomial sample space can lead to high 
estimated error rates. (4) We have discussed two popular hypothesis 
formulations where we have argued, e.g. that the null hypothesis 
does not properly represent transitivity of preferences.

We now move to approaches that decompose the multinomial 
into a product of binomials.

Weak stochastic traNsitivity
Faced with the challenge of reconciling the deterministic axiom 
of transitivity with probabilistic data, Tversky (1969) introduced 
probabilities as follows (see also Block and Marschak, 1960; Luce 
and Suppes, 1965): Writing  for strict binary preference and  
for “preference or indifference,”
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i.e. it violates weak stochastic transitivity.
Our discussion of weak stochastic transitivity so far shows that 

this approach  confounds intransitivity with variability of prefer-
ences. Next, we note that weak stochastic transitivity also does not 
model transitivity in isolation from other axioms of preference.

First, it is well known that weak stochastic transitivity (11) is 
equivalent to the weak utility model (Block and Marschak, 1960; 
Luce and Suppes, 1965), according to which there exists a real-
valued utility function u such that, ∀ (distinct) x,y ∈ C,

u x u y P x yxy( ) ( ) / .
( )

≥ ⇔ ≥ ⇔1 2
10



The first equivalence shows how weak stochastic transitivity 
establishes the existence of an aggregate ordinal utility function. 
Both, in turn, induce the aggregate preference relation  (via 
Formula 10) that, in addition to being transitive, satisfies other 

 selections of x,y,z into account, (11) becomes a list of 8×(5
3) = 80 

 inequality triples, rather than the eight triples of inequalities of 
(12). Of these 80 triples of inequalities, 60 belong to H

0
 (cor-

responding to the 3!×(5
3) strict linear orders of three out of five 

objects) and 20 belong to H
A
 (corresponding to the 2×(5

3) cycles 
on three out of five objects). Now, we operate in a (5

2) = 10-di-
mensional unit hypercube, and the two hypotheses partition that 
10-dimensional unit hypercube into two nonconvex unions of 
half-unit hypercubes.

A major conceptual problem with violations of weak stochas-
tic transitivity is the Condorcet paradox of social choice theory 
(Condorcet, 1785). Even though this crucial caveat has previously 
been brought up (Loomes and Sugden, 1995), it continues to be 
neglected by the literature. According to the Condorcet paradox, tran-
sitive individual preferences aggregated by majority rule can yield 
majority cycles. For example, consider a uniform distribution on the 
following three transitive strict linear orders B

1
 ={(a,b),(b,c),(a,c)}, 

B
2
 = {(b,c),(c,a),(b,a)}, and B

3
 = {(c,a),(a,b),(c,b)}. This distribution 

has marginal probabilities

Figure 1 | upper left: The unshaded volume is the linear ordering polytope for m = 3. Upper right: The unshaded volume is weak stochastic transitivity for 
m = 3. Lower left: Both conditions shown together for comparison. Writing C = {a,b,c}, the left hand side axis from front to back is Pab, the vertical axis from bottom to 
top is Pbc, and the remaining axis, from right to left, is Pac.
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point originates from a transitive preference state, but responses 
at different times need not be generated by the same transitive 
preference state. In the terminology of Loomes and Sugden (1995), 
this is a “random preference model” in that it takes a “core theory” 
(here, the axiom of transitivity) and considers all possible ways that 
the core theory can be satisfied. We use the term “mixture model” 
to avoid the misconception that “random preferences” would be 
uniformly distributed.

In the case of binary choices, again writing P
xy

 for the probability 
that a person chooses x over y, and writing T for the collection of 
all transitive binary preference relations on C, the mixture model 
states that

 

P Pxy B
B
xBy

=
∈
∑

T
,

 

(13)

where P
B
 is the probability that a person is in the transitive state of 

preference B∈T. This does not assume 2AFC, i.e. P
xy

 + P
yx

 need not 
be 1. Equation (13) implies that intransitive relations have prob-
ability zero. This is the Null Hypothesis we considered in (7).

Even though the probability distribution over T is not, in any way, 
constrained, neither this model nor weak stochastic transitivity of 
Formula (11) imply each other. This model implies other constraints 
on binary choice probabilities, such as, for instance, the triangle ine-
qualities (Marschak, 1960; Morrison, 1963; Niederée and Heyer, 1997), 
i.e. for any distinct x,y,z∈C:

 
P P Pxy yz xz+ − ≤ 1.

 
(14)

The model stated in (13) is closely related to the more restrictive 
classical binary choice problem (e.g. Marschak, 1960; Niederée and 
Heyer, 1997). In that problem, each decision maker is required to 
have strict linear order preference states (not just transitive rela-
tions), and T of (13) is replaced by the collection of linear orders 
over C, which we denote by Π:

 

P Pxy B
B
xBy

=
∈
∑

Π

.

 

(15)

This model requires P
xy

 + P
yx

 = 1. It implies a very restrictive 
special case of the Null Hypothesis in (7), namely a case where all 
binary relations, except the strict linear orders, have probability 
zero. We discussed (7) in the context of the multinomial sample 
space. When testing the restrictions on the marginal probabilities 
on the left side of (15) later, we will use a “products of binomials” 
sample space.

The model in (15) is equivalent to the (strict) linear ordering 
polytope (Grötschel et al., 1985; Fishburn and Falmagne, 1989; 
Cohen and Falmagne, 1990; Gilboa, 1990; Fishburn, 1992; Suck, 
1992; Koppen, 1995; Bolotashvili et al., 1999; Fiorini, 2001). For 
each unordered pair {x,y} of distinct elements of C, arbitrarily 
fix one of the two possible ordered pairs associated with it, say 
(x,y). Now, for each (strict) linear order π∈Π, let π

xy
 = 1 if that 

ordered pair (x,y)∈π, and π
xy

 = 0, otherwise. Each strict linear 
order is thereby written as a 0/1 vector indexed by the previously 

fixed ordered pairs of elements in C, i.e. as a point in [ , ]0 1 2
m( ) when 

|C| = m. A probability distribution over strict linear orders can 
be mathematically represented as a convex combination of such 
0/1 vectors, i.e. as a point in the convex hull of m! many points 

axioms. Specifically, the aggregate preference relation  is a weak 
order and the  aggregate strict preference relation  is a strict weak 
order on the set of choice alternatives.

Empirically and normatively, reflexivity may be more or less 
automatic, as it basically says that a decision maker is indifferent 
between any object x and the same object x (assuming that the 
decision maker recognizes it to be the same). However, Kramer and 
Budescu (2005) have provided evidence that preference in labo-
ratory experiments is often not strongly complete. Likewise, we 
would argue that strong completeness is not a necessary property 
of rational preferences. For example, expected value maximizers 
are indifferent among lotteries with equal expected value. Negative 
transitivity implies transitivity in the presence of asymmetry, but it 
is stronger. As a consequence, a weak or strict weak order is violated 
as soon as any one of the axioms of weak and/or strict weak orders 
is violated, not necessarily transitivity.

The situation is even more grave. Recall that each vector of 
binomial probabilities translates into one single binary relation 
 via (10). Figure 1 and Hypothesis Test (12) illustrate that, up 
to the knife-edge case where some probabilities P

xy
, P

xz
, or P

yz
 are 

equal to 1/2, weak stochastic transitivity only allows (10) to yield 
linear order preferences. Formally, in the parameter space for weak 
stochastic transitivity, the set of weak orders minus the set of linear 
orders is a set of measure zero. This means that in weak stochastic 
transitivity, up to a set of measure zero, we only consider (aggregate) 
linear order preferences [(via 10)]. These properties are substan-
tially stronger than transitivity alone, especially for large m. For five 
objects, there are 120 possible linear orders, whereas there are 541 
weak orders, 1012 partial orders, and altogether 154303 transitive 
relations (see, e.g. Klaška, 1997; Fiorini, 2001). From a geometric 
viewpoint and for five choice objects, weak stochastic transitivity, 
while technically permitting other transitive relations besides the 
120 possible different linear orders, effectively gives measure zero 
(in the unit hypercube of binomial probabilities) to the remaining 
421 weak orders, and completely neglects the enormous number 
of transitive relations that are not weak orders. Note that stronger 
versions of stochastic transitivity (Chen and Corter, 2006; Rieskamp 
et al., 2006), that use more information about the binary choice 
probabilities, imply models with even more structure.

Next, consider the disappointing feature that (10), and thus also 
weak stochastic transitivity, treats probability as a binary categori-
cal scale rather than an absolute scale. Whether P

xy
 = 0.51 or 0.99, 

both cases are interpreted to mean that the participant prefers x 
to y. The mixture models we promote below use the binary choice 
probabilities on an absolute (probability) scale.

This concludes our multifaceted demonstration that violations 
of weak stochastic transitivity cannot legitimately be interpreted 
as demonstrations of intransitive individual preferences. Next, we 
discuss a more suitable modeling approach.

mixture models of traNsitive prefereNce
We now consider a class of models that uses general tools for proba-
bilistic generalizations of deterministic axioms or axiom systems 
(Heyer and Niederée, 1989, 1992; Regenwetter, 1996; Niederée and 
Heyer, 1997; Regenwetter and Marley, 2001) and that differs from 
the approaches we have seen so far. A mixture model of transitiv-
ity states that an “axiom-consistent” person’s response at any time 



Frontiers in Psychology | Quantitative Psychology and Measurement  December 2010 | Volume 1 | Article 148 | 8

Regenwetter et al. Testing transitivity on 2AFC

An appealing feature of the linear order mixture model is that 
it can be equivalently cast in several alternative ways. We review 
this next.

Definition. Let C be a finite collection of choice alternatives. A 
(distribution-free) random utility model for C is a family of jointly 
distributed real random variables U = (U

c,i
)

c∈C,i∈I with I some finite 
index set.

The realization of a random utility model at some sample point 
ω, given by the real-valued vector (U

c,i
(ω))

c ∈C,i ∈I, assigns to alterna-
tive c∈C the utility vector (U

c,i
(ω))

i  ∈I . One possible interpretation 
of such a utility vector is that I is a collection of attributes, and 
U

c,i
(ω) is the utility of choice alternative c on attribute i at sample 

point ω.

Definition. Let C be a finite collection of choice alternatives. A 
(distribution-free) unidimensional, noncoincident random utility 
model for C is a family of jointly distributed real random variables 
U = (U

c
)

c∈C with P(U
x
 = U

y
) = 0, ∀x ≠ y ∈ C.

The most common use of the term “random utility model” in 
the Econometrics literature (e.g. Manski and McFadden, 1981; Ben-
Akiva and Lerman, 1985; Train, 1986; McFadden, 2001) refers to 
parametric (unidimensional, noncoincident) models, where the 
random variables (U

c
)

c∈C can be decomposed as follows:

 
U Ec c c c c c

U( ) = ( ) + ( )∈ ∈ ∈C C C ,
 

(16)

and where U
c
 is the deterministic real-valued utility of option c and 

(E
c
)

c∈C is multivariate normal or multivariate extreme value noise. 
One could argue that calling the representation (16) a “random util-
ity model” is a bit odd, since it does not actually treat the utilities 
as random variables. However, modern extensions of (16) allow for 
latent classes or latent parameters to model variation in the utilities 
(see. e.g. Scott, 2006; Blavatskyy and Pogrebna, 2009). We do not 
investigate parametric models of the form (16) here. Rather, when 
we refer to random utility models in this paper, we have the general 
distribution-free model in mind, and we think of the utilities them-
selves as having some (unspecified, but fixed) joint distribution.

We now briefly explain the notion of “random function models” 
(Regenwetter and Marley, 2001). By a function on C, we mean a 
mapping from C into the real numbers R. The collection of all 
functions on C is the space RC. When C contains n elements, this is 
Rn, the n-dimensional reals. Let B(RC) denote the sigma-algebra 
of Borel sets in RC.

Definition. Let C be a finite collection of choice alternatives. A ran-
dom function model for C is a probability space 〈RC, B(RC), P〉.

The idea behind a random function model is to define a (pos-
sibly unknown) probability measure P on the space of (e.g. util-
ity) functions on C. This space, of course, contains all conceivable 
unidimensional, real-valued, utility functions on C. We can now 
summarize key results about binary choice probabilities induced 
by linear orders, as given in (15).

Theorem. Consider a finite set C of choice alternatives and a col-
lection (P

xy
)

x,y∈C,x ≠ y of binary choice probabilities. The binary choice 
probabilities are induced by strict linear orders if and only if they 
are induced by a (distribution-free) unidimensional, noncoincident 
random utility model (Block and Marschak, 1960). Furthermore, this 

in [ , ]0 1 2
m( ). The linear ordering polytope  is the resulting convex 

polytope whose vertices are the m! many 0/1 vectors associated 
with the strict linear orders.

Every convex polytope is an intersection of finitely many closed 
half spaces, each of which can be defined by an affine inequality. A 
minimal description of a convex polytope is a description by a short-
est possible list of equations and inequalities. The inequalities in 
such a description are called facet-defining inequalities because they 
define the facets of the polytope, i.e. faces of maximal dimension.

The problem of characterizing binary choice probabilities 
induced by strict linear orders is still unsolved for large m. It is 
tantamount to determining all facet-defining inequalities of the 
linear ordering polytope  for each m. Each triangle inequality (14) 
is facet-defining for the linear ordering polytope, for all m. For 
m ≤ 5, but not for m > 5, the triangle inequalities (14), together 
with the equations and canonical inequalities

P
xy

 + P
yx

 = 1 and 0 ≤ P
xy

 ≤ 1, ∀x,y ∈ C, x ≠ y,

provide a minimal description of the linear ordering polytope . In 
other words, they are necessary and sufficient for the binary choice 
probabilities to be consistent with a distribution over strict linear 
orders (Cohen and Falmagne, 1990; Fiorini, 2001).

Determining a minimal description of the linear ordering 
polytope  is NP-complete. In other words, minimal descriptions 
can only be obtained in practice when the number of choice 
alternatives is fairly small. On the other hand, there exist some 
good algorithms to check whether or not a given point is inside 
the convex hull of a given finite set of points (e.g. Vapnik, 1995; 
Dulá and Helgason, 1996).

The 2AFC paradigm, where respondents must choose either 
of two offered choice alternatives, forces the data to artificially 
satisfy the strong completeness and asymmetry axioms in each 
observed paired comparison. In probability terms, the 2AFC 
paradigm forces the equations P

xy
 + P

yx
 = 1 to hold automati-

cally. In other words, a canonical way to test whether binary 
forced-choice data satisfy a mixture over transitive relations is 
to test the stronger hypothesis that they lie in the (strict) linear 
ordering polytope, i.e. test whether (15) holds. Note, however, that 
violations of the linear ordering polytope, if found, cannot nec-
essarily be attributed to violations of transitivity, because strict 
linear orders are much stronger than transitive relations.

For five gambles the triangle inequalities are necessary and suf-
ficient for (15), and thus completely characterize the mixture over 
linear orders for such studies. For five objects, taking into account 
the quantifier, the triangle inequalities form a system of 20 dif-
ferent individual inequalities. For m > 5, the description of the 
linear ordering polytope becomes very complicated. According to 
Fiorini (2001), who provided a literature review of this and related 
polytopes, the case of m = 6 leads to two classes of facet-defining 
inequalities (including the triangle inequalities), that jointly form 
910 inequality constraints, including the canonical inequalities. 
The case of m = 7 leads to six classes (including, again, the trian-
gle inequalities) that jointly form 87,472 inequality constraints, 
whereas the case of m = 8 leads to over a thousand different inequal-
ity classes (including the triangle inequalities as just one such class) 
that jointly define at least 488 million inequalities slicing through 
the 28-dimensional unit hypercube.
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holds if and only if they are induced by a (distribution-free) random 
function model in the space of one-to-one functions (Regenwetter and 
Marley, 2001). Mathematically,

 

P Pxy B
B
xBy

=
∈
∑

Π

 

(17)

⇔ = > = =P P Pxy x y x y( ), ( )U U U Uwith 0
 

(18)

⇔ = ∈( )P u u x u y uxy P R{ | ( ) ( ), } ,C > where is a one-to-one function
 

(19)
with suitable choices of probabilities and random variables on the 
right hand side.

The results above show that, for 2AFC, the following are equiva-
lent: The binary choice probabilities are

•	 induced	by	a	mixture	model	over	linear	orders,	i.e.	by	a	proba-
bility distribution over linear orders,

•	 consistent	with	a	random	preference	model	whose	core	theory	
states that preference is a linear order of the alternatives,

•	 a	point	in	the	linear	ordering	polytope,
•	 induced	 by	 a	 unidimensional,	 noncoincident	 random	 utility	

model,
•	 induced	by	a	random	function	model	with	exclusively	one-to-

one (utility) functions.

Thurstonian models (with independent or dependent multivariate 
normal distributions) are parametric special cases of noncoinci-
dent random utility models, and, hence, as nested submodels of 
the linear ordering polytope, imply that the triangle inequalities 
(14) must hold. Some extensions, such as those of Takane (1987) 
and Tsai and Böckenholt (2006), allow nonzero probability mass 
on nontransitive binary relations, – see also Maydeu-Olivares and 
Hernández (2007) for further discussion on this point. These are 
not nested in the linear ordering polytope and, hence, do not imply 
the triangle inequalities.

Informally, the mixture, random utility and random function 
models for 2AFC state that decision makers may be in different 
mental states at different time points. Each mental state has three 
different but equivalent interpretations (with the third form-
ing the link between the first two): (1) In any given permissible 
mental state, the decision maker’s preferences form a strict linear 
order over the alternatives. (2) In each mental state, the decision 
maker’s utility of a strictly preferred option strictly exceeds the 
utility of the less preferred option. (3) In each mental state the 
decision maker has a one-to-one real-valued utility function over 
the set of alternatives that assigns strictly higher utilities to strictly 
preferred alternatives.

To summarize, we can model variability of preferences and choice 
(or uncertainty of preferences und choice) by placing a probability 
measure on the collection of mental states and by assuming that indi-
vidual observations are randomly sampled from the space of mental 
states. Noncoincidence of the random utilities and “one-to-one”-ness 
of the utility functions means that two distinct choice alternatives 
have equal utility with probability zero, i.e. indifference occurs with 
probability zero. This feature of the model accommodates the 2AFC 
paradigm, in which expressing indifference is not permitted.

Weak stochastic traNsitivity versus the liNear 
orderiNg polytope
Some researchers (e.g. Loomes and Sugden, 1995, p. 646) have 
 suggested that the triangle inequalities are less restrictive than weak 
stochastic transitivity. To differentiate mathematically and conceptu-
ally between weak stochastic transitivity as an aggregate operationali-
zation of transitive preference and the linear ordering polytope as a 
disaggregate operationalization, it is useful to compare the parameter 
spaces of the two models geometrically, by considering how they are 
embedded in the 2AFC sample space. Recall that, for m many alterna-
tives, the sample space that uses (m

2) many binomial probabilities can 
be identified by the (m

2) dimensional unit hypercube.
For instance, for 2AFC among three alternatives, viewed in 

three-space, the sample space forms a three-dimensional unit 
cube. The sample space and the two parameter spaces for the 
three-alternative case are displayed in Figure 1. Weak stochastic 
transitivity (11) rules out two half-unit cubes of the three-dimen-
sional unit cube (upper right quadrant). The triangle inequalities 
(14), which characterize the linear ordering polytope, rule out 
two pyramids, as shown in the upper left quadrant of Figure 1. 
Here, and in general, the linear ordering polytope is a convex 
set, whereas weak stochastic transitivity is a nonconvex union 
of convex sets.

The inadmissible regions of the two models overlap, as shown in 
the lower left quadrant in Figure 1 for the three-dimensional case. 
They include the same two vertices of the unit cube, namely the 
vertices whose coordinates correspond to the two perfect cycles on 
three objects. Thus, Tversky (1969) and others’ operationalization of 
transitive preference via weak stochastic transitivity and the opera-
tionalization via mixture models, overlap to some degree. However, 
for three alternatives, weak stochastic transitivity constrains the 
parameter space to 3/4 of the volume of the unit cube, whereas the 
triangle inequalities constrain the parameter space to only 2/3 of the 
volume of the unit cube. The corresponding volumes for three, four, 
or five alternatives, as well as the volume of the overlap, are shown 
in Table 1. The triangle inequalities characterizing the linear order-
ing polytope when m ≤ 5 are more restrictive than weak stochastic 
transitivity. For five choice alternatives (as is the case, for instance, in 
Tversky’s study) the binary choice polytope defines a parameter space 
that only occupies 5% of the sample space, in contrast to Loomes and 
Sugden (1995) remark (p. 646) that the random preference model 
is “difficult to reject.” We conjecture that, for m > 5, the mixture 

Table 1 | A comparison of the parsimony of weak stochastic transitivity 

(WST) and the linear ordering polytope (LOP), as well as their overlap 

(i.e. the volume of their intersection).

# gambles Volume of WST Volume of LOP Volume of overlap

3 0.75 0.67 0.6251

4 0.38 0.25 0.1991

5 0.12 0.05 0.0288

We indicate the (relative) volume each parameter space occupies in the unit cube or 
hyper-cube (i.e. the product-of-binomials sample space) as a function of the number 
of gambles. The volume of the linear ordering polytope and of the overlap were 
estimated using Monte Carlo methods using 1,000,000 uniformly sampled points 
per condition (per row).
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the half-unit hypercube attached to the intransitive relation 
can account for the data, then its goodness-of-fit is not a sig-
nificance level for violations of weak stochastic transitivity. 
Both of these insights follow from the fact that a single half-
unit hypercube in the Alternative Hypothesis in (11) and weak 
stochastic transitivity, the Null in (11), do not form two col-
lectively exhaustive events.

the problem of multiple biNomial tests
Within the framework of the binomial sample space approach 
it is common to carry out multiple binomial tests (e.g. Shafir, 
1994; McNamara and Diwadkar, 1997; Waite, 2001; Schuck-Paim 
and Kacelnik, 2002). This corresponds geometrically to checking 
separately whether each individual binomial probability lies on 
one side or the other of a separating hyperplane that cuts the unit 
hypercube in half. Whether one wants to compute the goodness-
of-fit for a single, theoretically motivated half-unit hypercube 
(say, associated with a particular lexicographic semiorder) or 
try to establish which of the possible half-unit hypercubes best 
accounts for the data, that test should not be carried out with a 
series of separate binomial tests, because this leads to a prolifera-
tion of Type-I error.

In the case of a prespecified half-unit hypercube, all binomial 
probabilities associated with the half-unit hypercube should be 
tested jointly. Similarly, testing weak stochastic transitivity requires 
testing a nonconvex union of hypercubes, all at once. In general, all 
binomial restrictions can and should be tested jointly, as discussed 
in the next section.

the bouNdary problem iN coNstraiNed iNfereNce
Iverson and Falmagne (1985) showed the fact we reviewed above: 
weak stochastic transitivity characterizes a nonconvex parameter 
space. The fact that it is a nonconvex union of half-unit hypercubes 
embedded in the unit hypercube makes parameter estimation tricky. 
Furthermore, the log-likelihood ratio test statistic in maximum 
likelihood estimation does not have an asymptotic χ2 distribution. 
Tversky (1969) tried to accommodate the latter fact, but did not 
succeed: As Iverson and Falmagne (1985) showed, all but one of 
Tversky’s violations of weak stochastic transitivity turned out to 
be statistically nonsignificant when analyzed with an appropriate 
asymptotic sampling distribution. Boundary problems, similar 
to those for stochastic transitivity, have recently been tackled in 
very general ways (see the new developments in order constrained 
inference of Myung et al., 2005; Davis-Stober, 2009).

the problem of statistical sigNificaNce With pre-screeNed 
participaNts
One more complicating feature of Tversky (1969) study (as well as 
of, e.g. Montgomery, 1977; Ranyard, 1977) is the fact that Tversky 
pre-screened the respondents before the study. For instance, out 
of 18 volunteers, eight persons participated in Experiment 1 after 
having been evaluated as particularly prone to “intransitive” (or 
inconsistent) behavior in a pilot study. If any violations of weak 
stochastic transitivity (or some other probabilistic model) were to 
be found, this feature would raise the philosophical question of 
what population these participants were randomly sampled from. 
Similar questions arise in the context of cherry-picked stimuli.

model’s volume will shrink much faster than that of weak stochastic 
transitivity. We later provide an illustrative example, in which we test 
both models against empirical choice data.

statistical methods for testiNg models of the axiom 
of (prefereNce) traNsitivity
In this section, we discuss how the literature tackles Luce’s second 
challenge, namely that of using adequate statistical methods. Here, 
much of the transitivity literature has been tripped by critical hur-
dles, but very substantial progress has also been made recently in 
the model testing literature.

Some papers on intransitive preferences used no statistical test 
at all (e.g. Brandstätter et al., 2006). The following sections high-
light five major, and somewhat interconnected, problems with the 
statistical tests employed in the literature.

the problem of igNoriNg the QuaNtifier
A common approach concentrated on only one cycle, and attempted 
to show that the data satisfied that cycle (e.g. Shafir, 1994; McNamara 
and Diwadkar, 1997; Waite, 2001; Bateson, 2002; Schuck-Paim and 
Kacelnik, 2002). For example, the statement

 [ ]xBy yBz xBz∧ ⇒  (20)

is not a precise statement for the axiom of transitivity, because it 
omits the quantifier (∀x,y,z∈C) that would be required for (20) 
to match (1). This imprecise statement led some researchers to 
incorrectly formulate weak stochastic transitivity as

 

H P P P

H P P P

xy yz xz

A xy yz x

0 1 2 1 2 1 2

1 2 1 2

: / / / ,

: / /

≥( ) ∧ ≥( ) ∧ ≥( )
≥( ) ∧ ≥( ) ∧ zz <( )





 1 2/ .
 

(21)

In the case where m = 5, (21) shrinks the Null Hypothesis in (11) 
from 60 triples of inequalities to one, and the Alternative Hypothesis 
from 20 such triples down to one. Thus, calling (21) a “test of weak 
stochastic transitivity” is incorrect.

Moving beyond triples, some authors specified one par-
ticular intransitive relation (e.g. one particular “lexicographic 
semiorder”) and, within the binomial sample space framework, 
tried to show that the majority choices were consistent with 
that intransitive relation. In other words, they attempted to 
provide evidence that the binomial choice probabilities gen-
erating the data belonged to a particular one of the various 
half-unit hypercubes whose union makes up the Alternative 
Hypothesis in (11). If m = 5, for instance, this means that, 
instead of considering a union of 904 half-unit hypercubes, 
they concentrated on only one half-unit hypercube. Sometimes, 
the intransitive relation in question, say, a lexicographic semi-
order, naturally reflected certain features in the design of the 
experiment. In that case, the hypothesis test was really a test 
of a parsimonious model of a particular type of intransitivity, 
and served as a test of transitivity only indirectly.

It is important to acknowledge that some papers in this area 
were not primarily aimed at testing transitivity. Calling such 
a test a “test of weak stochastic transitivity” would, indeed, be 
a misnomer: (1) Failing to fit that intransitive relation (say, 
a lexicographic semiorder) has no bearing on whether weak 
stochastic transitivity is satisfied or violated. (2) Likewise, if 
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nonlinear optimization. Specifically, given an observed vector of 
choice proportions Q, the task is to maximize the log-likelihood 
function such that the choice parameters lie within the linear order-
ing polytope. In other words, we need to find P̂  that maximizes the 
likelihood function Lik

N P
 

,
 in (4), subject to the constraint that P̂  

must lie in the linear ordering polytope. This maximization can be 
carried out using a standard nonlinear optimization routine. For 
our analysis we used the optimization toolkit of the MATLAB© 
computer software package.

We face a constrained inference problem, where the log-likelihood 
ratio test statistic fails to have an asymptotic χ2 distribution when 
the observed choice proportions lie outside the polytope, because 
the point estimate will lie on a face of the polytope – thus violating 
a critical assumption for asymptotic convergence of the likelihood 
ratio test. Instead, we need to use a χ2  distribution whose weights 
depend on the local geometric structure of the polytope around 
the point estimate. Davis-Stober (2009) provides a methodology 
to carry out this test within the context of the linear ordering poly-
tope. We used his method and refer the reader to that paper for the 
technical details.

illustrative examples
Regenwetter et al. (2011) showed that 18 participants, across three 
different five-gamble stimulus sets, were consistent with the linear 
ordering polytope up to sampling variability and Type-I error. Their 
stimulus sets were labeled “Cash I,” “Cash II,” and “Noncash” condi-
tions, reflecting that the first two featured cash gambles, whereas the 
third featured gambles with noncash prizes as outcomes. In Table 2, 

maximum likelihood estimatioN subject to the 
liNear orderiNg polytope
Maximum likelihood estimation consists of searching for model 
parameter values so as to maximize the likelihood function (in 
our case, Formula  4). To evaluate the goodness-of-fit, we need to 
obtain the maximum likelihood estimators for the unconstrained 
model (the unit cube in (m

2) dimensions) and for the constrained 
model (the linear ordering polytope). In the unconstrained model, 
the maximum likelihood estimator of this model is the vector of 
observed choice proportions Q = (Q

xy
)

x,y∈C,x ≠ y
. This elementary 

result from mathematical statistics follows readily by setting the 
necessary partial derivatives of the log-likelihood with respect to 
P

xy
 equal to zero and solving the resulting system of equations. 

Under the linear ordering polytope for binary choices we have 
a fully parameterized space that is completely described by the 
polytope’s facet-defining inequalities.

As the mixture model is constrained by the linear ordering poly-
tope, if an observed vector of choice proportions (mapped into the 
unconstrained space) falls outside of the polytope, the maximum 
likelihood estimator is no longer the vector of observed choice 
proportions. Hence, we must compute the maximum likelihood 
estimator in a different fashion.

The linear ordering polytope is a closed and convex set, hence 
the maximum likelihood estimator for these data is guaranteed to 
exist and to be unique (since the log-likelihood function is concave 
over the linear ordering polytope, which is itself a convex set). 
The problem of maximizing the log-likelihood function subject 
to the triangle inequalities can now be reformulated in terms of 

Table 2 | goodness-of-fit of the linear ordering polytope and weak stochastic transitivity.

Data Linear ordering polytope Weak stochastic transitivity

 G2 χ2 p G 2  χ2 p # Triples

1/CII 2.01 0 11 0 34 0 36 0 16 0 031
2

2
2

3
2

4
2. . . . .+ + + +χ χ χ χ  0.29 5.235 0.50 0.50 1

2+ χ  <0.02 2

2/NC 2.87 0 50 0 50 1
2. .+ χ  0.05 0 Perfect fit – –

3/NC 1.42 0 50 0 50 1
2. .+ χ  0.12 0 Perfect fit – –

4/CI 3.77 0 15 0 42 0 34 0 091
2

2
2

3
2. . . .+ + +χ χ χ  0.10 7.7098 0.50 0.50 1

2+ χ  <0.01 2

4/CII 0.10 0 50 0 50 1
2. .+ χ  0.38 0 Perfect fit – –

6/CI 0.36 0 50 0 50 1
2. .+ χ  0.28 0.2004 0 50 0 50 1

2. .+ χ  0.32 2

6/CII 0.08 0 50 0 50 1
2. .+ χ  0.39 0.8054 0 50 0 50 1

2. .+ χ  0.18 4

7/NC 3.64 0 13 0 38 0 37 0 121
2

2
2

3
2. . . .+ + +χ χ χ  0.12 0 Perfect fit – –

10/CII 0.37 0 50 0 50 1
2. .+ χ  0.12 0 Perfect fit – –

11/CII 1.42 0 50 0 50 1
2. .+ χ  0.12 0 Perfect fit – –

12/CI 0 Perfect fit – 0.4007 0 25 0 50 0 251
2

2
2. . .+ +χ χ  0.47 3

12/CII 0 Perfect fit – 0.2003 0 50 0 50 1
2. .+ χ  0.33 1

13/CI 0 Perfect fit – 0.4007 0 50 0 50 1
2. .+ χ  0.33 2

14/NC 0.37 0 50 0 50 1
2. .+ χ  0.27 0 Perfect fit – –

16/CI 16.47 0.06 0.26 0.38 0.24 0.061
2

2
2

3
2

4
2+ + + +χ χ χ χ  <0.01 0 Perfect fit – –

16/CII 9.51 0.06 0.25 0.38 0.25 0.061
2

2
2

3
2

4
2+ + + +χ χ χ χ  <0.01 2.635 0 25 0 50 0 251

2
2
2. . .+ +χ χ  0.12 4

16/NC 1.43 0 50 0 50 1
2. .+ χ  0.12 0 Perfect fit – –

17/CI 1.5 0 38 0 05 0 121
2

2
2. . .+ +χ χ  0.17 2.6334 0 25 0 50 0 251

2
2
2. . .+ +χ χ  0.12 4

18/CII 0.33 0 32 0 05 0 191
2

2
2. . .+ +χ χ  0.44 5.434 0.25 0.50 0.251

2
2
2+ +χ χ  <0.03 4

18/NC 0.38 0 50 0 50 1
2. .+ χ  0.27 0 Perfect fit – –

“Data” gives respondent number/experimental xcondition, “χ2” is the asymptotic distribution of G2, “p” is the p-value, “# triples” is the number of triples of cyclical 
modal choices. The 34 omitted cases yield a perfect fit of both models. Boldface entries are significant at alpha = 0.05.
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violated, hence these three out of 54 data sets yield evidence of 
Condorcet paradoxes (but only at a rate consistent with Type-I 
error). Note that Regenwetter et al. (2011) carried a power study 
that suggests that we have sufficient power to reject the LOP when 
it is violated.

discussioN
Several researchers have highlighted the conceptual, mathemati-
cal, and statistical gap between algebraic axioms underlying sci-
entific theory on the one hand, and variable empirical data on 
the other hand. We have labeled this problem “Luce’s challenge” 
to pay tribute to mathematical psychologist R. Duncan Luce, who 
pioneered potential solutions to this problem with his famous 
choice axiom (Luce, 1959) and who continued to highlight the 
importance of probabilistic specification throughout his illustri-
ous career.

To summarize our conclusions, here are the major steps that one 
must take to empirically test the axiom of transitivity:

1. Understand the empirical sample space of possible observations.
 We work within a binomial sample space that assumes the 

number of times x is chosen over y is a binomial random varia-
ble with N repetitions and probability of success Pxy. Thus, the 
sample space is a unit hypercube of dimension (m

2), represen-
ting the binomial probabilities for all unique pairs of choice 
alternatives. Working at the level of the binomial sample space 
allows the researcher to use, e.g. 5 choice alternatives, making 
transitivity a rather parsimonious hypothesis, while maintai-
ning a manageable number of parameters to estimate. We are 
thus relying on the assumption of iid sampling. Because we 
do not recommend pooling data across individuals, the data 
are repeated binary choices by the same respondent. Here, it is 
important to take measures that make the iid sampling assum-
ption more realistic, such as using decoys and forcing respon-
dents to make pairwise choices one at a time without going 
back to previous choices.

2. Formulate a probabilistic statement of transitivity. We endorse 
the mixture model as a conception of variability in choice 
behavior. In the 2AFC paradigm, the mixture model implies 
the triangle inequalities in (14). We endorse this formulation 
over the more commonly used weak stochastic transitivity 
because it is free of aggregation paradoxes, treats probabilities 
as continuous, and is more restrictive. The allowable parame-
ter space for transitivity is thus the linear ordering polytope 
within the unit hypercube.

3. Properly test the probabilistic formulation of transitivity on 
data.
•	 If	the	choice	proportions	in	a	2AFC	experiment	fall	within	

the linear ordering polytope, i.e. do not violate the triangle 
inequalities, then transitivity is a perfect fit and no further 
testing is required.

•	 If	the	choice	proportions	violate	the	triangle	inequalities,	
the maximum likelihood estimate of the binomial choice 
probabilities is not simply the observed choice propor-
tions. The researcher must then obtain the MLE and con-
duct a constrained inference test with the appropriate χ2 
distribution to determine if the choice vector significantly 

we abbreviate these with e.g. “1/CII” referring to “Respondent 1” 
in the “Cash II” condition, and “2/NC” referring to “Respondent 
2” in the “Noncash” condition.

We complement the linear ordering polytope analysis of 
Regenwetter et al. (2011) with a more fine-tuned analysis using 
an updated algorithm to compute the goodness-of-fit along the 
lines of Davis-Stober (2009). We also use the same method to test 
weak stochastic transitivity. This test has its roots in earlier work 
by Iverson and Falmagne (1985), who derived the most conserva-
tive χ2 distribution for weak stochastic transitivity with respect to 
a likelihood ratio test.

Strikingly, out of 54 respondent-stimulus set combinations, 34 
lead to a perfect fit of both models. In other words, 34 of 54 data sets 
are consistent with the idea that both instantaneous and aggregated 
preferences are transitive linear orders! All those 34 data sets fit so 
well that a statistical test is superfluous.

Table 2 shows a summary of the goodness-of-fit for both the 
LOP and WST for the remaining 20 cases, where at least one model 
does not have a perfect fit. When evaluated with the asymptotic 
χ2 distribution of Davis-Stober (2009), weak stochastic transitiv-
ity turns out to be  significantly violated (as indicated in Table 2) 
in only three cases at α = 0.05. Like the two significant violations 
of the linear ordering polytope, this is roughly the rate of viola-
tions one would expect by Type-I error alone. Hence, it appears 
that our respondents’ preferences are consistent with linear order 
preferences at the disaggregate level (linear order preferences), as 
well as with weak order preferences at the majority rule aggregate 
level (weak stochastic transitivity).

Altogether 44 out of 54 data sets give point estimates in the 
interior of weak stochastic transitivity, where the majority aggre-
gated preferences are even linear orders. The ten nonsignificant 
violations yield knife-edge distributions, with one or more major-
ity ties, as point estimates. These point estimates lie on faces (of 
half-unit hypercubes) forming the boundary between the Null 
and the Alternative Hypothesis in (11). Even if these choice pro-
portions are generated from a point in the interior of a half-unit 
cube (i.e. from a linear order), the geometry of weak stochastic 
transitivity automatically forces the point estimate to lie on the 
parameter space boundary (i.e. yield a weak order that is not a 
linear order).

Table 2 also documents an important pattern counting prob-
lem for weak stochastic transitivity: The number of cyclical modal 
choice triples (x,y,z) where x was chosen over y most of the time, 
y was chosen over z most of the time, z was chosen over x most 
of the time, is not monotonically related to the goodness-of-fit 
(or the p-value) of weak stochastic transitivity. For example, sets 
1/CII and 4/CI violate WST significantly, each with two cyclical 
modal choice triples, whereas 6/CII, 16/CII, and 17/CII yield a 
good quantitative fit despite four cyclical modal choice triples. 
This is another reminder that pattern counting is diagnostic of 
neither goodness-of-fit nor of significance of violation.

Last, but not least, recall from Table 1 that the intersection of 
LOP and WST occupies 2.88% of the space of binomial prob-
abilities (for five choice alternatives). Empirically, we find 49 out 
of 54 data sets fit by both models (in separate tests), including 34 
that fit perfectly. It is interesting to notice that the three signifi-
cant violations of WST are for data where LOP is not significantly 
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 conclusions change in a Bayesian analysis, and does such an 
analysis perform well with small sample size? These are but a 
few of the interesting  methodological research questions that 
arise for follow-up work.

Looking beyond individual axioms, many theories in psychol-
ogy have been axiomatized by mathematical psychologists. When 
testing such theories, we are usually dealing with conjunctions of 
axioms, and hence with a variety of Luce’s challenge. Elsewhere 
we develop a general framework and public domain software 
package to handle several types of probabilistic specifications for 
such situations.
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 violates the linear ordering polytope. The testing procedure 
for the linear ordering polytope within the unit hypercube 
is described in Davis-Stober (2009).

Finally, as we have seen and as we also explain in Regenwetter et al. 
(2011), the 2AFC paradigm does not test transitivity in isolation. If 
a set of data were to reject the linear ordering polytope, this would 
mean that the combination of strong completeness, asymmetry and 
transitivity is violated. A more direct test of transitivity requires a 
different empirical paradigm.

The mixture model approach can be extended to other alge-
braic axioms and/or to other empirical paradigms. In each case, 
there are several steps towards a successful solution of Luce’s chal-
lenge: First, one needs to fully characterize the sample space under 
consideration. Second, we anticipate that probabilistic specifica-
tion of other axioms through mixture (random preference) mod-
els will typically lead to convex polytopes again. These, in turn, 
can sometimes be prohibitively hard to characterize, but some-
times complete minimal descriptions can be obtained analytically 
or via public domain software. Third, to the extent that future 
probabilistic specifications of algebraic axioms take the form of 
convex polytopes or unions of convex polytopes, researchers will 
have to tackle the problem of order constrained inference that 
is intimately attached to such endeavors when analyzing empiri-
cal data. Fortunately, this is a domain where much progress has 
been made in recent years, with the provision of both frequentist 
and Bayesian solutions that are applicable to a broad array of 
problems, as long as the inequality constraints are completely 
and explicitly known.

There are also a variety of interesting open problems in this 
domain. What are suitable empirical paradigms that go more 
directly after transitivity, without the burden of auxiliary mod-
eling or statistical assumptions? One open question concerns 
the assumption of iid sampling. Are there relaxations of this 
assumption that will not force the researcher to revert to the 
multinomial sample space, or even the universal sample space? 
Recall that both of these entail combinatoric explosions in the 
empirical degrees of freedom. Likewise, how robust is the analy-
sis against violations of the underlying assumptions? Do any 
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