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According to an influential view, based on studies of development and of the face inversion 
effect, human face recognition relies mainly on the treatment of the distances among internal 
facial features. However, there is surprisingly little evidence supporting this claim. Here, we first 
use a sample of 515 face photographs to estimate the face recognition information available 
in interattribute distances. We demonstrate that previous studies of interattribute distances 
generated faces that exaggerated by 376% this information compared to real-world faces. When 
human observers are required to recognize faces solely on the basis of real-world interattribute 
distances, they perform poorly across a broad range of viewing distances (equivalent to 2 to 
more than 16 m in the real-world). In contrast, recognition is almost perfect when observers 
recognize faces on the basis of real-world information other than interattribute distances such 
as attribute shapes and skin properties. We conclude that facial cues other than interattribute 
distances such as attribute shapes and skin properties are the dominant information of face 
recognition mechanisms.
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with respect to the original face. He noticed that the sensitivity of 
human adults to slight alterations in the positions of the features 
of a set of faces was quite good, at the limit of visual acuity for 
some alterations (e.g., mouth-up). However, the ranges of these 
manipulations were arbitrary with respect to normal variations 
of feature positions in real-life, and there was no assessment of 
the critical role of such manipulations in actual face identification 
tasks relative to featural changes.

Based on their developmental studies and their work on vis-
ual expertise with non-face objects, Diamond and Carey (1977, 
1986) hypothesized that what makes faces special compared to 
other object categories is the expert ability to distinguish among 
individuals of the category (i.e., different faces) based on what 
they so-called “second-order relational properties”, namely the idi-
osyncratic variations of distances between features. However, while 
these authors claimed that the ability to extract such second-order 
relational properties would be at the heart of our adult expertise 
in face recognition (Diamond and Carey, 1986; Carey, 1992), they 
did not test this hypothesis in any study.

Studies of face inversion have also contributed to the idea that 
relative distances between attributes are fundamental for face recog-
nition. Faces rotated by 180° in the picture-plane induce important 
decreases in recognition accuracy and increasing response laten-
cies (e.g., Hochberg and Galper, 1967). This impaired performance 
is disproportionately larger for faces in contrast to other mono-
 oriented objects such as houses and airplanes (Yin, 1969; Leder and 
Carbon, 2006; Robbins and McKone, 2006; for a review see Rossion, 
2008, 2009). Thus face inversion has been used as a tool to isolate 
what is special about upright face processing. It happens that the 
processing of interattribute distances is more affected by inversion 

IntroductIon
According to an influential view, human face processing rests 
mainly on interattribute distances1 (e.g., interocular distance, 
mouth-nose distance; Diamond and Carey, 1986; Carey, 1992; 
Maurer et al., 2002). After briefly reviewing the origin of this claim, 
we will examine two points that have perhaps surprisingly been 
neglected so far: If face processing relies on interattribute distances 
then, surely, (1) real-world interattribute distances must contain 
useful information for face recognition; and (2) human observers 
must be more sensitive to these natural variations than to those 
of other facial cues.

The origin of the idea that relative distances between features are 
important for individual face processing can be traced back to the 
work of Haig (1984), and Diamond and Carey (1986). Haig (1984) 
moved the different features of a few unfamiliar faces independently 
by small amounts and measured the just noticeable differences of 
five observers for all manipulations (e.g., mouth-up, eyes inward) 

1We intentionally avoided to use the expression “configuration” because it is ambi-
guous in the face recognition literature: It can refer to either to the relative distances 
between attributes (e.g., Maurer et al., 2002), or to a way of processing the face 
(“configural processing”, as used by Sergent, 1984; Young et al., 1987) – i.e., as a 
synonym of “holistic” or as a Gestalt. All face cues, including attribute shapes and 
skin properties, are “configural” under the latter interpretation. By “interattribute 
distances”, we mean relative distances between facial attributes that can be manipu-
lated independently from the shapes of these attributes (e.g., the center of gravity 
to center of gravity interocular distance; e.g., Haig, 1984; Sergent, 1984; Hosie et al., 
1988; Rhodes et al., 1993; Tanaka and Sengco, 1997; Leder and Bruce, 1998; Freire 
et al., 2000; Leder and Bruce, 2000; Barton et al., 2001; Leder et al., 2001; Le Grand 
et al., 2001; Bhatt et al., 2005; Goffaux et al., 2005; Hayden et al., 2007). This ex-
cludes, for example, the nasal-corner-to-nasal-corner interocular distance and the 
temporal-corner-to-temporal-corner interocular distance that cannot be manipu-
lated jointly and independently from attribute size.
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 Apparatus
The annotations were made on a Macintosh G5 computer running 
functions written for Matlab (available at http://mapageweb.umon-
treal.ca/gosselif/alignTools/) using functions from the Psychtoolbox 
(Brainard, 1997; Pelli, 1997). Stimuli were presented on a HP p1230 
monitor at a resolution of 1920 × 1200 pixels with a 100-Hz refresh 
rate. The monitor luminance ranged from 1.30 to 80.9 cd/m2.

 Procedure
Participants were asked to place 20 points on specific landmarks 
of internal facial features with a computer mouse, one face at a 
time (see blue crosses in the leftmost column of Figure 1). These 
landmarks were chosen because they are easy to locate and allow 
a proper segmentation of the features (Okada et al., 1999). (If we 
had to do it again, however, we would use four landmarks instead 
of two for the eyebrows.) We increased the size of stimuli to match 
computer monitor resolution to ease the task of participants. Every 
participant annotated each of the 515 portraits in random order 
allowing us to estimate inter-subject annotation error.

results
We reduced each set of 20 annotations to 6 feature positions by aver-
aging the xy-coordinates of the annotations placed on landmarks 
belonging to the same facial feature (see green dots in the leftmost 
column of Figure 1) to disentangle attribute position from attribute 
shape. Indeed, to manipulate interattribute distances independently 
from attribute shape, whole attributes are typically cropped – includ-
ing, in our case, all the pixels annotated by our observers on each of 
these attributes – and translated (e.g., Maurer et al., 2002).

This 20-to-6 reduction also maximizes signal-to-noise ratio of 
attribute position. Assuming that annotation error is the same for 
the x- and y-dimensions and for all features (and systematic error 
aside), the signal-to-noise ratio of the measurements is estimated at 
8.27 per annotation (i.e., ( )/ . ,σ σ σtotal inter-participantl inter-participant

2 2 2 8 27− =  

with σtotal
2 8 80= .  and σinter-participant

2 0 95= .  pixels per annotation for a 
mean interocular distance of 100 pixels). For all attributes except the 
eyebrows, four annotations were averaged, and thus signal-to-noise 
ratio of attribute position is twice that for individual annotations 
(i.e., 16.54); for the eyebrows, two annotations were averaged, and 
thus, signal-to-noise ratio was 2 that for individual annotations 
(i.e., 11.70). In sum, the signal-to-noise ratio of attribute position 
was high.

To estimate absolute interattribute distances, the brain would 
have to estimate absolute depth precisely; such absolute depth esti-
mates are only possible at really close range, which is atypical of 
face identification distances. Thus it is usually assumed that only 
relative interattribute distances are available to the brain for face 
identification (Rhodes, 1988).

We “relativized” interattribute distances by translating, rotat-
ing, and scaling the feature positions of each face to minimize 
the mean square of the difference between them and the average 
feature positions across faces (rotated so that the y-axis was the 
main facial axis; see the rightmost column of Figure 1; Ullman, 
1989). Technically, this is a linear conformal transformation; it 
preserves relative interattribute distances (e.g., Gonzalez et al., 
2009). This procedure is implemented in the companion Matlab 
functions (http://mapageweb.umontreal.ca/gosselif/alignTools/). 

than the processing of the local shape or surface-based properties of 
attributes (Sergent, 1984; Barton et al., 2001; Le Grand et al., 2001; 
Rhodes et al., 2007; for recent reviews, see Rossion, 2008, 2009).

This last observation has been taken as supporting the view 
that relative distances between facial features are fundamental or 
most diagnostic for individuating upright faces (e.g., Diamond 
and Carey, 1977, 1986). However, two critical links are missing in 
the reasoning. First, there is no direct evidence that interattribute 
distances are diagnostic for upright face recognition. In fact, there 
is tentative evidence that interattribute distances might not be 
the main source of information for face recognition: Exaggerated 
interattribute distances do not impair recognition much (Caharel 
et al., 2006); interattribute distances are less useful in similarity 
judgments than attribute shape (Rhodes, 1988). Second, there is no 
direct evidence that a difficulty to process interattribute distances 
is the cause of the FIE. In fact, this difficulty can be predicted by 
Tanaka and Farah (1993) and Farah et al. (1995) proposal that 
face inversion leads to a loss of the ability to process the face as a 
gestalt or “holistically” (see Rossion, 2008, 2009, for a discussion). 
To address the issue of the reliance of face processing on interat-
tribute distances, a first question should be how much do faces 
vary in interattribute distances in the real-world? Clearly, if there 
is little objective, real-world interattribute variation, there is little 
that the visual system could and should do with it.

To address this question, in Experiment 1 we estimated, from a 
sample of 515 full-frontal real-world Caucasian faces, how much 
information was objectively available to the human brain in relative 
interattribute distances for gender discrimination and face identifi-
cation. We demonstrate that while there is objective interattribute 
distance information in faces, most previous studies have grossly 
exaggerated this information when testing it (on average 376%). In 
Experiment 2, we compared face recognition when interattribute 
distances are the only information source available (Experiment 2a) 
and unavailable (Experiment 2b), and we show that performance 
is much better in the latter case.

experIment 1
methods
 Participants
Three female students (all 19-year-old) from the Université de 
Montréal received course credits to annotate digital portraits on 
20 internal facial feature landmarks (see Experiment 1, Procedure). 
The first author (22-year-old) annotated faces from previous studies 
in which the distances between internal features had been altered. 
Participants had normal or corrected to normal vision.

Stimuli
A total of 515 Caucasian frontal-view real-world portraits present-
ing a neutral expression (256 females) were used. These faces came 
from multiple sources: the entire 300-face set of Dupuis-Roy et al. 
(2009), 146 neutral faces from the Karolinska Directed Emotional 
Faces, the 16 neutral faces from Schyns and Oliva (1999), the 10 
neutral faces from the CAFE set, 6 neutral faces from the Ekman and 
Friesen (1975) set, and 40 additional neutral faces. We also anno-
tated 86 stimuli used in 14 previous studies in which interattribute 
distances had been manipulated “within the limit of plausibility” 
(for a list, see Figure 2).
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The variance of each  distribution reflects the  contribution of 
the  corresponding attribute to the  overall interattribute distance 
variance in the real-world. (See Section “How to Create Realistic 
Interattribute Distances” in Appendix for a description of the 
covariance between the aligned attributes.) Red lines represent one 
standard deviation of the aligned positions along their first and 
second components of the principal component analysis (PCA). 
As can be seen at a glance, the pairs of red lines on the eyes and 
eyebrows are of similar lengths, which means that the variance in 
the positions of these features is roughly the same at all orienta-
tions. However, the pairs of red lines on the nose and mouth are 
clearly of different lengths – for these features, the variance is 
mainly organized along the main facial axis.

We also plotted the aligned attribute positions of 86 artificial 
stimuli drawn from 14 studies that explicitly manipulated interat-
tribute distances (blue dots). The mean distances between these 
artificial dots and the natural dots, expressed in standard deviations 
of the natural dots, is 0.831 (SD = 1.497). On average, the eyes 

The  resulting interattribute distances are proportional to the ones 
obtained by dividing the interattribute distances of each face by 
its mean interattribute distance. However, our alignment pro-
cedure provides an intuitive way of visualizing the variance of 
interattribute distances. The green dots in Figure 2 represent the 
distributions of the aligned feature positions of real-world faces. 

Figure 1 | Annotation and alignement procedure. Leftmost column: 
Sample faces annotated in Experiment 1. The 20 blue crosses show, for these 
faces, the average annotations across participants. These 20 annotations were 
reduced to six attribute positions – green dots – by averaging the coordinates 
of the annotations belonging to every attribute. Rightmost column: We 
translated, rotated, and scaled the attribute positions of each face to minimize 
the mean square of the difference between them and the average attribute 
positions across faces. The residual differences between aligned attribute 
positions – green dots – is the interattribute variance in the real-world.

Figure 2 | Distribution of interattribute distances. Distribution of 
post-alignment attribute positions (green dots) of the 515 annotated faces, 
with standard-deviation-length eigenvectors (red segments) centered on 
the distributions, and overlaid to the contours of a face to facilitate the 
interpretation. The blue dots are the attribute positions of stimuli of 14 
previous studies that used distance manipulations (Haig, 1984; Sergent, 
1984; Hosie et al., 1988; Rhodes et al., 1993; Tanaka and Sengco, 1997; 
Leder and Bruce, 1998, 2000; Freire et al., 2000; Barton et al., 2001; Leder 
et al., 2001; Le Grand et al., 2001; Bhatt et al., 2005; Goffaux et al., 2005; 
Hayden et al., 2007).
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along the main facial axis diverged most (on the right of the image: 
mean = 2.147, SD = 1.244; on the left of the image: mean = 1.633, 
SD = 1.240). More than 73% of the experimental faces had at least 
one attribute falling more than two standard deviations away from 
the mean of at least one axis of the real-world faces (23% of the eyes 
on both axes, and 26% of the noses and 29% of the mouths on the 
y-axis). Thus, in most of these 14 studies, artificial interattribute 
distances were exaggerated compared to natural variations. What 
was the impact of this exaggeration on the information available 
for face recognition?

To answer this question, we performed two virtual experiments 
(see Section “Virtual Experiments” in Appendix for details). In the 
first one, we repeatedly trained a model at identifying, solely on the 
basis of interattribute distances, one randomly selected natural face 
from 50% of the natural faces, also randomly selected, and tested 
the model on the remaining natural faces. Similarly, in the second 
virtual experiment, we repeatedly trained a model at identifying one 
randomly selected artificial face from 50% of the natural faces, also 
randomly selected, and tested the model on the remaining natural 
faces. In each case, we found how much noise was necessary for the 
models to perform with a fixed sensitivity (A′ = 0.75). The models 
trained to identify the artificial faces required about 3.76 times 
more noise (σ2 = 155.40 pixels for a mean interocular distance of 
100 pixels) than the ones trained to identify the real-world faces 
(σ2 = 41.28 pixels for a mean interocular distance of 100 pixels). 
This implies that the interattribute distances of the artificial faces 
convey about 376% more information for identification than in 
real-world faces.

In sum, there is information in interattribute distances for 
processing in real-world faces. However, not nearly as much as 
the majority of past studies have assumed.

experIment 2
In Experiment 2a, we asked whether human observers can use 
this real-world interattribute distance information to resolve a 
matching-to-sample (ABX) task when interattribute distance is 
the only information available. And, in Experiment 2b, we asked 
the complementary question: Can human observers use real-world 
cues other than interattribute distances such as attribute shapes 
and skin properties to resolve an ABX?

methods
Participants
Sixteen observers (eight females and eight males; aged between 19 
and 29 years of age; mean = 22.8 years; SD = 2.5 years) participated 
in Experiment 2a; and 10 different observers (five females and five 
males; aged between 21 and 31 years of age; mean = 23.9 years; 
SD = 3.28 years) participated in Experiment 2b. All observers had 
normal or corrected to normal vision.

Stimuli
We created 2,350 pairs of stimuli for each experiment. Base faces 
were those annotated in Experiment 1. First, we translated, rotated, 
and scaled all these face images to minimize the mean square of 
the difference between their feature positions (their 20 annotations 
distilled to six attributes’ centers of gravity) and the average feature 
positions across faces rescaled to an interocular distance of 50 pix-

els (or 1.4 cm). Technically, we performed linear conformal trans-
formations, which preserve relative interattribute distances (e.g., 
Gonzalez et al., 2009). To create one stimulus pair in Experiment 
2a, we randomly selected three faces of the same gender from the 
bank of 515 faces. We chose faces of the same gender to eliminate 
the possible gender discrimination confound. We cut out the six 
attributes of one of these faces – the feature face – we displaced 
them to the locations of the attributes of one of the two remaining 
faces – the first distance face – and we filled in the holes to create 
the first stimulus; and then we displaced the six attributes of the 
feature face to the locations of the attributes of the third face – the 
second distance face – and we filled in the holes to create the second 
stimulus. This procedure ensures that face stimuli from a pair have 
identical internal features and only differ on the distances between 
these features. More specifically, feature masks were best-fitted to 
the annotations of every internal features of one of the feature 
face – using affine transformations (e.g., Gonzalez et al., 2009). The 
pixels covered by the features masks were then translated to the 
feature positions of the two distance faces – producing a pair of 
face stimuli (see Figure 3 – see Section “How to Create Realistic 
Interattribute Distances” in Appendix for an alternative method for 
creating realistic interattribute distances). Pixels falling outside the 
feature models were inferred from the feature face using bicubic 
interpolation (e.g., Keys, 1981). This procedure is implemented in 
the companion Matlab functions.

In Experiment 2b we also randomly selected three faces of the same 
gender from the database. This time, however, we best-fitted feature 
models to the landmarks of the internal features of two of these faces – 
the feature faces – and the features were translated according to the 
feature positions of the third face – the distance face. The pixels falling 
outside the feature models were interpolated from the appropriate 
feature face. This procedure ensures that faces from a stimulus pair have 
identical interattribute distances but differ in cues other than interat-
tribute distances, such as attribute shapes and skin properties.

All face stimuli were shown in grayscale, with equal luminance 
mean and variance, through a gray mask punctured by an elliptic 
aperture with a smooth edge (convolved with a Gaussian kernel 
with a standard deviation equal to 2 pixels) and with a horizon-
tal diameter of 128 pixels and a vertical diameter of 186 pixels. 
This only revealed the inner facial features and their distances (for 
examples, see Figure 4).

Apparatus
Experiment 2 was performed on a Macintosh G5 running a compu-
ter script written for the Matlab environment using functions of the 
Psychtoolbox (Brainard, 1997; Pelli, 1997). Stimuli were presented on a 
HP p1230 monitor at a resolution of 1920 × 1200 pixels at a refresh rate 
of 100 Hz. The monitor luminance ranged from 1.30 to 80.9 cd/m2.

Procedure
Participants completed 120 trials of their ABX task (the sequence 
of events in a trial is given in Figure 4) at each of five viewing dis-
tances in a randomized block design to equate the effect of learning. 
Viewing distances were equivalent to real-world viewing distances 
of 2, 3.4, 5.78, 9.82, and 16.7 m (which corresponds, respectively, to 
average interocular widths of 1.79°, 1.05°, 0.62°, 0.37°, and 0.21° 
of visual angle). This represent a broad range of viewing distances 
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On each trial, one stimulus from a pair (see Experiment 2, 
Stimuli) was randomly selected as the target. This target was then 
presented for 800 ms immediately followed by a blank presented 
for 200 ms immediately followed by the pair of stimuli presented 
side-by-side in a random order. The pair of stimuli remained on 
the screen while participants were asked to choose which face – on 
the left or on the right – was the target. No feedback was provided 
to the participants between trials.

Results
We submitted the results to a 2 × (5) mixed design ANOVA using 
viewing distances (2, 3.4, 5.78, 9.82, and 16.7 m) as a within-subjects 
factor and group (different vs. same interattribute distances) as a 
between-subjects factor. Contrasts of the between-subjects fac-
tor revealed a significant difference of accuracy between the two 
groups at all five viewing distances [all F(1,24) > 100, p < 0.00001, 
η2 > 0.80, p

rep
 ≈ 1]. Observers who had to rely solely on interat-

tribute distances performed significantly lower than observers 
who had to use features at each of the five viewing distances (see 
Figure 5). There was also a significant interaction between view-
ing distances and groups [F(2.4; 57.7) = 4.89, p = 0.007, η2 = 0.17, 
p

rep
 = 0.96].
 To test the effect of distance of presentation within each 

group, the data was separated and one-way ANOVAs were car-
ried on each group independently. The within-subjects analysis 
revealed no differences of accuracy between any viewing points 
in the task where the interattribute distances were kept constant 
[F(1.9,17.2) = 1.60, ns]. The same analysis revealed a significant 
difference between response accuracy as a function of distance 
in the group where the interattribute distances were different 
[F(2.3,35) = 10.51, p = 0.0001, η2 = 41, p

rep
 = 0.98]. A polyno-

mial contrast revealed a significant linear relationship between 
response accuracy and distance of presentation when interat-
tribute distances is the sole information available to perform the 
discrimination [F(1, 15) = 24.41, p = 0.0001, η2 = 0.62, p

rep
 = 0.98]. 

The group averages in this task indicated a decreasing accuracy 
with increasing distances (nearest: mean = 64.74%, SD = 8.6; 
furthest: mean = 55.1%, SD = 5.77). Figure 5 displays the mean 
proportions and standard errors of correct responses as a func-
tion of viewing distances.

 A 2 × (5) mixed ANOVA with viewing distances (2, 3.4, 5.78, 
9.82, and 16.7 m) as a within-subjects factor and groups (differ-
ent vs. same interattribute distances) as a between-subjects factor 
revealed a main effect of groups on response time [F(1,24) = 23.81, 
p < 0.00001, η2 = 0.50, p

rep
 = 0.99]. Same interattribute distances 

(mean = 0.995 s, SD = 0.22) elicited significantly faster reac-
tion times than different interattribute distances (mean = 1.94 s, 
SD = 0.73).

GeneRal Discussion
In Experiment 1, we asked whether relative distances between real-
world internal facial features contain enough information for face 
categorizations (identity and gender). We carried out a series of 
simulations on these faces to assess the information available in 
their residual interattribute distances. We found that real-world 
interattribute distances did in fact contain information useful to 
resolve face identification.

from which faces can be readily recognized; one reason for including 
a variety of viewing distances was to test whether the use of interat-
tribute distances is indeed invariant to viewing distances (Rhodes, 
1988). We used the interocular width average of 6.2 cm (mean for 
males = 6.3 cm; and mean for females = 6.1 cm) reported by Farkas 
(1981) to determine the equivalent real-world distances.

Figure 3 | Creation of face stimuli using real-world interattribute 
distances. Leftmost column: In Experiment 2, feature masks – shown in 
translucid green – were bestfitted to the aligned annotations – represented by 
blue crosses. Rightmost column: In Experiment 2a, these feature masks were 
displaced according to the feature positions of another face of the same 
gender. Translucid green areas reproduce the feature masks of the leftmost 
column; translucid red areas represent the same feature masks after 
displacement; and translucid yellow areas represent the overlap between 
these two sets of feature masks.
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In Experiment 2a, we examined whether human observers 
could use real-world interattribute distance information to resolve 
a  matching-to-sample (ABX) task when this is the only information 
available. In Experiment 2b – the exact reciprocal of Experiment 
2a – we asked if human observers could use information other than 
interattribute distances, such as attribute shapes and skin reflectance 
properties, to resolve an ABX task. Results of the Experiment 2a indi-
cated that human observers perform poorly when required to recog-
nize faces solely on the basis of real-world interattribute distances at 
all tested viewing distances (equivalent to 2 to more than 16 m in the 
real-world, a broad range of viewing distances from which faces can 
be readily recognized) (best accuracy = 65% correct); whereas results 
of Experiment 2b showed that they perform close to perfection when 
required to recognize faces on the basis of real-world information 
other than interattribute distances such as attribute shapes and skin 
properties (e.g., O’Toole et al., 1999) at all tested viewing distances. 
Moreover, the performance of human observers decreased linearly 
with increasing viewing distances when required to recognize faces 
solely on the basis of real-world interattribute distances. If inter-
attribute distances appealed to researchers as a face representation 
code it is in part because they are invariant to viewing distances (e.g., 
Rhodes, 1988). Human observers seem incapable to take advantage 
of this property of interattribute distances.

Figure 4 | Sequence of events in two sample trials of our experiments. 
Top: In Experiment 2a, we asked whether human observers can use this 
real-world interattribute distance information, at different viewing distances, to 
resolve a matching-to-sample (ABX) task when interattribute distance is the only 

information available. Bottom: In Experiment 2b, we asked the complementary 
question: Can human observers use real-world cues other than interattribute 
distances such as attribute shapes and skin properties, at different viewing 
distances, to resolve an ABX?

Figure 5 | Mean proportion of correct face recognition in function of 
distance. Error bars represent one standard error. The dashed line represents 
performance when real-world interattribute distance is the only information 
available (Experiment 2a); and the solid line represents performance when 
only real-world cues other than interattribute distances such as attribute 
shapes and skin properties are available.
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fact that the eyebrows have a tendency to follow the eyes. Rather, in 
our experiments, we have sampled relative interattribute distances 
from real-world distributions. Alternatively, the method presented 
in Section “How to Create Realistic Interattribute Distances” in 
Appendix of this article can be used.

The results of Experiment 2a are all the more remarkable that 
they provide an upper-bound on the usefulness of interattribute dis-
tances for real-world face recognition. Our ABX task, which requires 
the identification of one recently viewed face among two face stimuli, 
is much easier than real-life face identification, which requires typi-
cally the comparison of hundreds of memorized faces with one face 
stimulus. Furthermore, no noise was added to the interattribute dis-
tances of our stimuli; real-life interattribute distances are contami-
nated by several sources of noise – facial movements, foreshortening, 
shadows, and so on. Finally, the interattribute distance information 
of our stimuli slightly overestimated real-life interattribute distance 
information because of unavoidable annotation errors. In conclu-
sion, facial cues other than interattribute distances such as attribute 
shapes and skin properties are the dominant information of face 
recognition mechanisms in the real-world.

Our results fall short of accounting for the poor performance 
with interattribute distances. It could be that there is less interat-
tribute distance information available to resolve the task or that 
observers are inept at using interattribute distance information. 
One approach to compare performance in both conditions fairly 
would be to measure efficiencies (e.g., Tjan et al., 1995), which are 
task-invariant indices of performance.
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sensitivity was the area under the ROC curve (A′). We repeated this 
procedure 20,000 times: We used 20 levels of noise (σ = 1, 2, 3,…,20 
pixels for a mean interocular distance of 100 pixels); and, for each 
level of noise, we did 1,000 repetitions in order to obtain a stable 
estimate of A′. We bestfitted a linearly transformed power function 
to these data (all R2 > 0.99) and interpolated the quantity of noise 
required for the classifier to perform with an A′ = 0.75.

Similarly, in the second virtual experiment, we trained a 
minimum squared-error linear classifier at identifying one 
randomly selected artificial face from 50% of the natural faces, 
also randomly selected, and tested the classifier on the remaining 
natural faces. Again, we repeated this procedure 20,000 times 
(1,000 repetitions × 20 levels of noise). Finally, we found the 
quantity of noise required for the classifier to perform with an 
A′ = 0.75.

The classifiers trained to identify the artificial faces required 
about 3.76 times more noise (σ2 = 155.40 pixels for a mean inte-
rocular distance of 100 pixels) than the ones trained to identify the 
real-world faces (σ2 = 41.28 pixels for a mean interocular distance 
of 100 pixels). In other words, the interattribute distances of the 
artificial faces convey about 376% more information for identifica-
tion than in real-world faces.

how to create realIstIc InterattrIbute dIstances
The most straightforward method – the one we opted for in 
Experiment 2 – consists in sampling interattribute distances from 
a real-world distribution. This solution has the advantage of pre-
serving all interattribute distance information; but it has the disad-
vantage of being clumsy. In this appendix, we sketch an alternative 
method, which is a good compromise.

We can simulate the variance and covariance of the interattribute 
distances of our aligned female face set with μ
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 the mean of the 

xy-coordinates of those features:
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(y-coordinates of left eyebrow, right eyebrow, left eye, right eye, 
nose, and mouth, followed by the x-coordinates of the same; the 
upper left quadrant being negative for both x- and y-coordinates) 
and K

female
 their covariance matrix:

appendIx
VIrtual experIments
In the first virtual experiment, we trained, by matrix pseudoin-
verse, a minimum squared-error linear classifier at identifying one 
randomly selected natural face from 50% of the remaining natural 
faces, also randomly selected:

b = (X
1

TX
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with b, the regression coefficients of the classifier. X
1
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with x
i
, a training vector corresponding to the set of aligned 

attribute coordinates of face i: [x
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], where y and x 

are the coordinates along the main facial axis (y-axis) and the axis 
orthogonal to it (x-axis); and with N(0,σ), a Gaussian random vari-
able of mean 0 and of standard deviation σ. And y
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We tested this model on the remaining natural faces:

y
2
′ = f(bX

2
),

with f, a Heaviside step function – if the value exceeds c the func-
tion outputs 1 and otherwise it outputs −1. X
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We computed the hit (y
2
′ = target and y

2 
= target) and false 

alarm (y
2
′ = target and y

2 
= distracter) rates in function c to obtain 

a receiver operating characteristic (ROC) curve. Our measure of 
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via the following transformation of a Gaussian noise vector w:

x wfemale female female female= +E Λ
1 2/

µ ,

where E
female

 is the orthogonal matrix of eigenvectors of K
female

 and 
where Λ
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 is the diagonal matrix of eigenvalues of K
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. Likewise, 

we can simulate the variance and covariance of the interattribute 
distances of our aligned male face set with μ
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and K
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A Matlab function (i.e., create_ feature_pts) implementing this 
method is freely available at http://mapageweb.umontreal.ca/
gosselif/alignTools/)




