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Practice effects in large-scale visual word recognition studies: 
a lexical decision study on 14,000 Dutch mono- and disyllabic 
words and nonwords
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In recent years, psycholinguistics has seen a remarkable growth of research based on the 
analysis of data from large-scale studies of word recognition, in particular lexical decision and 
word naming. We present the data of the Dutch Lexicon Project (DLP) in which a group of 
39 participants made lexical decisions to 14,000 words and the same number of nonwords. 
To examine whether the extensive practice precludes comparison with the traditional short 
experiments, we look at the differences between the first and the last session, compare the 
results with the English Lexicon Project (ELP) and the French Lexicon Project (FLP), and examine 
to what extent established findings in Dutch psycholinguistics can be replicated in virtual 
experiments. Our results show that when good nonwords are used, practice effects are minimal 
in lexical decision experiments and do not invalidate the behavioral data. For instance, the word 
frequency curve is the same in DLP as in ELP and FLP. Also, the Dutch–English cognate effect 
is the same in DLP as in a previously published factorial experiment. This means that large-scale 
word recognition studies can make use of psychophysical and psychometrical approaches. In 
addition, our data represent an important collection of very long series of individual reaction 
times that may be of interest to researchers in other areas.
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mentioned above, because it involved a sample of 39 participants 
responding to all stimuli (in different sessions). This considerably 
improves the analyses that can be done on the data, but raises the 
question to what extent behavioral word recognition data of the first 
few sessions are similar to those of later sessions. If there are no big 
differences, the approach offers an interesting alternative for future 
studies (also because it is logistically easier to organize). Conversely, 
if lexical decision performance differs dramatically after a few hours 
of training, it becomes interesting to investigate what causes these 
differences and what implications they have for the current practice 
of building word theories entirely on 1-h experiments.

Before we present the new study, we sketch how large-scale word 
recognition studies gained prominence in psycholinguistic research. 
Following Seidenberg and Waters (1989), these studies are often 
called “megastudies.” They involve the presentation of a large sam-
ple of unselected stimuli, instead of the small samples of carefully 
selected stimuli used in the more familiar factorial designs.

A review of the megAstudy ApproAch
As far as we were able to trace, the first megastudy was run by 
Seidenberg and Waters (1989). A group of 30 students named 
2,897 monosyllabic words. Interestingly, this study was never 
published in a scientific journal1, but the data are well-known 
because several groups of researchers have analyzed and reana-
lyzed them. One of these analyses was published by Treiman et al. 
(1995). These authors examined whether the rime of English 

LArge-scALe dAtAbAses of word processing times
In recent years, psycholinguistics has seen a remarkable growth 
of research based on the analysis of data from large-scale stud-
ies of word recognition, in particular lexical decision and word 
naming. Because such databases comprise a substantial part of 
the lexicon, they can be used to test broad hypotheses about lan-
guage processing, certainly when they are combined with linguistic 
resources, such as the CELEX lexical database (Baayen et al., 1995) 
or other recently developed frequency measures (e.g., Brysbaert and 
New, 2009; Keuleers et al., 2010). As Baayen (2005) writes: “when 
combined, the linguistic and psychological resources become a 
particularly rich gold mine for the study of the lexicon and lexi-
cal processing”. In addition, the availability of behavioral data for 
large numbers of words allows researchers to quickly evaluate new 
hypotheses by simply analyzing the dataset.

Unfortunately, the number of large datasets currently avail-
able is very limited, because collecting behavioral data involves a 
substantial investment. As a matter of fact, besides a few smaller-
scale datasets (discussed below), only two very large databases have 
been published so far. The first is the English Lexicon Project (ELP; 
Balota et al., 2007), which involved the naming of 40,000 words 
and lexical decisions to the same words. The second study is the 
French Lexicon Project (FLP; Ferrand et al., 2010), which involved 
a lexical decision task on more than 38,000 words and the same 
number of nonwords.

In this paper, we present a third large-scale lexical decision study 
on more than 14,000 Dutch mono- and disyllabic words and an 
equal number of nonwords. This study differs from the two studies 1Seidenberg made them available on his website.
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Encouraged by the above findings, Balota and colleagues 
embarked on an even more ambitious project: the collection of 
naming times and lexical decision times for over 40,000 English 
words (and nonwords), which were no longer limited to single-
syllable stimuli. This required a total of 444 participants for the 
naming experiment (yielding on average 24 observations per word) 
and a group of 816 participants for the lexical decision experiment 
(on average 27 observations per word and nonword). The enterprise 
became known as the English Lexicon Project (ELP; Balota et al., 
2007; available at http://elexicon.wustl.edu). The ELP database 
for the first time allowed researchers to do regression analyses on 
words beyond the single syllable (Kello, 2006; Yap and Balota, 2009; 
Perry et al., 2010). Around the same time, Lemhöfer et al. (2008) 
expanded the megastudy approach to the domain of bilingualism, 
when they administered a progressive demasking study on 1,025 
monosyllabic English words to native speakers of French, German, 
and Dutch.

With the transition from a naming study of 2,000 words to a 
lexical decision study of more than 40,000 words and the same 
number of nonwords, Balota et al. (2007) made a methodological 
change. Whereas in the previous megastudies every participant 
responded to all stimuli, different groups of participants now 
responded to different stimuli. Balota et al. (2007) estimated that 
participants could produce stable data for approximately 2,500 
words in the naming task, and 3,500 stimuli in the lexical deci-
sion task, distributed over two experimental sessions with not 
more than a week in-between. As indicated above, this required 
hundreds of participants. The same approach was followed in the 
FLP (Ferrand et al., 2010), where participants took part in two 
sessions of 1 h (for a total of 2,000 observations per participant). 
This study required 975 participants to get an average of 22 obser-
vations per word.

the AdvAntAges of compLete designs
Although ELP and FLP have proven their worth, they also have their 
limitations. One of the strongest is that there is no orthogonal vari-
ation of participants and stimuli: Each stimulus was processed by a 
different, randomly selected, group of participants. This introduces 
noise and complicates statistical analyses if one wants to general-
ize across participants. For instance, it is not possible to run the 
traditional F1 analysis of variance with participants as random 
variable. It also makes the estimation of the participants’ effect less 
precise in the more recent mixed effects analyses. For these reasons, 
authors who are interested in monosyllabic words tend to prefer 
the Balota et al. (2004) datasets over the ELP dataset (e.g., Cortese 
and Khanna, 2007).

A further limitation of ELP and FLP concerns the logistics involved 
in running an experiment that limits the number of stimuli to 2,000–
3,500 per participant. The ELP study was a combined effort of six 
universities. Similarly, for the FLP-study a total of 975 participants 
had to be found who were willing to take part in two separate sessions 
(to give but one example of the costs involved, 62 participants failed 
to show up for the second session and had to be replaced).

Because of the above limitations, the question arises whether it is 
possible to run a word recognition study in which a limited group 
of participants is tested for a prolonged period of time, as is often 

monosyllabic words has an effect on word naming times beyond 
that of the constituting phonemes, based on the observation that 
in English there is more regularity in the pronunciation of the 
complete rime than in the pronunciation of the vowels. Treiman 
et al. (1995) not only made use of the “more traditional small-
scale [factorial] experiments” (p. 108), but also ran a study in 
which 27 participants named 1,327 consonant–vowel–consonant 
monosyllabic words. The results of this large-scale study were 
compared to those of Seidenberg and Waters (1989). In both 
datasets Treiman et al. (1995) found the predicted effect of rime 
consistency and further observed that 38–49% of the variance 
in naming times could be explained by letter-sound consist-
ency, word frequency, word length, neighborhood size (i.e., the 
number of words of the same length that differed by one letter 
only), and the nature of the initial phoneme. In particular, the 
contribution of the last variable was unexpectedly large [5% 
unique variability in the Treiman et al. (1995) study and 23% in 
the Seidenberg and Waters (1989) study, which was more than 
any of the other variables].

Spieler and Balota (1997) shortly afterward published a third 
large-scale study of word naming, to test how well the times were 
in agreement with the processing times predicted by two well-
known computational models of word naming (Seidenberg and 
McClelland, 1989; Plaut et al., 1996). Spieler and Balota (1997) 
argued that because computational models provided processing 
times for individual words, it was interesting to see how well these 
predictions correlated with actual word naming latencies. They 
collected naming times from 31 participants for the 2,820 single-
syllable words that had been used in the training corpora of the 
models. Surprisingly, the naming times correlated less well with 
the models’ predictions (R2s of 0.03 and 0.10) than with a simple 
combination of word frequency, word length, and orthographic 
neighborhood size (R2 = 0.22). In line with Treiman et al. (1995), 
Spieler and Balota (1997) also noticed that 20% of unique vari-
ance in naming latencies was explained by features of the initial 
phoneme. Importantly, regression analyses of large-scale naming 
studies started to play a vital role in psycholinguistic discussions 
(e.g., Balota and Spieler, 1998; Seidenberg and Plaut, 1998; Kessler 
et al., 2002).

The megastudy approach got further impetus when Balota 
et al. (2004) added lexical decision times to the naming times. 
They asked 30 young adults and 30 older adults to make lexical 
decisions to 2,906 monosyllabic words and 2,906 length-matched 
pronounceable nonwords (constructed by changing one to three 
letters in a corresponding word). Using these data, Balota et al. 
(2004) found that the first phoneme was next to unimportant 
in lexical decision, but that there were strong effects of word 
frequency (both objective and subjective), letter-sound con-
sistency, neighborhood size, and semantic variables. Together, 
these variables accounted for 49% of the variance in the lexical 
decision times in young adults, and 39% of the lexical deci-
sion times in older adults (Balota et al., 2004, Table 5; see also 
Cortese and Khanna, 2007). The accuracy scores were also well 
predicted by the same set of variables (R2 = 0.31 and 0.20 for 
young and old adults). This established the usefulness of the 
megastudy approach.
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the outcome was successful. To facilitate reference to the study 
and to stress its connection to ELP and FLP, we called it the Dutch 
Lexicon Project (DLP).

mAteriALs And methods
pArticipAnts
A total of 39 participants finished the experiment. Four more started 
but were excluded after a few hours. Participants were fully informed 
about the length of the experiment and about the fact that they 
would be excluded if their accuracy dropped below 85% in three 
successive blocks. Performance was monitored at the end of each day. 
Participants were informed that there were 57 blocks of 500 trials 
and that, if they completed the experiment successfully, they would 
receive 200 Euro for the entire experiment. They were also informed 
that if they dropped out of the experiment or if their accuracy fell 
consistently below the 85% benchmark, they would only be paid 
5€ per hour completed. This reward scheme was set (a) to motivate 
participants to continue up to the very end of the experiment, and 
(b) to discourage participants from drawing out the experiment with 
slow responses (which could be an issue if participants were paid on 
an hourly basis). Participants were 7 male and 32 female students 
and employees from Ghent University, ranging in age from 19 to 
46 (M = 23). After the initial intake with the practice session (see 
below), participants were free to enter the lab during office hours 
and to go through the experiment at their own pace, using a booking 
system to reserve time slots. After reservation, participants could 
sit at any of the four computers specifically devoted to the study. 
Upon entering their participation code in the experiment system, 
they would be presented with their next block of trials. After each 
completed block, participants could choose whether to continue or 
to stop the session. The only advice given to the participants was to 
limit their participation to 2 h per half day. The fastest participant 
finished the experiment in 10 days time; the slowest took 90 days.

stimuLi
The stimuli comprised 14,089 Dutch words and 14,089 nonwords. 
Of the word stimuli, 2,807 were monosyllabic, and 11,212 were disyl-
labic. The base set of words consisted of all mono- and disyllabic word 
forms with a frequency of 1 per million or higher from the CELEX 
lexical database (Baayen et al., 1995), excluding words with a space 
or dash, proper names, one-letter words, and non-infinitive forms of 
phrasal verbs. To make the database more valuable for research on 
morphology, we also included mono- and disyllabic word forms with 
a frequency of less than 1 per million that were inflectionally related 
to nominal or verbal word forms already in the database. In addition, 
mono- and disyllabic words with a frequency below 1 in CELEX were 
included in our study if they appeared in the age-of-acquisition (AoA) 
norming studies of De Moor et al. (2000) and Ghyselinck et al. (2000), 
the word association study of De Deyne and Storms (2008) or a list 
of Dutch–English cognates kindly supplied by Ton Dijkstra.

In the present study, all words were presented exactly once, 
with one exception: To further investigate the effects of long-term 
practice, block 1 and block 50 contained the same 500 stimuli in 
exactly the same order. We decided to repeat Block 1 toward the 
end of the study to have a more detailed picture of the changes 
taking place from the beginning to the end of the experiment. 

done in psychophysical and psychometrical research. Are there 
theoretical reasons why such an approach would be  prohibited? 
Can participants no longer return valid lexical decision times after 
a few hours of training, or is the limitation to 2-h experiments 
simply the result of practical considerations?

We could find only two studies that specifically addressed 
training effects in lexical decision tasks, both with rather 
encouraging results. Grainger and O’Regan (1992) ran three 
masked-priming experiments on bilingual language process-
ing, in which they were the only participants. In total, 30 words 
and 30 nonwords were presented 90 times during 30 sessions 
of 15 min each, which the authors completed at a rate of two 
sessions per day. Interestingly, there was no evidence that the 
results, because of practice effects, at the end of the study differed 
from those at the beginning, leading the authors to conclude 
(p. 334) that: “Psychophysical methodology, usually reserved for 
the study of low-level perceptual processes, therefore appears 
to hold some promise for investigators of higher-level cogni-
tive phenomena.” A similar approach was taken by Ziegler et al. 
(2000), who worked with eight “well-trained participants” in all 
their experiments.

The second study (Murray and Forster, 2004, Experiment 3) also 
involved the two authors as participants, together with a research 
associate. Each participant was shown the same list of stimuli in three 
sessions 1 week apart. The frequency effect investigated remained 
the same throughout the experiment, although there was a training 
effect on the overall response speed (the three trained participants 
were faster than the untrained participants of Experiment 1).

So, there would seem to be no a priori reasons why partici-
pants are not capable of providing valid lexical decision times 
beyond the first few hours, at least if relevant task considerations 
are taken into account. The most important consideration for 
lexical decision arguably is that participants must not be able 
to detect systematic differences between the words and the non-
words other than the fact that the former are part of the language 
and the latter not. Otherwise, the participants could pick up the 
cues to help them make word/nonword decisions, even when 
they are not aware of these cues (similar to what is observed in 
implicit learning; Reber, 1989). The more practice participants 
have with the stimuli of an experiment, the more likely they are 
to be influenced by unintended differences between the words 
and the nonwords. An example of such an unintended cue was 
reported by Chumbley and Balota (1984). In their second experi-
ment, the nonwords were on average one letter shorter than the 
words, and only weak effects of the semantic predictor variables 
were found. When the bias was corrected for in Experiment 3, 
much clearer effects emerged.

the dutch Lexicon project
On the basis of the above considerations, we decided to run a study 
in which participants had to respond to over 14,000 mono- and 
disyllabic words and over 14,000 nonwords. We limited our stimuli 
to these words, because they comprise nearly all the stimuli used 
in word recognition research over the last 50 years. We projected 
that the entire study would take 16–17 h per participant. Below we 
describe how the study was implemented and we examine whether 
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design
The experiment started with an intake session, in which partici-
pants received information about the particulars of the experi-
ment, completed a questionnaire about their reading behavior 
and knowledge of languages (most students in Belgium are mul-
tilingual), and ran a practice session of 200 trials. This practice 
session contained 100 three-syllable words and 100 three-syllable 
nonwords. It allowed us to demonstrate the main features of 
the experiment.

The experiment consisted of blocks (one practice block and 58 
test blocks). The practice block contained stimuli of three syllables, 
the test blocks stimuli of one and two syllables. The practice block 
consisted of 200 trials, the test blocks of 500 trials, except for the 
last one, which only had 178 trials.

A trial consisted of the following sequence of events. First, 
two vertical fixation lines appeared slightly above and below 
the center of the screen, with a gap between them wide enough 
to clearly present a horizontal string of letters. Participants 
were asked to fixate the gap as soon as the lines appeared. Five 
hundred milliseconds later the stimulus was presented in the 
gap with the center between the vertical lines; the vertical lines 
remained on the screen. The stimulus stayed on the screen 
until the participant made a response or for a maximum of 
2 s. Participants used their dominant hand for word responses 
and their non-dominant hand for nonword responses (using 
response buttons of an external response box connected to one 
of the USB ports). After the response, there was an interstimulus 
interval of 500 ms before the next trial started. The screen was 
blank in this interval.

A block of 500 trials took about 15 min to complete. Because 
pilot testing showed that this was too long to complete in one go, 
after every 100 trials the presentation was paused and waited for 
the participant to press on the space bar. This gave the participants 
information about their progress in the block, and also gave them 
the opportunity to take a break if needed.

After each block, participants received feedback about the per-
centage of correct trials. They were told they should try to aim 
as high as possible and that their participation would end if they 
consistently scored below 85% correct responses.

As indicated above, after the intake participants were free to 
organize the running of the experiment themselves. They signed 
up to one of the computers, entered their registration code, and 
automatically started with the next block. Programming was done 
in C, making use of the Tscope library (Stevens et al., 2006).

resuLts And discussion
The analyses presented here are primarily aimed at the question 
whether the prolonged practice had strong effects on the lexical 
decision data. We will address this question in three different ways. 
First, we look directly at the practice effect: Are the effects of impor-
tant word variables different at the end of the experiment than in 
the beginning? Second, we compare the DLP data to the ELP and 
FLP data: Are the data of the databases comparable? Finally, we 
examine whether it is possible to replicate well-established find-
ings from the literature with our database: Would authors using 
the DLP data come to same conclusions as the ones based on the 
original experiments?

Interestingly, none of the participants seemed to notice the repeti-
tion, and the one participant who knew the block was a repetition 
of a previous block did not have the feeling of having seen the 
words before.

The nonword stimuli for our experiment were constructed 
using the Wuggy algorithm (Keuleers and Brysbaert, 2010; avail-
able from http://crr.ugent.be/Wuggy). This algorithm generates 
nonwords by replacing subsyllabic elements of words (onset, 
nucleus, or coda) by equivalent elements from other words. 
For instance, given the information that the words house and 
couch exist in English, and that dividing them into subsyllabic 
elements would give h-ou-se and c-ou-ch, the algorithm is able 
to create the pseudowords h-ou-ch and c-ou-se. The algorithm 
only generates nonwords based on words with the same number 
of syllables. So, the disyllabic nonwords are based on subsyl-
labic elements occurring in disyllabic words only. In addition, 
we tried to pick nonwords that matched the words as closely as 
possible on a number of criteria. First, each nonword stimulus 
was matched to its word on its subsyllabic structure. So, the 
word br-oo-d (bread) gave rise to the nonword sp-oo-d (two 
letters in the onset, two letters in the nucleus, one letter in the 
coda), whereas the word b-oo-rd (edge) resulted in the nonword 
l-oo-rd (one letter in the onset, two letters in the nucleus, two 
letters in the coda). This restriction additionally guaranteed 
that the nonwords equaled the words on length. Second, we 
matched the primary stress pattern (initial or final) of the disyl-
labic words, meaning that the generator only used words with 
a matching stress pattern as the basis for disyllabic nonwords. 
Third, we matched each word with a nonword differing on 
one subsyllabic element per syllable. This criterion removed 
the possible confound between word length and word likeli-
ness (disyllabic words with only a single change would have 
resulted in  nonwords that resembled the original word more 
than monosyllabic words with a single change). This manipula-
tion worked for all but 88 of the monosyllabic words, in which 
two subsyllabic elements had to be changed instead of one. 
Of the disyllabic nonwords, 19 (0.002%) were constructed by 
changing three instead of two elements. Fourth, we changed 
the subsyllabic element that resulted in the smallest deviation 
in transition probability (calculated separately for the mono- 
and the disyllabic word forms of the CELEX lexical database). 
For instance, the word gr-oe-n (green) was changed into the 
nonword kr-oe-n, because the replacement of the onset gr- by 
kr- resulted in the smallest possible deviation in transition 
probability from the original word. This manipulation made 
sure that the transition frequencies could not be used as a cue 
for word/nonword discrimination. Fifth, we aimed at minimiz-
ing the difference in the number of word neighbors between 
the words and the nonwords. Since we could not optimize all 
criteria simultaneously, and because one nonword could be the 
ideal match for several words, we let the program generate five 
close-matching nonwords, from which the first author picked 
one. In addition, the handpicking was used to select nonwords 
that retained the morphological structure of the word as much 
as possible. For instance, if the word was inflected or derived 
(e.g., motors [motors]),a pseudo-inflected or pseudo-derived 
nonword was preferred as well (e.g., rotars).
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the RTs, calculated on the basis of the RTs of the first 20 partici-
pants and the RTs of the last 19 participants, which corrected for 
length is (2 × 0.65)/(1 + 0.65) = 0.79. The higher correlation for 
the repeated block can be expected given that the same words were 
seen in the same order by the same participants, but at the same 
time it is further proof that participants responded consistently 
throughout the experiment.

To test for interactions between practice and lexical  characteristics, 
we first computed z-scores of RTs per participant and per block to 
remove effects due to block differences and variability between par-
ticipants (as recommended by Faust et al., 1999). We then analyzed 
the z-scores using a mixed effects model, fitting the interaction of 
block with word frequency, word length and OLD20 (fixed effects) 
simultaneously with random intercepts for words (cf. Pinheiro and 
Bates, 2000). This was done in R (R Development Core Team, 2009), 
using the lme4 package (Bates and Maechler, 2009). We used the 
SUBTLEX word frequencies, because these correlated best with 
the behavioral data (for more details, see Keuleers et al., 2010). 
OLD20 is a measure of orthographic similarity and calculates the 
minimum number of letter changes needed to transform the target 
word into 20 other words (Yarkoni et al., 2008). To capture non-
linear effects of the predictors we fitted a restricted cubic spline 
function instead of a simple linear function. A cubic spline com-
bines a number of cubic polynomials defined over a corresponding 
number of predictor intervals with smooth knot transitions. It can 
be restricted to avoid overfitting for extreme predictor values (cf. 
Harrell, 2009). The piecewise nature allows for a more realistic fit-
ting of non-linearities than polynomials defined over the full range 
of predictor values. For each predictor, we limited the number of 
knots to the smallest number yielding significant effects (p < 0.05) 
for all constituent polynomials. This resulted in six knots for word 
frequency, four for word length, and three for OLD20 (see also 

Although the DLP-data are available at the individual-trial level, 
for most purposes it is more interesting to have summary data. So, for 
each stimulus two dependent variables were defined: (1) the percent-
age correct responses (PC, calculated on all 39 participants), and (2) 
the reaction times (RTs) of the correct responses. RTs from trials on 
which the stimulus was not correctly identified (10% of the data) or 
on which an RT below 200 ms or above 1500 ms was registered (0.9% 
of the data) were not included in the computation of RT averages. The 
data of block 50 (i.e., the repetition of test Block 1) are not included 
in these summary measures. This is also true for all analyses reported 
below, except for the ones dealing specifically with this block.

The effecTs of pracTice
Figure 1 displays the effect of practice on RT and PC over the total 
duration of the experiment (i.e., all 58 test blocks). As indicated 
above, Block 50 is a replication of Block 1. Two observations are 
noteworthy. First, although the practice effect is highly significant 
(p < 0.01), in practical terms it is rather small (some 40 ms difference 
in RT and 2% difference in PC). This may be partly due to the rather 
long practice session (200 trials) and to the fact that most of our 
participants had taken part in lexical decision experiments before. 
The second observation is that the repetition of Block 1 at Block 
50 did not result in a massive learning effect: Mean word accuracy 
for Block 50 was about 5% higher than for Block 1, but only 2% 
higher than subsequent blocks in the experiment, and although 
reaction times for both words and nonwords were faster than for 
Block 1, they were not unusually fast relative to subsequent blocks 
in the experiment. The average correlation per participant between 
the reaction times of Block 1 and the reaction times for the same 
items repeated in Block 50 was 0.22. Corrected for length using the 
Spearman-Brown Formula, this gives a reliability of (39 × 0.22) 
(1 + 38 × 0.22) = 0.92. This is higher than the overall reliability of 

Figure 1 | effects of practice on rTs (A) and PC (B). The full vertical line indicates the 50th block, which was a repetition of Block 1.
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Figure 2 | effects of practice for word frequency (A), word length (B), and OLD20 (C) as estimated by the mixed effects analysis. Notice that the differences 
on the ordinates represent effect sizes in standard deviations (equivalent to Cohen’s d-measure).

block 50 had an effect over and above the effect of task familiar-
ity. For simplicity, we only consider linear effects. Figure 3 shows 
that the effects of word frequency and length are clearly stronger 
in block 1 than in any of the other blocks. This is an important 
observation, because it suggests that the effect sizes from very 
short experiments can be inflated, such that some effects may only 
be found in short experiments. The effect of frequency clearly 
decreases throughout the experiment, before leveling around 
block 40. Although the decreasing trend is clear, large frequency 
effects are found up to the last block. The effect of word length is 
rather small throughout the experiment, and its evolution is less 
clear. Word length leads to increased RTs in most blocks, while in 
some blocks there is an opposite trend. The effect of OLD20 is 
also rather small throughout the experiment, although it seems 
to become more important in the second half of the experiment. 
Block 50 follows the trend for the effect of word frequency quite 
clearly, but seems to be somewhat removed from the trend for 
the effects of word length and OLD20, although it is never a clear 
outlier, indicating that repetition does not seem to have a dramatic 
influence on effect sizes.

comparison wiTh The eLp and fLp daTa
A further test of the validity of the DLP dataset is to compare its 
effects with those of ELP and FLP. Table 1 lists the main summary 
statistics of the stimuli together with those of the ELP and FLP. This 
table clearly illustrates that the words in the DLP were on average 
shorter and more frequent than those of the other two databases, 

Baayen, 2008). For a straightforward evaluation of the practice 
effects we only considered a linear effect of block. Block 50 was 
left out of this analysis.

Figure 2 shows the predicted practice effects for the variables 
frequency, length, and OLD20. Each panel shows the partial effects of 
the variable at the beginning of the study (after the first block – full 
line) and at the end of the study (after the last block – dotted line), 
with the difference between the two lines on the y-axis  representing 
the practice effect size in standard deviations (equivalent to Cohen’s 
d-measure). The maximum difference in the effect of word fre-
quency and OLD20 is about 0.1 and the maximum difference due to 
word length is even smaller. Cohen (1992, p. 156) puts the minimum 
limit of effects sizes at d = 0.2, “to be not so small as to be trivial.” Still, 
due to the large number of observations, the mixed effects analysis 
shows that all interactions with block are significant [block × fre-
quency: F(5,415351) = 11.93, MS = 10.06, p < 0.001; block × word 
length: F(3,415351) = 3.04, MS = 2.56, p < 0.03; block × OLD20: 
F(2,415351) = 4.21; MS = 3.55, p < 0.02]2.

To further examine the effect of practice, we performed a sepa-
rate analysis for each block, this time including block 50, and 
looked at the linear effects of word frequency, word length and 
OLD20. Recall that the stimuli in block 1 and block 50, includ-
ing order, were exactly the same for every individual participant, 
allowing us to examine whether the repetition across block 1 and 

2p-Values are based on MCMC sampling (Baayen, 2008, p. 248).
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Figure 3 | estimated slopes (in standard deviations) for the linear effects of word frequency (A), word length (B), and OLD20 (C) in each block. The 
estimates for block 1 and block 50 are marked with an “X.” The dotted line shows the locally weighted scatterplot smoothing (LOWESS; Cleveland, 1979), excluding 
block 50.

Table 1 | Main statistics of the Dutch Lexicon Project, the english 

Lexicon Project, and the French Lexicon project (between brackets: the 

range of the variables.)

 DLP eLP FLP

Number of words 14,089 40,481 38,840

Length in letters 6.3 (2–12) 8.0 (1–21) 8.5 (2–20)

Length in syllables 1.8 (1–2) 2.5 (1–8) 2.5 (1–7)

Subtitle frequency 59.7 25.2 21.13 

per million (0.02–39,883) (0.02–41,857) (0–25,988)

Accuracy words 84% (0–100%) 84% (0–100%) 91% (8–100%)

RT words 654 ms 784 ms 740 ms 

 (312–1,382 ms) (415–1,755 ms) (515–1464 ms)

Accuracy nonwords 94% (2–100%) 88% (0–100%) 93% (8–100%)

RT nonwords 674 ms 856 ms 807 ms 

 (508–1,135 ms) (589–1814 ms) (519–1604 ms)

which is to be expected given that DLP was limited to monosyllabic 
and disyllabic words. Table 1 also shows that participants were on 
average 130 ms faster on accepting word stimuli in DLP than in 
ELP and had the same accuracy level (84%). RTs were 90 ms faster 
on average in DLP than in FLP, but participants were about 9% 
less accurate on word decisions. The average frequency in DLP was 
more than twice that of ELP and FLP. Given that frequency is the 
most important variable in predicting RTs, this may be the  main 
reason for the longer RTs in ELP and FLP.

To make DLP, ELP, and FLP more comparable, we limited the 
ELP and FLP data to monosyllabic and disyllabic words, and 
investigated the impact of well-known predictors on the depend-
ent variables. Among the best predictors of visual lexical decision 
performance are word length, word frequency, and orthographic 
similarity to other words. Table 2 shows the percentages of vari-
ance explained by log word frequency, word length (number of 
characters and number of syllables), and OLD20. Given that the 
relationships of these variables are not linear (Figures 5 and 6; see 
also New et al., 2006), we checked polynomials up to degree 3.

Table 2 shows that, while the amount of variance accounted 
for by the different variables is comparable for DLP and FLP, the 
same variables systematically explain more variance for ELP. In 
particular the higher correlations with OLD20 and length are strik-
ing. Part of the difference is due to the fact that the four predictor 
variables are interrelated (Table 3), so that the stronger frequency 
effect in ELP has knock-on effects on OLD20 and word length. To 
correct for this confound, we ran multiple regression analyses. A 
forward stepwise regression on the DLP RTs with Nchar, Nsyl, Freq, 
and OLD20 as predictors, returned significant effects of frequency 
(∆R2 = 34.4) and Nchar (∆R2 = 0.1). The same analysis for the 
ELP data returned significant effects for all variables: frequency 
(∆R2 = 42.7), OLD20 (∆R2 = 3.4), Nchar (∆ R2 = 0.2), and Nsyl 
(∆ R2 = 0.3). For the FLP, significant effects were returned for Freq 
(∆R2 = 30.7), OLD20 (∆R2 = 0.7), Nsyl (∆R2 = 0.3), and Nchar 
(∆R2 = 0.1). These analyses confirm the higher impact of OLD20 
in ELP than in DLP and FLP.
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a specific word (e.g., captaves-captives), possibly requiring  additional 
processing. In addition, this has the awkward effect that participants 
often had to answer “yes” to words with very high OLD20 (e.g., “break-
throughs” [OLD20 = 5.75] and “shirtsleeve” [OLD20 = 5.65]) and 
“no” to nonwords with much lower OLD20s (e.g., “phronological” 
[OLD20 = 3.75] and “dommunication” [OLD20 = 3.4]).

Megastudies not only make it possible to study the impact of a 
variable on the behavioral data, but also to have a look at the effect 
across the entire range of the variable. Is there a linear relationship 
between log frequency and the behavioral data, as authors have 
assumed for a long time, or are there systematic deviations? And 
are the effects the same in DLP as in ELP? Figures 4 and 5 show 
the effect of word frequency on RTs and PCs in ELP and DLP. To 
improve the clarity, the word data were grouped in log frequency 
bins and average values are given, together with error intervals.

Figure 4 shows that the frequency effect on RT is very much the same 
in DLP, ELP, and FLP, apart from an overall shift in RT. Interestingly, 
there are considerable differences in the minimal accuracy levels. 
Whereas the very low-frequency words in DLP had an average accu-
racy of slightly above 60%, in ELP this was slightly above 70%, and in 
FLP well above 80%. The most likely origin of this difference again is 
the nature of the nonwords. In particular, it looks like the nonwords 
in FLP were easier to detect than in the other two databases.

Figures 4 and 5 further show that the relationship between log 
frequency and behavioral data is not linear but looks very much 
like a sigmoid, with a flattening of the curve below 0.1 per million 

A tentative explanation for the higher impact of OLD20 in ELP is 
the nature of the nonwords. While DLP and FLP had rather sophisti-
cated nonword construction procedures based on recombining sub-
syllabic elements or trigrams, the ELP nonwords were constructed by 
changing one or two letters in an existing word. In general, this makes 
longer stimuli more confusing, because long nonwords often look like 

Table 3 | intercorrelations between the variables length in characters (Nchar), length in syllables (Nsyl) frequency (Freq), and orthographic similarity 

(OLD20) for the Dutch Lexicon Project, the english Lexicon Project (monosyllabic and disyllabic words only; n = 22,143), and the French Lexicon 

Project (monosyllabic and disyllabic words; n = 19,184).

 DLP eLP FLP

 Nchar Nsyl Freq Nchar Nsyl Freq Nchar Nsyl Freq

Nsyl 0.611   0.589   0.455  

Freq −0.319 −0.279  −0.373 −0.278  −0.343 −0.279 

OLD20 0.676 0.367 −0.254 0.801 0.539 −0.356 0.636 0.412 −0.262

Figure 4 | The word frequency-rT curve for the word stimuli in DLP, eLP, and FLP. Stimulus frequencies were obtained from SUBTLEX-NL, SUBTLEX-US, and 
Lexique 3.55 and varied from 0.02 to nearly 40,000 per million words. Circles indicate the mean RT per bin of 0.15 log word-frequency; error bars indicate 2 × SE 
(bins without error bars contained only one word).

Table 2 | Percentages of variance accounted for by length in characters 

(Nchar), length in syllables (Nsyl) frequency (Freq), and orthographic 

similarity (OLD20) in the Dutch Lexicon Project, the english Lexicon 

Project (monosyllabic and disyllabic words only; n = 22,143), and the 

French Lexicon Project (monosyllabic and disyllabic words; n = 19,184).

 DLP eLP FLP

 rT PC rT PC rT PC

Nchar 7.4 1.1 16.4 0.4 6.5 0.3

Nchar poly3 7.5 1.2 16.5 0.5 6.7 0.3

Nsyl 4.7 0.0 9.7 0.4 1.9 0.0

Freq 34.1 18.3 42.7 21.7 30.7 15.1

Freq poly3 35.9 22.4 44.7 25.4 33.7 18.1

OLD20 4.1 0.0 20.0 0.6 5.1 0.6

OLD20 poly3 4.3 0.1 20.3 0.8 5.2 1.0

RT analyses calculated on the zRT scores and accuracy >0.66. Polynomials of 
the third degree were used to be able to simulate the sigmoid (cubic) frequency 
curve.
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using the same stimuli from the DLP database?3 This is particularly 
important when researchers want to use the DLP data to test or 
verify experimental hypotheses.

One of the classic Dutch visual word recognition studies 
based on lexical decision was published by Schreuder and Baayen 
(1997). The authors addressed the question to what extent lexical 
decision times to singular nouns are influenced by the frequen-
cies of the plurals. For instance, the words spier (muscle) and 
stier (bull) have more or less the same frequency, but the plural 
form spieren ( muscles) occurs significantly more often than the 
plural form stieren (bulls). Schreuder and Baayen hypothesized 
that singular nouns with frequent plurals would be responded to 
faster than matched singular nouns with non-frequent plurals. 
After confirming this hypothesis, they examined the effect of the 
number of morphologically related nouns (family size) and the 
cumulative frequency of all family members ( cumulative  family 

(log value of −1) and above 50 per million (log value of +1.7). 
Intriguingly, some very high-frequency words are not responded 
to well. These are often function words (e.g., articles, prepositions) 
or parts of fixed expressions (e.g., the French negation “ne pas”; 
both the words “ne” and “pas” did badly in FLP). A final surprising 
feature of the curves is that nearly half of the frequency effect is 
due to frequencies below 1 per million (log value of 0). Ironically, 
researchers have traditionally tried to increase the frequency effect 
by selecting very high frequency words (above 100 per million) 
rather than by selecting very low frequency words (in many studies 
the low-frequency range is loosely defined as below 5 per million 
or even 10 per million). On the basis of our data it looks as if the 
lower half of the frequency curve has been neglected in favor of 
the less interesting (higher) half.

virtuAL experiments
A further test of DLP’s usefulness is to examine whether patterns 
of results found in existing small-scale factorial experiments can be 
replicated with the dataset. In other words, do the results reported in 
the original publications hold when we set-up virtual experiments 

Figure 5 | The word frequency-accuracy curve for the word stimuli in DLP, eLP, and FLP. Stimulus frequencies were obtained from SUBTLEX-NL, SUBTLEX-US, 
and Lexique 3.55, and varied from 0.02 to nearly 40,000 per million words. Circles indicate the mean accuracy per bin of 0.15 log word-frequency; error bars indicate 
2 × SE.

Table 4 | reaction times (in ms) to singular Dutch nouns as a function of the frequencies of the plurals and the family size, as reported by Schreuder 

and Baayen (1997) and in virtual DLP experiments.

 Original experiments rTs Virtual experiments rTs Number of stimuli in 

   virtual experiments (original 

   number of stimuli per condition)

Exp. 1: high vs. low-frequency plurals 539 vs. 580** 583 vs. 631** 35 vs. 34 (35)

Exp. 2: high vs. low cumulative 599 vs. 644** 606 vs. 665** 27 vs. 27 (32) 

family frequency

Exp. 3: high vs. low family size 553 vs. 594* 599 vs. 646* 18 vs. 16 (18)

Exp. 4: high vs. low cumulative frequency 598 vs. 612 666 vs. 664 16 vs. 11 (17) 

for fixed family size

Exp. 5: high vs. low singular for fixed family 576 vs. 656** 625 vs. 709** 18 vs. 9 (20) 

size and cumulative frequency

For original experiments: **p < 0.01, *p < 0.05 in both F1 and F2 analysis.
For virtual experiments: **p < 0.01, *p < 0.05 in mixed effects analysis including random intercepts for participants and stimuli.

3A number of studies could not be simulated because they did not include the sti-
muli used and the authors were no longer able to find them. This once again under-
lines the importance of including stimulus materials in articles.
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nouns, whereas the summed frequency determined the RTs to 
the singular forms. Finally, there was also a significant interaction 
between the summed frequency and responses to singular vs. 
plural: The time cost of a plural noun was higher for the words 
with a low summed frequency than for the words with a high 
summed frequency.

To see whether this pattern would be obtained in a virtual experi-
ment, all data were extracted from the DLP and analyzed with a 
mixed effects model with crossed random effects for participants 
and stimuli and fixed effects for the main variables and interac-
tions. Of the 186 items, 182 were found in the database. The main 
effects that were found to be significant by Baayen et al. (1997) 
were also significant in the mixed effects analyses of the virtual 
experiment (p < 0.01), as was the crucial interaction between the 
relative frequencies of the singular and the plural and whether par-
ticipants responded to a singular or a plural noun (p < 0.01). Only 
the interaction between summed frequency and whether partici-
pants responded to a singular or a plural noun was not significant 
(p = 0.19). No other effects were significant. So, in all important 
aspects a virtual experiment on the basis of DLP would have led to 
the same conclusions as the data obtained by Baayen et al.

Another important topic in Dutch word recognition research has 
been to what extent word processing is influenced by knowledge of 
a second language. The cognate-effect is well known in this respect. 
Bilinguals have a processing advantage for words with a high form 
overlap that also have the same meaning in the two languages (e.g., 
lamp-lamp in English and Dutch). van Hell and Dijkstra (2002) 
reported that Dutch native speakers responded about 30 ms faster 
to Dutch–English cognates in a lexical decision task than to control 
words (see the left part of Table 6). Interestingly, the effect was 
much smaller for Dutch–French cognates, arguably because Dutch 
speakers from the Netherlands have a larger knowledge of English. 
To test this hypothesis, van Hell and Dijkstra (2002) tested bilin-
guals with a high proficiency in French (these were students taking 
a French degree), and found more evidence for a French cognate 
effect. Surprisingly, for the highly proficient French speakers, the 
English cognate effect was also larger.

We looked up the stimuli used by van Hell and Dijkstra (2002) 
in the DLP dataset and analyzed the virtual experiment using a 
linear mixed effects model. In general, the data agreed quite well 

frequency). All in all, Schreuder and Baayen ran five experi-
ments, of which the results are summarized in the left column 
of Table 4.

In order to run the virtual experiments, we looked up the RTs 
of our participants to the stimuli in Schreuder and Baayen’s (1997) 
experiments that were also present in our database. RTs from cor-
rect responses between 200 ms and lower than 1500 ms were then 
analyzed with a mixed effects model, with condition as a fixed effect 
and crossed random effects of participants and stimuli. Table 4 
shows the results of the virtual experiments. Although the RTs 
overall were longer than those of Schreuder and Baayen (1997), 
the pattern of effects was exactly the same. That is, Schreuder and 
Baayen (1997) would have drawn the same conclusions on the basis 
of a series of virtual experiments using the DLP database. The main 
limitation is the absence of some stimuli in the database: Schreuder 
and Baayen included some trisyllabic words in their experiments 
and also used some words with a surface frequency that was lower 
than the range examined in DLP. For Experiment 5 in particular, 
quite some of the original stimuli were not found in the database, 
resulting in less than half of the observations included in the second 
condition (9/20).

Building on Schreuder and Baayen’s (1997) work, Baayen 
et al. (1997) designed an experiment with three variables: (1) the 
summed frequency of the singular and the plural (plus the diminu-
tive forms), (2) the relative frequencies of the singular and the 
plural noun, and (3) whether the participants responded to the 
singular noun or to the plural. The results of this experiment are 
summarized in the left column of Table 5.

Baayen et al. (1997) found significant main effects of all three 
variables: (1) RTs were faster to words with high summed fre-
quencies than to words with low summed frequencies, (2) RTs 
were faster to words with higher singular frequencies than to 
words with lower singular frequencies, and (3) RTs were faster 
to singular nouns than to plural nouns. Baayen et al. also found 
a critical interaction between the relative frequencies of the sin-
gular and the plural nouns and whether participants responded 
to a singular or a plural noun. Responses were considerably faster 
to high frequency plural nouns than to low-frequency plural 

Table 5 | reaction times reported by Baayen et al. (1997, experiment 1) 

for different types of nouns and the results of the virtual experiments 

with DLP data.

 Original Virtual 

 experiments experiments

 Singular Plural Singular Plural  

 noun noun noun noun

Low summed frequency:  612 708 628 715 

freqsing > freqplural

Low summed frequency:  606 645 617 640 

freqsing < freqplural

High summed frequency: 561 615 553 643 

freqsing > freqplural

High summed frequency: 551 558 562 587 

freqsing < freqplural

Table 6 | The cognate effect reported by van Hell and Dijkstra (2002). 

Left part: original data. Right part: Simulations with the DLP data. Between 

brackets: the number of stimuli found in DLP and the number of stimuli used 

in the original experiment.

 van Hell and Dijkstra DLP

 Low French High French 

Dutch–English cognates 499 489 559 (20/20)

Dutch–French cognates 519 520 585 (17/20)

Control words 529 541 595 (37/40)

English cognate effect 30* 52** 36*

French cognate effect 10 21* 10

*p < 0.05, **p < 0.01.
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with those of the Dutch speakers with low French proficiency (see 
the right part of Table 6). To some extent this is surprising, given 
that Belgian native speakers of Dutch are much more exposed to 
French than Dutch native speakers from the Netherlands.

Another important topic of study in Dutch word recognition 
research is the AoA effect. Brysbaert et al. (2000) published a series 
of experiments showing that a word frequency effect was still found 
when words are controlled for length, AoA, and imageability. 
Similarly, a significant AoA effect was found when all other variables 
were controlled for. However, no significant effect of imageability 
was found once the stimuli were controlled for length, frequency, 
and AoA. Table 5 shows the findings (left part). As the right part of 
the table shows, these findings are also obtained in a series of three 
virtual experiments with the Dutch Lexicon data.

One reason why imageability does not have a significant effect on 
lexical decision times may be that it is not the right variable. van Hell 
and de Groot (1998) argued that the concreteness effect reported in 
lexical decision (which is very closely related to imageability) is an 
artifact of context availability (CA, i.e., how easily a participant can 
think of a context in which the word can be used). To investigate 
the issue, van Hell and de Groot compiled four lists of 20 words. 
The first two lists compared abstract and concrete words that were 
matched on CA; the second two compared abstract and concrete 
words confounded for CA (i.e., the CA was much higher for the 
concrete than the abstract words). Only in the latter condition did 
van Hell and de Groot (1998) find a significant difference (see the 
left part of Table 8), making them conclude that the concreteness 
effect was a CA effect in disguise. As before, the same conclusion 
was reached on the basis of a virtual experiment (right part).

All in all, it looks very much like the DLP data can be used 
to replicate classic studies in Dutch visual word recognition and, 
hence, to test new hypotheses. The main limitation is that ideally 
we would have included more low-frequency words. As indicated in 
the method section, we largely limited the words to those that had a 
base form frequency of 1 per million or more. Given that half of the 
frequency effect is situated below this value (Figures 4 and 5), for 
future studies it is desirable to include many more low-frequency 
words, so that a more detailed picture becomes available of what 
happens at the low end of the frequency curve.

One of the reasons why we were successful in the replication 
of the above studies, is that most of the effects were of a consid-
erable size (30 ms and more). When we tried to simulate a few 
small effects (20 ms or less), we usually obtained non-significant 
trends in the expected direction, certainly when the numbers of 
stimuli were small. This made us realize that power is an issue in 
megastudies as much as in small-scale studies. To get an idea of the 
effects that can be simulated with the DLP database, we performed 
a Monte Carlo simulation, taking 1000 random samples of two 
sets of n items, adding d milliseconds to the RTs of the second set 
of the items. On each sample, we ran a mixed effects analysis with 
participants and items as random effects, and with fixed effects for 
log frequency, log frequency squared, and condition (unmodified 
vs. modified RTs). Obtaining a significant effect for condition in 
such an analysis means that an effect of size d was found with two 
samples of n items, controlling for the effect of frequency. We then 
counted the number of times in which the t value for the effect 
of condition exceeded 2, a conservative heuristic for obtaining a 

Table 7 | empirical data reported by Brysbaert et al. (2000) for word 

frequency, AoA, and imageability. Left part: original data. Right part: 

Simulations with the DLP data. Between brackets: the number of stimuli 

found in DLP and the number of stimuli used in the original experiment.

 Brysbaert DLP 

 et al. (2000)

AoA

Early 594 584 (23/24)

Late 646 648 (21/24)

Effect 52** 64**

FrequeNCy

High 554 553 (24/24)

Low 639 642 (17/24)

Effect 85** 89**

iMAgeABiLiTy

High 609 598 (23/24)

Low 609 614 (23/24)

Effect 0 16

**p < 0.01.

Table 8 | results obtained by van Hell and de groot (1998) for abstract 

and concrete words, when the words were matched on context 

availability and when they were not. Left part: original data. Right part: 

Simulations with the DLP data. Between brackets: the number of stimuli 

found in DLP and the number of stimuli used in the original experiment.

 van Hell and DLP 

 de groot (1998)

 Matched Confounded Matched Confounded 

 CA CA CA CA

Abstract 541 554 564 (19/20)  583 (20/20)

Concrete 554 523 581 (19/20) 540 (17/20)

Difference −13 31** −17 43**

4Mixed effects models do not provide p values (Baayen et al., 2008). Although em-
pirical p values can be obtained using MCMC sampling, that procedure is very 
time consuming. In this case, the MCMC sampling would need to be performed 
for forty thousand tests.

significance level of 0.05.4 The simulation was repeated with dif-
ferent set sizes (n = 10, 20, 40, 80, 160, 320, 640, 1280) and effect 
sizes (d = 0, 5, 10, 20, and 40 ms).

Figure 6 illustrates the results of the Monte Carlo simulation. 
One can reasonably expect to find an effect of 40 ms using about 
35 items per set. To find an effect of 20 ms, over 130 items per 
condition are required. For effects of 10 ms or below, the use of the 
database becomes impractical unless samples of nearly 500 items 
per condition are possible.

concLusion
In this article we described the results of a large-scale lexical deci-
sion study in Dutch. In line with other large word recognition 
studies (Balota et al., 2007; Ferrand et al., 2010), this study was not 
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this question. We have given three arguments why the approach 
is fruitful. First, the practice effects are in all respects rather small 
(Figures 1–3). Second, looking at well-established effects, such as 
the word frequency effect, we see a curve that is very comparable 
to the one obtained in the other megastudies (Figures 4 and 5; 
see also Tables 1–3). Finally, we were able to replicate the core 
findings of Dutch studies using lexical decisions to printed words 
(Tables 4–8). Our success with virtual experiments contrasts with 
the disappointing results obtained by Sibley et al. (2009), who failed 
to replicate the results of several classical experiments concerning 
the regularity–frequency interaction with the same stimuli from 
three naming megastudies. Several factors may account for this 
difference. First, we used linear mixed effects models on trial level 
data, a method of analysis that may be more powerful than the 
item-level analysis used by Sibley et al. Second, Sibley et al. looked 
only at the frequency-regularity interaction in naming, leaving open 
the possibility that variables related to this particular effect may 
make it hard to replicate the findings using megastudy data. Third, 
the authors made no effort to analyze the power of the megastudies 
to reveal the effects they were interested in. Because the effects are 
usually greater in lexical decision than in naming, they may be more 
easy to replicate, a matter that should be investigated further.

set up with a particular hypothesis in mind, but rather with the 
aim of making a broad range of word recognition data available, 
allowing researchers to run regression analyses over the entire range 
of a variable and to run virtual experiments in order to quickly 
test a hypothesis.

In contrast with previous large word recognition studies that 
used many participants responding to a small part of the stimuli, 
the participants in our study responded to all stimuli. This makes 
new analyses possible (e.g., about individual differences) and also 
increases the power of the analyses. For instance, many stud-
ies nowadays make use of mixed effects methods to analyze the 
data. These methods do not rely on average data per stimulus, 
but take into account participants and items as random effects. 
Having the same participants for all items allows for less com-
plex interactions between participants and items and, hence, for 
a better estimation of these random effects. Even for the more 
traditional statistical methods, having all stimuli responded to 
by the same participants considerably simplifies matters (e.g., 
to run an F1 analysis).

Of course, such an approach is only useful if the behavioral data 
at the end of the experiment are comparable to those at the begin-
ning. Therefore, the analyses in the present paper were focused on 

Figure 6 | Sample size required for finding an effect of a particular size 
(in milliseconds), derived by Monte Carlo simulation using two random 
samples of words from the database. For each combination of sample size 
(n = 10, 20, 40, 80, 160, 320, 640, 1280) and effect size (0, 5, 10, 20, 40 ms), we 

ran 1000 simulations. The y-axis indicates the proportion of simulations in which 
the null hypothesis (no-effect) was rejected. Sample sizes at which sufficient 
power (0.8) is reached are n = 33 for 40 ms, n = 126 for 20 ms, and n = 493 
for 10 ms).



www.frontiersin.org November 2010 | Volume 1 | Article 174 | 13

Keuleers et al. Practice effects in visual word recognition

We think the main reason why our approach worked, was that 
we were very careful about the construction of the nonwords. We 
made every attempt to match the nonwords as much as possible to 
the words with respect to their sublexical properties, while at the 
same avoiding too much overlap between the nonwords and the 
words from which they were derived (which we think was a problem 
in ELP, because there the nonwords were mostly created by chang-
ing a single letter of the word; see Ferrand et al., 2010, for a more 
extended discussion). Because of these controls, participants had 
less opportunity to develop implicit learning based on systematic 
non-lexical differences between the words and the nonwords.

In principle, there are no elements in our data that would 
prevent us from testing participants on even more trials, which 
may be necessary given the need for more information on low-
frequency words (cf. the missing data in Tables 4–8). Whether 
such a study is feasible in practice, remains, of course, an open 
question. (How many participants would finish a study of 40 h 
of lexical decisions?) An alternative may be to break the stimu-
lus set into a small number of equivalent lists and have different 
groups of participants complete them. This would agree with the 
traditional split-plot design in analysis of variance and would in 
all likelihood lead to very similar results provided the participant 
groups are large enough, so that idiosyncrasies of the participants 
have relatively little weight.

AvAiLAbiLity of the dLp dAtA
The DLP data are available at the trial level and at the item level. 
Rather than providing a query interface, we are making all data 
available for direct download in three convenient formats: tab 
delimited text, R data files, and Excel 2008 spreadsheets, so that 
researchers have maximal access and flexibility in working with 
the data. In addition, we are making available a file of stimulus 
characteristics, which can be merged with the data. All material 
can be downloaded from http://crr.ugent.be/dlp.

triAL LeveL dAtA
At the trial-level, there are 1,098,942 rows of data. For each trial, 
the following information is given.

- Environment: indicates which of the four computers the parti-
cipant was using when the trial was recorded.

- Participant: identification number of the participant.
- Block: the number of the block in which the trial was presented.
- Order: the presentation order of the trial for the participant.
- Trial: the trial identification number.
- Spelling: the spelling of the stimulus.
- Lexicality: whether the stimulus was a word (W) or  

nonword (N).
- Response: the response to the stimulus. Word (W),  

nonword (N), or time-out (T).
- Accuracy: 1 if the response matched the lexicality,  

otherwise 0.
- Previous accuracy: accuracy on the previous trial.
- RT: reaction time on the trial.
- Previous RT: reaction time on the previous trial.
- Microsec error: the timing error given by the tscope software 

(in microseconds).

- Unix seconds: date and time in Unix seconds format (seconds 
elapsed since 1970).

- Unix microseconds: decimal part of unix seconds (in 
microseconds).

- Trial day: indicates how many trials the participant responded 
to since the day began (including the current trial).

- Trial session: indicates how many trials the participant respon-
ded to since the session began (including the current trial). A 
session expired after no response was given for 10 min.

- Order in block: the presentation order of the trial in a block of 
500 items.

- Order in subblock: the presentation order of the trial in a sub-
block of 100 items.

item LeveL dAtA
At the item level, there are 28,178 rows of data. For each stimulus 
(word or nonword), the following information is given.

- Spelling: the spelling of the stimulus as it was presented.
- Lexicality: whether the stimulus was a word (W) or  

nonword (N).
- RT: the average reaction to the stimulus.
- Zscore: the average standardized reaction time. Standardized 

reaction times were calculated separately for all levels of parti-
cipant, block and lexicality (e.g., all RTs to word-trials in block 
1 by participant 1).

- Accuracy: average accuracy for the stimulus.
- RT SD: standard deviation for the average reaction time.
- Zscore SD: standard deviation for the average Zscore.
- Accuracy SD: standard deviation for the average accuracy.

stimuLus chArActeristics

- Coltheart N: the number of words of same length differing in 
one letter, computed over all wordforms in the Dutch CELEX 
lexical database.

- OLD20: The average Orthographic Levenshtein distance of the 
20 most similar words, computed over all wordforms in the 
Dutch CELEX lexical database.

- CELEX frequency: Raw frequency of the stimulus as given by 
CELEX.

- CELEX CD: Contextual diversity (dispersion) of the stimulus 
in CELEX.

- CELEX frequency lemma: sum of the raw frequencies of all 
possible lemmas for the stimulus in CELEX.

- SUBTLEX frequency: raw frequency of the stimulus in the 
SUBTLEX-NL database.

- SUBTLEX CD: contextual diversity of the stimulus in 
SUBTLEX-NL.

- SUBTLEX frequency lemma: sum of the raw frequencies of all 
possible lemmas for the stimulus in SUBTLEX-NL.

- SUBTLEX frequency million: frequency per million of the sti-
mulus in SUBTLEX-NL.

- SUBTLEX log10 frequency: log10 of raw frequency in 
SUBTLEX-NL.

- SUBTLEX CD percentage: contextual diversity as a percentage 
of movies the form occurs in.
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- Morphology: morphological status (e.g., monomorphemic, 
complex) of the form in CELEX. Different options are separa-
ted by a dot.

- Flection: flection (e.g., singular, plural) of the form in CELEX. 
Different options are separated by a dot.

- Synclass: syntactic class (e.g., Verb, Noun) of the form in 
CELEX. Different options are separated by a dot.
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- SUBTLEX log10 CD: log10 of contextual diversity in 
SUBTLEX-NL.

- Summed monogram: sum of non-positional letter frequen-
cies, computed over all wordforms in CELEX.

- Summed bigram: sum of non-positional bigram 
frequencies.

- Summed trigram: sum of non-positional trigram frequencies.
- Stress: primary stress location (10: initial stress, 01: final stress, 

1: monosyllabic).
- Nchar: length of the stimulus in characters.
- Nsyl: length of the stimulus in syllables.
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