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A connectionist approach to embodied conceptual metaphor
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A growing body of data has been gathered in support of the view that the mind is embodied 
and that cognition is grounded in sensory-motor processes. Some researchers have gone 
so far as to claim that this paradigm poses a serious challenge to central tenets of cognitive 
science, including the widely held view that the mind can be analyzed in terms of abstract 
computational principles. On the other hand, computational approaches to the study of mind 
have led to the development of specific models that help researchers understand complex 
cognitive processes at a level of detail that theories of embodied cognition (EC) have sometimes 
lacked. Here we make the case that connectionist architectures in particular can illuminate 
many surprising results from the EC literature. These models can learn the statistical structure 
in their environments, providing an ideal framework for understanding how simple sensory-
motor mechanisms could give rise to higher-level cognitive behavior over the course of learning. 
Crucially, they form overlapping, distributed representations, which have exactly the properties 
required by many embodied accounts of cognition. We illustrate this idea by extending an existing 
connectionist model of semantic cognition in order to simulate findings from the embodied 
conceptual metaphor literature. Specifically, we explore how the abstract domain of time may 
be structured by concrete experience with space (including experience with culturally specific 
spatial and linguistic cues). We suggest that both EC researchers and connectionist modelers 
can benefit from an integrated approach to understanding these models and the empirical 
findings they seek to explain.
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Johnson, 1980, 1999; Gibbs, 1994, 1996, 2006; Murphy, 1996, 1997; 
Boroditsky, 2000; Boroditsky and Ramscar, 2002; Feldman, 2006; 
Pinker, 2007). Lakoff and Johnson (1980, 1999) famously observed 
that natural language is exceedingly figurative. When we talk about 
complex or abstract topics, we rely heavily on systems of metaphors, 
borrowing words and phrases from other, more concrete domains. 
For example, to talk about theories, people often rely on building 
metaphors. Indeed, theories must have a solid foundation and be 
well-supported by the data or they might fall apart, and you can 
build them up, tear them down, or even explode them in light of 
new findings.

While traditional theories of language treat metaphor as mere 
ornamental flourish (e.g., Grice, 1975; Searle, 1979; Pinker, 2007), 
Lakoff and Johnson (1980, 1999) argue that metaphor is not simply 
the way we talk about abstract things, but how we think about them 
as well. On this view, we understand and reason about abstract 
domains like theories, time, and love through our concrete, embod-
ied experiences (e.g., of interacting with physical buildings). Thus, 
our perceptual and motor experiences actually structure our abil-
ity to engage in abstract thinking. Empirical demonstrations of 
embodied metaphor have taken the form of experiments showing 
that activating a concrete source domain (e.g., space) influences 
responses and inferences in the abstract target domain (e.g., time; 
Boroditsky and Ramscar, 2002; Casasanto and Boroditsky, 2008; 
Jostmann et al., 2009; Ackerman et al., 2010).

One important challenge facing researchers is to account for 
this view of metaphorical thought at a more precise, mechanistic 
level of description (Murphy, 1996, 1997; Barsalou, 2008). This may 

IntroductIon
In recent years, a growing body of data has been gathered in sup-
port of the idea that the mind is situated and embodied and that 
cognition is grounded in sensory-motor interactions with the world 
(Varela et al., 1991; Clark, 1998; Barsalou, 1999, 2008; Lakoff and 
Johnson, 1999; Gibbs, 2006; Spivey, 2007; Chemero, 2009). The 
guiding tenet of the embodied cognition (EC) movement holds that 
cognitive processes are shaped and structured by the fact that an 
agent has a particular kind of body and is embedded in a particular 
kind of environment. Crucially, the effects of embodiment can and 
should be observed at all levels of cognitive processing, from vision 
and memory (Glenberg, 1997; Noë, 2004; Proffitt, 2006), to emotion 
and action perception (Rizzolatti and Craighero, 2004; Niedenthal 
et al., 2005), to language and abstract thought (Barsalou, 1999; 
Lakoff and Johnson, 1999; Feldman, 2006; Gibbs, 2006; Barsalou, 
2008). It has been argued that this “body-up” approach to cogni-
tion poses a serious challenge to more traditional “mind-down” 
approaches in cognitive science (Lakoff and Johnson, 1999; Spivey, 
2007; Barsalou, 2008; Chemero, 2009), which have attempted to 
define cognition in terms of discrete, amodal, symbolic informa-
tion-processing mechanisms divorced of any particular physical 
instantiation (Fodor, 1975; Marr, 1982; Kemp and Tenenbaum, 
2008).

This debate has been particularly contentious in discussions of 
high-level cognition, where the amodal symbolic view has typi-
cally dominated. As a result, the embodiment of metaphor and 
abstract thought has become one of the most hotly researched, 
discussed, and debated issues within cognitive science (Lakoff and 
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experience in the temporal domain, in much the same way that 
we can freely move around and interact with our spatial, but not 
temporal, environment. Because the model is sensitive to the ways 
in which the structure of time is similar to the structure of space, 
it develops representations of time that are partially constituted 
by its knowledge of space. Therefore, even in the absence of direct 
co-occurrence of space and time during learning, the network is 
able to exploit this structural similarity to draw inferences about 
temporal events by using what it knows about space. This demon-
strates a novel learning mechanism that operates over the course 
of development and gives rise to deeply metaphorical semantic 
representations, which may serve as a tractable implementation of 
existing theories of metaphorically structured thought (e.g., Lakoff 
and Johnson, 1980; Boroditsky, 2000).

The broad goal of this paper is to serve as an example of how 
computational models and EC can reciprocally inform one another. 
In particular, we make the case that connectionist architectures 
can help explain many surprising results from the EC literature 
(for related views, see Bechtel, 1997; Clark, 1998; Spivey, 2007). 
Crucially, our model focuses on the learning process and forms 
overlapping, distributed representations, which have exactly the 
properties required by many embodied accounts of cognition. In 
particular, these representations, together with the learning process, 
support the integration of experience from multiple modalities, 
including perceptual-motor, linguistic, and cultural information. 
At the same time, extending the scope of the model to incorporate 
insights from EC transforms our interpretation of the modeling 
approach more generally. This can lead to new ways of thinking 
about how to set up and investigate particular ideas within this 
modeling framework. Ultimately, we suggest that this integrative 
approach can serve as a unifying framework that may help drive 
future progress within cognitive science.

MaterIals and Methods
General ModelInG fraMework
The network can be thought of as an agent experiencing its world. 
Over the course of “training” the agent repeatedly experiences 
events in the world, predicts their outcomes, and learns something 
about how the actual events differ from its predictions. The envi-
ronment and the agent are simplified so as to render the learning 
process tractable, while still retaining those aspects of environ-
mental structure which are crucial for producing the phenomena 
the model is supposed to explain, and to make it possible to ana-
lyze what the agent has learned (for a discussion of this issue, see 
McClelland, 2009).

In this model, the environment consists of the various items 
in the world that the agent experiences in their various relational 
contexts (collectively forming the input patterns), together with 
the subsequent states of the world that the network attempts to 
predict (the target output patterns). The network that comprises 
the agent is wired up in a strictly feed-forward fashion, as shown 
in Figure 1. While we assume that in reality agents interact with 
the world in a dynamic fashion, for simplicity we consider only 
one portion of this dynamic interaction. On each trial, the agent 
experiences some portion of the world (e.g., that it is standing in 
a particular section of space and moving in a particular direction), 
makes a prediction about what it will experience next (e.g., that 

be particularly problematic because EC is not a singular,  unified 
framework, but rather a collection of heterogeneous viewpoints 
that may be only loosely related to one another in terms of theo-
retical commitments and empirical investigation (Wilson, 2002; 
Ziemke, 2003; Gibbs, 2006; Barsalou, 2008; Chemero, 2009). In 
addition, because these competing perspectives are commonly 
described only verbally, it can be difficult to use them to generate 
the precise predictions that might allow us to directly compare them 
(but see Lakoff and Johnson, 1999; Feldman, 2006).

Taking a computational modeling approach may provide a 
potential remedy to these issues. The development of specific, 
simplified models can help researchers understand complex 
cognitive processes at a level of detail that theories of EC have 
sometimes lacked (see, e.g., Broadbent, 1987; Smolensky, 1988; 
Hintzman, 1991; Seidenberg, 1993; Barsalou, 1999, 2008; Spivey, 
2007; McClelland, 2009). The process of constructing a model dif-
fers from a verbally described theory in that it forces the researcher 
to commit at least temporarily to a particular internally consistent 
instantiation of the environment and the agent that acts within it. 
As a result, computational models can make precise predictions 
that can be tested empirically. Grounding empirical findings in 
terms of a model and making principled modifications to that 
model in order to accommodate these findings can help researchers 
explore and clarify ideas (McClelland, 2009). In addition, because 
models can often reveal principles that underlie a given set of phe-
nomena, modeling frameworks can sometimes help unify various 
areas of empirical inquiry (Estes, 1955; Rescorla, 1988; McClelland 
et al., 1995; Ramscar et al., 2010). This special topic of Frontiers 
in Cognition is evidence that more researchers are starting to take 
computational modeling seriously as a method for exploring the 
principles and mechanisms that support EC (see Spivey, 2007 for 
a call to arms on this issue).

At the same time, the findings from EC outlined above provide 
computational modelers the opportunity to look to for evidence of 
the ways in which cognition naturally unfolds in a real, embodied 
agent (for a recent review, see Barsalou, 2008). This will strongly 
influence not only the details of the model environment, but also 
the choice of the learning problem to be solved by the model. 
Modelers focused on understanding learning processes should 
attend to the fact that the information reaching the cognitive sys-
tem is always structured by the relationship between the organism 
and its environment, which may lead to surprising new ways of 
thinking about everything from visual perception (Noë, 2004) to 
semantics (Barsalou, 1999).

The present paper has both a narrow and a broad goal. The nar-
row goal is to capture the effects of embodied conceptual metaphor 
using a connectionist model. In lieu of instantiating a particular 
EC theory of metaphor, we repurpose an existing connectionist 
model of semantic cognition (Rogers and McClelland, 2004) to 
explore how our experience of space can structure how we think 
and reason about time. This approach may be especially fruitful 
because it promises to bring together more established modeling 
principles with the novel findings from EC.

Our network receives direct experience with both space and time 
in its simplified environment, including experience that is analo-
gous to the use of linguistic or cultural cues. However, the network’s 
experience in the spatial domain is more richly structured than its 



www.frontiersin.org November 2010 | Volume 1 | Article 197 | 3

Flusberg et al. Connectionist embodied metaphor

Initially, the network is instantiated with small random weights 
connecting each of the layers. As a result, its internal representa-
tions of all items and all relations will be similar, and therefore 
its predictions about the world will be the same for all inputs. 
Whenever the network’s output fails to match the target pattern, 
however, it receives an error signal in proportion to the squared 
output error. This error signal informs the network both when it 
has predicted events that do not occur and when it has failed to 
predict an event that did occur. In practice, this error signal serves 
to adjust the weights from the inputs to the outputs in proportion 
to the error that they caused, using the standard backpropagation 
learning algorithm.

Since different input patterns predict different events “in the 
world,” the network will gradually learn to differentiate the items 
from each other, and the relations from each other. This process 
of differentiation is driven by differences in what the various items 
predict about what else may happen in the world, not directly by, for 
example, the degree of overlap in the perceptual inputs (for related 
views, see Gibson and Gibson, 1955; Rogers and McClelland, 2008; 
Ramscar et al., 2010). However, wherever there is similarity between 
different items, these similarities will be encoded in the learned, 
distributed representations. The “similarity,” as we will show, can 
be similarity either in the explicit overlap between their predictions 
or in the systematic structural relationships among the various 
items within a domain. These internal representations therefore 
capture, in a graded and sub-symbolic fashion, both the similari-
ties and the differences between the items. In the simulations that 
follow, we examine whether this framework can account for some 
of the empirical findings from the conceptual metaphor literature. 
In order to motivate the simulations, we begin with a discussion 
of a specific example of conceptual metaphor.

a case study of eMbodIed conceptual Metaphor: tIMe as space
One the best documented cases of how abstract thinking can be 
metaphorically structured by concrete experience comes from the 
domain of time (Clark, 1973; Lakoff and Johnson, 1980; McGlone 
and Harding, 1998; Boroditsky, 2000, 2001; Boroditsky and 
Ramscar, 2002; Gentner et al., 2002; Evans, 2004; Matlock et al., 
2005; Casasanto and Boroditsky, 2008). The language we use to talk 
about time is heavily infused with the language we use to talk about 
space, as when we talk about a long meeting or two birthdays being 
close together (Clark, 1973; Lakoff and Johnson, 1980). Consistent 
with the EC perspective, our actual perception of space can influ-
ence how we experience and reason about time (Casasanto and 
Boroditsky, 2008). For example, Casasanto and Boroditsky (2008) 
found that the length (in spatial extension) of a line on a computer 
screen affected how long (in temporal duration) it was judged to 
remain on the screen: the longer the line, the longer the time.

Like many other abstract, complex domains, there is more than 
one system of metaphor for talking and thinking about time (Clark, 
1973; Lakoff and Johnson, 1980; Gentner et al., 2002). For instance, 
we can imagine ourselves moving forward through time, like when 
we talk about coming up on the holidays (ego-moving perspective), 
but we can also imagine remaining stationary as time moves toward 
us, like when we talk about the holidays fast approaching (time-
moving perspective). Some spatial words that we use to talk about 
temporal events are ambiguous because they can be  interpreted 

it will encounter another particular section of space), and learns 
about the ways in which it was incorrect, thereby improving future 
predictions.

The network’s knowledge is stored in the weights between the 
layers. When a pattern of activation occurs across one of the layers, 
that activation propagates forward through the weights to the next 
layer. The patterns of activation at the input layers are thought of 
as multimodal sensory-motor input from the environment. In the 
Item layer, these inputs stand for the experience of physical locations 
in space and temporally extended events such as the days of the 
week or a meeting. In the Relation layer, the inputs stand for differ-
ent kinds of relationships that these items can have to each other; 
for example, we might ask the network what day is earlier than 
Wednesday, or what section of space is West of the blue section.

While these layers consist of labeled units, they are best thought 
of as standing for distributed representations that were learned from 
other, lower-level (possibly modality-specific) patterns of percep-
tual-motor experience. This simplification does not strongly affect 
how the model works because the network is forced to create its own 
distributed representations of these perceptual inputs in the layers 
that immediately follow (see, e.g., Rogers and McClelland, 2004). 
In particular, the Learned Item Representation is a re- representation 
of the Item inputs, integrating all of the information it has learned 
across all relations to create a densely overlapping set of patterns 
that encode the structural regularities that hold between the items. 
The Learned Relation Representation serves the complementary 
function for the Relation inputs. Activation in these layers then 
propagates forward to the Integration layer. Here, information about 
the two input pathways is combined in a way that we presume is 
similar to how modality-specific information is integrated at earlier 
layers. This integrated representation is used to make a prediction 
about the target pattern, which is represented by activations of the 
Output layer. In the current model, the target pattern consists of 
another item (or set of items) that bears the appropriate relation 
to the input.

Figure 1 | Diagram of network architecture.
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the East or West of its current position (and adjusting the weights 
in proportion to the error of this prediction, as described above). 
In practice, this works by presenting the network with one or more 
items along with a relation in the input layers and asking it to 
generate all appropriate outputs. For instance, if the network were 
presented with blue and West of it would have to output green and 
yellow (i.e., what the network would see if it looked toward the East 
while standing on the blue section: the sections of space that the 
blue section lies to the West of).

Time is also laid out in a single dimension from earlier to later 
events. Time is divided up into distinct moments, the days of the 
week, which follow a specific temporal sequence (going from 

 differently depending on which metaphorical  perspective is 
adopted. For example, if you are told that Wednesday’s meeting has 
been moved forward 2 days and you had adopted the ego-moving 
perspective, you would conclude that the meeting is now on Friday. 
However, if you had adopted the time-moving perspective you 
would conclude that the meeting is now on Monday (McGlone 
and Harding, 1998; Boroditsky, 2000; Boroditsky and Ramscar, 
2002). Several experiments have demonstrated that the way people 
are currently thinking about space directly affects which of these 
perspectives they select and therefore how they reason about time 
(Boroditsky, 2000; Boroditsky and Ramscar, 2002). For example, 
people who are asked the Wednesday’s meeting question at an air-
port are more likely to take the ego-moving perspective (i.e., give 
the Friday response) because they are about to take a flight (i.e., 
move through space) than when they are waiting to pick someone 
up (i.e., someone is approaching them in space; Boroditsky and 
Ramscar, 2002).

These findings suggest that we automatically use our online 
representations of space to structure our thinking about time. Why 
might this be the case and what mechanisms support this process? 
Researchers have highlighted at least two rich sources of informa-
tion in our experience that could give rise to the metaphorical 
mapping between time and space. First, time and space co-occur 
in meaningful ways in our experience moving and acting in our 
environment (Lakoff and Johnson, 1980; Boroditsky, 2000). For 
instance, walking a longer distance typically takes a longer amount 
of time. Second, the structure of our linguistic experience, includ-
ing the specific spatial metaphors we use as well as features of the 
language such as writing direction, might also influence how the 
concept of time is structured in terms of space (Boroditsky, 2000, 
2001; Boroditsky and Gaby, 2010; Fuhrman and Boroditsky, 2010). 
For example, in both explicit event sequencing tasks and implicit 
temporal judgment tasks people represent time as progressing 
from the past to the future in a manner consistent with the writ-
ing direction of their language (Fuhrman and Boroditsky, 2010). In 
the following simulations we use the general modeling framework 
described above to explore how these metaphorical mappings may 
emerge gradually over the course of learning. Unlike previous pro-
posals about the emergence of metaphor over developmental time, 
the mappings are not driven primarily by direct co-occurrence, but 
by the similarities in the structural regularities across domains.

Model sIMulatIon 1
In the first simulation, the network learns about space and time 
through experience trying to predict how space and time are struc-
tured in the model environment (see Table 1 for detailed model 
specifications). In the simplified environment of the model, space is 
laid out along a single dimension running from West to East (unlike 
our own environment, in which space is three-dimensional and also 
includes north and south, up and down! See Figure 2). To make 
the simulation easier to talk about and understand, space is divided 
into sections of different colors, going from red to blue to green 
to yellow as you move toward the East. Throughout the course of 
training the network will attempt to learn that two relations – East 
of and West of – structure the spatial arrangement of the colored 
sections in the environment. Training proceeds by asking the model 
to predict what color section of space it will “see” if it looks toward 

Table 1 | Detailed simulation parameters.

 Sim 1 Sim 2

LayerS (# uniTS)

Item 11 10

Relation 6 6

Learned item representation 7 7

Learned relation representation 4 4

Integration 9 9

Output 11 10

 OTher ParameTerS

Initial weight range (−/+) −0.05/0.05

Activation function Sigmoid

Error measure SSE

Learning rate 0.1

Momentum 0

Figure 2 | a diagram illustrating the structure of spatial and temporal 
relations in the model environment. The network learns about the 
consequences of both itself and other agents moving in the environment, 
though movement in the temporal domain is ambiguous.



www.frontiersin.org November 2010 | Volume 1 | Article 197 | 5

Flusberg et al. Connectionist embodied metaphor

of time in order to resolve an ambiguous temporal reasoning task. 
In Simulation 2, we explore whether the network can learn to map 
the directionality of time (from earlier to later) onto other spatial 
cues in the environment (e.g., the directionality of space, from West 
to East). Several studies have demonstrated that culturally specific 
spatial cues, such as writing direction (Fuhrman and Boroditsky, 
2010) and absolute spatial coordinate systems (Boroditsky and 
Gaby, 2010), can influence and structure how people think about 
the directional “flow” of time.

The model was set up in a very similar manner as in Simulation 1. 
However, where Simulation 1 included an ambiguity in the tem-
poral domain, Simulation 2 removes that ambiguity in order to 
closely align the meanings of the temporal and spatial relations. 
In particular, the moves forward relation was made unambiguous 
in both the spatial and temporal domains, by removing the other 
item. In the temporal domain, moves forward always predicted that 
the Wednesday meeting should occur on Friday, never Monday, and 
moves backward always predicted that Wednesday meetings should 
occur on Monday, never Friday. This might be interpreted as a 
culturally specific bias, analogous to the experience of reading tem-
porally sequenced material like calendars and comics from left to 
right (or even writing direction itself, see Fuhrman and Boroditsky, 
2010). In the spatial domain, we removed the patterns in which the 
other agent moves forward from blue to red and moves backward 
from blue to green, again rendering the situation unambiguous. 
Removing these four patterns, two from the temporal domain and 
two from the spatial domain, leaves the moves forward relation 
consistent with the earlier than relation in the temporal domain 
and with the West of relation in the spatial domain. This can be 
seen in the predicted outcomes of the events: moves forward from 
Wednesday predicts Friday, and Wednesday is earlier than Friday, 
and so on for the spatial domain.

If the model is sensitive to the structural similarities present in 
this environment, it should learn that the West of and earlier than 
relations make similar predictions in their respective domains, as 
do the East of and later than relations. As a result, the learned dis-
tributed representations for these pairs of relations should become 
similar as a function of experience – allowing, for instance, spatial 
words like East of and West of to be sensibly interpreted in the tem-
poral domain (e.g., Wednesday is East of Monday or Wednesday is 
West of Friday). The model only ever observes West of and East of in 
the spatial domain, and earlier than and later than in the temporal 
domain, so an account based on direct co-occurrence would not 
generate the same prediction. This would provide a demonstration 
of how culturally specific features of the environment such as writ-
ing direction or dominant spatial coordinate systems could come to 
organize our representations of abstract domains such as time.

results
sIMulatIon 1
In the first simulation we explored whether an ambiguity in the tem-
poral domain (i.e., that a Wednesday meeting sometimes moves forward 
to Monday and sometimes moves forward to Friday) can be resolved by 
activating a particular spatial frame of reference. That is, even though 
the model has no experience with the self/other distinction in the tem-
poral domain, we can nevertheless activate one of these spatial frames 
of reference in the temporal domain when asking the model whether 

Monday to Wednesday to Friday to Sunday as you progress later 
in time). During training the network will attempt to learn that 
two relations – earlier than and later than – structure the temporal 
sequence of the days of the week. The network learns about time in 
the same way that it learns about space. Thus, if the network were 
presented with Monday and earlier than as inputs it would have to 
generate Wednesday, Friday, and Sunday as outputs (i.e., the days 
of the week that Monday is earlier than).

Crucially, the network enjoys a richer, more structured set of 
experiences in the spatial domain because it can observe the conse-
quences of its own movements in space (as well as the consequences 
of the movements of other agents in the environment). We can 
imagine that, like most mobile organisms, the network has both 
a front and back and can move forward and backward in space. 
To keep things simple, let us imagine that the network is standing 
on the blue section of space facing toward the East. If the network 
moves forward, it will move toward the East end up on the green 
section of space, while if it moves backward it will move toward the 
West and end up on the red section of space. However, forward and 
backward movements in space are not simply the same as moving 
toward the East or West. Now imagine that the network is observ-
ing another agent in the environment that is standing on the blue 
section of space and facing West. If this other agent moves forward, 
it will move toward the West end up on the red section of space, 
while if it moves backward it will move toward the East and end up 
on the green section of space. Thus the network has to learn that the 
consequences of moving backward and forward in space depends on 
whether it is attending to its own movements or to the movements 
of another agent. In practice, this works by including self and other 
items in the input layer to let the network know whose movements 
it is observing (see Figure 2). To keep things simple, we assume that 
the model is always facing toward the East and the other agent in 
the environment is always facing toward the West.

While the effects of movement in the spatial environment are 
unambiguous in the presence of either the self or other context, 
the model’s experience of “movement” in the temporal domain is 
ambiguous in that there is no consistent mapping between forward/
backward and earlier/later. The model learns that when a Wednesday 
meeting moves forward, it sometimes is moved to Monday, and 
other times it is moved to Friday. The same can occur when a 
meeting moves backward. Structuring the temporal domain in this 
way allows us to study to the ambiguity explored in Boroditsky 
(2000) and Boroditsky and Ramscar (2002). In particular, while 
the network has no experience with the self/other distinction in the 
temporal domain, we can examine whether it can use its experience 
with the effects of these contexts in the spatial domain to resolve 
the ambiguity of “movement” in the temporal domain. That is, we 
can test whether activating a particular spatial frame of reference 
(i.e., the self or other perspective) in the context of reasoning about 
a temporal event (i.e., moving the Wednesday meeting forward) will 
influence the network’s expectations about the effects of “move-
ment” in the temporal domain.

Model sIMulatIon 2
The first simulation investigated whether the network would 
learn to metaphorically map its relatively rich experience with 
space onto the parallel but experientially impoverished domain 
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the spatial domain (and so that moves backward was consistent with 
earlier than and West of). If the network is able to take advantage of 
this similarity in a way that is consistent with empirical findings (e.g., 
Fuhrman and Boroditsky, 2010; Boroditsky and Gaby,2010), then 
it should be able to interpret, for example, the relations East of and 
West of in the domain of time (i.e., Wednesday is East of Monday and 
Wednesday is West of Friday) even though these relations were never 
explicitly paired with temporal inputs or outputs in training.

We investigated this issue by exposing the network to 10,000 epochs 
of training and then freezing the weights. At this point the network had 
learned to make correct predictions for each of the training patterns 
(mean tss = 0.0898, SD = 0.0375). We then presented the network 
with two novel test patterns: one pairing Wednesday with East of on 
the input, the other pairing Wednesday with West of on the input.

When Wednesday was paired with the East of relation, the model 
predicted Monday (mean = 0.525, SD = 0.421) more than Friday 
(mean = 0.022, SD = 0.046), whereas when Wednesday was paired 
with the West of relation, the model predicted Friday (mean = 0.324, 
SD = 0.387) more than Monday (mean = 0.098, SD = 0.306). A regres-
sion model that predicted output activation with contrast-coded pre-
dictors for Day (Monday, Friday) and Relation (East of, West of) as well 
as an interaction term was fit to the two test patterns. Neither main 
effect was significant (Day: β = 0.032, p = 0.54; Relation: β = −0.069, 
p = 0.19); however, the Day × Perspective interaction was significant 
(β = −0.182, p < 0.01), indicating that these relation units held mean-
ing in the domain of time even though this was the first time the model 
had encountered them in the temporal context (Figure 4).

In order to determine why this effect occurred, we submitted 
the representations for each of the relations of interest (i.e., West 
of, East of, earlier, later, moves forward, and moves backward) in the 
Learned Representation Layer to a hierarchical clustering analysis 
(shown in Figure 5). This analysis shows that the representation 
of West of is very similar to the representation of earlier, and the 
representation of East of is similar to the representation of later. It 
also shows that moves forward is more similar to West of and earlier, 
and moves backward is more similar to East of and later.

it thinks Wednesday meetings move forward to Monday or Friday. If 
these reference frames influence the model’s interpretation of moves 
forward in a way that is consistent with empirical results (Boroditsky, 
2000; Boroditsky and Ramscar, 2002), we would expect that including 
self as an input (along with Wednesday, meeting, and moves forward) 
would yield relatively more activation in the Friday output unit than 
the Monday output unit. Alternatively, we would expect that including 
other as an input instead would result in relatively more activation in 
the Monday output unit than the Friday output unit.

To investigate this, we exposed the network to 10,000 epochs of 
training in the simplified environment, at which point we froze the 
weights to prevent further learning and began the testing phase. The 
statistics reported for both simulations include activation values that 
have been averaged across 10 instances of the model to ensure that 
any effects are not the result of a random bias in a particular instance. 
First, we tested whether the network had learned the unambiguous 
spatial and temporal structure of its environment by presenting it 
with the same input–output pairings that it was trained on. Indeed, 
the network performed quite well on this test (mean tss = 2.31, 
SD = 0.32)1, demonstrating that it had correctly learned the features 
of its environment that it had been directly exposed to during train-
ing. Next we tested whether including a spatial frame of reference 
(i.e., self vs. other) influenced the network’s predictions for the effect 
of moves forward in the temporal domain. We measured this effect 
by comparing three test patterns: (1) the ambiguous pattern that the 
network was trained on in which the Wednesday and meeting items 
were paired with the moves forward relation, (2) this same pattern 
with the self item included as an input, and (3) this same pattern 
with the other item included as an input (instead of self).

The model learned that moves forward was ambiguous in the 
temporal domain when the self and other items were not included 
as inputs. Specifically, when tested on the ambiguous pattern, 
the model fully predicted meeting on the output (mean = 0.981, 
SD = 0.0043) and partially predicted both Monday (mean = 0.500, 
SD = 0.0075) and Friday (mean = 0.503, SD = 0.0069). No other 
units had average activations greater than 0.02. A regression model 
that predicted output activation of the two target units (Monday 
and Friday) with contrast-coded predictors for Day (Monday, 
Friday) and Perspective (self, other) as well as a Day × Perspective 
interaction term, was fit to the two test patterns. Both main effects 
were significant (Day: β = 0.062, p < 0.05; Perspective: β = −0.100, 
p < 0.01) as was the interaction term (β = 0.081, p < 0.01), indicat-
ing that including the perspective units shifted the degree to which 
the model predicted that Wednesday’s meeting would move forward 
to Monday or Friday (see Figure 3).

sIMulatIon 2
In the second simulation, we explored whether the network could 
in principle learn to map the directionality of time (from earlier to 
later) onto the directionality of space (from West to East). In order to 
clearly explore this possibility, we modified the model’s environment 
slightly from that of Simulation 1 so that the moves forward relation 
was consistent with later than in the temporal domain and East of in 

Figure 3 | The results of Simulation 1 showing that activating a 
particular spatial frame of reference biases the network’s predictions 
about movement in the temporal domain.

1The imposed ambiguity in the temporal domain (i.e., that Wednesday’s meeting 
can move both forward and backward to Monday or Friday) made it impossible for 
the network’s tss to improve beyond 2.
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of time with space or of love with physical warmth (Lakoff and 
Johnson, 1999; see also the afterward to the 2003 edition of Lakoff 
and Johnson, 1980). The model presented here demonstrates 
another, more general, yet equally grounded pathway to metaphor: 
structural similarity between the target and the source domain 
(see also Boroditsky, 2000). However, this use of structural simi-
larity is not a distinct online, rule-based algorithm operating over 
symbolic representations, as in other theories of structural align-
ment in metaphor comprehension and analogical reasoning (e.g., 
Falkenhainer et al., 1989); rather, it is a result of the gradual process 
of differentiation that takes place over the entire course of learning. 
It is fair to say that the network’s knowledge of time is partially 
constituted by the learned structural relations in the spatial domain. 
This is demonstrated by the metaphoric remapping between time 
and space, which, in this model, share almost no input (only the 
moves forward and moves backward units) and no output units at 
all. Merely having distributed representations, as most connection-
ist models do, is not sufficient for this kind of behavior to emerge; 
the process by which those representations were acquired through 
experience with the environment is also critical.

To understand why the remapping occurs, recall that the model 
initially treats all items and relations as equivalent (due to its small 
and random initial weights) and only discriminates objects as it is 
forced to do so by the flow of information from the world. Over the 
course of this differentiation process, the model constructs several 
high-dimensional and highly overlapping representations for the 
items, the relations, and the item–relation conjunctions, all passing 
through the same sets of weights and patterns of activation over the 
same sets of units. If the network can reuse certain dimensions of its 
representations because of similarity in the structural relationships 
between and among items and contexts, it will tend to do so. Since 
the spatial and temporal domains share most, though not all, of 
their respective relational structure, the network learns a partially 
unified representation for the two domains. These overlapping rep-
resentations, which are a direct result of the differentiation process, 
give rise to the influence of the concrete spatial experience on the 
abstract temporal reasoning task.

This model demonstrates that the structural homology between 
domains of experience is one aspect of the environment that can 
drive generalization (or, more properly, partial lack of differentia-
tion) for metaphorical inference. But it is not the only way that 
metaphors can be learned. As mentioned above, co-occurrence of 
more abstract with more concrete domains of experience may also 
cause the learner to build metaphorical semantic representations. 
This is because the experience with the abstract domain will often 
predict properties that are also predicted during experience with the 
concrete domain, which may drive the representations to become 
more similar than they would otherwise be. In Simulation 2, it is 
indeed co-occurrence that drives learning, but it is indirect, not 
direct, co-occurrence. The moves forward unit in this simulation 
is unambiguously similar to West of when it occurs in the spatial 
domain, and to earlier than when it occurs in the temporal domain. 
Notice that West of and earlier than never predict similar outputs 
in a way that would cause them to become similar, so this is not 
a matter of raw co-occurrence. Still, the model is encouraged to 
draw its representations of moves forward, West of, and earlier than 
into a similar semantic structure because these relations must be 

suMMary of fIndInGs
Both model simulations successfully learned a representation of the 
temporal structure of the world based partially on their experience 
with space. In Simulation 1, this allowed the network to resolve an 
ambiguity in the temporal domain by relying on additional structure 
only present in the spatial domain: a true application of conceptual 
metaphor to aid cognition. In Simulation 2, the network’s representa-
tions of the spatial and temporal domains were shaped by a structural 
homology between the domains: in this case, a “culturally driven” bias 
to scan from West to East through time. In both cases, the network’s 
metaphoric concepts were not driven by direct co-occurrence between 
concepts within the domains (e.g., distance with duration). Rather, the 
available information for learning the metaphor was the second-order 
relations between items within each domain (e.g., things move around 
in space in a similar way to how events can be sequenced in time).

dIscussIon
why the Model works
Several theorists have proposed that the grounding of abstract 
thought in concrete knowledge may be due in part to the direct 
co-occurrence of certain domains in experience, for example, 

Figure 4 | The results of Simulation 2 showing that spatial relations that 
were never directly experienced in the temporal domain can still 
structure temporal reasoning.

Figure 5 | The structure of the learned relation representation layer in 
Simulation 2.
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relations. These relations may be thought of as different kinds of 
world contexts within which the items might be encountered. For 
example, when first observing a robin, one might notice that it is 
red; when attempting to catch a robin, one might observe that it can 
fly away; and when discussing robins with other people, one might 
be informed that a robin is a bird and an animal. If language is used 
to describe things in the world, we would expect that the relational 
context within which linguistic information is acquired should 
bear some structural resemblance to relational contexts grounded 
in perceptual-motor experience. In this case, as described above, the 
structural information may shape the representations even across 
different relations, leading to just the effects of language on thought 
that have been shown in experimental work.

IMplIcatIons of the Model for eMbodIMent
We have presented this model as an exploration of effects in the 
embodied conceptual metaphor literature, and as having implica-
tions for theories of EC as a whole. Thus it is important to address 
the possible criticism that this model neither is embodied nor 
speaks to issues in EC.

For one, because the inputs and outputs of this network are 
labeled units, of which only a few are active at a given time, the 
model may appear to support a more classically symbolic approach 
to cognition than EC would endorse. Indeed, these representations 
are highly simplified and abstracted from realistic sensorimotor 
information. We make the claim that this is an acceptable simpli-
fication because falling back to a relatively more localist represen-
tation does not fundamentally change the way the model works. 
Simulations by Rogers and McClelland (2004) using a similar model 
demonstrated that replacing the localist input units with a distrib-
uted input representation (e.g., of the visual features of animals, 
rather than their names) did not affect the model’s performance 
in any significant way. There is reason to expect this result, since 
the model is not allowed to manipulate these localist inputs in any 
direct fashion; rather, as we noted earlier, it is forced to create its 
own distributed representations of these inputs in the layers that 
immediately follow. Our inputs may look like “linguistic” rather 
than “sensorimotor” representations precisely because they are 
localist, and many in the field think of linguistic units as localist 
symbols. While we do not exclude linguistic information as part 
of the experience relevant to the time/space effects (and neither do 
most researchers in the field), we do intend our model to stand for 
the entire space of experiences available to the agent.

Of course, this localist/distributed argument is somewhat dis-
tinct from the question of whether our training patterns accurately 
reflect the sensorimotor inputs to an agent, which in this case they 
do not and cannot. Even distributed representations would have 
to be greatly simplified and abstracted relative to the enormous 
flow of information that continuously impinges on the sensory 
receptors of any biological agent. Better input and output repre-
sentations are surely possible. One promising approach would be 
to use unsupervised learning mechanisms such as the deep belief 
networks of Hinton and Salakhutdinov (2006) in order to extract 
distributed representations from more ecologically valid datasets. 
As this is not the focus of the current research, we used minimally 
distributed item representations, which nevertheless allowed us to 
capture the learning processes of interest.

re-represented in the Learned Representation Layer. In a parallel 
fashion, moves backward draws together the cross-domain rela-
tions East of and later than. The bridging between structures can 
occur because of similarity in the structural relationships among 
the items within each domain, or because of some direct or indirect 
co-occurrence (or co-prediction) in the environment, or (as we 
believe is probably the case in most natural settings) both.

Another mechanism that drives metaphorical structuring is 
language use. There are at least two routes through which lan-
guage can bring about metaphoric alignment, one slow and one 
fast. In the current framework, linguistic experience is considered 
to be another aspect of the environment (this point is discussed 
in more detail below). The influence of language here would be 
across the (slow) course of development, serving as additional scaf-
folding for similar high-order structures (as in Simulation 1) or 
as an indirect co-occurrence cue or outcome (as in Simulation 2). 
On the other hand, language might be used online to point out a 
novel metaphorical structural mapping, such as “an atom is like the 
solar system.” The agent’s task is then to take two existing seman-
tic structures and figure out what aspects of those structures the 
conversational partner intends to highlight. Our model deals with 
a very slow process of learning and differentiation, but does not 
have a way of rapidly integrating new information, so this kind of 
novel metaphorical language is a problem in this model. However, 
we are not claiming that our model describes the whole story, and 
any model of learning like ours will eventually need to take into 
account fast-learning processes as well (McClelland et al., 1995). 
Our model is nevertheless a novel contribution to the literature, 
as existing models of metaphor (and analogy) that do deal with 
online structural alignment (e.g., Falkenhainer et al., 1989) do not 
attempt to slowly integrate structural information over the course 
of development.

The possibility that speakers of different languages might catego-
rize or even perceive the world in different ways has been a focus of 
scrutiny in recent work (e.g., Boroditsky et al., 2003; Majid et al., 
2004; Winawer et al., 2007). One might expect that if embodi-
ment holds, then the environment itself would fully determine 
the semantic representations possessed by the agents within that 
environment (and therefore language use would not really have 
any effect on conceptual representation; for a related position, see 
Gleitman and Papafragou, 2005). While this viewpoint recognizes 
the importance of the statistics of the environment in semantic 
learning, it fails to appreciate that linguistic information is itself 
another rich source of environmental statistics. The modeling 
approach described here provides a principled way of integrating 
the effects of language on cognition with EC (see also Dilkina et al., 
2007; Boroditsky and Prinz, 2008; Andrews et al., 2009).

In our modeling framework, the key to this integration is to allow 
the network to experience a linguistic relational context alongside 
contexts conveying other kinds of perceptual and motor informa-
tion. The network integrates information for each item across many 
different relational contexts, though these are limited to a fairly small 
set of physical and temporal relations. However, in other related 
models the contexts can take on a much broader meaning (e.g., 
Rogers and McClelland, 2004; Thibodeau et al., 2009). For exam-
ple, in the semantic cognition model of Rogers and McClelland 
(2004, 2008), contexts include the Quillian-like is-a, is, can, and has 
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to the motor domain (e.g., “The reader grasped the ideas in the 
paper”), we would draw on neural mechanisms that support actual 
motor planning or execution. Recently, neuroimaging evidence has 
been gathered in support of this claim (Boulenger et al., 2009). 
Other work has shown that processing metaphorical language 
about movement in space (e.g., “Stock prices soared”) is sufficient 
to adapt direction-selective perceptual circuits and lead to a visual 
motion after-effect (Toskos Dils and Boroditsky, 2010).

In light of these findings, we would predict that brain areas 
responsible for representing spatial experience would also be 
important for certain aspects of temporal reasoning. In fact, recent 
research has implicated parietal cortex in representing space, time, 
number, and other domains that involve magnitudes (for a review, 
see Hubbard et al., 2005; Bueti and Walsh, 2009). Other researchers 
have suggested that the cerebellum, which is important for coordi-
nating fine motor movements and balance in space, might also play 
a role in representing the temporal aspects of linguistic processing 
(Oliveri et al., 2009). The results of our current simulations suggest 
that any brain networks that represent the structure of space or time 
in experience might play a role in these metaphorical processes. 
Future research will explore the relationship between the model 
and the brain more directly.

conclusIon
In the introduction we outlined both a narrow and a broad goal 
for the modeling approach described in this paper. The narrow 
goal, capturing embodied effects in conceptual metaphor using 
a connectionist model, has been described in some detail above. 
We would now like to return to the broader goal of showing how 
connectionist models and theories of EC can mutually inform one 
another, and how marrying these approaches can benefit cognitive 
science as a whole.

For one, we have demonstrated that it is both possible and useful 
for proponents of EC to engage with the rich literature on domain-
general learning mechanisms for insight into how to construct 
models of their findings and generate testable, mechanistic theories. 
This approach promises to provide an implementation of many 
ideas that EC theorists have proposed. Lakoff and Johnson (1980, 
1999) saw that the conceptual system is deeply metaphorical, and 
we can now understand why this might be the case for a particular 
kind of learner embedded in a particular kind of environment. 
Our model provides an illustration of how conceptual metaphor 
naturally emerges within a system that learns the statistical struc-
ture of the environment through progressive differentiation and 
stores its representations as distributed and overlapping patterns 
of activation.

Connectionists, in turn, can gain a new understanding of their 
own models by examining the empirical findings from EC. The 
model of semantic cognition we extended here was originally tested 
on a simple Quillian semantic hierarchy (Collins and Quillian, 1969; 
Rogers and McClelland, 2004), and showed the right patterns of 
learning to account for traditional ideas of conceptual development. 
However, as the EC critique has ably pointed out, the physical abilities 
and limitations of the agent provide an extremely powerful source of 
statistics that pervades the agent’s interactions with all features of its 
environment (Noë, 2004; Gibbs, 2006). This observation transforms 
the implications of the semantic cognition model, allowing us to 

For all that we believe that our simplifications are both justified 
and necessary, it might still be argued that the cumulative effect 
is to render the model “disembodied.” However, to the extent that 
this model has consequences for EC, we would characterize it as a 
model of embodiment. We take our model as a kind of metaphor 
(as all models ultimately are), which points to a certain kind of 
statistical learning process that could help explain many of the 
results in the EC literature. We show that the statistical support 
available for learning environmental regularities is much stronger 
than the raw co-occurrence-based mechanisms previously pro-
posed. Importantly, this helps explain how simple learning mecha-
nisms (of the sort that may be plausibly instantiated by perceptual 
and motor brain regions) can give rise to “higher-level” cognitive 
processes such as conceptual metaphor. This is an example of the 
sort of back-and-forth engagement between connectionist and 
embodied approaches that we hope to foster in this paper. By situat-
ing our model in the EC perspective, we provide stronger support 
for the validity of the EC approach in general, and in particular, 
for the generality of the learning mechanisms that underlie many 
 embodied theories.

future dIrectIons
The current model could be improved upon by including a more 
ecologically valid environment structure and set of training data. 
At present, we have made several simplifying assumptions that do 
not realistically map onto the ways in which humans experience 
space and time. For example, the network receives the same amount 
of experience moving forward and backward in space, only ever 
faces in one direction, and does not actually experience moving into 
every location in the surrounding space. While these simplifications 
allowed us to more easily explore the mechanisms underlying a 
small number of relevant findings, future versions of the model 
could incorporate a more realistic environment structure based on 
empirical findings in order to generate more precise and accurate 
predictions and explanations.

In the process of further developing this model, it will become 
increasingly important to explore the relationship between the 
model and the way in which conceptual metaphor is realized in 
the brain (see also Lakoff and Johnson, 1999; Feldman, 2006). 
One way to approach this question would be to use the model to 
make predictions about how neurological damage should affect 
metaphorical knowledge or the ability to reason metaphorically. 
We believe this approach could be fruitful given that Rogers and 
McClelland (2004) used a variant of the model that we adapted 
for our simulations to understand the degradation of semantic 
knowledge in patients with particular patterns of neurological 
damage. This work has led to more biologically plausible models 
of semantic dementia that highlight the specific role multimodal 
integration layers in the anterior temporal lobes play in semantic 
representation (Rogers et al., 2004).

Research on conceptual metaphor suggests that the effects of 
damage to particular brain regions will depend on the metaphorical 
domain in question. As described above, the reason that the con-
ceptual metaphor approach fits naturally within the wider scope of 
EC theories is that abstract knowledge is thought to be grounded 
in lower-level sensory and motor mechanisms. This view suggests, 
for example, that to understand metaphors that rely on mappings 
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cognitive science where various and diverse theoretical and experi-
mental approaches can be usefully synthesized into a greater whole. 
Movement in this direction is ongoing (see, for example, the recent 
volume edited by Spencer et al., 2009) and we hope that this paper 
may serve as an additional nudge to the field.
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think about it not as an observer gradually learning to construct 
a mirror image of the world inside its head, but as an active and 
embodied agent learning to predict the world around it. Similarly, 
embodiment effects, together with metaphorical overlap between 
learned contexts, provide new ways of thinking about traditional 
controversies. For example, language learning might be thought of 
as a task that occurs not in symbolic isolation, but within the broader 
context of learning to discriminate sounds in general, to produce 
sounds with the mouth in general, to predict the behavior of other 
agents in general, and so on. Thus the EC way of thinking seems to 
fit naturally into the domain-general approach to cognition that has 
been championed by connectionist researchers for decades.

Finally, we would like to suggest that this integrative approach 
to thinking about both EC and computational models might itself 
serve as a model for future research within cognitive science. We 
believe that we are now approaching a point in the evolution of 
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