
subjects show reliable ERPs to faces and noise, which differ reli-
ably across subjects, for reasons yet to be discovered (Rousselet 
et al., 2010; Gaspar et al., in press Reliability of ERP and single-trial 
analyses).

Individual differences in early visual processing have been 
largely ignored in the face literature, and implicitly treated as 
measurement errors that can be filtered out by averaging data 
across subjects. Although understanding the average brain is a 
worthy goal, only the single-trial approach, in conjunction with 
parametric designs, will allow us to understand brain mecha-
nisms and the information content of brain states (Schyns et al., 
2009; Schyns, 2010). In the single-trial framework, timing is 
essential. Indeed, how fast the visual system can discriminate 
among object categories provides strong constraints on possi-
ble computational implementations (Thorpe and Fabre-Thorpe, 
2001; Rousselet et al., 2004; Thorpe, 2009). In particular, the 
timing of task modulations might help us tease apart periods of 
mostly bottom-up, stimulus driven activity, from time-windows 
engaging flexible neuronal populations that might be tuned to 
certain tasks. Thus, task modulations are key to understand 
brain mechanisms (Schyns, 1998; Pernet et al., 2007; Schyns 
et al., 2009).

IntroductIon
Following the first reports of larger scalp responses to faces com-
pared to objects (Bötzel and Grüsser, 1989; Jeffreys, 1989; Jeffreys 
and Tukmachi, 1992; Jeffreys et al., 1992; Seeck and Grüsser, 1992), 
there have been hundreds of studies on the early event-related 
potentials (ERPs) to faces and objects. The vast majority of these 
studies used (i) averaged ERP, (ii) group statistics, and (iii) categori-
cal designs. Their findings can be summarized shortly: sometime 
between 100 and 200 ms after stimulus onset, ERPs to different 
object categories tend to differ from each other, and faces are most 
of the time associated with larger N170 peaks than other object 
categories (Rossion and Jacques, 2008).

Recently, several research groups have started to study these 
early preferential responses to faces in individual subjects (Schyns 
et al., 2003, 2007; Philiastides and Sajda, 2006; Philiastides et al., 
2006; Rousselet et al., 2007a, 2008a,b, 2009, 2010; Smith et al., 2007; 
Liu et al., 2009; Ratcliff et al., 2009; van Rijsbergen and Schyns, 
2009). Individual subjects’ ERPs, show, not surprisingly, system-
atic differences between faces and objects consistent with group 
effects reported so far (Rousselet et al., 2008a). These studies have 
also revealed inter-subject differences: despite coarse agreement 
between group and individual subject statistical analyses, individual 
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single-trial activity discriminated between face and car trials. In the 
same task, ERPs to faces and cars were sensitive to the level of image 
phase noise roughly in the time period 100–300 ms after stimulus 
onset. Among several important results in this paper, the authors 
show that in the color task, in which the noise dimension becomes 
task irrelevant, noise sensitivity was strongly reduced shortly after 
200 ms. This is an important result because it suggests a timing 
for task effects in situations in which subjects discriminate stimuli 
presented at fixation: the first 200 ms of brain activity is mostly 
bottom-up, not modulated by task constraints, followed by a sec-
ond period of brain activity which is modulated by top-down, task 
related influences.

In previous studies, similarly to Philiastides et al. (2006) we 
described phase noise sensitivity of face ERPs in the time-window 
100–300 ms (Rousselet et al., 2008b, 2009, 2010). Although in their 
second experiment (Philiastides et al., 2006) used only two noise 
levels, 30 and 45% phase coherence, their results suggest that when 
we use a larger range of noise levels, as in our previous experiments, 
noise sensitivity should be strongly reduced after 200 ms when it is 
made task irrelevant. We tested this hypothesis by asking subjects to 
perform two tasks: the same face identity discrimination task (face 
1 vs. face 2) we used in previous studies (Rousselet et al., 2008b, 
2009, 2010) and the same color discrimination task (red vs. green) 
used by Philiastides et al. (2006). We performed both group level 
and single-subject analyses to reveal the detailed time-course of 
the task effects.

MaterIals and Methods
Square brackets indicate the boundaries of 95% confidence inter-
vals (CIs) constructed using a percentile bootstrap with 1000 sam-
ples (Wilcox, 2005).

subjects
We recruited 13 subjects, including the second and third authors, 
and 11 subjects from the Glasgow Psychology subject pool. Subjects’ 
mean age was 24 years old (min = 20, max = 32); eight were females, 
11 were right handed. Their mean high-contrast 63 cm decimal acu-
ity was 104 (min = 99, max = 110); their low-contrast 63 cm decimal 
acuity was 96 (min = 89, max = 103). All subjects had a Pelli-Robson 
contrast sensitivity of 1.95 and successfully passed the Ishihara color 
blindness test for red-green color deficiencies. On average subjects 
had 19 years of education (min = 15, max = 23). All subjects except 
the two authors received £6/hour for their participation and all 
subjects gave written informed consent. The research ethics board 
from the University of Glasgow approved the research protocol.

stIMulI
We used two front-view male face photographs cropped within a 
common 4.3° × 6.3° oval frame and pasted on a uniform 9° × 9° 
gray background (Figure 1). These faces were selected from a set 
of 10 faces, which are described in detail in previous publications 
(Gold et al., 1999; Husk et al., 2007). All stimuli had the same 
global amplitude spectrum. We added noise to their phase spectra 
so that their percentage of global phase coherence ranged from 10 
to 80%, with 10% increments. Noise was random on each trial, 
which means that subjects never saw the exact same image twice. We 
also colorized the faces with red and green tones by  manipulating 

For over 10 years, the ERP face literature has been debating 
the existence of task modulations of the N170 face preferential 
response. Several studies used targets vs. non-targets manipula-
tions, in which faces at fixation are attended or ignored, and found 
no evidence of task modulations on the N170 (Séverac-Cauquil 
et al., 2000; Carmel and Bentin, 2002; Rousselet et al., 2007b), and 
its magnetic analog, the M170 (Lueschow et al., 2004; Furey et al., 
2006; Okazaki et al., 2008). Similarly, intracranial recordings failed 
to reveal top-down modulation of the N200 to faces (Puce et al., 
1999). One exception is found in a recent study, which reported an 
effect of category expectation on the N170 (Aranda et al., 2010). 
However, the effect seems to be weak and in a direction opposite to 
the one expected, so it might be a type I error. In contrast to target 
vs. non-target task manipulations, the N170 can be modulated by 
spatial attention (Jacques and Rossion, 2008; Crist et al., 2008) or 
by directing attention away from faces, in conditions in which let-
ters superimposed on faces have to be discriminated (Eimer, 2000; 
Mohamed et al., 2009). Effects of language interference (Landau 
et al., 2010) and working memory (Sreenivasan et al., 2007) have 
also been suggested.

Hence, at least in some conditions, early face processing seems 
to be modulated by spatial attention and other factors. However, 
the modulations of face ERPs reported so far tend to be ill defined 
because it is unclear what aspect of face processing is modulated 
by the task. It remains also unclear how and when task demands 
affect the processing of a face presented at fixation. Very few studies 
have tackled this fundamental question by using a design in which 
the same stimulus is presented but processed differently because 
task requirements change the diagnosticity of input information 
(Pernet et al., 2007; Schyns, 1998). Schyns and his colleagues used 
reverse correlation techniques and large number of trials to reveal 
changes in single-trial information sensitivity (Schyns et al., 2007; 
Smith et al., 2007; van Rijsbergen and Schyns, 2009). However, 
although these studies show that ERPs are sensitive to different 
information from the same stimuli in different tasks, they do not 
provide a quantification of how task requirements affect the brain 
sensitivity to the same information.

One earlier study aimed at answering this question and reported 
larger N170 amplitude in a gender task compared to an identifica-
tion task, but only for coarse, not fine scale information (Goffaux 
et al., 2003). This result suggests the use of certain face spatial scale 
information when it is relevant for the task at hand, an interac-
tion between task demands and available information essential to 
reveal the information content of brain activity (Pernet et al., 2007; 
Schyns et al., 2009). However, the effects reported by Goffaux et al. 
(2003) seem very small and there was no report of task effects in 
individual subjects. It is also unclear if the effects might not be due 
to task modulations of the ERP sensitivity to the structured noise 
added to filtered images.

A more recent study reported one of the most striking and inter-
pretable task effects on ERP face sensitivity. In Philiastides et al. 
(2006), experiment 2, a cue indicated on each trial how subjects 
were to process a subsequent stimulus: either discriminate its color 
(red vs. green) or its category (face vs. car). Colored pictures of faces 
and cars had two noise levels, created by altering the Fourier phase 
spectrum, which contains most of the information about object 
identity (Gaspar and Rousselet, 2009). In the categorization task, 
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hood that task effects are due to a change in the task relevance of 
one stimulus dimension while subjects attempt to discriminate 
the same stimulus. A Dell Precision 390 workstation with Nvidia 
Quadro FX 3450/4000 graphics card and MATLAB Psychophysics 
Toolbox controlled the stimulus display. Images were displayed on 
a SAMSUNG SyncMaster 1100MB CRT monitor with a resolu-
tion of 800 × 600 pixels and a 85-Hz refresh rate. The screen was 
28° × 21°of visual angle.

the hue (H), saturation (S), and value (V) of the original images 
(red: H = 0.04, S = 0.17, V = unchanged; green: H = 0.34, S = 0.23, 
V = unchanged). The value (V) was normalized so that, on aver-
age, each face regardless of color or phase coherence had the same 
average luminance (about 33 cd/m2) and RMS contrast (0.1). We 
colorized only the face itself and not the background, and used 
relatively small images to ensure that subjects paid attention to 
the face in the two tasks. This manipulation increases the likeli-

FiGuRE 1 | Stimuli. (A) All observers saw the same two faces presented in red 
or green at eight levels of global phase coherence. Rows 1 and 2: face identity 1; 
rows 3 and 4: face identity 2; rows 1 and 3: red tones; rows 2 and 4: green tones. 
(B) Gray lines show edges identified using Kovesi’s local phase coherence 
algorithm in eight face examples ranging from 10% phase coherence (left) to 
80% phase coherence (right). Superimposed on each edge map, local phase 

coherence is color coded at the 10 pixels with the highest local phase coherence. 
These 10 pixels were identified in the two original faces at 100% global phase 
coherence. Local phase coherence was maximal (red) at 80% global phase 
coherence, and approached zero (blue) at 10%. (C) Boxplots of local phase 
coherence at each level of global phase coherence for all the images seen by one 
subject. There is a non-linear relationship between the two variables.
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Each block was preceded by 10 practice trials that allowed subjects 
to learn the stimulus-key association. Practice trials were used to 
ensure a high level of performance in older subjects, whose data 
are not reported here. In a regular trial, a small fixation cross – a 
0.3° “ + ” in the middle of the screen – appeared for 500 ms, after 
which a blank screen was presented for a random duration ranging 
from 500 to 700 ms (Figure 2A). Then a test stimulus was presented 
for 36 ms, followed by a blank screen that stayed on until subjects 
provided their response. Practice trials were very similar, except that 
immediately after stimulus presentation, a choice screen appeared 
that showed each face in grayscale (identity task) or red and green 
noise textures (color task) simultaneously, one above each other 
with a corresponding label below each item. Auditory feedback 
was provided after the subject pressed a response key, with low- 
and high-pitched tones indicating incorrect and correct responses. 
Feedback was provided only during practice trials.

eeG recordInG and preprocessInG
We acquired EEG data with a 128-channel Biosemi Active Two EEG 
system (BioSemi, Amsterdam, Netherlands). We recorded from four 
additional electrodes – UltraFlat Active BioSemi electrodes – below 
and at the outer canthi of both eyes. Analog signal was digitized 
at 512 Hz and band-pass filtered online between 0.1 and 200 Hz. 
Electrode offsets were kept between ±20 μV.

Offline, data were average-referenced. Then, we removed bad 
channels without interpolation, applied a 40-Hz low-pass filter and 
epoched the data between −300 and 1,200 ms. An ICA (Makeig et al., 

experIMental desIGn
Testing was conducted in a sound-attenuated booth in which the 
monitor was the only source of light. An 80-cm viewing distance 
was maintained with a chinrest. We tested subjects in two experi-
mental sessions. The first day was a practice behavioral session; the 
second day consisted of both behavioral tasks and simultaneous EEG 
recordings. Each day, subjects performed two interleaved tasks. On 
half of the blocks they performed a one-interval, two-alternative 
forced choice task discriminating between two faces. On the other 
half of the blocks, they discriminated between two colors. Identity 
and color tasks were blocked so subjects could focus on one task for 
an entire block of trials, without having to prepare to switch task on 
each trial (Johnson and Olshausen, 2003), in an attempt to increase 
the likelihood of finding strong task effects. The same stimuli were 
presented in the two tasks. In both tasks, on each trial, one face 
appeared briefly (36 ms), and subjects had to indicate which of two 
possible faces or two possible colors was presented by pressing 1 or 
2 on the numerical pad of the keyboard. The association between 
button and identity/color was assigned randomly for all subjects. 
Subjects were given unlimited time to respond, and were told to 
emphasize response accuracy, not speed. All subjects performed the 
task with the same single pair of male faces throughout the experi-
ment. Subjects saw eight conditions along a noise-signal continuum, 
from 10 to 80% phase coherence, with increments of 10% (Figure 1).

There were 10 blocks of 96 trials: 960 trials in total, with 120 trials 
per level of phase coherence. Within each block, there were equal 
repetitions of each face, each color and each phase coherence level. 

FiGuRE 2 | Tasks and design matrix. (A) Organization of practice trials and 
regular trials in the two tasks. A trial started with the presentation of a fixation 
point for 500 ms. Then, after a random delay ranging from 500 to 700 ms, a 
stimulus was presented for about 36 ms. During practice trials (top row), a choice 
screen appeared immediately after the stimulus, showing the two targets of the 
task and their associated response keys. The screen stayed on until the subject’s 
response, which was followed by auditory feedback, before the trial sequence 
resumed. During regular trials (bottom row), a blank screen appeared 

immediately after the stimulus, and remained on until the subject’s response. No 
feedback was provided during regular trials. Stimuli are not drawn to scale. (B) 
Example of a design matrix in one subject (color scale: green = 0; red = 1). The 
first eight predictors were categorical: they indicate the stimulus type (i.e., red or 
green, face 1 or 2) and the task. The next four predictors were continuous: global 
phase coherence (GPC) and local phase coherence (LPC) in the identity and color 
tasks. Each continuous predictor was z-scored independently before insertion in 
the design matrix. The last column was a constant term (cst = 1s).
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because  subjects might be less attentive in the easier color task 
compared to the more challenging identity task. These confound-
ing mean ERP differences were accounted for in the design matrix, 
thus allowing us to measure how single-trial ERPs were modulated 
by image noise in the two tasks. We used linear contrasts to com-
bine the beta weights associated with the global and local phase 
coherence predictors in the identity task (column 9 + column 11 in 
Figure 2B) and in the color task (column 10 + column 12) to study 
the time-course of the overall ERP noise sensitivity:

didentity = +β β9 11  
(2)

dcolor = +β β10 12  
(3)

We did not look at task modulations separately for global phase 
coherence and local phase coherence because these two predictors 
were strongly correlated (identity: mean angle = 17.4 [17.3, 17.6], 
mean correlation = 95.4 [95.3, 95.5]; color: mean angle = 17.6 [17.3, 
17.9], mean correlation = 95.3 [95.1, 95.5]; mean angle differences 
between the two tasks = −0.1727 [−0.5705, 0.2544]). High correla-
tion between regressors may lead to unstable beta parameter esti-
mates, whereas their linear combination remains stable, hence our 
analysis of the combination of global and local phase coherences. 
We refer to this summary statistics as noise sensitivity in the rest of 
the paper and explored task effects by contrasting d

identity
 and d

color
.

Group level analyses
Group analyses of noise sensitivity task modulations were com-
puted using a bootstrap-t technique for paired samples with 1000 
resamples (Wilcox, 2005). Although full scalp analyses are possible 
in LIMO EEG, we performed the analyses at only one electrode 
for two reasons: first because we observed in previous studies that 
noise sensitivity is localized at few posterior electrodes that display 
redundant information (Rousselet et al., 2008b, 2009, 2010); second 
because we wanted to compare different group analyses to single-
subject analyses. We analyzed group results using four different 
ways to pull data together.

A popular way to do group analyses is to average the data across 
subjects, find the best electrode in this group average, and make a 
measurement at that same electrode in all subjects –group defined 
best electrode. Here, we averaged across subjects the R2 maps of the 
ANCOVA model fit to the data, and selected the electrode showing 
the largest mean R2. Bootstrap paired t-tests were then computed 
between noise sensitivity contrasts in the identity and color tasks 
at all time points at this electrode.

A potentially more fruitful way to do group statistics is to opti-
mize the electrode by selecting the best electrode independently in 
each subject (Foxe and Simpson, 2002; Liu et al., 2002; Rousselet 
et al., 2010). We thus took the electrode at which the model pro-
vided the best fit independently in each subject, i.e., where R2 was 
the largest for each subject –R2 optimized electrode. Then we com-
puted paired t-tests between noise sensitivity contrasts from these 
potentially spatially different electrodes. The signal at R2 optimized 
electrodes was the most sensitive to image and task parameters 
as described by the design matrix and therefore constitutes the 
most likely candidate for reflecting the activity of cortical sources 
sensitive to image information. Hence, this kind of optimized 

2004), as implemented in the runica EEGLAB function (Delorme 
and Makeig, 2004; Delorme et al., 2007) was then computed and 
we removed components corresponding to blink activity, identi-
fied by visual inspection of their scalp topographies, time-courses 
and activity spectra. Subsequently, we re-epoched the data between 
−300 and 500 ms, and subtracted the average baseline activity from 
each time point. Trials with abnormal activities were excluded based 
on a ±100-μV threshold for extreme values. An epoch was rejected 
for abnormal trend if it had a slope larger than 75 μV/epoch and a 
regression R2 larger than 0.3. All remaining trials were included in 
the analyses, whether they were associated with correct or incorrect 
behavioral responses. After epoch rejection, the average number of 
trials per subject was 904 (min = 849, max = 958).

General lInear ModelInG of eeG data
Subjects’ epoched data were modeled using LIMO EEG, an open 
source Matlab toolbox for hierarchical GLM, compatible with 
EEGLAB: https://gforge.dcn.ed.ac.uk/gf/project/limo_eeg/ (Pernet 
et al., 2011). The general linear model was used to express single-
trial ERP amplitudes, in microvolt, independently at each time 
point and each electrode, using the model:

ERP XB

ERP cat G-ID G-C

t e

t e

,

, ...

= +
= + + + + + +

ε
β β β β φ β φ0 1 1 2 2 8 8 9cat cat OO

L-ID L-CO

β
φ β φ β ε

10

11 12+ + +
 (1)

In Eq. 1, all trials for each time frame t and electrode e (ERP
t,e 

dimension 1 × n) were modeled as the sum of a constant term ß
0
, 

the eight experimental conditions (each combination of stimulus 
identity, color and task – 2 × 2 × 2 = 8, Cat

1–8
 – corresponding to the 

first 8 columns of the design matrix), the global phase coherence in 
the identity and the color tasks (ϕ

G-ID
,
 
ϕ

G-CO
), the local phase coher-

ence in the identity and the color tasks (ϕ
L-ID

,
 
ϕ

L-CO
), and an error 

term ε. All predictors formed the design matrix X of dimension 
n × p (Figure 2B, p = 13). The beta parameters (dimension p × 1) 
were found using an ordinary least square solution.

Global phase coherence was our image noise manipulation. 
Kovesi’s (1999, 2003) local phase coherence is a measure of wavelet 
phase alignment across spatial frequencies, which is independent 
of image contrast and luminance. Local phase coherence may 
predict subjects’ behavior in a natural scene classification task 
(Gaspar and Rousselet, 2009) and seems to provide a good repre-
sentation of non-linear changes in local image structure imposed 
by the linear global phase coherence manipulation (Rousselet 
et al., 2008b, 2009, 2010). In our stimuli, pixels with high local 
phase coherence corresponded to local edges around the eyes, 
nose, and mouth (Figure 1).

The design matrix represents a typical ANCOVA model with 
categorical and continuous predictors. However, whereas in 
ANCOVA one is usually interested in the categorical effects whilst 
controlling for covariates, here we were interested in the covariate 
effects: we looked at the relationship between image phase coher-
ence and single-trial ERP amplitude in the identity and the color 
tasks whilst accounting for the main effects of identity, color, and 
task. For instance, the average ERP in one condition (e.g., identity 
discrimination of green face 1) could differ from the average ERP 
in another condition (e.g., color discrimination of green face 1) 
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of contiguous significant F values (univariate p < 0.05), separately for 
each predictor, each linear contrast, and in the case of the ANCOVA, 
for the global fit of the entire model (R2). Second, we saved the maxima 
across these cluster sums – one maximum for each F test (familywise 
correction). After performing these steps 1000 times for group statis-
tics and 600 times for single-subject analyses (as recommended for 
various linear models, Wilcox, 2005), we used the 95th percentiles of 
the bootstrapped maximum F cluster sums to threshold the original 
F cluster sums. For each test, the significant original F values (uni-
variate p < 0.05) were clustered and if their sum were larger than the 
corresponding bootstrapped maximum cluster sum threshold, the 
cluster was significant.

noIse sensItIvIty cluster statIstIcs
For each subject, we used a percentile bootstrap rather than 
using an F test of noise sensitivity (sum of beta coefficients 
for global and local phase coherence). Bootstrap distributions 
were used to compute 95% CIs under H0, during the same 
simulation that was used to estimate the F distributions of the 
ANCOVA parameters. These thresholds were then applied to 
each bootstrap to mark significant noise sensitivity. Significant 
effects were then clustered and a maximum sum of absolute 
noise sensitivity was saved for each bootstrap. The bootstrap 
distributions of maximum sum of absolute noise sensitivity 
computed under H0 were used to cluster the observed noise 
sensitivity in each task.

shIft functIon analyses of the decIles of sInGle-trIal erp 
dIstrIbutIons
We also used the shift function to measure how single-trial ERP dis-
tributions changed from the identity task to the color task. The shift 
function compares entire distributions instead of relying exclusively 
on one point estimate such as the mean or the median. In our 
application of the shift function, the x-axis is the Harrell–Davis 
(hd) estimator of quantiles one to nine of the single-trial ERPs 
in the identity task (see Wilcox, 2005, pp. 71–73 and 139–141). 
The y-axis is the difference, Delta, between the hd estimators of 
the quantiles of the identity and color ERP distributions. Hence, 
the shift function represents how much the data from one task 
must be shifted to be comparable to the data from another task 
at each quantile. Task differences were estimated by a bootstrap 
procedure, and corrected for multiple comparisons such that the 
simultaneous probability coverage of the 9 CIs remained close to 
the nominal 0.05 alpha level (see Wilcox, 2005, pp. 151–155). The 
analyses were performed on modeled single-trial ERP data at the 
max R2 electrode (i.e., the electrode at which the model explained 
best the data); they included all the significant time points that 
contained the maximum noise sensitivity task difference. Modeled 
ERP are more meaningful to analyze because they are reconstructed 
after removing the error term, the part of variance that the model 
cannot explain.

results
We consider first the group analyses, second the single-trial analy-
ses, third the comparison of group and single-trial analyses and 
fourth the shift function analyses of the deciles of the single-trial 
ERP distributions.

averaging tends to average signals that reflect common processing 
across  subjects, whereas using the same spatial electrode may lead 
to averaging signals reflecting different processes.

Yet another way to optimize electrodes across subjects consists 
in selecting for each subject the electrode with the largest noise 
sensitivity task difference –task effect optimized electrode. In this 
case, instead of taking the electrode where the ANCOVA model 
provided the best fit, we selected for each subject the electrode 
showing the strongest noise sensitivity task effect. The paired t-test 
was then computed between noise sensitivity contrasts from these 
potentially spatially different electrodes.

Finally, we used the maximum absolute beta coefficients across 
electrodes computed at each time point (the envelope), to ensure 
our analyses did not miss local maxima at electrodes other than 
the one showing the largest R2. For every subject, we computed a 
paired t-test between noise sensitivity contrasts from the envelopes.

For both group and single-subject analyses, task modulations at 
one electrode were quantified by normalizing the maximum abso-
lute task difference in noise sensitivity by the maximum absolute 
noise sensitivity in the identity task –the maxima were defined 
across time frames:

Task modulation d d didentity color identity= −( ) ( )100× max max
 
(4)

control for MultIple coMparIsons
We controlled for multiple comparisons using bootstrap and the 
clustering technique as implemented in the Matlab Fieldtrip tool-
box, with a minimum of two neighboring channels per cluster 
(Maris and Oostenveld, 2007). As described in (Pernet et al., 2011), 
the clustering technique in LIMO EEG works for analyses both 
at single electrodes (temporal clustering) and at multiple elec-
trodes (spatial–temporal clustering). For group analyses, because 
only one electrode or equivalent electrode was considered, we 
employed temporal clustering to control for multiple compari-
sons. For single-subject analyses, because the whole scalp was 
analyzed, we employed spatial–temporal clustering (familywise 
error rate = 0.05).

For t-tests and ANOVAs the validated bootstrap technique 
includes centering the empirical distributions of each between-
subject and within-subject levels so that the null-hypothesis of no 
difference in means is true (Berkovits et al., 2000; Wilcox, 2005; 
Seco et al., 2006). Thus, for the group paired t-tests, noise sensitivity 
contrasts across subjects were centered for each condition separately 
and paired t-tests were computed 1000 times by sampling subjects 
with replacement (Wilcox, 2005). However, this technique is not 
appropriate to our ANCOVA single-subject analyses because the 
continuous covariates can potentially have as many levels as trials. 
We used therefore a different strategy to derive an estimate of the 
sampling distribution of our F statistics under the null-hypothesis. 
For each subject, epoched single-trials were sampled with replace-
ment and fitted to the original design matrix, thus breaking the 
link between the data and the design –an estimation of the data 
distribution under the null-hypothesis H0.

For both the bootstrap paired t-test (group analyses) and the boot-
strap ANCOVA (single-subject analyses), in each bootstrap loop we 
first computed the sum of each temporal or spatial–temporal cluster 
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Group analyses
Group defined best electrode
If the best electrode is defined as the electrode showing the largest 
mean R2 across subjects, we obtain the results in Figure 3A. This 
best electrode was right posterior–lateral (B8 in the Biosemi system, 
between PO8 and PO10) and had a maximum mean R2 of 0.23 [0.17, 
0.32] that peaked at 141 ms. The mean ERPs at the eight global phase 
noise levels started to diverge shortly after 100 ms in the identity and 
the color tasks. The parametric ERP modulation by image noise can 
be better appreciated by looking at the time-course of the group-
averaged noise sensitivity, which peaked at the same electrode and 
time point as R2 did. Noise sensitivity was reduced in the color task 
compared to the identity task in a single cluster, between 139 and 
277 ms after stimulus onset (Table 1). At the latency of the maxi-
mum task effect, 242 ms, there was 20.7% noise sensitivity reduction 
compared to the maximum sensitivity in the identity task.

R 2 optimized electrode
The electrode with the largest R2 was also the electrode with maxi-
mum noise sensitivity or was part of the same cluster as the elec-
trode with maximum noise sensitivity and behaved similarly to it. 
Across subjects, max R2 electrodes were all located in a cluster of 
lateral posterior electrodes, as reported in previous experiments and 
as expected from the face literature. R2 averaged across subjects was 
stronger over the right hemisphere. This pattern was also found in 
individual subjects (Figures 5–8): eight subjects had a maximum 
R2 at right hemisphere electrodes; two subjects at left hemisphere 
electrodes; three subjects at midline electrodes. The right hemi-
sphere electrodes of maximum model fit included B8 (one subject) 
or one of its neighbors (seven subjects). The maximum mean R2 at 
the optimized electrode was 0.27 [0.2, 0.35], and peaked at 139 ms 
(Figure 3B; Table 1). As expected if R2 results were sufficiently 
consistent across subjects, this optimized maximum average R2 
was larger than at the group defined best electrode. There was a 
significant task effect in a single cluster between 172 to 275 ms 
post-stimulus onset, with 18.7% noise sensitivity reduction at the 
latency of the maximum task difference, 213 ms.

Task effect optimized electrode
Results of this analysis are presented in Figure 3C. Although we 
selected for each subject the electrode showing the largest task dif-
ference in noise sensitivity, no differences could be observed at 
the group level. Indeed, taking the largest effect can be mislead-
ing because certain predictors can be significant at electrodes and 
time frames at which the overall model does not explain the data 
significantly. This is indeed what we found: except for 3 subjects for 
whom maximum task effects occurred at electrodes that were part 
of the cluster of electrodes with the maximum R2, for the other 10 
subjects R2 was lower and early noise sensitivity (<200 ms) was weak 
at the electrodes of maximum task differences (Figure 3C). Hence, 
across subjects, noise sensitivity and task effects were not significant 
at the electrode optimized based on maximum task differences.

Maximum absolute betas
Analyses on the beta coefficient envelopes gave results similar to 
those obtained on the group defined best electrode and the R2 
optimized electrode (Figure 3D; Table 1). Two significant clusters 

were observed: a first task effect occurred between 154 to 254 ms 
post-stimulus onset, with 18.2% noise sensitivity reduction at the 
latency of the maximum task difference, 197 ms; a second effect 
of similar size occurred after 400 ms. This analysis suggests that 
we did not miss the big picture by defining the electrode to ana-
lyze based on the group-averaged R2 or the single-subject max 
R2. The statistical tests might suggest that the group defined best 
electrode did a better job because it showed a significant task effect 
earlier than the one observed in the R2 optimized test. However, 
picking the best group electrode to show group effects is circu-
lar because what the result ought to be is unknown. By contrast, 
selecting the best electrode separately in each subject takes into 
account inter-subject variability and leads to group results more 
sensitive to individual differences.

In addition to group analyses at all time points, we compared 
noise sensitivity across subjects at the latency of the P1, N170, 
and P2 peaks, for the sake of comparisons with previous studies 
(Figure 4). For each subject, the latency of the peaks was measured 
at the max R2 electrode in the 80% coherence condition (face ERP). 
Measurements at electrode B8 gave similar results. Then, the mean 
sensitivity was measured in time-windows encompassing five time 
points on either side of the peak latency, hence about 21.5 ms. 
This analysis revealed, across subjects, weak to no noise sensitivity 
around the P1 (∼96 ms), and stronger noise sensitivity around the 
N170 (∼146 ms) and the P2 (∼207 ms). Importantly, only the P2 
showed task modulations of noise sensitivity. Similar P2 results 
were obtained at the latency of the P2 defined at the group level.

sInGle-subject analyses
Figures 5–8 provide, for each subject, a detailed description of 
their R2, noise sensitivity, task effects and behavioral results. The 
time-course of the R2 functions and of the beta coefficients for 
noise sensitivity are similar to those reported previously in young 
subjects (Rousselet et al., 2008b, 2009, 2010). Because the main 
purpose of our study was to quantify task modulations of early ERP 
noise sensitivity, we focus the report of the single-trial analyses on 
the electrode showing the maximum R2 for each subject. All these 
electrodes were found at posterior–lateral locations. No comparable 
fits were observed at frontal electrodes. Thus, our analyses seem 
to capture task modulations of evoked noise sensitivity from the 
visual system, rather than electrophysiological correlates of the top-
down modulation signal itself. Figures at the electrodes showing 
the maximum noise sensitivity in the identity task or the color task 
were almost identical to those presented here (max R2) because 
these electrodes were either the same electrodes or part of the same 
cluster of electrodes.

Single-trial analyses revealed an inter-subject variability hid-
den behind the seemingly simple group averages and statistics. 
Individual subjects differed widely in the shape of their ERPs, R2 
functions, scalp topographies, nature and time-course of the task 
effects (Figures 5–8). The mean of the maximum R2 measured 
in each subject was 0.31 [0.24, 0.38], min = 0.17, max = 0.57; it 
peaked at 141 ms [136, 149], min = 133, max = 186. Image noise 
sensitivity started at about 100 ms in both tasks. In the identity 
task, the median onset was 100 ms [98, 105], min = 92, max = 115; 
in the color task it was 100 ms [96, 111], min = 86, max = 133. 
The median difference between the two tasks was 0 ms [−7.8, 4], 
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FiGuRE 3 | Event-related potentials group results. The left and middle 
columns contain the results for the identity and the color tasks. The right 
column shows the R2 and the noise sensitivity task differences. (A) Group 
defined best electrode. Mean ERPs are shown color coded at each level of 
global phase coherence in the two tasks. In the R2 plot, the inset shows the 
topographic map of the interpolated R2 values at the latency of the maximum 
R 2. Noise sensitivity is the sum of the global and local phase coherence beta 
weights in μV/std of the predictor. Thick lines represent averaged data, 
surrounded by thin lines for the 95% percentile bootstrap CI. The red 
horizontal bar under the zero line indicates time points of significant effects, 
based on bootstrap t-test with temporal cluster correction for multiple 
comparisons. The task difference in red is identity (black continuous line) 
minus color (green dashed line). At the latency of the maximum task 

difference observed within the first 300 ms after stimulus onset, noise 
sensitivity in the identity task was −4 μV/std, color = −2.8 μV/std, 
difference = −1.2 μV/std. (B) R 2 optimized electrode. The topographic map 
was obtained by averaging the maps from individual subjects. At the latency 
of the maximum task difference, noise sensitivity in the identity task was 
−2.8 μV/std, color = −1.8 μV/std, difference = −1 μV/std. (C) Task effect 
optimized electrode. The R2 bump between 100 and 200 ms was mostly due 
to three subjects (S9–S11) who had maximum task effects at electrodes that 
were part of the cluster of electrodes with the maximum R 2. (D) Noise 
sensitivity envelope. The maximum across electrodes of the absolute noise 
sensitivity was used for each subject. At the latency of the maximum task 
difference, noise sensitivity in the identity task was 3.9 μV/std, color = 2.8 μV/
std, difference = 1 μV/std.
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who did show a reduction in the color task (difference = −0.02 [−0.07; 
0.04]), and 0.37 global phase coherence for S

2
, who showed opposite 

ERP results. Analyses with the median gave similar results.
The max R2 electrodes almost never showed significant dif-

ferences between the two faces (identity task) or the two colors 
(color task), in keeping with previous reports on faces, cars, and 
words (Nobre et al., 1998; Philiastides et al., 2006; Rousselet et al., 
2008b, 2010). One subject showed both significant identity sen-
sitivity in the identity task and a significant task modulation of 
identity sensitivity at few time points around 450 ms after stimulus 
onset. Five subjects showed either identity or color sensitivity in 
one or the other task, but without significant task modulation, or 
significant task modulations but without significant identity or 
color sensitivity.

Group vs. sInGle-trIal analyses
Group analyses suggest a decrease in noise sensitivity in the color 
task compared to the identity task around 140–300 ms post-stimulus 
onset. This task modulation was observed at the group defined best 
electrode and the R2 optimized electrode (Figure 9). In the spatial–
temporal clusters containing these electrodes, single-trial analyses 
revealed a different picture: 8 subjects out of 13 had a significant 
task modulation of noise sensitivity; 1 had an increased sensitivity 
in the color task and 7 had a decreased sensitivity. In the time-
window of the group effect, only six subjects showed a significant 
effect; a maximum of five subjects showed an effect simultaneously, 
including the subject who had an effect in the opposite direction. 
Thus, in our sample, at any time point showing a significant group 
effect, there were at most 5 subjects out of 13 showing a significant 
effect, 4 of which in the same direction as the group effect (31%).

Onsets and durations of task effects also revealed discrepancies 
between group and single-trial analyses (Table 1). At the R2 opti-
mized electrode, the group task effects started at 172 ms and lasted 
103 ms. In contrast, for the eight subjects that showed significant 
effects, the average task effect onset was 214 ms [155, 271] min = 86, 
max = 332; the average task effect duration was the 186 ms [142, 
234], min = 92, max = 320.

Table 1 | Task effects.

 Group analyses Single-trial 

  analyses

Best 

group 

electrode 

(B8)

R2 

optimized 

electrode

Beta 

envelope

Mean of eight 

subjects with 

significant 

task effects

Onset 139 ms 172 ms 154 ms 214 ms [155, 

271]

Peak latency 242 ms 213 ms 197 ms 297 ms [246, 

352]

Effect size 20.7% 18.7% 18.2% 34.6% [28.9, 

39.5]

Duration 139 ms 104 ms 101 ms 186 ms [142, 

234]

Peak latency is the latency of the maximum absolute task effect. Effect size is 
defined in Section “Group Level Analyses,” Eq. 4.

FiGuRE 4 | Task effects around peak time-windows. Noise sensitivity in the two tasks was normalized by dividing by the maximum absolute noise sensitivity in 
the identity task. The three first ERP peaks were measured at these latencies across subjects: P1 (median = 96, min = 82, max = 119), N170 (median = 146, 
min = 131, max = 184), P2 (median = 207, min = 180, max = 256). The P2 defined from the group-averaged data had a latency of 207 ms.

min = −21, max = 16. Results using the mean were similar and a 
shift function analyses failed to reveal significant differences at any 
deciles of the distribution of onset differences.

Only eight subjects showed a significant task modulation 
of noise sensitivity. Noise sensitivity decreased in the color 
task compared to the identity task in seven subjects: S

1
 = 29%, 

S
3
 = 46%, S

4
 = 35%, S

6
 = 19%, S

7
 = 39%, S

10
 = 29%, S

11
 = 39%, 

mean = 33.7%. Subject S
2
 showed an effect in the opposite direc-

tion (Figure 5), with significantly stronger noise sensitivity in the 
color task than in the identity task (40.7% sensitivity increase). 
All subjects but S

11
 (Figure 7) had a single cluster of significant 

task differences.
There was no significant link between task effects and behavioral 

thresholds: mean behavioral 75% correct threshold was 0.37 global 
phase coherence for the five subjects who did not show a significant 
ERP task modulation, it was 0.39 global phase coherence for  subjects 
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FiGuRE 5 | individual results for subjects S1 to S4. (A) Statistically significant 
model R2 at all the electrodes and time frames from −300 to 500 ms after stimulus 
onset. Electrodes are stacked up along the y-axis. The tick on the y-axis marks the 
electrode at which the maximum R2 was recorded. This electrode is plotted as a 
continuous black line in (B). R2 ranges from near zero in blue to the maximum for 
that subject in red. (B) Model R2 at all the electrodes and time frames. The electrode 
at which the maximum R2 was recorded is plotted in black. The other electrodes are 
plotted in gray. The inset shows the topographic distribution of the R2 at the latency 
of the maximum, indicated by a vertical black dotted line. This vertical line is also 
plotted in all the other panels for comparisons. For subject S1, R

2 had a bilateral 
occipital–lateral distribution, with a maximum over the left hemisphere (left bottom 
red cluster). The red vertical dashed line indicates the time frame of the earliest 
significant R2 across all electrodes. Near the top of the panel, the upper horizontal 
line (red) marks significant time frames at the maximum R2 electrode. The lower 
horizontal line (green) marks significant time frames of the spatial–temporal cluster 
to which the maximum R2 electrode belonged. For subject S1, this horizontal line 
starts at the latency of the earliest significant model fit (red vertical dashed line), 
indicating that the maximum R2 electrode is part of a spatial–temporal cluster that 
captures the earliest effects. The horizontal dashed line is the univariate one-sided 
95% CI of the R2 under H0, at the maximum R2 electrode. Although this is for 
illustration only, because the actual statistical test was based on spatial–temporal 
clusters, it gives a good indication of the R2 values expected by chance. (C) Mean 
ERPs in the identity task. The red vertical dashed line indicates the time frame of the 
earliest significant noise sensitivity in the identity task, across all electrodes. This line 
is also plotted in (E). The red continuous vertical line indicates the latency of the 

maximum task difference and is also plotted in (D,G). (D) Mean ERPs in the color 
task. The red vertical dashed line indicates the time frame of the earliest significant 
noise sensitivity in the color task, across all electrodes. This line is also plotted in (F). 
(E) Noise sensitivity beta coefficients in the identity task. Noise sensitivity at the 
maximum R2 electrode is plotted in black, the other electrodes in gray. Units are μV/
std of the predictor. Near the bottom of the panel, the upper horizontal line (red) 
marks significant noise sensitivity time frames at the maximum R2 electrode. The 
lower horizontal line (green) marks significant noise sensitivity time frames of the 
spatial–temporal cluster to which the maximum R2 electrode belonged. The black 
horizontal dashed lines show the univariate two-sided 95% confidence interval of 
noise sensitivity under H0, at the maximum R2 electrode. (F) Noise sensitivity beta 
coefficients in the color task. Noise sensitivity at the maximum R2 electrode is 
plotted as a green dashed line, the other electrodes in gray. (G) Noise sensitivity 
beta coefficient task differences. Noise sensitivity differences at the maximum R2 
electrode are plotted as a thick red line, the other electrodes in gray. The black 
continuous line and the green dashed line are the same as those in (E,F). The red 
continuous vertical line indicates the latency of the maximum task difference. At that 
latency, the title indicates the amplitude of the noise sensitivity in the identity task 
(ID), in the color task (CO), and the difference between the two tasks (diff). (H) 
Proportion correct as a function of global phase coherence, in red circles for the 
identity task, in green squares for the color task. Data from the identity task were 
fitted with a cumulative Weibull function. The vertical arrow points to the 75% 
correct threshold in the identity task. The threshold appears in bracket in the title. The 
red horizontal dashed line marks the maximum proportion correct in the identity task 
obtained from the fit.
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FiGuRE 6 | individual results for subjects S5–S8. See Figure 5 caption for details.

Single-trial results can be misleading too. The results at the 
group defined best electrode showed significant effects of longer 
duration than results at the R2 optimized electrode (Figure 9). 

However, results at the group defined best electrode mix together 
electrodes that do not necessarily provide the best fit in all sub-
jects. This means that some of the effects at this electrode are 
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FiGuRE 7 | individual results for subjects S9–S12. See Figure 5 caption for details.

not as meaningful as the results observed at the best fitting elec-
trodes. In particular, the late task modulations observed in the 
left column of Figure 9, correspond to clusters of electrodes 

and periods of time showing noise sensitivity much weaker 
than that observed in the 100- to 300-ms time-window at the 
R2 optimized electrodes.
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FiGuRE 8 | individual results for subject S13. See Figure 5 caption for 
details.

In addition to the analyses performed independently at each time 
point (Figures 5–8), we also provide a continuous measure of inte-
gration time in the two tasks. This was achieved by measuring the 
time it takes to integrate 50% of noise sensitivity during the first 
half-second following stimulus onset (Rousselet et al., 2010). Noise 
sensitivity in the two tasks was normalized by the maximum absolute 
noise sensitivity in the identity task, defined across time frames. Then 
the absolute noise sensitivity in each task was integrated over time 
(Figure 10). At the group level, noise sensitivity integration increased 
sharply after 100 ms and started to differ significantly between the two 
tasks at 227 ms after stimulus onset. The 50% integration threshold 
was reached 16 ms earlier in the identity task compared to the color 
task. About 14% less noise sensitivity was integrated in the color 
task relative to the identity task. Analyses performed in each subject 
individually provided a somewhat different picture. In keeping with 
group analyses, cumulated noise sensitivity started to rise at about 
100 ms in most subjects. However, onset of task effects, 50% integra-
tion times and total cumulated noise sensitivity differed markedly 
across subjects and from the group analyses (Figure 10).

Given the discrepancy between group and individual subject 
analyses, it is important to consider weak power as a potential 
explanation for the absence of task effect in some subjects. Indeed, 
lack of significant effects might be due to a real absence of effects or 
the presence of relatively weak effects that our statistical test might 
miss. Although lack of power cannot be completely ruled out, it 
appears that subjects with significant task effects at the R2 optimized 
electrode had substantial effect sizes, with maximum F cluster sums 
at least 1.6 times larger than the largest bootstrap F cluster sums 

obtained by chance (Figure 11: S
1
 = 2.7, S

2
 = 2.6, S

3
 = 3.2, S

6
 = 1.9, 

S
7
 = 2.1, S

10
 = 2.3, S

11
 = 2.4). One subject had lower effect size than 

the other subjects, with a cluster sum 0.8 larger than that obtained 
by chance (Figure 11: S

4
). Subjects with no significant task effects 

had no significant cluster whatsoever (S
5
), relatively low cluster 

sums (S
9
 and S

12
) or cluster sums so low that they fell at the bottom 

of the bootstrap cluster sum distributions (S
8
 and S

13
).

shIft functIon analyses of the decIles of the sInGle-trIal erp 
dIstrIbutIons
Changes in task constraints could affect noise sensitivity by modu-
lating preferentially single-trial ERPs to noise textures or to faces. 
Alternatively, these changes could be a uniform compression or 
expansion of the distribution. In our design, noise levels are arti-
ficial. Therefore, we studied the nature of the task effects using the 
shift function, a technique that assumes data follow a continuum. 
The shift function analyses revealed that the modulation in noise 
sensitivity in the color task could be attributed to a modulation of 
a particular type of stimuli. In five subjects (Figure 12: S

1
, S

3
, S

7
, S

10
, 

S
11

), noise sensitivity reduction in the color task was due primar-
ily to increased amplitudes of face ERPs, which became closer to 
that of noise trials. In two subjects (Figure 12: S

4
 and S

6
), noise 

sensitivity reduction was due mostly to an increase in amplitude of 
the noise trials. Finally, in the only subject who showed increased 
noise sensitivity in the color task (S

2
), the effect was also due to an 

amplitude increase of ERPs to noise trials. In addition, in S
2
, S

4
, S

6
, 

S
7
, and S

10
, there was an overall increase in ERP amplitude in the 

color task compared to the identity task. Thus, task constraints had 
non-uniform effects on ERP distributions, with most modulations 
being an increase in amplitude of face trials.

dIscussIon
Using identical colored face stimuli in two tasks, and a parametric 
noise manipulation, we observed a significant reduction in ERP 
noise sensitivity when noise level was task irrelevant. Overall, fol-
lowing (Philiastides et al., 2006) we conclude that task effects on 
noise sensitivity are weak before 200 ms, in the window of the 
N170, and mainly present around the P2. However, task effects 
were highly variable across subjects, with individual differences in 
onsets, durations and effect sizes. These idiosyncrasies will need 
to be addressed in future studies.

Based on the work of (Philiastides et al., 2006), we tested the 
hypothesis that there is a clear boundary, at about 200 ms after 
stimulus onset, between bottom-up face processing and brain 
activity that depends on task demand. Our group results were 
qualitatively similar to those of Philiastides et al. (2006) with weak 
task effects before 200 ms and stronger differences beyond 200 ms. 
Changing the task requirements did not abolish noise sensitivity 
altogether, but reduced it by about 19–46% in individual subjects. 
Results were also inconsistent across subjects, with a minority 
of subjects showing effects consistent with group analyses, and 
several subjects showing no significant effects whatsoever, despite 
similar behavioral performances. The nature of the task effects 
also differed among subjects, as revealed by analyses of single-
trial ERP distributions. These results points to the existence of 
idiosyncratic modulations of brain activity depending on task 
requirements.
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It remains unclear whether the task dependent noise sensitiv-
ity we observed is related to differences in task difficulty between 
the color and the identity tasks, or if it is due to changes in the 
diagnosticity of stimulus phase information (Banko et al., 2011; 
Philiastides et al., 2006; Philiastides and Sajda, 2007). More gen-
erally, noise sensitivity between 100 and 300 ms after stimulus 
onset probably reflects the activity of object and face processing 
areas that are sensitive to stimulus evidence (Philiastides and 
Sajda, 2007; Rousselet et al., 2008b; Tjan et al., 2006). Noise 
sensitivity however does not reflect activity from a general dis-
crimination mechanism because it is not present for color and 
identity. Similarly, Philiastides et al. (2006) found that early 
single-trial visual ERPs did not discriminate between red and 
green or between two motion directions. However, these other 

stimulus dimensions can be studied by using different tech-
niques, such as adaptation (Vizioli et al., 2010), ICA and filter-
ing (Snyder and Foxe, 2010), and frequency tagging (Quigley 
et al., 2010).

Contrary to several ERP studies described in the introduc-
tion, some of our subjects did show moderate task modulations 
in the time-window of the N170. The absence of task effects 
in previous face ERP studies is difficult to interpret because of 
the use of group statistics. One thing that most studies have in 
common is the use of relatively high-contrast stimuli. Because 
the effect of attention is contrast dependent (Reynolds and 
Heeger, 2009), attention effects on face ERPs might be more 
likely to be observed at low-contrast. A systematic study of atten-
tion modulations as a function of face contrast remains to be 

FiGuRE 9 | Significant task effects at the group level and in individual 
subjects. In the top graphs, significant group effects appear at the top of each 
column in black, above significant results in individual subjects in gray. Dark gray 
indicates significant effects at the group defined best electrode (left column) and 
at the R2 optimized electrode (right column). Light gray indicates significant 
effects at the spatial–temporal cluster to which an electrode belonged. The 
middle graphs show the number of subjects with a significant task modulation 
at each time point at one electrode (light gray) or in the cluster to which it 
belonged (dark gray). Remember that subject 2 was the only one with stronger 

noise sensitivity in the color task compared to the identity task. The bottom 
graphs show the percentage of subjects showing a significant task modulation 
at one electrode (thick black line) with a 95% binomial confidence interval 
around it (thin black lines). This percentage provides an indication of the 
probability of observing a group difference given the single-subject results. 
These binomial confidence intervals place an upper limit of about 61% 
probability of observing a group effect given the single-subject data. In 
comparison, the group results presented at the top of Figure 9 depend on the 
probability of the data under the null-hypothesis.
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c arried out. In our experiment, contrast and luminance were 
quite low, suggesting even weaker task modulations in more 
realistic circumstances. Another problem with previous reports 
of null effects in group statistics is the absence of statistical 
analyses in individual  subjects, as well as poor data description 
(Rousselet and Pernet, 2011). Group statistics pull out effects 
that are consistent across subjects, even when these effects are 
not significant in individual subjects. Although this might seem 
like a good property, given the number of face ERP experiments 
carried out each year and the common belief that it is satisfac-
tory to test more subjects to achieve significance, group statistics 
might be responsible for many false positives in the literature 
(Wagenmakers, 2007). By definition, group statistics are also 
insensitive to single-subject significant effects that are inconsist-
ent across subjects, for instance if timing and topographies differ. 
Thus, group statistics can be misleading because of increased 
chances of false positives and false negatives, at least in theory. 

Yet, it is at the moment difficult to evaluate if our results, show-
ing a large  discrepancy between group and single-trial analyses 
constitute a unique curiosity or if our results reveal a pervasive 
problem in the ERP literature. Indeed, typical face ERP studies 
are mostly concerned with group statistics of peak measure-
ments, with little concern for reliability and quantification of 
the effects. In fact, most studies are content with the discussion 
of any effect p < 0.05 (Rousselet and Pernet, 2011). Current 
practice in the ERP literature tends to hide the rich inter-subject 
variability that we ought to explain: we perform perceptual tasks 
as individuals, not as a collective brain. Moreover, many studies 
report weak effect sizes, unexpected results and do not control 
for multiple comparisons properly. One is left wondering what 
proportion of ERP results will ever be replicated (Miller, 2009). 
In many studies, beyond the recurrent fundamental flaws of null-
hypothesis significance testing (Wagenmakers, 2007), the lack 
of robustness of t-tests and ANOVAs, and the lack of proper 

FiGuRE 10 | Cumulated task effects. The subject number is indicated by S#. 
Each cell shows the cumulated normalized sensitivity in the identity task (black) 
and in the color task (green). The difference between the two tasks is shown with 
thick red lines, with a 95% confidence interval around it (thin red lines). Red dots 
along the zero horizontal line mark time points of significant task differences, with 
no correction for multiple comparisons. The vertical red dashed line that crosses 
the entire cell marks the onset of significant task effects. The horizontal black 

dashed line marks the value corresponding to 50% of the total cumulated 
sensitivity in the identity task. The two vertical lines that originate from the 50% 
line and terminate on the x-axis mark the time to reach that 50% value in the two 
tasks. The title of each cell contains the onset of the task effects; the 50% 
integration time difference (50% ITD) between the color and the identity tasks; 
the task cumulated difference (TCD) between the identity and the color tasks, 
expressed in proportion of the maximum cumulated sensitivity in the identity task.
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of the current dataset and previous datasets, the  electrode at 
which the model provides the best fit seems to capture most of 
the effects (Rousselet et al., 2008b, 2009, 2010). Because of spatial 
blurring, neighboring electrodes contain redundant information, 
so pooling results across electrodes as is often done in group 
analyses would be of no benefit for univariate single-subject 
analyses. Of course, there might be extra information available 
in a multivariate space containing a large number of electrodes 
(Philiastides and Sajda, 2006). Hence, it will be worth extend-
ing our univariate model to measure multivariate relationships 
between single-trial ERP amplitude, stimulus evidence, and task 
demand. Finally, as discussed by (Liu et al., 2009), a single-trial 
linear classifier has the advantage over a GLM approach to pro-
vide a measure of information. However, it is not clear how linear 
classifiers can be applied to more complicated designs such as 
our ANCOVA.

To conclude, all these considerations about group and single-
subject analyses are rather circular, because it is not clear what 
ought to be found. The ERP community relies mostly on group 
analyses, and therefore most readers might be biased to conclude 
that discrepancies between group and single-subject analyses reflect 
problems in single-subject analyses. This point of view is misguided 
because a significant group effect does not provide any guarantee 
that even 50% of the subjects will show the group effect (Figure 9). 

control for multiple  comparisons (Wilcox, 2005), readers are too 
often left with so little evidence that it is impossible to judge the 
importance of their results. Here we’ve tried to provide a richer 
set of descriptions than is usually available in face ERP papers.

Of course, the lack of significant task effects in some subjects, 
and the lack of consistency across subjects who did show signifi-
cant effects, might be attributable to different sources of variance, 
including differences in scalp thickness and electrode application, 
rather than individual differences in visual processing. These dif-
ferences could lead to differences in statistical power across sub-
jects. Although subjects who did show task effects had relatively 
large effect sizes, it is possible that more trials or better regression 
analyses, or both, would be necessary to reveal significant effects 
at different time points and in subjects showing null results. We 
are exploring the possibility of using smooth variance estimators, 
weighted models, and adjusting statistical thresholds based on 
empirical distributions to increase statistical power. However, our 
data driven estimates of effects expected by chance suggest that 
some subjects had indeed no task modulation of noise sensitivity 
whatsoever (Figure 11).

Finally, null or inconsistent effects might not reveal the 
absence of an effect but our failure to quantify changes in a multi-
dimensional space. For instance, we reported most of our single-
trial analyses at one electrode only. Based on extensive inspection 

FiGuRE 11 | Histograms of the bootstrap distributions of maximum F 
cluster sums for task effects on single-trial ERP noise sensitivity. The 
subject number is indicated by S# in bold font. These bootstrap distributions 
were calculated under the null-hypothesis H0, as described in Methods; hence 
they reflect the size of spatial–temporal task effects that can be expected by 
chance, due to random sampling, across the entire search space. For each 

subject, the vertical black dashed line marks the 95th percentile of the H0 
bootstrap distribution. The vertical red continuous line indicates the maximum 
sum of F values across the spatial–temporal clusters that contained the 
maximum R2 electrode. For subject S5, the cluster sum is equal to zero because 
no cluster passed the two-electrode threshold: they were present at this 
electrode only.
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FiGuRE 12 | Event-related potentials results from the eight subjects showing 
significant task effects. The subject number is indicated by S# in bold font. The first 
two columns show the modeled ERPs in the identity and the color tasks. The vertical 
dashed line marks the latency of the largest task difference. The vertical gray shaded 
area marks all the continuous time frames at which a significant effect was 
observed, and which contained the time frame of maximum effect. The third column 

shows boxplots of the single-trial modeled ERP(t,e) amplitudes in the identity and 
color tasks, summed across the time frames marked by gray areas in columns 1 and 
2. The fourth column shows the shift function between the distributions in column 
three. The x-axis shows the estimated deciles in the identity task. The y-axis shows 
the estimated difference deciles between the identity and the color task, marked as 
nine dots, with the ends of the confidence intervals marked by plus signs.
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