
Motion perception in humans critically depends on area hMT+ 
(also known as V5, for a review see Born and Bradley, 2005). 
Extensive research on its equivalent in monkeys (MT) has shown 
that neurons in this region are selective for the direction and speed 
of moving stimuli. Direction sensitive neurons show columnar 
organization, with columns of smoothly changing preferred direc-
tions abutting columns of the opposite preferred direction (Born 
and Bradley, 2005). Relating neuronal characteristics to behavior, 
neurometric functions of single-neurons were shown to correlate 
with psychometric functions in a direction discrimination task 
(Britten et al., 1992). More evidence for a direct link between MT 
neuronal properties and perception comes from studies which show 
that microstimulation can considerably bias performance (Cohen 
and Newsome, 2004) and that deteriorated neuronal speed and 
direction selectivity accompanies aging (Yang et al., 2009; Liang 
et al., 2010).

In humans, hMT+ lies in an anatomically variable region and 
shows variation in histological and functional anatomy across indi-
viduals (Dumoulin et al., 2000; Huk et al., 2002; Malikovic et al., 
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2007). Studies exploring neurophysiological properties of hMT+ 
have worked with exogenous variation of the stimulus (e.g., coher-
ence of movement) to describe related modulations of the blood 
oxygen level dependent (BOLD) signal. Other studies have consid-
ered endogenous signal changes in hMT+ during the presentation 
of ambiguous stimuli, reflecting switches between percepts (for 
example Castelo-Branco et al., 2002; Muckli et al., 2002). The latter 
line of research shows the informative value of looking at endog-
enous fluctuations in hMT+, an approach we took in the current 
study to describe inter-individual physiological differences. While 
structural differences in the visual stream have been shown to cor-
relate with individual psychophysical thresholds (Kanai and Rees, 
2011), the connection between individual physiological properties 
of hMT+ and inter-individual differences in psychophysical tasks 
is less explored.

On a neuronal level, a possible reason for different perceptual 
sensitivity for direction could be the relative width of directional 
tuning curves. Sharper tuning curves lead to an unambiguous pop-
ulation signal in hMT+, which could be reflected in more distinct 
patterns for different directions of motion. On the behavioral level, 
this might translate into lower psychophysical thresholds when 
an individual has to make fine discrimination between different 
directions of motion (Purushothaman and Bradley, 2005; Liang 
et al., 2010). A potential candidate for revealing such physiological 
differences in fMRI is multi-voxel pattern analysis (MVPA) which 
is able to resolve fine grain patterns of hMT+ organization invisible 
to univariate techniques (Kamitani and Tong, 2006). Individual 
differences in decoding accuracy might indicate the distinctiveness 
of the hMT+ population pattern and correlate with perceptual 
performance.

Another method which has been recently suggested as a good 
gauge for inter-individual comparisons is variability analysis of 
the BOLD signal (Garrett et al., 2010; Mohr and Nagel, 2010; 
Samanez-Larkin et al., 2010; Mennes et al., 2011). Measurements 
of variability aim to describe endogenous background fluctua-
tions in the signal, which appear independent of the timecourse 
of the experimental manipulation. An important confound for 
accurately measuring such endogenous variability is that the 
relationship between the stimulus and the BOLD signal has to 
be described as precisely as possible. Only if this is achieved 
can one investigate if the observed physiological variability has 
functional significance. A growing body of studies suggests that 
neurophysiological variability patterns can be understood as 
(functional relevant) “signal” rather than (function disturbing) 
“noise” (Faisal et al., 2008; McDonnell and Abbott, 2009; Garrett 
et al., 2010). Population signal variability in hMT+ could have 
different effects on performance accuracy: higher overall vari-
ability levels in hMT+ could be detrimental for discrimination 
performance if they would have an destabilizing effect on the 
hMT+ population signal as some authors suggest for the dopa-
mine system (Winterer et al., 2006; Samanez-Larkin et al., 2010). 
Alternatively, a certain level of variability has been described 
to improve the sensitivity of systems, e.g., by stabilizing syn-
chronized oscillating populations (Ermentrout et al., 2008), 
an observation described as stochastic resonance (Emberson 
et al., 2007; McIntosh et al., 2008; McDonnell and Abbott, 2009; 
Garrett et al., 2010).

In the present study, we set out to characterize brain activity that 
correlates with inter-individual variability in the accuracy of visual 
motion perception. We used multivariate pattern classification (PC) 
to describe hMT+ population patterns and we characterized the 
variability of the hMT+ BOLD signal during perception of motion 
in different directions. We investigated if these measures can serve 
as sensitive indicators for inter-individual performance differences 
on a motion direction discrimination task.

MaterIals and Methods
PartIcIPants
Fifteen healthy subjects gave written informed consent to partici-
pate in this study. The study was performed in accordance with the 
Declaration of Helsinki and approved by the ethics committee of 
the medical faculty of the Ludwig-Maximilians University Munich. 
Handedness was determined according to a 10-item excerpt of the 
“Handedness Inventory,” coding the degree of handedness (+100: 
exclusively right handed, −100: exclusively left handed; Oldfield, 
1971). It resulted in +100 in 13 subjects, one with +64 and one with 
+81. All subjects had normal or corrected-to-normal visual acuity as 
determined binocularly with a Snellen table (0.8 on 6 m or better). 
None of the subjects were taking medication or had any history 
of neurological disease. All subjects understood the instructions 
without difficulty. One subject was excluded from the MR analysis 
due to excessive motion resulting in a final cohort of 14 subjects (age 
range: 21–27, 6 female). These 14 subjects consecutively also took 
part in the psychophysical task on direction discrimination. Three 
subjects were excluded from psychophysical data analysis, as their 
measurements did not fulfill stability criteria as described below.

PsychoPhysIcs
Apparatus
Stimuli were generated by a Fujitsu Siemens Pentium(R) 4 CPU at 
a frame rate of 85 Hz and displayed on a 40-cm × 30-cm Conrac 
Elektron CRT monitor driven by a NVIDIA Quadro Pro2 graphics 
card. The monitor resolution was set to 1280 × 1024. White and 
black pixel had a luminance of 25.3 and 0.1 cd/m2, respectively, 
resulting in a maximum Michelson contrast of 99%. Experiments 
were conducted in a darkened room and subjects were seated in 
60 cm distance from the monitor.

Stimulus
Stimuli were programmed in Matlab 7.3 using the Psychophysics 
Toolbox extensions (Brainard, 1997). Coherent translational flow 
fields were presented in a circular aperture (11.4° × 11.4°), contain-
ing 300 white dots (diameter: 0.1°) at a time on a black background. 
All dots of one stimulus moved in a upward direction either verti-
cally or at a small tilt from the vertical with a speed of 8°/s. Dots 
moving out of the aperture reappeared at new random positions 
(at the bottom of the aperture). Stimulus intensity was defined as 
the degree of tilt of the match stimulus (clockwise or anticlockwise) 
in respect to the upward (0°) reference stimulus.

Procedure
A two-alternative-forced-choice task was used to determine individ-
ual thresholds and psychometric functions of direction sensitivity. 
Reference stimulus and match stimulus were presented  consecutively 
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To ensure data reliability, those subjects whose thresholds 
exceeded the fourth quartile were excluded from further analysis 
(2 of 14). Subjects were furthermore excluded if the fit of their 
psychometric function did not meet goodness-of-fit criteria in the 
sensitivity analysis. Summary statistics yielded good fits between 
the psychometric function and the data for 11 of the 12 remaining 
subjects. Ninety-five percentage confidence intervals (CI) were 
calculated for the thresholds of each subject using the bootstrap-
ping method (sampling with replacement, 1999 repetitions).

A one-way Kruskal–Wallis ANOVA tested for inter-individual dif-
ferences in the behavioral thresholds, using the bootstrapped results.

Averaged reaction times (RT) were calculated as the arithmetic 
mean over the whole constant stimuli experiment. RT consistency 
was calculated as the SD over the experiment.

MagnetIc resonance IMagIng
Experimental stimulus and procedure
Visual stimuli were projected with a LCD projector on a screen 
placed behind participants in the MR-scanner, which they viewed 
through a mirror placed above them at 45°. Vizard 3.0 (Worlviz)1, 
was used to produce coherent translational flow fields presented in 
a circular aperture (300 dots per display, aperture size 11.4° × 11.4°). 
Participants watched flow fields in one of four possible directions 
(0°, 90°, 180°, and 270°), shown in a randomized order, while fixat-
ing on a cross in the middle. Using a block design, 18 s task peri-
ods were interleaved with 10 s rest periods, during which subjects 
continued fixating. One block consisted of four trials, in which 
direction of motion was kept constant. Subjects performed a two-
alternative forced-choice speed discrimination task, to keep their 
attention directly related to the movement of the stimulus while 
incidentally coding stimulus direction. In each trial, two  consecutive 

(stimulus duration: 1.5 s, inter stimulus interval: 0.25 s, intertrial 
interval: 1.25 s). While fixating on the center of the aperture, sub-
jects indicated with a buttonpress whether the second stimulus 
(match) was tilted clockwise or anticlockwise with respect to the 
first, upward moving reference stimulus (compare Figure 1A). After 
initial training with feedback (60 trials), preliminary thresholds were 
determined by two repetitions of a 3-down-1-up adaptive double-
staircase method (140 trials). The staircase measure was defined as 
stable if the slope of the linear fit from the last 12 reversals was less 
than 0.02. All but one subject achieved stable staircase measurements 
(this subject belonged also to the outliers in the measurement of 
constant stimuli, defined as subjects whose threshold exceeded the 
fourth quartile, see 2.2.4). Consecutively, the method of constant 
stimuli was used to sample the psychometric function, the range of 
sampling was set around the threshold determined by the staircase 
measurements. Tilt was varied between seven different intensities 
and each intensity was presented in 30 trials, resulting in a total of 
210 trials. Subjects answered following the second stimulus and 
both speed and accuracy of the response were emphasized. Response 
times were measured from the moment the second stimulus ended 
until the moment of response. No feedback was given in staircase 
or constant stimulus measurements.

Data analysis
Data was analyzed using psignifit toolbox (Wichmann and Hill, 
2001a,b) in Matlab 7.3. Final thresholds were obtained by fitting 
the percentage of correct responses determined by the method of 
constant stimuli with a cumulative Weibull distribution using a 
maximum likelihood procedure. Free parameters were threshold, 
slope, and lapse rate, which was kept variable between 0 and 0.5 
(Wichmann and Hill, 2001b). Thresholds were taken as the 0.5 
cut-off from the fitted function, corresponding roughly to a per-
formance level of 75% correct (see Figure 1B).

A B

C

FIguRe 1 | Setup and results of the psychophysical experiment. (A) A 
coherent flow field of white dots was moving in an upward vertical direction 
followed by a match stimulus moving upward with a slight tilt clockwise or 
anticlockwise from vertical. Participants responded following the match stimulus. 
One trial is depicted. (B) Psychometric function of one representative subject. 
Percent correct responses are plotted as a function of the deviation (in degree) of 

the match stimulus from the reference stimulus. Thresholds were taken at the 
mid-point of the psychometric function (t0.5, shown by dotted lines). (C) Subjects 
yielded different thresholds. Shown are individual t0.5 thresholds with errorbars 
depicting the 95% confidence intervals. Subjects which were not found to be 
different in a post hoc test are shown with gray dotted lines. deg, degree tilt from 
vertical; ISI, interstimulus interval; CW, clockwise; ACW, anticlockwise.

1http://www.worldviz.com/
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A separate fMRI experiment was conducted to functionally 
localize hMT+ in each subject, according to previously established 
procedures (Morrone et al., 2000; Huk et al., 2002). Briefly, a stimu-
lus of alternating moving and stationary dot patterns was presented 
in a circular aperture with interleaved rest periods. Moving dots 
(velocity: 17.1°/s) traveled toward and away from the fixation cross 
for 16 s, followed by a 16-s stationary dot field, and a 20-s blank 
screen. Subjects fixated at all times.

fMRI acquisition
Imaging data were acquired on a 3T MR-Scanner (GE Sigma 
HDx) with a standard 8 channel head coil using an echo-planar 
imaging sequence (TR: 2 s, echo time: 40 ms, flip angle: 70°) to 
acquire 25 slice volumes (interleaved acquisition, no gap), cen-
tered on the area of interest (medial temporal lobe). Voxel size was 
1.75 mm × 1.75 mm × 2.4 mm. In total, 8 runs of 225 volumes for 

stimuli were shown, a reference speed of 8°/s and a match stimulus 
of faster speed randomly distributed to the first or second presenta-
tion (stimulus duration: 1.5 s, interstimulus interval: 0.25 s, inter-
trial interval: 1.25 s, as for the psychophysical stimulus). Subjects 
reported the  order-position of the faster stimulus with a buttonpress 
(see Figure 2A). For keeping task difficulty constant, individual speed 
discrimination thresholds were kept at a task performance of about 
80% correct with an adaptive staircase procedure (QUEST, Watson 
and Pelli, 1983). Subjects performed 8 runs for a total of 32 repetitions 
per direction. Participants practiced the task outside the MR-scanner 
until they reached a satisfactory performance level (2 runs in which 
participants had to be error-free for 12 trials (fixed velocity differ-
ence) after which a staircase procedure started, on which subjects had 
to demonstrate a stable 80% correct threshold for at least 12 trials). 
They also  practiced inside the bore of the MR-scanner, until they 
were comfortable conducting the task in a supine position.

A B

C D

FIguRe 2 | Setup and hMT+ classification results of MR experiment. (A) 
Experimental setup. Coherent flow fields of white dots moved in one of four 
directions (0°, 90°, 180°, and 270°, clockwise from upward) while subjects 
performed a speed discrimination task. One trial is depicted. Blocks consisted of 
4 trials and runs of 16 blocks. Direction of motion was consistent within blocks 
and differed between blocks. (B) Example of an individual hMT+ t-mask as 

created with the functional localizer experiment. (C) Classification accuracy in 
hMT+ with varying number of voxels used in the mask. Classification 
performance averaged over subjects is shown. Note that the accuracy plateaus 
at 120 voxels. (D) Individual classification accuracy in hMT+ for each subject with 
a t-mask of 160 voxels. The dotted line indicates chance performance. The 
shading shows different probability levels as determined by permutation testing.
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Generating a stability index to quantify head motion
An index was designed to assess data stability for individual sub-
jects. Head-movement causes image shifts between classifier train-
ing and test periods which are detrimental for MVPA. Specifically, 
a movement in the middle of the acquisition is more detrimental 
than a movement at its start or end because there will be more 
cross-validation iterations in which the training set contains vol-
umes misaligned with the test set’s volumes. Our stability index 
(SI) roughly represents the longest stable stretch of head orien-
tation during data acquisition. For each volume, the location of 
the center of hMT+ is estimated from the realignment parameters 
generated during image preprocessing. Each volume is compared 
with all others. At each comparison (e.g., between volumes i and 
j), the distance, d

ij
 between the estimated locations of hMT+ is 

calculated and a number, A
ij
, assigned describing how aligned the 

pair of volumes are. This alignment score is

 

A
d

ij

ij

=
+
1

1
 (1)

The similarity S
i
 of each volume with all the other volumes is 

summarized by summing over all of its alignment scores:

 

S Ai ij
j

= ∑
 (2)

Finally, the whole recording session is given a SI, which is the 
score for the volume with the highest similarity score:

 SI max= i iS  (3)

Figure 3A illustrates how the similarity value varies for different 
time points over a fictitious series of volumes. The example shows 
little head motion during the longest part of data acquisition and 
a single large head motion toward the end. Similarity values for 
volumes in the long stable period are higher than for those after 
the movement, because the volumes in the former are similar to 
many more timepoints than a volume taken after the movement.

Estimating BOLD signal statistics using a generative model
Variability of the timecourses of the 160 voxels from the above 
described hMT+ and V1 masks was assessed with a genera-
tive model for stimulus (SDstim) and rest periods (SDrest) (see 
Figure 4B for an illustration of the model). In addition, variability 
was estimated in a white matter region to quantify the contribution 
of non-physiological variability to noise, as those regions show little 
change in local metabolism (Rostrup et al., 2000). Spheres of 80 
voxels in each hemisphere were selected from the anterior portion 
of the corona radiata (CR), as determined by the Harvard–Oxford 
structural atlas (see Figure 3C for an example).

Timecourses were high-pass filtered before model analysis. The 
temporal properties of the BOLD signal were described by mod-
eling all eight events within a stimulus block as box-cars (1.25 s 
duration), which is similar to modeling them as delta functions as 
used in event-related designs. Box-cars were then convolved with 
the canonical hemodynamic response function (HRF), to account 
for the latency of the BOLD signal. A mixing parameter a

i
 was gen-

erated by this function and assigned to each volume i, describing 
the proportion of the signal recorded at that timepoint that was 
provided by the stimulus periods.

the experimental condition and 1 run of 132 volumes for the func-
tional hMT+ localizer were acquired in each subject. In addition, a 
T1-weighted anatomical volume was acquired.

Defining hMT+ and V1 masks
To define functional regions of interest, fMRI data from the func-
tional localizer were realigned to the first volume of the timeseries 
and smoothed with a kernel of 4 mm FWHM as implemented in 
SPM8 (Wellcome Department of Imaging Neuroscience, London, 
UK). Data were processed in individual space. A general linear 
model analysis comprising regressors for motion and stationary 
conditions was performed. Contrasting motion and stationary 
regressors identified clear delineated clusters for hMT+ (FWE, 
p < 0.05 in all but two subjects, who showed hMT+ clusters only 
at p < 0.001 uncorrected). See Figure 2B for an example. The clus-
ters from the two hemispheres were combined to make a hMT+ 
mask of voxels for further analysis.

The V1 mask was created using anatomical and functional con-
straints. V1 was determined anatomically using FreeSurfer’s cortical 
parcelation algorithms in every subject, based on anatomical con-
strains described by Hinds et al. (2008). The final mask consisted of 
voxels within this anatomically defined V1 which showed significant 
activation in the functional localizer, using the motion–stationary 
contrast.

Multivariate pattern classification and preprocessing
We used the Princeton Multi-Voxel Pattern Analysis Toolbox 
(MVPA)2, to test whether voxels within hMT+ or V1 contained 
information about the direction of the stimulus. Data were pre-
pared by unwarping, realigning (SPM8), and detrending (MVPA) 
the timeseries to remove linear trends and high-pass filtering (cut-
off: 128 s) to remove low frequency noise. Z-scoring of response 
amplitudes for stimulus periods of individual voxels was applied 
to minimize baseline differences across runs and to reduce the 
impact of outliers. To account for the latency of the hemodynamic 
response, all stimulus onset times were shifted forward in time 
by 4 s as described previously (Kamitani and Tong, 2006). Data 
were neither smoothed nor spatially normalized, to avoid signal 
degradation and preserve inter-individual differences. The nine 
image volumes from each block of four trials were combined to 
generate a single average volume for each block.

The 160 voxels with the highest t-values in the functional 
localizer experiment were selected from the hMT+ or V1 masks 
respectively for decoding analysis. We tested different mask sizes, 
but found no improvement in classification accuracy beyond 160 
voxels (see Figure 2C).

The lSVM (linear support vector machine) classifier was chosen 
as it provided stable results across participants without overfitting. 
It was used with a fixed cost, c = 1. Classification used standard 
leave-one-out cross-validation, in which the data set was divided, 
with seven runs in the training set and one run in the testing set. 
The test was repeated eight times, with each different run being the 
test set (Pereira et al., 2009). The accuracy scores reported represent 
the proportion of blocks in which the classifier correctly decoded 
directions.

2www.pni.princeton.edu/mvpa
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p x Ni ci ci( ) = ( )m s, 2

 (6)

Assuming independent and identically distributed sampling, 
the likelihood of the whole timeseries is:

 
p x N ci ci

i
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 (7)

The log likelihood therefore is:
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The four parameters were estimated by maximizing this function 
with respect to each of them.

For the generative model, both stimulus and rest periods were 
modeled as gaussian distributions (stimulus: mean m

s
, variance 

ss
2 ; rest: mean m

r
, variance sr

2 ). The proportion of each of these 
distributions included in the final signal was estimated using maxi-
mum likelihood estimation (MLE). The estimate of the signal for a 
particular time point was calculated by finding the weighted sum 
of the two distributions. The mean and variance of the sum of two 
independently distributed gaussian random variables was found 
by adding the means and variances of the two distributions. So the 
mean and variance of the new distribution for time point i could 
be written as:

 
m a m a mci i s i r= + −( )1

 (4)

 
s a s a sci i s i r

2 2 2 2 21= + −( )
 (5)

this allows one to write the probability of value x
i
 as

A B

C D

FIguRe 3 | Origins of classification variability. (A) Schematic of the stability 
index. The upper plot shows simulated movement of a participant across a 
scanning session. The lower plot indicates how similar each of the volumes is to 
all the other volumes in the scan. For example the last few volumes are very 
dissimilar to the rest of the scan. The value of the volume with the highest 
similarity score is used as this participant’s overall stability index. (B) Stability 

index and hMT+ classification accuracy. The stability index was positively 
correlated with decoding accuracy. (C) Region of interest in white matter. The 
region is defined by placing two spheres of 80 voxels each in the anterior portion 
of the corona radiata (CR). (D) Signal variance in white matter and hMT+ 
classification accuracy. The individual SD during block-periods in CR was 
negatively correlated with the decoding accuracy in their hMT+.
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Methods. Slopes of the individual psychometric functions were het-
erogeneous as well and showed a negative correlation with thresh-
old (the higher the slope, the lower the threshold). The width of 
subjects 95% CI also differed between subjects. Average RT and RT 
consistency varied between subjects (max: 460 ms, min: 176 ms, 
SD: 67 ms, and SD max: 149 ms, SD min 57 ms respectively). RT 
means or variability did not correlate with individual direction 
discrimination thresholds.

Pattern classIfIcatIon Is confounded by resIdual head 
MotIon and cannot exPlaIn PercePtual dIfferences
Replicating previous results (Kamitani and Tong, 2006), the linear 
SVM was able to discriminate between the four motion directions 
in hMT+ with above chance accuracy (m = 53 ± 13%, p < 0.002 using 
permutation testing) in all but one participant (see Figure 2D). 
Also consistent with previous results, classification accuracy was 
still higher in V1 (m = 65 ± 12%, p < 0.001).

To test if individual classification scores in hMT+ or V1 were 
related to performance on the direction discrimination tasks, a 
correlation analysis between scores and psychophysical thresholds 
(t0.5) was performed which showed no significant effect (hMT+: 
r = 0.15, p = 0.64; V1: r = 0.16, p = 0.64).

To investigate possible reasons for inter-individual differences 
in classification scores, we looked at its correlation with non-phys-
iological noise of the MR signal. Classification accuracy correlated 
significantly with variability (SDstim) in the white matter region 
CR (r = −0.59, p < 0.03, Figure 3D), from which we concluded that 
the level of global noise determined the differences in decoding 
success rather than local hMT+ noise.

To test this, we looked at one of the largest methodological con-
tributors to variability in MR signal: head-movement (Friston et al., 
1996; Lund et al., 2005). A strong correlation was observed between 
the SI reflecting stability of the signal and classification accuracy 
(r = 0.62, p < 0.02, Figure 3B).

This implies that noise induced by subject movement is the pre-
dominant cause for differential classification accuracies in subjects. 
Being this sensitive for head-movement artifacts, PC differences 
between subjects are unlikely to be a viable method to investigate 
physiological differences between subjects.

a generatIve Model for assessIng bold sIgnal varIabIlIty
We used the arithmetic difference between SD of block and rest 
periods (SDdiff) to look at variability of the MR signal in hMT+ 
and V1 in individual participants. Being a relative measure, it was 
assumed to be largely resistant to movement induced artifacts and 
background scanner noise, as those would influence both periods 
to the same extend.

Considerably more variability was found in the hMT+ region 
than in a white matter region (CR), both within stimulus blocks, 
and rest periods (SD was 30% higher in hMT+ and V1 than in 
CR). The SDdiff was also found to be larger in hMT+ and V1 than 
in CR (36%).

Importantly, subjects with a larger noise difference in hMT+ 
between rest and blocks did not have larger SI scores (r = −0.4810, 
p = 0.0695) which demonstrates that SDdiff is less affected by head 
motion.

Finally, the arithmetic difference between the SD within stimulus 
periods (s

s
) and within rest periods (s

r
) was calculated for each 

participant (SDdiff).

 Adaptation model. The above model is not the only conceivable 
description of the signal timecourse. An alternative model was 
tested to assess the stability of our results yielded with the first 
approach. In this alternative model, possible signal adaptation in 
hMT+ over a block was accounted for by introducing a exponential 
decay term with a time constant of 5 s. This reduced the (pre-HRF 
convolved) box-car signal exponentially while the stimulus was 
applied, and allowed it to recover using the same exponential func-
tion during the stimulus-off periods. A maximum reduction of 14% 
in the BOLD response due to the adaptation was assumed, based 
on electrophysiological studies (Petersen et al., 1985; Krekelberg 
et al., 2006). The model was tested at four values of the time con-
stant: 5, 10, 20, and 40 s. All other parameters of the model were 
kept constant.

assessIng eye MoveMents froM fMrI data
Although subjects were instructed to fixate, we were concerned 
that systematic eye movements occurred. It has been shown pre-
viously that eye movements can be estimated from fMRI data by 
analyzing the timecourse of fMRI signal in the vitreous of the eye 
(Beauchamp, 2003). We took this retrospective approach in those 
subjects in which the eyeball was partially contained in the field 
of view (FOV; in 3 of 11 participants the eyeballs were to 33, 40, 
and 46% contained in the FOV, see Figure 5). We defined a region 
of interest for the available section of the eyeball using FreeSurfer. 
The mean timecourse was extracted using marsbar in SPM8. To 
estimate the dependency between eyeball signal and the rest of the 
brain, we used the eyeball timecourse as regressor in a GLM, as has 
been described previously (see Muckli et al., 2009 supplementary 
material).

correlatIon of behavIoral data wIth Mr MeasureMents
A Pearson correlation was calculated between individual thresholds 
from the behavioral experiment (t0.5) and the individual noise 
difference between block and rest periods as determined by the 
generative model (SDdiff). Additionally, a Spearman correlation 
was performed which also showed a significant correlation. The 
robustness of the significant Pearson correlation was estimated 
using bootstrapping, sampling with replacement with 2000 itera-
tions, to produce 95% CI for the r distributions.

results
Inter-IndIvIdual varIabIlIty In dIrectIon dIscrIMInatIon
On average, direction discrimination thresholds were found to 
be similar to previous results (Westheimer and Wehrhahn, 1994). 
We observed significant differences in discrimination thresholds 
between subjects (Kruskal–Wallis ANOVA, p < 0.001). Post hoc 
analysis also revealed similarities in subgroups of subjects, in three 
subject pairs (see Figure 1C: there was no significant difference 
between subject 1 and 4, between subject 3 and 11 and between 
subject 6 and 8). Note that data stem from 11 subjects, as three 
subjects did not reach reliability criteria explained in Materials and 
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varIabIlIty Patterns In hMt+, but not v1, correlate wIth 
dIrectIon sensItIvIty
In the final analysis, we tested whether inter-individual variability 
of perceptual performance was correlated with variability char-
acteristics of the hMT+ signal. As can be seen in Figure 4A, we 
observed a significant correlation between psychophysical thresh-
old and SDdiff: participants with a greater SDdiff showed better 
behavioral performance (smaller thresholds) compared to partici-
pants with a smaller SDdiff (r = −0.61, p < 0.046, bootstrap CI 95% 
for r: −0.87 to −0.23). In other words, the larger the difference in 
variability (stimulus block minus rest), the lower the threshold the 
respective subject achieved. Similar correlation results were found 
for estimating SDdiff with an alternative model taking into account 
adaptation effects within blocks (r = −0.59, p < 0.058, bootstrap CI 
95% for r: −0.84 to −0.20).

To investigate the specificity of this effect, we also correlated 
SDdiff in the CR with the psychophysical thresholds which was 
not significant (r = −0.35, p = 0.29, Figure 4C, lower panel). To test 
another region involved in direction coding, we correlated SDdiff 
of V1 with psychophysical thresholds. We did not observe a sig-
nificant correlation in V1 neither (r = −0.44, p = 0.181, Figure 4C, 
lower panel).

When the MR-blocks were split into those with stimuli of dif-
ferent directions, the effect remained significant for vertical but 
not horizontal motion (see Figure 4C, upper panel). Given that the 
stimulus in the psychophysics experiment were visual flow fields 
moving vertically upward, this might indicate that we are observing 
a phenomenon specific for vertical motion. Alternatively, one could 
interpret this observation as showing a general bias for vertical 
versus horizontal motion in hMT+. Further studies are necessary 
to clarify this point.

eye MoveMent analysIs
The hMT+ is known to be influenced by eye movements (Dukelow 
et al., 2001; Acs and Greenlee, 2008). For this reason we instructed 
subjects to fixate, with which they reported no difficulties. We can 
not exclude however, that eye movements occurred. To investigate 
this, we used a retrospective approach to assess, if the signal time-
course of the eyeballs taken from the EPI images correlates with 
fluctuations in hMT+. In the three subjects analyzed, we did not 
observe significant correlations of eyeball signal timecourse with 
fluctuations in area hMT+ (see Figure 5).

dIscussIon
We demonstrate in the current study that inter-individual differ-
ences in performance on a direction discrimination task of visual 
motion are correlated with signal variability characteristics of 
hMT+ but not V1. We furthermore show that PC, though being 
able to decode direction from hMT+ within subjects, is a poor tool 
to describe inter-individual differences. Assessing individual BOLD 
signal variability difference in stimulus and rest periods is shown 
to be a better measure for such comparisons, being less influenced 
by non-physiological noise.

Differences in psychophysical thresholds between subjects 
show that perceptual sensitivity for motion direction is variable 
even within a homogeneous sample. Worse or better perception 

of motion stimuli in subjects with normal visual acuity has been 
suggested to reflect changes in higher level visual cortical areas 
rather than in the peripheral apparatus (Halpern et al., 1999).

Relatively little is known about hMT+’s contribution to worsen-
ing of direction perception (Bennett et al., 2007; Billino et al., 2008), 
although concepts like the “magnocellular theory” behind learning 
disorders like dyslexia attribute a partial cause of the phenomenon 
to perceptual malfunctioning in the dorsal visual stream (Stein, 
2001). Other authors already suggested that BOLD signal variability 
over the whole brain (Garrett et al., 2010) or in specific regions like 
the nucleus accumbens (Samanez-Larkin et al., 2010) might have 
predictive value for degradation of function during aging. Our 
method of characterizing signal variability in hMT+ could help 
the clinical understanding of degraded motion perception in aging 
or disorders like dyslexia.

Better performance in the psychophysical task suggests higher 
perceptual sensitivity in that particular participant and thereby 
most likely more effective processing in the brain. Our results show 
that variability characteristics in hMT+ but not V1 correlate with 
psychophysical thresholds. This might indicate that we observe 
individual differences not at the initial encoding of the visual infor-
mation in V1, but rather during a more complex motion process-
ing step in hMT+, an area thought to drive perceptual decisions 
in higher cortical areas.

We find lower thresholds correlating with larger variability dif-
ferences between stimulus and rest periods which mean higher 
variability levels in stimulus periods (but see the below discussion 
on model bias as a limitation to this claim). How could increased 
random physiological signal be beneficial for the sensitivity of a sys-
tem? An influential theory based on the phenomenon of stochastic 
resonance advertises “[...]randomness that makes a non-linearity 
less detrimental to a signal.” (McDonnell and Abbott, 2009). The 
theory asserts that a certain level of noise can actually be beneficial 
for signal transmission. Studies have shown that a certain level 
of endogenous noise can make synchronized oscillating popula-
tions more stable (Ermentrout et al., 2008; Ghosh et al., 2008) and 
benefits the emergence of fast oscillations in local field potentials 
(Brunel and Wang, 2003). For us this means that detecting higher 
levels of endogenous variability in the hMT+ population signal 
might actually reflect a more robust signal.

Other fMRI and EEG studies have described lower levels of 
cortical noise in senior subjects (Garrett et al., 2010) and children 
(McIntosh et al., 2008) compared to young adults. This has been 
discussed as neurophysiological noise being inversely related to 
the well described U-shaped function of performance during the 
lifespan (MacDonald et al., 2006; McIntosh et al., 2008).

More specifically for our case of signal variability in the visual 
system, Bair et al. (2001), recording single-neurons in macaque MT, 
describe that those neuron pairs with high signal correlations also 
showed an increase in the correlation of noise. Clearly, given the 
coarse MR resolution, correlated noise would be more detectable 
at the fMRI level than uncorrelated noise. Our results suggest that 
greater variability differences between stimulus and rest periods 
might be beneficial for perceptual sensitivity in hMT+. The basis for 
signal variability could be caused by individual neurophysiological 
characteristics of hMT+.
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FIguRe 4 | Blood oxygen level dependent (BOLD) signal variability and 
behavioral performance. (A) Correlation of BOLD signal variance and direction 
discrimination threshold. The difference in individual SD between the blocks 
and rest periods correlated with single-subject thresholds from the 
psychophysics experiment. A larger variability difference is correlated with 
lower direction discrimination thresholds. (B) This figure illustrates the 
generative model used to estimate the parameters of the two distributions. The 
graph shows how the alpha “mix” values are calculated from the block times. 
Each volume’s alpha value is used to estimate what proportion of the signal is 
from the stimulus and what proportion is from the rest period. These two 

distributions are sampled and their weighted sum is found. This is used to 
generate the distribution. The log likelihood of the real distribution being 
generated in this way is calculated. The parameters of the block and rest 
distributions are then altered to maximize this log likelihood. (C) Top graph: 
Comparing correlations for different stimulus directions. Splitting the block and 
rest periods in the four directions shown during the MR experiment, we 
observed small differences in correlation strength. Bottom graph: Comparing 
correlations over different brain regions. The correlation between noise 
difference and psychophysical threshold was smaller and not significant in the 
white matter region CR and V1. CR, corona radiata.
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2002; Liu et al., 2011; Stoppel et al., 2011), and those participants 
able to apply attention most accurately to the stimulus are not only 
likely to do well in the psychophysics direction discrimination task, 
but may also show the BOLD signal variability we observe. Top-
down control by areas described for internally evoked attention 
processes like the intraparietal cortex and superior frontal cortex 
could play a role in inducing the individual hMT+ signal variability 
we observe (Corbetta and Shulman, 2002).

From the methodological point of view, we demonstrate that 
PC is a poor method to determine between subject differences. 
Although it could decode directional information from hMT+ 
activity in individual subjects, its ability to describe the relative 
difference between subjects was confounded by individual head-
movement and scanner artifact differences. Filtering out movement 
artifacts has been a challenge in the field of MR, as it contributes 
the greatest amount of non-physiological noise (Friston et al., 
1996; Lund et al., 2005). Although successful methods have been 
established for reducing the effect of head-movement in univari-
ate analysis based on the general linear model (Friston et al., 1996; 
Andersson et al., 2001), the specific influence of residual artifacts 
on new methods like PC is less well documented. Beyond this meth-
odological confound, other evidence exists that classification accu-
racy may not be an appropriate metric to compare experimental 
conditions, brain regions, or participants. Smith et al. (2011) for 
example suggest that classifier performance is influenced by other 
factors besides neural specificity such as response amplitude. Using 
MVPA for between subject comparison might therefore require 
further corrections to guarantee comparability.

Head-movement artifacts can also confound measures of signal 
variability. Garrett et al. (2010) show that the predictability of a 
noise measure was greatly improved by the extensive preprocessing 
of the data, beyond the conventional steps of realignment and nor-
malization. Their methods included artifact correction via inde-
pendent component analysis (Beckmann and Smith, 2004) and 
regressing out motion parameters. For future analysis of both PC 
and BOLD signal variability, this seems to be a fruitful approach. 
In the current study we used the relative value of noise differ-
ences between stimulus and rest periods, which minimizes the 
movement confound, as both periods should be equally affected 
by movement.

Critically, all assumptions on signal variability characteristics 
depend on the validity of our method to estimate the variability in 
the hMT+ signal. We used a generative model to estimate variability 
in the fMRI signal, modeling all eight events within a stimulus 
blocks separately as box-cars convolved with the HRF. The model 
furthermore accounted for the HRF-induced overlap of stimulus 
blocks and rest periods by assigning mixing values to each indi-
vidual volume, based on the estimation of the relative contribu-
tion of stimulus and rest periods to the signal in that particular 
volume. Compared to other methods to assess variability in the 
BOLD signal, our method is quite complex. Garrett et al. (2010) 
for example directly calculated the SD over blocks. Considering 
that the physiological response in hMT+ to our stimulus periods 
probably consisted of a sustained elevation in BOLD signal, over-
laid with single spikes evoked by the eight single events, simply 
calculating the SD would have not allowed us to separate the endog-
enous from the stimulus induced variability. The current model is 

FIguRe 5 | Retrospective eye movement analysis. The mean timecourse 
was extracted from the eyeball ROIs (green) defined for three subjects. The 
timecourses were used as regressors in general linear models to assess 
correlated activity in the rest of the brain (blue). No overlap was found with the 
hMT+ masks (red).

A confound that must be considered before interpreting our 
variability signal is signal fluctuations in hMT+ caused by eye 
movements. Participants were instructed to fixate, but as we used 
translation stimuli, an automatic smooth pursuit must have been 
suppressed which individual subjects might have achieved with 
more or less success over the timecourse of stimulation. However, 
we did not find that the signal timecourse from the eyeball ROIs 
as measured in a subgroup of subjects correlated with hMT+ 
signal fluctuations. Participants furthermore did not report dif-
ficulties fixating. Although we cannot exclude an influence of eye 
movements on the hMT+ signal, we believe it is not the strongest 
component causing the observed inter-individual differences in 
fluctuation of the hMT+ signal.

Also non-perceptual phenomena like individual motivation 
or attentional levels could explain our results, influencing both 
physiological and perceptual measurements. It has been shown that 
hMT+ BOLD signal is modulated by attention (Berman and Colby, 
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