
stream appears to be deeply suppressed under interocular suppres-
sion, as shown by psychophysics (Zimba and Blake, 1983; Alais and 
Melcher, 2007), neurophysiological data in monkeys (Logothetis, 
1998), and in single-cell recordings in humans (Kreiman et al., 
2005). However, it has recently been proposed that there is a dif-
ference between the ventral and dorsal stream for the processing of 
invisible pictures of animals and tools (Fang and He, 2005; Almeida 
et al., 2008, 2010). It was suggested that while dorsal stream neurons 
responded to invisible tools that carried the characteristic of being 
“graspable” the categorization of invisible animals was widely sup-
pressed in the ventral stream (Fang and He, 2005).

Even though the human and non-human primate brain can 
achieve visual categorization very fast, theories of visual awareness 
propose that a rapid feed-forward mechanism might not be sufficient 
for visual awareness, which might also require horizontal connections 
between different brain areas (Lamme, 2000) and/or late feedback 
projections from prefrontal areas (Sergent et al., 2005). The study of 
the neural correlates of invisible stimuli is valuable to disentangle the 
minimal set of processes that are necessary and sufficient for visual 
awareness to occur (Koch, 2003). Further investigation is needed to 
understand the relationship between the first, rapid feed-forward 
pass of information and the emergence of visual awareness.

We studied the timing of categorization of seen and unseen images 
of animals, tools, and scrambled control images employing continu-
ous flash suppression (CFS; Tsuchiya and Koch, 2005), EEG record-
ings and single trial analysis. Based on the EEG signal, our classifiers 

IntroductIon
The human brain continuously performs visual categorization of 
stimuli in everyday life. Studies of rapid visual categorization sug-
gest that the first 100–200 ms are crucial to this process, consist-
ent with categorization during the first pass of visual processing 
(Potter and Faulconer, 1975; VanRullen and Thorpe, 2001b; Liu 
et al., 2009). For go/no go tasks, for example, early event-related 
potentials (ERPs) at approximately 150 ms reflect the decision 
that there was a target present in a natural scene (Thorpe et al., 
1996; VanRullen and Thorpe, 2001b). This first rapid categoriza-
tion appears to be similar for diverse categories such as means of 
transportation or living objects (Thorpe and Fabre-Thorpe, 2001; 
VanRullen and Thorpe, 2001a).

An open issue regards the capacity of invisible stimuli to influ-
ence visual categorization and to activate different areas of the 
visual cortex. Experiments employing change blindness and inat-
tentional blindness have clearly documented that important visual 
events that impinge on our retina can go widely unseen when atten-
tion is diverted from them (Mack and Rock, 1998; Simons and 
Chabris, 1999). On the other side, it has been also demonstrated 
that visual category detection can be rapidly achieved even in the 
near absence of visual attention (Fei-Fei et al., 2002). Psychophysical 
studies using interocular suppression as well as neuroimaging stud-
ies have given conflicting reports on the degree to which suppressed 
information activates areas of the brain (Blake and Logothetis, 2002; 
Alais and Melcher, 2007). Visual information arriving to the ventral 
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were able to predict the visual category on single trials of seen but 
not unseen stimuli. Fast categorization of conscious images could 
be detected around 100 ms on the occipital electrodes, suggesting a 
fast, feed-forward mechanism responsible for the fast recognition of 
visual categories. For the unconscious images of animals and tools, 
however, no trace of a distinction between semantic categories was 
found in the EEG signal. The claim that processing of unseen tools 
but not of unseen animals can occur in the dorsal stream (Fang and 
He, 2005) was not be replicated with EEG recordings. Overall, these 
results provide further evidence that categorization occurs early in 
visual processing (VanRullen and Thorpe, 2001b; Hung et al., 2005) 
and that this early, initial and (perhaps) approximate categorization 
plays a role in later semantic processing and in conscious awareness.

MaterIals and Methods
PartIcIPants
We recruited 12 students – 2 female and 10 male, mean age 26.7 
ranging from 21 to 31-year-old from the university of Buenos Aires 
for the experiment. All subjects had normal or corrected to nor-
mal visual acuity and were tested for ocular dominance before 
running the experiment. All participants gave written informed 
consent and were naive about the aims of the experiment. All the 
experiments described in this paper were reviewed and approved 
by the ethics committee of the Centre of Medical Education and 
Clinical Research “Norberto Quirno” (CEMIC), qualified by the 
Department of Health and Human Services (HHS, USA).

stIMulI
For the current experiments we used 50 images of animals, 50 tools 
(all downloaded from the Internet), 100 phase-scrambled control 
images (Figure 1) and a set of 40 Mondrians images (Tsuchiya 

and Koch, 2005; Figure 2A). All images of animals and tools were 
 converted into gray-scale images with a maximum brightness inten-
sity value of 0.8 for every pixel in the image, while background 
pixels were turned into a value of 0.5 pixel brightness in a scale from 
0 = black to 1 = white. No images with strong emotional saliency 
were used for this study (such as spiders, snakes, or guns). We cre-
ated 100 control phase-scrambled images (one scrambled image 
for each animal and tool image) with the same spatial frequencies 
and mean luminance values as the animal and tool images. In order 
to generate these images we applied the Fourier transform to each 
picture of an animal, tool, or Mondrian and obtained the respective 
magnitude and phase matrices. We then reconstructed each image 
by using the magnitudes of the animals and tools and the phases 
of the Mondrian images. Finally, we multiplied each single pixel of 
the scrambled images by an appropriate constant to correct for any 
differences in mean luminance values between the original images 
and their scrambled counterparts. A t-test comparing the mean 
luminance value of the group of original images and the group of 
scrambled images showed no significant difference between both 
groups (p = 0.6).

Procedures
Stimuli were presented using a PC computer with a CRT display 
monitor (resolution = 1024 × 768, 75 Hz refresh rate) using Matlab 
Psychophysics toolbox (Brainard, 1997). Subjects were instructed 
to fixate on a central point while they viewed a series of pictures 
through a pair of red–green anaglyph glasses. These pictures were 
viewed from a distance of 70 cm at the center of the screen and 
subtended 8 by 8 degrees of visual angle. To allow competition 
between stimuli on each trial we randomly selected 10 Mondrians 
from the set of 40 Mondrians and presented them to the red RGB 

FiGurE 1 | The set of 200 stimuli used in the experiments: 50 animals, 50 tools, and 100 phase-scrambled controls.
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interval of either 1, 1.5, or 2 s was used in between trials to avoid 
attentional expectations. The EEG experiment comprised eight 
conditions: four stimuli types (animals, tools, scrambled animals, 
and scrambled tools) by two visibility levels (seen and unseen). The 
EEG experiment consisted of 800 trials (100 trials per condition 
by 8 condition) and lasted approximately 70 min.

Invisibility assessment
On a previous session to running the EEG recordings subjects 
performed a visibility threshold detection task. We presented the 
targets at six different luminance levels while Mondrians were 
kept constant. The trial presentation was exactly the same as the 
sequence described above (see Figure 2A) with the only exception 
that instead of scrambled images a blank green screen of the same 
luminance as target images was presented on half the trials to the 
dominant eye. Subjects had to respond whether they had seen a tar-
get (animal or tool) or a blank screen. Using signal detection theory 
we calculated the d’ values for each luminance condition to obtain 
a measure of each subjects visibility threshold (see Figure 2C). 
Finally, we chose a luminance value that yielded a d’ between −0.5 

channel of the image every eight frames (10 Hz, each Mondrian 
presentation lasting 106 ms). Target animals, tools, and scrambled 
images were presented to the green RGB channel of the image. In 
this way, subjects using the anaglyph glasses saw the Mondrians 
with their dominant eye and the animals, tools, and scrambled 
images with their non-dominant eye.

Throughout a trial Mondrians were dynamically changed every 
106 ms. Trials initiated with a period of 424–636 ms (4, 5, or 6 
flashes) of Mondrian presentation followed by the targets plus 
the Mondrians for 636 ms. Once the targets disappeared, four 
more Mondrians were flashed on the screen to avoid afterimages 
(Figure 2A). For the seen conditions targets were presented at 
low luminance and Mondrians at high luminance whereas for the 
unseen condition targets were presented at a low luminance and 
Mondrians at high luminance. These luminance levels were chosen 
for each subject based on a visibility threshold detection task (see 
below). On each trial, subjects were asked to fixate at the center of 
the screen to avoid eye movements. Their task was to respond with 
their right hand index or middle fingers whether the picture of an 
animal or tool had appeared on the screen (2AFC). An inter-trial 

FiGurE 2 | (A) Schematic trial representation. Mondrians were changed on the 
screen every 106 ms (see Materials and Methods). (B) Performance at 
discriminating the categories of stimuli for the seen and unseen conditions. (C) 
Objective assessment of invisibility. Prior to the main experiment we conducted a 
detection task with targets at different low luminances to be sure that subjects 
were completely unaware of the target stimuli under the unseen conditions (see 

Materials and Methods). This task was identical to that depicted in (A) but with 
half the trials presenting a blank screen instead of a target. Subjects had to report 
whether they had seen a target or nothing. Signal detection theory was used to 
estimate for each subject the target luminance values that yielded a d’ between 
−0.5 and 0.5. In addition to this objective measure of invisibility subjects reported 
to be completely unaware of any targets presented at low luminance during CFS.
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visually inspected and the ones associated with eye blinks and eye 
movements were manually eliminated from the data. Channels 
containing artifact noise for long periods of time were interpolated 
(a maximum of four channels were interpolated for each dataset). 
The datasets were notch filtered at 50 Hz to clear out electrical noise, 
and the reference on the right ear was digitally transformed into 
an averaged reference. Once this process was finished the datasets 
were epoched in synchrony with the beginning of the target pres-
entation and each epoch was corrected for baseline over a 400-ms 
window during fixation at the beginning of the trial. An automatic 
method was applied to discard those trials with voltage exceeding 
200 mv, transients exceeding 80 mv, or oculogram activity larger 
than 80 mv. The remaining trials were then separated accordingly 
to the experimental conditions and averaged to create the ERPs. On 
average, 15% of trials were discarded after artifact removal. All the 
preprocessing steps were performed using EEGLAB (Delorme and 
Makeig, 2004) and custom made scripts in Matlab.

statIstIcal analysIs of erPs
In order to assess the earliest time point in visual categorization we 
initially ran statistical comparisons between seen animals versus 
seen scrambled animals and seen tools versus seen scrambled tools 
(Figure 3). In all cases we submitted each (channel, time) sample of 
the ERP calculated for each subject to a non-parametric rank-sum 
test to compare the two conditions across all subjects. This implied 

and 0.5. This luminance value was then assigned to the targets in the 
unseen conditions and to the Mondrians in the seen conditions for 
the EEG experiment. For all subjects, the final targets were presented 
against a green background (CIE coordinates X = 0.414, Y = 0.391) 
with a maximum luminance of 4.8 cd/m2. When presented at low 
luminance the mean pixel intensities for the gray-scale targets was 
0.26 (in a scale from 0 to 1) with an STD of 0.02. For the gray-scale 
high luminance targets and Mondrians the mean pixel intensities 
was 0.71 with an STD of 0.06. CFS allowed us to present constant 
stimuli to our subjects while they underwent two conditions: a 
visible condition in which pictures were consciously perceived and 
an invisible condition in which participants were not able to report 
the presence nor the identity of the suppressed stimuli.

PreProcessIng of eeg data
EEG activity was recorded on a dedicated PC at 1024 Hz, at 128 elec-
trode positions on a standard 10–20 montage, using a BrainVision 
electrode system1. An additional electrode at the right ear lobe was 
used as reference. Datasets were bandpass filtered (1–120 Hz), down 
sampled at 300 Hz, and independent component analysis (ICA) 
was run on the continuous datasets to detect components associ-
ated with eye blinks, eye movements, electrical noise, and muscular 
noise. The resulting components from the ICA decomposition were 

FiGurE 3 | The earliest correlates of visual categorization. (A) Raster plots of 
seen animals, tools, and their scrambled control conditions. The presentation of 
meaningful stimuli (animal or tool) produced three distinctive components with 
respect to the scrambled pictures with onsets at 100, 200, and 500 ms. The 
signals prior to the stimuli onset correspond to the Mondrians presentation. These 
plots show the average of 12 subjects. (B) The difference between seen animals 

versus seen scrambled animals and seen tools versus seen scrambled tools are 
plotted for all channels (gray) and as particular examples for channel “OZ = cyan” 
and “FZ = magenta.” The activity of Mondrians is canceled by the subtraction 
between conditions. Upper dark bars indicate the time points where the signals 
showed statistical differences for both conditions (see Results). (C) Topographical 
maps show brain activity at the beginning of each period of significance.

1http://www.brainvision.co.uk/
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based decoding.” To obtain a global measure of classification or 
“all-channel based decoding” (see Results), we performed the same 
procedure as before with the exception that during training the 128 
channels were concatenated and 12800 features were selected, i.e., 
the best 100 features for each of the 128 channels. The classifica-
tion performance of an SVM classifier was estimated by means of 
cross-validation.

results
BehavIoral resPonses
We ran eight Bonferroni corrected one-sample t-tests (one for each 
condition, Figure 2B) against the null hypothesis that subjects were 
performing at chance level. Subjects were above 90% accuracy at 
discriminating animals and tools on the seen condition (corrected 
p < 0.05). For the remaining six conditions none of the tests rejected 
the null hypothesis that participants were responding differently 
from chance level.

erP analysIs
First of all, we found three main components that distinguished 
targets (animals or tools) from scrambled images (Figure 3; see 
Materials and Methods for details on statistical criteria for ERPs 
comparisons). The earliest differences between ERPs of seen ani-
mals and seen scrambled animals, and seen tools and seen scram-
bled tools were observed for a P1 component at occipital electrodes. 
These components had a statistically significant onset starting at 
93 ms for animals and 127 ms for tools. These results are in agree-
ment with previous studies showing early categorization around 
100 ms (Thorpe et al., 1996; Fabre-Thorpe et al., 2001; VanRullen 
and Thorpe, 2001b; Rousselet et al., 2007). We also observed a sec-
ond N2 component with a peak starting at ∼230 ms and a third late 
component with a peak starting at ∼490 ms. The pictures of seen 
animals or seen tools produced a widespread activation throughout 
the cortex as compared to the seen scrambled controls.

Second, we assessed the EEG signal associated with the presenta-
tion of unseen pictures of animals or tools (Figure 4). We observed 
no EEG correlates of unseen stimuli as compared with their unseen 
scrambled controls. Even the earliest P1 components were elimi-
nated under CFS, suggesting that under interocular suppression 
unseen stimuli were completely suppressed before 100 ms or that 
they were too weak to be detected with ERPs.

Third, we found no differences in the ERPs for the subtler 
semantic categorization of animals versus tools (Figure 5). For 
the seen targets the EEG activity related to the two categories was 
almost identical, with only an N2 component that (even though 
not statistically significant) could be still observed around 200 ms 
after the subtraction of the two categories. For the unseen targets 
even the earliest components were nor present.

The failure in categorizing unseen stimuli could have been sim-
ply a matter of insufficient signal-to-noise ratio: the target images 
could have been too weak to produce a reliable EEG signal. In order 
to rule out this possibility we ran a control experiment (n = 6) with 
two conditions. We presented the same target and scrambled images 
as in the unseen condition: (1) without presenting any Mondrian 
and (2) with low luminance Mondrians presented to the dominant 
eye. We found that the targets animals and tools produced a signifi-
cant cortical response at P1 and N2 components (Figure 6). This 

over 5000 comparisons for each pair of conditions. We filtered these 
multiple comparisons across time samples and recording sites with 
the following criteria. (1) We kept only samples with p < 0.01. (2) 
For each channel, a given time point was considered significant if it 
was part of a cluster of six or more consecutive significant consecu-
tive time points for a 19.5-ms time window (Thorpe et al., 1996; 
Dehaene et al., 2001). (3) Each sample was considered significant 
if for the same time point at least two neighboring channels were 
also significant.

sIngle trIal classIfIcatIon
We employed multivariate pattern analysis (Hanke et al., 2009) to 
decode visual information from the EEG recordings in single trials. 
All the analysis were performed in Python language adopting the 
software library PyMVPA2. For each channel we assessed the time 
and frequency intervals within the EEG signals that carried the 
biggest amount of stimuli-related information and maximized the 
separability between the stimuli categories. The amount of infor-
mation was estimated as the accuracy of a classifier trained on single 
trials at predicting the stimuli of future trials. A dimensionality 
reduction step was performed before each classification process via 
a variable selection step, and for this study the selected variables 
were time intervals. Variable selection was conducted in order to 
discard irrelevant information for classification and improve the 
signal-to-noise ratio.

For each subject, the dataset consisted in 3D matrices of 300 
sample points by 128 channels by 800 trials containing voltage 
values. For all the analysis we used a sixfold cross-validation pro-
cedure in order to estimate the accuracy of classification. We refer 
to “classification performance” of a subject as the average of the six 
classification accuracies obtained on the test set of each fold. At each 
one of the iterations of the cross-validation scheme the following 
variable selection procedure was applied to the training dataset. 
First, we computed the mean and SD for each timestep and class 
over all training trials. Then, for each timestep and each channel 
we ran a one-way ANOVA between the two classes to compare the 
differences in signal amplitude. Next, we obtained a vector with 
300 p-values (one for each sample point). The 300 time points 
correspond to the time range 0–1000 ms after stimuli presentation. 
The first 100 timesteps with the lowest p-value were selected for 
each channel and used as feature values to set up a final dataset 
where each trial is a vector of 100 features. Finally, the resulting 
dataset was used to train a classifier with a support vector machine 
(SVM) algorithm (Schlkopf and Smola, 2001) and linear kernel.

The corresponding test dataset for the given iteration of the 
cross-validation scheme was reduced to the 100 features selected 
on the training dataset. In order to avoid circularity analysis during 
variable selection we performed the feature selection process jointly 
with the cross-validation process for each step of the multivariate 
analysis (Olivetti et al., 2010). For each fold of the cross-validation 
process the SVM algorithm produced a classifier for each chan-
nel and the related accuracy on the test set was used to evaluate 
the informativeness of the channel. The result of these classifica-
tion processes yielded a measure of the information contained in 
each channel to discriminate stimuli categories, a “single-channel 

2http://www.pymvpa.org
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dence level of 0.01 that we adopted in this work. This suggestive 
classification performance could not be attributed to low-level 
image statistics, as the comparison seen scrambled animals versus 
seen scrambled tools was at chance level. The most important 
channels contributing to the classification performance can be 
observed in Figure 8. For the discrimination between seen ani-
mals, tools, and their scrambled controls the occipital electrodes 
conveyed the highest discriminative information. For the seen 
animal versus tool classification performance our results were 
lower than in previous EEG and MEG studies (Murphy et al., 
2009; Simanova et al., 2010; Chan et al., 2011). We speculate that 
our results might differ from these studies due to two reasons. 
First, the relative small number of trials used in our study (100 
per category) compared to previous works [i.e., Murphy et al. 
(2009, 2010)] could have made the classifier and the estimation 
of its accuracy less precise. Second, the additive noise effect of 
the low luminance Mondrians in the seen conditions might have 
reduced the signal-to-noise ratio thus decreasing the accuracy 
of the classifier.

dIscussIon
The primate visual system can accomplish complex visual stimuli 
processing in a fraction of a second. Fast visual categorization can 
occur in human and non-human primates as fast as 100 ms after 
stimuli presentation (Perrett et al., 1982; Oram and Perrett, 1992; 

result implies that the lack of signal under the unseen conditions 
(Figure 4) cannot be attributed to weak visual stimulation. On 
the other hand, it remains possible that some form of interaction 
between the CFS Mondrian sequence and our already weak target 
stimuli could have wiped out the corresponding signals at an early 
cortical stage. While this possibility is, to some extent, compatible 
with our conclusions, it would be useful in future studies to observe 
the ERP signals (or lack thereof) generated by unseen stimuli that 
are physically matched to the consciously seen ones (e.g., in a condi-
tion where the same target stimulus sometimes becomes conscious 
and generates an ERP and sometimes remains unconscious with 
no associated ERP).

eeg sIngle trIal analysIs
We employed single trial multivariate analysis for all the con-
ditions in our data (Figure 7). We designed our classification 
approach with an emphasis on avoiding biases in the process 
of feature extraction and parameter estimation implementing 
a nested cross-validation scheme (Olivetti et al., 2010). For the 
seen conditions the classifiers were able to discriminate well 
above chance animals from scrambled animals with an accu-
racy of 72% and tools from scrambled tools with an accuracy 
of 66% (p < 0.0001). A 55% of accuracy was obtained for the 
comparison of seen animals versus seen tools, which was statis-
tically suggestive (p = 0.0518) but not significant at the confi-

FiGurE 4 | rapid categorization is suppressed for unseen stimuli. (A) 
Raster plots for stimuli presented under invisibility conditions. These plots show 
the average of 12 subjects. (B) No ERP components were present in the data 
except for the activity associated to the Mondrians presentation. The difference 
between unseen animals versus unseen scrambled animals and unseen tools 

versus unseen scrambled tools are plotted for all channels (gray) and as 
particular examples for channel “OZ = cyan” and “FZ = magenta.” The activity of 
Mondrians is canceled by the subtraction between conditions. (C) Topographical 
maps show no particular information regarding unseen stimuli. CFS eliminated 
even the earliest EEG correlates of image categorization.
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Liu et al., 2009). The nature of connections among neurons from 
the retina to the inferotemporal cortex (Felleman and Van Essen, 
1991) and the spikes needed for the information to step through all 
these areas suggest that fast categorization is performed in a single 
feed-forward pass of information (Thorpe et al., 1996; VanRullen 
and Thorpe, 2001a,b).

Our results give support to this view as they show a first early 
categorization of meaningful pictures starting at 90–120 ms. 
Consistent with studies showing that a visual scene can be rap-
idly detected (Thorpe et al., 1996; Fei-Fei et al., 2002), the pres-
entation of a meaningful picture produced a rapid widespread 
activation throughout the cortex as compared to the meaningless 
scrambled pictures. In our data identifiable targets of animals 
or tools generated an early event-related component as early 
as 100 ms, suggesting that initial visual categorization might 
originate from the first pass of processing in visual cortex. These 
early processes could not be attributed in our data to spatial 
frequency or mean luminance differences between targets and 
scrambled controls.

The absence of a difference in ERPs between seen animals 
and tools along with the low single trial classification perfor-
mance suggests that finer semantic categorization takes place at 
a later stage of the processing hierarchy. This idea is in accord-
ance with the latency of the N400 ERP component, usually in 
the time  window of 200–500 ms after stimuli onset, associated 

FiGurE 5 | Semantic categorization between animals and tools. (A) Raster 
plots showing activations for seen animals and seen tools. These plots show the 
average of 12 subjects. (B) The subtler semantic categorization of animals versus 
tools could not be observed from the EEG recordings. The difference between 
seen animals versus seen tools and unseen animals versus unseen tools are 

plotted for all channels (gray) and as particular examples for channel “OZ = cyan” 
and “FZ = magenta.” The activity of Mondrians is canceled by the subtraction 
between conditions. (C) However, even if it was not statistically significant, some 
type of small potential was still present after the subtraction around 200 ms. We 
investigated this activity employing a multi pattern analysis approach (Figure 7).

FiGurE 6 | EEG signal-to-noise ratio of targets. (A) Low luminance targets 
(animals and tools together) generated a reliable EEG response when 
presented to one eye without Mondrians to the other eye, and (B) with low 
luminance Mondrians in the dominant eye. Six subjects participated in this 
control experiment. (C) One occipital channel from (B) is shown as an 
example of the components generated by low luminance targets. For both 
conditions (A,B), subjects were above 95% accuracy at discriminating the 
category of the stimuli and reported seeing the stimuli without difficulty. The 
absence of an EEG response to unseen targets (Figure 4) cannot be explained 
by low signal-to-noise ratio of low luminance targets.
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Some theories state that visual awareness is linked to late stages 
of processing in the ventral stream (Milner and Goodale, 1995; 
Koch, 1996; Bar and Biederman, 1999). If this is the case, is there a 
preliminary categorization process for unseen stimuli? Backward 
masking studies have shown that for unseen stimuli the second 
stage of processing of information around 250 ms is eliminated 
while the first pass of information survives suppression (Schiller 
and Chorover, 1966; Dehaene et al., 2001; Bacon-Macé et al., 2005; 
Melloni et al., 2007).

Models of binocular suppression propose that neural competi-
tive interactions occur at several levels of the visual processing hier-
archy (Tong, 2001; Blake and Logothetis, 2002; Tong et al., 2006). 
The idea that interocular suppression starts very early in visual 
processing (Tong and Engel, 2001; Haynes et al., 2005; Wunderlich 
et al., 2005) and that there exists an almost complete suppression of 
the information conveyed by the non-dominant stimuli in ventral 
areas of the visual cortex is supported by psychophysics (Moradi 
et al., 2005; Alais and Melcher, 2007), fMRI (Tong et al., 1998; Pasley 
et al., 2004; Hesselmann and Malach, 2011), single-cell recordings in 
monkeys (Sheinberg and Logothetis, 1997), and single-cell record-
ings in human beings (Kreiman et al., 2002, 2005).

On the other side, recent experiments have shown that during 
interocular competition complex suppressed stimuli can nonetheless 
generate behavioral effects, suggesting invisible processing beyond 
striate cortex (Kovács et al., 1996; Andrews and Blakemore, 1999; 
Alais and Parker, 2006; Jiang et al., 2006; Stein et al., 2011). Also, it has 
been proposed that weak category-specific neural activity could be 
detected during CFS using MEG/EEG (Jiang et al., 2009; Sterzer et al., 
2009) and multivariate analysis of fMRI data (Sterzer et al., 2008).

Our results suggest that CFS suppresses information even for the 
first pass and that unseen animal and tool categories are suppressed 
early in visual cortex. Previous reports on CFS have found residual 
processing of information in the dorsal stream for unseen tool pictures 
but not for unseen animal pictures (Fang and He, 2005; Almeida 
et al., 2008). In these studies the results were explained in terms of the 
“graspability” nature of tool pictures and by the difference in interocu-
lar suppression for the ventral and the dorsal stream (Almeida et al., 
2010). We were not able to corroborate this hypothesis as we did 
not observe any evidence of cortical activity in the parietal channels 
associated with the perception of manipulable objects, a result in 
agreement with a recent study by Hesselmann and Malach (2011).

FiGurE 8 | Single Trial Channel Sensitivity. Classification accuracy for each 
channel for the conditions with seen targets. Each color represents the 
cross-validated accuracy of the classifier specific to each channel. For the 

comparisons of meaningful pictures against meaningless pictures (A,B) the 
occipital electrodes were of most importance. These occipital electrodes were 
not determinant for subtler semantic categorizations (C).

FiGurE 7 | Single trial classification performance. Multivariate pattern 
analysis was used to discriminate between experimental conditions. The 
classifier was well above chance level for the discrimination of seen animals 
and seen tools against their scrambled controls (p < 0.0001). Also, the 
classifier found suggestive evidence of a discrimination between seen 
animals and seen tools categories but the final classification performance was 
not significant at the confidence level of 0.01 that we adopted in this work 
(p = 0.0518). The classifier was at chance level at discriminating scrambled 
animals from scrambled tools (p > 0.05). Seen animals versus seen tools was 
higher than the discrimination of seen scrambled animals versus seen 
scrambled tools (p < 0.01). This implies that low-level image statistics cannot 
account for the decoding of animals versus tools. For all the unseen stimuli 
comparisons the classification performance was at chance level. The classifier 
was run on each subject separately and the final classification performance 
was obtained from the average across subjects. Error bars depict one SEM.

with  semantic  processing as reported in previous studies (Kutas 
and Hillyard, 1980; Dehaene, 1995; Pulvermuller et al., 1996; 
Kiefer, 2001). Recent studies employing single trial analysis 
have shown better classification performances at discriminating 
between seen animal and tool categories (Murphy et al., 2009, 
2010; Simanova et al., 2010; Chan et al., 2011) and animals versus 
vehicles (VanRullen and Thorpe, 2001b). Our results are slightly 
different from these previous studies as our classifier only found 
suggestive evidence of a discrimination between these two catego-
ries but a classification performance at the limit of chance level. 
We can only speculate that these differences might have occurred 
due to the additive noise effect of the low luminance Mondrians 
accompanying the targets, to the lower number of trials or to 
possible biases in the feature selection and classification process.
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appeared on the screen, which rendered suppression stronger (but see 
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component and would therefore go undetected.
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