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Research on music and language in recent decades has focused on their overlapping neu-
rophysiological, perceptual, and cognitive underpinnings, ranging from the mechanism for
encoding basic auditory cues to the mechanism for detecting violations in phrase struc-
ture.These overlaps have most often been identified in musicians with musical knowledge
that was acquired explicitly, through formal training. In this paper, we review independent
bodies of work in music and language that suggest an important role for implicitly acquired
knowledge, implicit memory, and their associated neural structures in the acquisition of
linguistic or musical grammar. These findings motivate potential new work that examines
music and language comparatively in the context of the implicit memory system.

Keywords: language, music, implicit memory, artificial grammar learning

INTRODUCTION
Music has been called the universal language of mankind (Longfel-
low, 1835) reflecting longstanding curiosity on the relationship
between music and language. Both share many traits including
being perceived primarily through the auditory system, having
similar acoustic attributes and reflecting analogous generative
syntactic systems. This has led to decades of scientific research,
exemplified by the papers included in this volume, exploring their
overlapping neurophysiological, perceptual, and cognitive under-
pinnings. These range from the mechanism for encoding basic
auditory cues (Wong et al., 2007; Kraus and Chandrasekaran,
2010), to mechanisms supporting acquisition (Slevc and Miyake,
2006; Schön et al., 2008) to the mechanism for detecting violations
in predicted structure (Slevc et al., 2009).

Much of this research with respect to music has made use of
trained musicians, in part to look for evidence that the cognitive
and neural correlates of specialization for music are similar to the
human specialization for language (e.g., Besson and Faita, 1995;
Patel et al., 1998a; Maess et al., 2001; Schön et al., 2008; Kraus and
Chandrasekaran, 2010). While using trained musicians has led to
great strides in our understanding of how music is processed, it
has obscured another important similarity between music and
language: both may be acquired implicitly, without the aid of
explicit instruction. In this paper, we review independent bod-
ies of research exploring the role of implicitly acquired knowledge
and associated neural structures in the acquisition of language and
musical grammar.

We first consider the role of implicit memory in language by
looking at both natural and artificial language learning studies.
The studies discussed in the Section “Implicit Memory and Lan-
guage” show that the implicit memory system plays an important

role in acquiring the grammar, or rules, of language at all levels
of linguistics structure (Table 1). Similarly, implicit learning in
music is found in the acquisition of rhythm, pitch, and melodic
structures. The studies discussed in the Section “Implicit Memory
and Music” suggest a potentially common learning mechanism
shared by both music and language that allows for the acquisi-
tion of these complex systems without the need for instruction
(Table 1).

The studies we discuss below help us understand this mecha-
nism by highlighting the fact that both music and language involve
expectation and the tracking of dependencies between sequential
elements. Neurally, there is a significant three-way overlap of the
brain structures implicated in implicit memory and those involved
in learning language and learning music. This convergence encour-
ages new work that juxtaposes music and language in the context
of the implicit memory system. Given the known relationship
between dopamine and the implicit memory system, we may also
consider more directly the genomic and molecular bases of music
and language abilities.

IMPLICIT MEMORY
Implicit memory is generally defined as acquired knowledge that is
not available to conscious access (Schacter and Graf, 1986; Schac-
ter, 1987). This contrasts with explicit memory, which is charac-
terized by knowledge that involves conscious recollection, recall,
or recognition. The majority of behavioral evidence for an implicit
memory system is based on experiments wherein experience leads
to altered performance on some task without participants being
aware of having learned anything.

One type of implicit memory stems from perceptual learning,
which involves changes to the perceptual system and to perceptual
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Table 1 | Summary of representative neurological findings associating implicit memory, language, and music.

Modality Method Learning task Brain region/

EEG component

References

Implicit Lesion SRTT BG, PFC Vakil et al. (2000), Exner et al. (2002)

Memory Disorders SRTT BG Reber and Squire (1994), Gabrieli et al. (1997)

fMRI SRTT BG, PFC Rauch et al. (1997), Koechlin et al. (2002)

fMRI Visual sequences IFG, MFG Doyon et al. (1997, 1998), Peigneux et al. (1999a)

EEG FSG P600 Friederici et al. (2002)

Language fMRI WS IFG, STG McNealy et al. (2006)

fMRI WS + meaning BG, IFG, STG Mestres-Misse et al. (2008)

Disorders WS + rules BG De Diego-Balaguer et al. (2008)

Disorders FSG BG Reber and Squire (1994), Peigneux et al. (1999b), Reber et al. (2003)

fMRI FSG BG, IFG Lieberman et al. (2004), Petersson et al. (2004)

fMRI ALL BG, IFG Forkstam et al. (2006), Petersson et al. (in press)

PET ALL BG, IFG Moro et al. (2001)

fMRI Anticipation IFG, MTG Kiehl et al. (2002)

EEG Anticipation P600 Kamide et al. (2003)

Music Lesion ID, NM IFG Sammler et al. (2011)

fMRI Priming ID, M IFG Tillmann et al. (2003)

MEG ID, NM IFG, premotor Maess et al. (2001)

EEG ID, M + NM P600 Besson and Faita (1995), Patel et al. (1998a)

EEG Passive ID, M + NM P600 Koelsch and Jentschke (2008)

EEG ID, NM Temporal/limbic James et al. (2008)

Tasks: SRTT, serial reaction time test; FSG, finite state grammar; WS, word segmentation; ALL, artificial language learning; ID, incongruity detection; M, musicians,

NM, non-musicians.

Regions: BG, basal ganglia (including striatum, caudate); PFC, prefrontal cortex; IFG, inferior frontal gyrus (including Broca’s area); MFG, middle frontal gyrus, MTG,

middle temporal gyrus.

categories (e.g., phonemes, chords) due to experience. For exam-
ple, in one study (Wade and Holt, 2005), participants played a
video game that involved navigating through a maze. A non-
critical feature of the game was that certain non-speech auditory
cues were associated with certain events. After playing the game,
participants were better able to distinguish the sounds and reliably
learned the sound-event patterns. Importantly, learning was qual-
itatively different, and in some cases better, than explicit training
on these same patterns. While explicit attention has been shown
to facilitate this sort of perceptual learning (e.g., Ranganath and
Rainer, 2003) it is also well established that perceptual learning can
be subliminal and implicit (Goldstone, 1998; Seitz and Watanabe,
2003).

Another type of implicit memory involves the implicit learn-
ing of sequences (e.g., sentences, melodies). A commonly used
paradigm to test implicit memory for sequences is the serial reac-
tion time test (SRTT; Nissen and Bullemer, 1987). In this test,
participants are exposed to some stimuli (e.g., objects appearing
sequentially at different points on a screen) cuing participants to
respond (e.g., by indicating where the stimuli appear) as quickly as
possible. While the sequences of stimuli appear to be random to the
participant, embedded within the random sequences is a fixed pat-
tern, repeatedly interspersed throughout the random sequences.
Over the course of the experiment, response times and accuracy
on the fixed sequences improves relative to the random sequences,
presumably because the participants are learning this repeated
sequence. Crucially, participants do not exhibit an improved

ability to explicitly recall this repeated sequence as compared to
recalling random non-repeated sequences. The fact that partici-
pants show implicit learning without explicit knowledge suggests
that these memory systems can operate independently, and that
people can learn about the sequencing of some stimuli without
being explicitly aware of it. While implicit memory is relevant for
both sequence learning and category learning and both sequence
learning and category learning are relevant to language and music,
we focus primarily on implicit memory in the context of sequence
learning.

A more specific kind of implicit sequence learning often dis-
cussed in the context of language and music is statistical learning
(e.g., Saffran et al., 1996a). Statistical learning involves the same
basic idea that participants can learn sequences without explicit
awareness, but adds an additional component of tracking statistics
over these sequences1. For example, in a series of studies, Saffran
et al. (1996a,b, 1999) showed that adults, children, and infants are
able to track transitional probabilities between syllables and tones.
Participants were exposed to seemingly random sequences of sylla-
bles obscuring consistent differences in the probability that certain
syllables followed others (see below for more details). Participants
were sensitive to these differences in transitional probability, and
subsequent work has explored what types of statistics and what

1“Statistical learning” is also sometimes used to refer to certain types of perceptual
learning (e.g., Maye et al., 2002). Here, we use it to refer to sequence-based learning
only.
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types of dependencies can be implicitly tracked (Knowlton and
Squire, 1996; Aslin et al., 1998; Gomez, 2002).

More recently, neurological studies have, for the most part, sup-
ported this dissociation between implicit and explicit memory
systems for tasks like the SRTT (Curran, 1997) and other similar
sensory–motor learning tasks. Evidence includes both lesion stud-
ies (Vakil et al., 2000; Exner et al., 2002; Peach and Wong, 2004)
and functional imaging (Rauch et al., 1997; Koechlin et al., 2002)
and implicate the striatum, and more specifically the caudate, in
implicit learning. For example, Alzheimer’s patients, characterized
by degeneration of the medial temporal lobe, have little trouble
with the SRTT despite exhibiting problems with declarative mem-
ory, while learning in the same task is impaired for people with
diseases characterized by degeneration of the basal ganglia, includ-
ing in Parkinson’s patients (Reber and Squire, 1994; Jackson et al.,
1995) and Huntington’s patients (Gabrieli et al., 1997). More gen-
erally, the basal ganglia have been implicated in implicit learning
across a number of different tasks (Squire and Knowlton, 2000;
Eichenbaum and Cohen, 2001). In addition to implicit memory,
the basal ganglia, and the caudate specifically, have also been impli-
cated in motor learning (Knowlton et al., 1996), general learning
plasticity (Graybiel, 2005) and learning from feedback (Packard
and Knowlton, 2002). There is also some evidence that the inferior
frontal gyrus, and in particular, Broca’s area and its right homolog,
are also involved in learning sequences (Doyon et al., 1997, 1998;
Peigneux et al., 1999a). More generally, Broca’s area has also been
associated with a wide range of linguistic functions (Grodzinsky
and Santi, 2008) including hierarchical processing (Musso et al.,
2003), recursion, binding (Hagoort, 2005), and speech articulation
(see Bookheimer, 2002 for a review).

Finally, by virtue of the fact that dopamine receptors are found
in the basal ganglia, and in particular, the striatum (which includes
the caudate, putamen, and nucleus accumbens), implicit memory
has been associated with dopamine. This has been supported by
studies showing that increasing dopamine levels in the brain can
lead to improved implicit learning (de Vries et al., 2010b), that
dopamine deficiencies, as in Parkinson patients, result in poor
implicit learning though explicit learning is intact (Shohamy et al.,
2009), and that dopaminergic neurons in primates show a burst of
activity when learning implicitly (see Shohamy and Adcock, 2010
for a review).

IMPLICIT MEMORY AND LANGUAGE
Language learning shares a number of important similarities with
the learning of sensory–motor sequences, which have been clas-
sically associated with implicit memory and which, as will be
discussed below, are also implicated in acquiring a musical sys-
tem. As with the tasks used in implicit learning experiments (e.g.,
the SRTT), people are often unaware of, or unable to articulate
many of the rules of their language (Fodor, 1983). People can also
learn language without any explicit instruction (Chomsky, 1957).
This is particularly true before school age when children learn lan-
guage with relative ease (Lenneberg, 1967), which has been argued
to be, in part, due to children’s good implicit memory capacity as
compared to adults (DiGiulio et al., 1994; DeKeyser and Larson-
Hall, 2005). Finally, certain aspects of linguistic knowledge, namely
the rules of combination, may be represented probabilistically or

as information about the distributional relationships at different
levels of linguistic structure (e.g., phonemes, morphemes, words,
and sentences; Redington and Chater, 1997). This knowledge is
generally not consciously accessible to speakers of a language and
is similar in nature to the probabilistic knowledge acquired in
implicit learning.

IMPLICITLY LEARNED ARTIFICIAL GRAMMARS
The use of implicitly learned distributional information for lan-
guage learning has been demonstrated at many different levels of
linguistic structure. For example, at the level of word segmenta-
tion,Saffran et al. (1996a) exposed 8-month-old infants to a stream
of running speech consisting of four three-syllable words without
any breaks or pauses indicating word-hood. Thus, the only cue
to word segmentation was the transitional probability between
syllables, where within-word transitional probability of syllables
was 1.0 and between-word transitional probability of syllables was
0.33 (no word followed itself). Infants showed a significant ability
to discriminate words from part-words (formed by combining the
final syllable from one word with the first two syllables of another).
Adults performed similarly (Saffran et al., 1996b) in what is argued
to reflect implicit learning of word segmentation (Evans et al.,
2009). Importantly, this ability is suggested to be domain general
as it also applies to tones (Saffran et al., 1999 and below in the dis-
cussion on implicit memory and music) and visual stimuli (Fiser
and Aslin, 2001).

Analogous behavior is also found with respect to the acquisi-
tion of phonotactics. Phonotactics are the restrictions on where
phonemes can occur in a word in a language (e.g., English prohibits
ng starting a word or h ending one). In one study (Onishi et al.,
2002), adults briefly exposed to pseudo-words reflecting some
non-English phonotactic generalization showed speeded repeti-
tion to words that adhered to the generalization as compared to
words that did not.

Another study on implicit phonotactic learning (Dell et al.,
2000) found that when participants are tasked with repeating sets
of words reflecting some phonotactic generalization, their speech
errors tend to reflect these newly learned generalizations, as is true
of one’s native language. The authors assessed the implicitness of
learning using something they call the “ask-tell technique.” This
involved asking all participants whether they had noticed anything
about the words they were pronouncing; the experimenters also
told half the participants, explicitly, what the phonotactics would
be before starting. Neither the uninformed nor informed partic-
ipants were able to identify any regularities in the experimental
materials. These results, in addition to the fact that the speech
errors were not intentional, suggest that this learning is, in fact,
implicit.

Another important component of learning the phonology of a
language, acquiring phonological rules, has been shown to relate
to non-linguistic implicit learning as well (Ettlinger et al., in press).
In this study, participants took both an artificial grammar learning
experiment and a test of implicit learning. The artificial grammar
learning task involved exposure to words that reflected a set of
rules for forming plural and diminutive variants (e.g., dog, dogs,
doggie, doggies). The test of implicit learning was a modified ver-
sion of the Tower of London task (Shallice, 1982). In this task,
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participants were required to solve puzzles, increasing in diffi-
culty, which involved virtually moving colored balls on three sticks
to match a predetermined pattern. Embedded within the puzzles
were repeated sequences of moves, and participants were asked
to think through their moves before starting, to minimize the
effects of motor coordination, unlike the SRTT. Implicit learn-
ing was measured by looking at the improvement in performance
on the repeated sequences (Phillips et al., 1999). Results showed
a strong correlation between learning the artificial language and
performance on the Tower of London task, suggesting that implicit
memory and language learning are linked.

In another set of experiments exploring the possible implicit
learning of syntactic structure, Reber (1967) taught participants
an artificial finite state grammar for sequences of letters (Figure 1).
After exposure to strings of letters generated by the grammar,
participants were asked to judge the grammaticality of novel
sequences of letters. Participants were able to successfully distin-
guish what constituted a valid sequence without being able to
explicitly describe the rules of the grammar.

In addition to these associative studies, more concrete evidence
on the role of implicit memory in language learning is provided
by recent imaging studies.

McNealy et al. (2006) adapted a version of Saffran et al.
(1996) word-segmentation paradigm for functional imaging by
presenting participants with three speech streams: one containing

FIGURE 1 | Examples of finite state grammars used in language (A)

and music (B) learning experiments. (A) is a finite state grammar used to
generate sequences of letters that participants are exposed to in implicit
language learning experiments (from Reber, 1967); (B) shows a similar
structure, using notes instead of letters (from Tillmann and
Poulin-Charronnat, 2010). Participants can acquire grammars of this sort and
identify valid versus invalid sequences without being explicitly aware of any
specific aspects of the grammar for both music and language.

no regularities,one containing the statistical regularities as detailed
above, and a third containing statistical regularities plus a stan-
dard phonetic word-segmentation cue. Greater activation was
found in inferior frontal gyrus for the statistical cue and statis-
tical cue plus phonetic cue conditions as compared to the random
condition. Additional activation was found in the superior tem-
poral gyrus, which is associated with the processing of speech
(Geschwind, 1970). Another study found that when word mean-
ing is introduced to this experimental paradigm, greater activation
is also found in the basal ganglia, specifically the caudate (Mestres-
Misse et al., 2008), plus the thalamus, which serves as a relay
between subcortical (e.g., basal ganglia) and cortical networks
and is involved in sensory perception (Steriade et al., 1997). This
has led to the hypothesis that the basal ganglia, and therefore,
presumably, implicit memory, is important for the integration of
multiple information sources during the process of language learn-
ing (Rodriguez-Fornells et al., 2009). Similarly, patients with early
stage Huntington’s disease and striatal damage also do poorly on
tasks of this sort (De Diego-Balaguer et al., 2008).

As with the SRTT and word segmentation, a fronto-striatal net-
work is implicated in acquiring the finite state grammars described
above. Alzheimer’s and amnesic patients, with degeneration or
lesions of the temporal cortices can still successfully learn artifi-
cial grammars of this sort while having trouble with more explicit
language tasks (Reber and Squire, 1994; Knowlton and Squire,
1996; Reber et al., 2003). The ability of Parkinson’s patients with
degeneration of the basal ganglia to learn artificial grammars is less
clear, however, with conflicting evidence present (Peigneux et al.,
1999b; Witt et al., 2002). Similar findings are found using func-
tional imaging, with the basal ganglia, and inferior frontal gyrus
supporting the acquisition of implicit knowledge of an underlying
pattern governing a sequence of letters, while the medial tempo-
ral lobe supports the recall of specific sequences (Lieberman et al.,
2004; Petersson et al., 2004). Activation of the caudate is also found
in a study of syntactic processing (Moro et al., 2001). In this latter
study, participants were exposed to a version of Italian (the partici-
pants’ native language) where all content words were replaced with
pseudo-words, with function words left intact, which served to
eliminate any semantic component of processing. Syntactic (word
order), morphological (determiner agreement), and phonotactic
violations were juxtaposed using PET. The results reflected Broca’s
and right IFG activation for the morphological and syntactic con-
ditions, which has long been associated with syntactic processing
(Embick et al., 2000; Grodzinsky, 2000) and may be part of a
basal ganglia thalamocortical circuit (Ullman, 2006). Greater acti-
vation was also found in the left caudate, which is associated with
implicit memory (see above). This result had been replicated a
number of times with different types of artificial syntactic gram-
mar, with activation consistently found in Broca’s area and the
caudate (Forkstam et al., 2006; Petersson et al., in press).

IMPLICIT LEARNING AND NATURAL LANGUAGE
With respect to language learning in more ecologically valid set-
tings, a few behavioral studies have shown a relationship between
natural language processing and implicit learning. Misyak et al.
(2010) created an implicit learning task that combined the SRTT
and artificial grammar learning and showed that performance
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correlated with participants’ ability to comprehend complex Eng-
lish sentences. Evans et al. (2009) looked at children with specific
language impairment, ages five to seven, and showed that these
children also performed worse on the word-segmentation task
from Saffran et al. (1996) as compared to a control group with the
same non-verbal IQ. They conclude that specific language impair-
ment may not, in fact, be specific to language, but rather reflects
an impairment of implicit learning, which is crucial for language
learning but distinct from other measures of intelligence (see also
Kaufman et al., 2010 for a similar view). Furthermore, perfor-
mance on the word-segmentation task correlated with vocabulary
size within each participant group, suggesting implicit learning
facilitates word learning. Finally, research looking into language
processing in more realistic settings has also considered language
processing in noise (e.g., Wong et al., 2008, 2009a, 2010; Harris
et al., 2009). In particular, Conway et al. (2010) showed a relation-
ship between an ability to perceive speech in noise and implicit
sensory–motor sequence learning. Participants who were good
at an SRTT-like task were similarly good at perceiving sentences
embedded in noise when the last word in the sentence had high-
predictability (e.g., Her entry should win first prize), even when
controlling for working memory and intelligence. The correlation
disappeared for sentences ending in low-predictability words (e.g.,
The arm is riding on the beach).

This suggests that an important way in which implicit mem-
ory is related to language is through prediction and anticipation.
A number of studies using eye-tracking (see Kamide, 2008 for a
review) and event-related potentials (ERPs; see Van Berkum, 2008
for a review) have shown that people make significant use of con-
text to facilitate processing. For example, participants look more
often at a picture of beer than a doll when hearing the beginning of
the sentence the man will taste the. . . (Kamide et al., 2003). A viola-
tion of an anticipated sentence completion will also yield a specific
ERP response, either N400 for semantic incongruency or P600
for syntactic. The same ERP response is elicited on encountering
anomalies in predicted outcome for artificial grammars similar to
Reber (1967, above; Friederici et al., 2002) and music (Patel et al.,
1998a).

Additional neural evidence comes from functional imaging,
showing a significant overlap in the brain regions associated with
implicit memory and language. As mentioned above, Broca’s area
has been implicated in implicit memory tasks, and Broca’s area
has a longstanding association with language learning and lan-
guage processing (Embick et al., 2000; Grodzinsky, 2000; Sahin
et al., 2009). Broca’s area has also been implicated in prediction,
and the expectations that yield the N400 or P600, above, result in
activation of the bilateral inferior frontal gyrus (i.e., Broca’s area,
nearby regions and their right homologs) in addition to the middle
temporal gyrus (Kiehl et al., 2002).

Thus, there is a wide range of similarities between language
and implicit knowledge both in terms of their neural substrates
(the fronto-striatal system) and in their cognitive underpinnings
(sequential knowledge, expectation). These similarities have moti-
vated myriad theories in linguistic processing positing that the dis-
sociation between the words and rules of a language is homologous
to the dissociation of explicit and implicit memory, respectively
(Paradis, 1994, 2009; Pinker, 1999; Pinker and Ullman, 2002).

Evidence for this dissociation is discussed below, and is based
on the idea that we can explicitly recall and conceptualize the
words of our language, which is declarative in nature, whereas the
application of the rules of language (when speaking naturally, as
contrasted with attempting to adhere to a style guide, for example)
is generally more difficult, if not impossible to articulate.

To conclude, there is extensive and convergent evidence for
a close relationship between the cognitive and neurophysiolog-
ical underpinnings of language learning and implicit memory.
Language learning involves cognitive abilities that are generally
learned implicitly, including tracking dependencies and devel-
oping expectations regarding adjacent linguistic structures. Lan-
guage and implicit memory are also both supported by a set
of neural structures including the anterior portion of the infe-
rior frontal gyrus and the basal ganglia. As will be reviewed
below, music shares many of these same associations with implicit
memory and these shared associations are not restricted to musi-
cians with formal musical training, but extend to everyday music
listeners.

IMPLICIT MEMORY AND MUSIC
Although music is sometimes held to be the domain of specialists,
its near-ubiquity in daily life, from mp3 players to Internet radio,
cinema, and advertising, shows that affinity for music is wide-
spread. Indeed, music has frequently been postulated by anthro-
pologists to be a human universal, present in all known cultures
(Blacking, 1973; Zatorre and Peretz, 2001). Although the ability
to perform music skillfully is not evenly distributed and often
relies on years of formal training, the ability to listen, process, and
respond emotionally to music is shared across most of the popula-
tion and seems to depend only on implicit exposure. For example,
Bigand et al. (2005) showed that people with and without formal
training responded largely interchangeably to non-vocal classi-
cal music. Other deep musical abilities in people without explicit
training, such as the ability to perceive the relationship between a
theme and its variations and to learn new compositional systems,
are chronicled in Bigand and Poulin-Charronnat (2006). With lit-
tle to no explicit training, how is it possible for people to develop
the ability to represent and respond appropriately to the complex
syntactic structures of music?

Desain and Honing (1999) demonstrate that even a seemingly
simple and near-universal ability like tapping to a beat depends
on complex internal representations of harmonic and syntactic
musical structures. Indeed, research summarized in Krumhansl
(1990) shows that implicit exposure to Western tonal music is
sufficient for listeners to develop internal representations of the
pitch relationships that music theorists hold to underlie tonality.
Given a tonal context, such as a scale or chord progression, listen-
ers without formal training can accurately judge how well a given
continuation fits the established tonality.

One of the mechanisms by which passive exposure can ulti-
mately yield sophisticated internal representations is statistical
learning. Saffran et al. (1999) constructed long isochronous tone
sequences out of 6 three-note “figures” repeated in random order,
with no breaks or other indication of boundaries between the
figures, and constrained so that the same figure never appeared
twice in succession. When infants were exposed to this series
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of tones over a 20-min period, they were able to abstract the
constituent three-note figures, despite the fact that nothing but
the reduced transition probabilities between them delineated the
figures in the continuous stream of the musical surface. The
infants, it seemed, had carefully tracked continuation probabili-
ties in the sequence, despite the fact that their exposure to it was
entirely passive. This ability to track common outcomes in musical
repertoires may seem arbitrary, but in fact has been held by music
theorists and psychologists since Meyer (1956) to form the basis
of affective responses to music (see Huron and Margulis, 2010 for
a summary). Continuations that are recognized, even implicitly, as
unusual are thought to result in perceptions of special expressivity
or esthetic charge. In this way, the ability to implicitly track sta-
tistics about continuations may form the fundamental scaffolding
for the widespread ability to respond emotionally to music, even
in the absence of formal training.

Implicit memory for music also reveals itself in various well-
documented priming effects. Priming is generally defined as an
implicit memory effect in which exposure to a stimulus influences
responses to later stimulus without awareness of or an ability
to recall the specific prime (Tulving et al., 1982). For example,
Hutchins and Palmer (2008) showed that participants were more
accurate in singing back the last tone of a short melody if that tone
had appeared previously in the melody. Musical priming can also
evidence itself in the form of faster and more accurate judgments
about pitches or chords that are normative and expected given the
tonal context. This kind of tonal priming has been documented in
responses to melodic continuations (Margulis and Levine, 2006),
and harmonic continuations (Bigand and Pineau, 1997) by lis-
teners with no formal training. fMRI studies have implicated
suppressed activity in bilateral inferior frontal regions of the brain
during harmonic priming (Tillmann et al., 2000, 2003). It has even
been documented in children (Schellenberg et al., 2005). Bharucha
and Stoeckig (1986, 1987) provide evidence that harmonic prim-
ing is cognitive (based on the implicit abstraction of regularities in
the musical environment) rather than sensory (based on psychoa-
coustic relationships) in nature. Tillmann et al. (2000) propose
a self-organizing network model that can account for the kind
of implicit learning of tonal structure revealed by priming studies.
These priming effects are also observed to reflect the acquisition of
musical grammars implicitly learned in the same fashion as in the
implicit language learning experiments above (Figure 1; Tillmann
and Poulin-Charronnat, 2010).

It is not only continuation statistics that listeners track implic-
itly. Duple and quadruple meters are more common than triple
meters in Western music, and Brochard et al. (2003) confirmed
that when presented with an ambiguous stimulus, listeners assume
a binary division of the beat. Relatedly, the major mode is more
common than the minor mode in Western music, and Huron
(2006) confirmed that when presented with an ambiguous stim-
ulus, listeners assume the major mode. And although absolute
pitch perception is restricted to a tiny fraction of the population,
Levitin (1994) demonstrated that ordinary listeners generally sing
familiar songs within a semitone or so of their actual pitch level,
suggesting that people have some implicit sense of pitch even in the
absence of formal training on scales, producing notes, perform-
ing in key, or tuning an instrument. It is clear that mere exposure,

independent of formal training, or active use (such as performance
or participation) is sufficient to engender highly structured and
highly specific memory traces in ordinary listeners.

Implicit memory for music emerges consistently in prefer-
ence effects. Halpern and O’Connor (2000) showed that although
explicit recognition memory for melodies deteriorated with age,
implicit memory was retained, in the form of elevated prefer-
ence (the mere exposure effect first documented in Zajonc, 1968).
A battery of studies over the past several decades (summarized
nicely in Szpunar et al., 2004) illustrate that listeners’ preference
increases for music that has been encountered before. This effect
is even stronger for music that is complex or ecologically valid
(Bornstein, 1989). Halpern and Mullensiefen (2008) exploit this
preference toward previously encountered music as a measure of
implicit memory, showing that when melodies that are encoun-
tered in an exposure phase are later replayed in new timbres,
participants continue to report increased liking for them, even
when explicit memory of the music is obscured (i.e., the timbre
change prevented them from recognizing explicitly that they had
heard the excerpts before). Similarly, Peretz et al. (1998) found
that explicit recognition memory was more susceptible to decay
over time than implicit memory measured by elevated preference.
They concluded that, in contrast with explicit memory, implicit
memory as manifested in affective judgments operates obligato-
rily, in an automatic and unconscious fashion. Samson and Peretz
(2005) further conclude, based on an analysis of patients with
temporal lobe lesions on either the right or left side, that the right
temporal lobe is more active in the formation of representations
that underlie implicit musical memory, and the left temporal lobe
is more active in processes related to explicit retrieval of musical
memories.

In addition to the implicit learning of normative patterns in a
particular musical style, many people are able to gain competence
in more than one musical system through mere passive expo-
sure, independent of any experience performing or producing the
sound, as well as independent of any explicit instruction (formal
musical training) about the style. Wong et al. (2009b) illustrate
that passive exposure to the music from two cultures can result
in the development of true bimusicals who approach both styles
with affective and cognitive competence lacking in monomusicals
of similar age and background. Wong et al. (in press) used struc-
tural equation modeling to investigate fMRI data from bimusical
and monomusical listeners, finding more connectivity, and larger
differentiation between the musical systems in bimusicals. These
differences imply that even the implicit learning of multiple musi-
cal systems can result in fundamental changes to the way the brain
approaches expressive sound.

Electrophysiological evidence also supports this conclusion.
Violations of expected harmonic, melodic, and rhythmic patterns
result in a late positive component (LPC) characteristic of the
detection of an incongruity, even when the participants lacked
formal training and were unable to explicitly identify the sur-
prises (Besson and Faita,1995). The elicitation of ERP components
related to syntactic violations in music seem to be independent
of the task relevance of unexpected chords, and provides strong
evidence for important implicit components to musical ability
(Koelsch et al., 2000). Patel et al. (1998b) were the first to show
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that the P600 – a known marker of syntactic violations in lan-
guage – extended to syntactic violations in music grammars that
are abstracted implicitly by listeners. Generally, these responses
have been found even when the musical exposure is entirely pas-
sive, as in Koelsch and Jentschke (2008), when participants were
watching a silent movie. Koelsch (2010) emphasizes that the early
right anterior negativity (ERAN) that emerges in response to syn-
tactic violations in music depends on the long-term extraction of
statistical regularities in music, not from short-term exposure to
particular sequences.

Predictions based on these abstractions of musical syntax are
thought to be localized in the premotor cortex and the inferior
frontal gyrus (particularly Broca’s area). Evidence for localization
to the IFG comes from MEG (Maess et al., 2001), fMRI (Tillmann
et al., 2003), and lesion studies (Sammler et al., 2011) exploring
participants’ responses to ungrammatical or incongruent musi-
cal stimuli (see Koelsch, 2006 for a review). There is also some
evidence that the source of the ERP component responding to
expectation violation may have origins in the right temporal–
limbic areas, which is associated with affect and emotive processing
(James et al., 2008).

The processing of syntactic violations in music has also been
shown to interfere with the processing of syntactic violations
in language, suggesting overlap for these two functions. When
participants read garden path sentences while hearing chord pro-
gressions, they took longer to process syntactically unexpected
words when they appeared at the same time as syntactically unex-
pected harmonies; however, no such interference occurred when
the musical surprise was not syntactic in nature (e.g., when a chord
sounded in a different timbre; Slevc et al., 2009). So, implicit mem-
ory seems to play an important role in syntactic processing in both
language and music.

IMPLICIT MEMORY IN LANGUAGE AND MUSIC
We have reviewed above independent sets of empirical studies
implicating the role of the implicit memory system in music and
language, summarized in Table 1. In particular, we have discussed
the fact that explicit training is not required for processing of
language or music. It is important to note that these studies exam-
ined music or language alone. To ascertain common pathways in
processing and/or representation, music and language should be
examined in tandem. In terms of processing, studies could be con-
ducted such as those performed by Patel and Slevc and colleagues
(Patel et al., 1998b; Slevc et al., 2009) in which musical and linguis-
tic stimuli were combined. However, it is preferable that everyday

music listeners should be examined to ascertain that the results
are not due to formal musical training alone or trained musicians
possessing a genetic difference.

Studies examining the dependence and independence of musi-
cal and linguistic functions sometimes yield conflicting results. In
particular, the lesion literature favors independence while studies
on neurologically normal subjects favor dependence. It is beyond
the scope of this proposal to extensively discuss the nature of this
debate, except to mention that a reconciliation has been proposed
by imposing a distinction between representation and processing
at least for syntax (Patel, 2008). In his Shared Syntactic Integration
Resource Hypothesis, Patel (2003) postulates that while musical
and linguistic syntactic representations are maintained separately,
the processing of both musical and linguistic syntactic structures
overlapped in neural resources. While the processing aspect of this
hypothesis has much support (Patel et al., 1998b) and is conceiv-
ably more feasible to test, representations are difficult to examine.
However, neural repetition-suppression/enhancement paradigms
have been used recently to examine mental representations in
humans (Grill-Spector et al., 2006) and can potentially be used
to test whether musical and linguistic representations overlap in
neural regions. More specifically related to the implicit memory
system, we believe such experiments could be conducted with both
music and language studied side-by-side.

Major divisions of the dopaminergic system contain neurons
from the substantia nigra pars compacta and ventral tegmental
area projecting to divisions of the striatum and prefrontal cor-
tex, and other regions (see Seamans and Yang, 2004 for a review).
As discussed above, these brain regions are also associated with
the implicit memory system. Recent studies in humans, including
pharmacological (de Vries et al., 2010b), molecular imaging (e.g.,
McNab et al., 2009), and genomic (e.g.,Klein et al., 2007a,b) studies
have examined the role of dopamine and related genes in a vari-
ety of implicit behaviors, such as acquiring an artificial grammar
(de Vries et al., 2010a) and learning from feedback in a statistical
learning paradigm (Klein et al., 2007b). Future research into the
role of the implicit memory system in music and language could
employ similar methods to more directly examine their potentially
shared molecular neurobiological mechanisms.
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