{fromttiers im
PSYCHOLOGY

ORIGINAL RESEARCH ARTICLE
published: 19 September 2011
doi: 10.3389/fpsyg.2011.00225

=

Automatic generation of randomized trial sequences for

priming experiments

Matthias Ihrke'* and Jérg Behrendt?

I Department for Nonlinear Dynamics, Max Planck Institute for Dynamics and Self-Organization, Géttingen, Germany

2 Institute of Psychology, University of Géttingen, Géttingen, Germany

Edited by:
Holmes Finch, Ball State University,
USA

In most psychological experiments, a randomized presentation of successive displays is crucial
for the validity of the results. For some paradigms, this is not a trivial issue because trials are

interdependent, e.g., priming paradigms. \We present a software that automatically generates

Reviewed by:

Shevaun D. Neupert, North Carolina
State University, USA

Jill S. Budden, National Council of
State Boards of Nursing, USA
Evgueni Borokhovski, Concordia
University, Canada

Xu Cui, Stanford University, USA

*Correspondence:

Matthias Ihrke, Department for
Nonlinear Dynamics, Max Planck
Institute for Dynamics and Self-
Organization, Am Fassberg 17 37077
Géttingen, Germany.

e-mail: ihrke@nld.ds.mpg.de

1INTRODUCTION
In almost all psychological research that applies an experimental
strategy, randomization of stimuli, participants and/or experimental
conditions is essential for the validity of the obtained results. Many
paradigms are simple enough that an on-line randomization can be
applied, i.e., the experimental software can determine the stimuli
to be shown by itself (e.g., by randomly choosing a stimulus from
a given set). Some experimental setups, however, feature complex
inter-trial dependencies such that proper randomization is more dif-
ficult. Consider for example negative priming (NP) experiments (e.g.,
Tipper, 1985). In these paradigms, the experimental condition of a
trial depends not only on the stimuli presented in the trial (probe) but
also on the preceding trial (prime). This dependency between trial
i and trial i — 1 makes proper randomization difficult (because the
condition in trial i+ 1, in turn, depends on the stimuli in trial 7). This
paper presents a software that was designed to generate randomized
stimulus-sequences for (negative-) priming experiments based on a
heuristic optimization method known as genetic algorithms (GAs).
For illustration, we present a standard NP study (Schrobsdorff
etal.,2007) which we will use as a reference throughout the manu-
script to clarify the exposition of our methodology. In their study,
Schrobsdorffetal. (2007) presented pictograms of everyday objects
(ball, book, bench, boat, bed) in two different colors and required
their subjects to voice the label of the green stimulus while ignor-
ing the red stimulus (see Figure 2). Repetition priming and NP
are realized by repeating one or both (partial vs. full repetition)
of the objects from prime to probe either in the same (positive
priming) or reversed colors (NP). The basic result is that reaction
times and error rates are reduced for identical repetitions while
they are increased for distractor-to-target repetitions (in relation
to a control condition where no stimuli are repeated).

optimized trial sequences for (negative-) priming experiments. Our implementation is based on
an optimization heuristic known as genetic algorithms that allows for an intuitive interpretation
due to its similarity to natural evolution. The program features a graphical user interface that
allows the user to generate trial sequences and to interactively improve them. The software
is based on freely available software and is released under the GNU General Public License.

Keywords: priming, negative priming, trial sequences, randomization

Randomization of stimulus presentation is of particular impor-
tance in such priming experiments because it is known that the
emergence of priming effects depends on the mix of priming condi-
tions in the realized trial-sequence. The NP effect, for example, is
influenced by the proportion of attended and ignored repetition
trials, respectively (Frings and Wentura, 2008). NP also depends
on many subtle sequence-related factors such as number of stimuli
(Kramer and Strayer, 2001) and stimulus-repetitions (for a review
see Fox, 1995). It is therefore essential for the validity of the study
to (1) present an exact proportion of stimuli/conditions as specified
by the experimenter and (2) to randomize everything else properly.

Negative priming experiments are sometimes conducted using a
“blocked” trial-presentation scheme that presents prime and probe
as a single trial (usually, prime-probe episodes are distinguished by
alonger interval between the trials than between prime and probe,
e.g., Milliken et al., 1998; Grison and Strayer, 2001; Rothermund
et al., 2005; Frings and Wentura, 2006). This approach has the
advantage that experimental conditions are easily randomized
because the prime-probe pairs are independent of one another.
However, there are also problems with this approach: First, possible
influences of the display that precedes prime-onset (the probe of
the preceding trial) are disregarded and explicitly removed from
the analysis. Since these probe-prime transitions are not controlled,
overrepresentations of some probe-prime combinations may occur.
Since it is known that the proportions of repeated stimuli may
influence the overall pattern of results (e.g., Frings and Wentura,
2008), this can be problematic for the interpretation of the results
unless probe-prime transitions are explicitly analyzed and reported.
There is also evidence for long-term priming effects (e.g., Lowe,
1998; Grison et al., 2005) as well as for the emergence of second-
order priming effects (e.g., mediated priming; Livesay and Burgess,

www.frontiersin.org

September 2011 | Volume 2 | Article 225 | 1

http://www.frontiersin.org/Psychology/
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/
http://www.frontiersin.org/quantitative_psychology_and_measurement/10.3389/fpsyg.2011.00225/abstract
http://www.frontiersin.org/people/matthiasihrke/27689
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive
http://www.frontiersin.org/Psychology/editorialboard

Ihrke and Behrendt

Randomized sequences for priming experiments

1998) which further question the practical applicability of blocked
trial-presentation. Last but not least, the experimental efficiency is
reduced by half of what could be achieved by continuous presen-
tation. As a consequence, the time required for the experimental
session increases, potentially causing mental fatigue which is associ-
ated with loss of cognitive control (Lorist et al., 2005) which in turn
appears to be a prerequisite for NP to occur (de Fockertetal.,2010).

Continuous presentation schemes in which trial 7 is the probe
for trial i — 1 and the prime for trial i + 1 (e.g., Kramer and Strayer,
2001; Titz etal., 2008; Behrendt et al., 2010) circumvent these prob-
lems but also make randomization much harder. This is due to the
fact that the trials are not independent anymore: Changing the
stimuli in display i changes the experimental condition of trial i and
trial 7 + 1. This dependency makes a randomized presentation of
stimuli over the complete sequence very difficult when factors such
as the number of presented trials for each priming condition are
to be balanced across the experiment. A pseudo-randomized trial-
presentation is often used where the stimuli are selected based on
a list that fulfills the desired properties. Generating such lists is not
trivial because of the cross-trial dependencies. In addition, regard-
ing trial-sequence generation as an optimization problem, there
may not exist a perfect solution such that the “optimal” sequence
will necessarily violate some of the experimental constraints.

Furthermore, care must be taken that the sequences do not
induce the use of strategies by the participants. For example, in
NP tasks, subjects could use the prime distractor to predict the
probe target (May et al., 1995) if they were aware of the experimen-
tal manipulation. The presentation of “random” (in the sense of
unpredictable) trial sequences is therefore necessary. The literature
on implicit sequence learning suggests that participants are able to
exploit regularity in trial sequences for responding (Stadler, 1992;
Stadler and Neely, 1997; Boyer et al., 2005) even if this regularity is
quite subtle as, e.g., when the sequence is generated by an abstract
grammar (Visser et al., 2009). To ensure “unpredictability,” many
experimentalists control the presented trial-sequence in a way that
some structural criteria are fulfilled. For example, it is desirable
that the trials do not come in predictable patterns (e.g., multiple
consecutive instances of the same experimental condition) and that
stimuli appear an equal number of times. This is a tricky aspect,
though: In an information-theoretic sense, any additional con-
straint (e.g., avoiding consecutive trials of the same experimental
condition) on stimulus-sequences will reduce the entropy (the
theoretical unpredictability) of the process that generated them
(for an introduction to information theory, see Cover and Thomas,
2006). However, humans are more affected by local regularities and
it is therefore desirable to avoid local structure in the sequences
(see literature on implicit sequence learning, e.g., Stadler, 1992).
The criteria applied in the design of the trial sequences are only
loosely defined because it is unclear what regularities have to be
avoided in order to ensure unpredictability. This poses a difficulty
to computer-aided trial-sequence generation as all constraints must
be formally specified. In addition, any automated optimization
technique must allow for deviations from the optimum and be
flexible enough to adapt to different experimental needs.

In this paper, we present a computer program that makes use of
a global optimization heuristic known as genetic algorithms (GAs)
(Goldberg, 1989) to generate and optimize stimulus-sequences for
priming experiments. As the name suggests, GAs are inspired by natu-

ral evolution and the parameters have therefore a natural equivalent
in evolutionary biology. This fact allows for an intuitive understand-
ing of how parameter changes will affect the results which is very
useful when working with the optimization algorithm. Our program
allows to generate trial sequences for a variety of priming tasks. All
priming paradigms that include two dimensions on which stimuli
are distinguishable are supported. This includes in particular naming
and categorization tasks in semantic or identity priming paradigms
but also other tasks, such as priming in visual search (Kristjansson
and Driver, 2008).

In the following, we will shortly outline the theory of GAs.
Furthermore, we will present the program and explain how it can be
used to generate trial sequences for specific experiments. Finally, we
present examples of results acquired using the program, compare it to
an on-line randomization approach and discuss potential extensions.

2 MATERIALS AND METHODS
2.1 GENETIC ALGORITHMS
Genetic algorithms are search heuristics that can be used to approxi-
mate a globally optimal solution to a problem. GAs have been suc-
cessfully applied to many real-life problems in fields as different as
economics, biology, and computer science (Goldberg, 1989). The
approach is inspired by biological evolution: It mimics concepts
like inheritance, mutation, natural selection, and recombination
(Beasley etal., 1993a,b). Basically, the algorithm generates random
solutions to the problem and improves them by means of evolution-
ary strategies. The operation of the algorithm therefore requires a
way to generate solutions from the space of all possible solutions
S to the optimization problem and a fitness function :S — [0,1]
that assigns a real number (fitness value) to each member of S.
The performance of the GA depends more on the choice of an
efficient encoding scheme and the fitness function than on the set-
tings of other more peripheral parameters. Therefore, a first problem
is to find a suitable representation of valid solutions. In allusion to
the biological equivalent, such a representation is called a genome,
ge S. The classical version of the GA requires a binary coding of the
input (Goldberg, 1989): For example, if any solution can be coded as
a sequence of arbitrary integer numbers, these can be represented as
binary strings following the standard decimal to binary conversion.
However, it is often beneficial to use a representation that is specifically
tailored to the search-space and does not allow “invalid” solutions
to be coded. We therefore implement a genome designed to encode
exactly the valid stimulus-sequences but not more (see Section 2.2.2).
The second and most important step to apply a GA to an opti-
mization problem is to design the fitness or objective function F.
This function takes an instance of the set of all possible solutions
and evaluates it in terms of how well it solves the problem, i.e., it
assigns a score, the “fitness,” to it. The design of this function is
crucial for the performance of the algorithm as it is the only means
for the algorithm to determine the efficiency of a generated solu-
tion, thereby governing the result of the optimization completely.
There are several variants of GAs but the general behavior is
as follows: A random initial population P, = {g,,...,g,} of N pos-
sible solutions is generated and a fitness value is calculated for
each genome. Then, a reproductive cycle is started in which two
instances from P, are sampled according to their fitness which are
used to generate two offspring (i.e., members of the next population
P,) by recombination. With probability p_ , each genome from

Frontiers in Psychology | Quantitative Psychology and Measurement

September 2011 | Volume 2 | Article 225 | 2

http://www.frontiersin.org/quantitative_psychology_and_measurement/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

Ihrke and Behrendt

Randomized sequences for priming experiments

a population undergoes a mutation (i.e., one bit of the genome
is flipped, see Figure 1B). There are several possible schemes for
recombination (Beasley etal., 1993a), the most classical being cross-
over where parent genomes are split at a random location and
recombined with probability p__ (see Figure 1A). The natural
selection is represented by the fitness-biased selection of genomes
for recombination from the parent population. This step is repeated
until the children-population is again of size N. The parent popula-
tion is then dropped and the whole procedure iterated with the new
population as parent population, thereby generating a sequence of
populations P, P — ... 5P . Theiterations end when either a
maximum number of generations has been reached or the mean
fitness of the population saturates (i.e., the algorithm converges).
Maybe an image is helpful to illustrate these rather technical expla-
nations: Picture a population of rabbits living on a desolate island. The
island holds enough resources to support only N individual rabbits
(this is the population size parameter). There are some dangers on
the island (high waves, predator animals) such that evolutionary pres-
sure (the fitness function) encourages the mating and reproduction
of fitter individuals (the reproductive cycle). During reproduction,
the rabbit’s genomes are recombined (cross-over) and are subject to
random mutations such that child rabbits may differ considerably
from their parents. Because the island can hold only N rabbits, for
each child rabbit, one of the adult ones must perish. No child can
perish before all adults are gone and after all adult rabbits have died,
the new population begins reproducing. This corresponds to one
iteration of the GA and continues until a specified number of genera-
tions have lived on the island. With such a picture in mind, it is easy
to attach meaning to the parameters of the optimization algorithm
and to predict how a parameter change might influence the results.

2.2 APPLICATION TO TRIAL-SEQUENCE GENERATION

In order to apply GAs to the problem of trial-sequence generation,
a coding scheme must be devised allowing to encode trial sequences
in a way that the genetic operators cross-over and mutation can
be applied such that they yield valid solutions. Furthermore, a fit-
ness function needs to be specified that encodes the experimen-
tal requirements and that makes the sometimes implicitly given
requirements and assumptions explicit.

2.2.1 Scope of the approach

We formalize the experimental setup as follows: There are two dif-
ferent “types” of stimuli (i.e., target and distractor) and a number
of stimulus “identities” (e.g., specific words or pictures) which are

indexed by integer numbers ranging from 1 to n_,_. Experimental
conditions are defined by which stimuli repeat from one trial to the
next. All possible repetitions of one or both stimuli are supported
as shown in Table 1.

In our reference study (Schrobsdorff et al., 2007), the set of
stimuli comprises the .= 5 objects ball, book, bench, boat, and
bed. Each of these stimuli can be the target (when it is presented
in green) or the distractor (red). The study implemented priming
conditions with both partial (DT, TT) and full repetitions (DTTD,
DDTT), see Figure 2. The software was designed with such identity
NP experiments in mind but is also applicable to other priming par-
adigms. In fact, all priming paradigms that include two dimensions
on which stimuli are distinguishable are supported. This includes in
particular naming and categorization tasks in semantic or identity
priming paradigms but also other tasks, such as priming in visual
search (Kristjansson and Driver, 2008).

It is also possible to use the software for generating trial
sequences for semantic or affective priming tasks, even though
a bit of additional work is required. Consider for example the
study by Damian (2000) in which priming between same-cat-
egory stimuli (vehicles, tools, animals, furniture, and clothing)
was investigated. Priming was investigated by considering, e.g.,
whether subsequent presentation of two different tools or vehi-
cles primed each other. In this case the categories, not the actual
instances, would correspond to stimuli in our software. The
mapping from category to specific object would have to occur
after the sequence has been generated and is out of the scope of
the software. However, this is relatively straight-forward using
a spreadsheet software to replace category-labels with instances
(though care must be taken to randomize the number of occur-
rences of each stimulus as well). We will discuss potential exten-
sions of our software in the general discussion.

222 Coding and genetic operators

Currently only sequences for two distinct types of stimuli (“targets”
and “distractors”) can be realized. A trial-sequence “genome” g = (t,d),
thus consists of two sequences (¢,d) € {1,...,n,_} x{1,...,n .} with
i€ {1,...,n_ } each of which codes for one of the . possible stim-
uli'. Thus, the genome g is a sequence of numbers indicating which
stimulus is presented as target and distractor in each trial and S is

'Note that t,and d, refer to the ith element of the vectors t and d while t, and d, refer
to the vectors of target and distractor in the ith genome.

A Crossover
g;

P, |ol1]olo

P [0]1]0]0)

yield two members of the children-population P
probability p

i+

mimicking the effect of mutation in natural evolution.

mut’

ot

FIGURE 1 | Cross-over and mutation. (A) Two individual genomes are chosen from the parent population 77,and recombined using the cross-over technique to
The splitting point is chosen randomly. (B) When going from population 7, to P, ,, each bit is flipped with

B Mutation
gj

[1o[1]o]1]o]1]

l Puut

[1]o]1]

[1]of1]1]1]o]1]

www.frontiersin.org

September 2011 | Volume 2 | Article 225 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

Ihrke and Behrendt

Randomized sequences for priming experiments

the set of all possible trial sequences. In our reference study, a typical
genome looks like that in Table 2. We define the genetic operators
cross-over C: S X S — S (defining sexual reproduction by combin-
ing two genomes) and mutation M : S — S (defining a mutational
change of the genome) such that they must produce valid solutions.
The cross-over operator randomly determines a trial at which to split
the genome and concatenates the parent genomes such that the child
is identical to the “father” up to the split point and identical to the
“mother” thereafter. The mutation operator simply replaces each
stimulus (either in t or in d) independently with a random element
from {1,...,n, } with probability p_ (i.e., the probability that there
is at least one mutation in a genome is 271, and is typically very
small).

trials p mut

2.2.3 Fitness function

We chose a fitness function F:S — [0,1] for trial-sequence gen-
eration that evaluates a solution in terms of a weighted sum of
a number of n_, separate criteria C:S — [0,1] that are rescaled
according to a power-law with exponent k

Mt

Flg)=XwC(g). (1)
i=1

The weights w, € [0,1] are restricted to sum to 1 and can be
adjusted by the user to emphasize the importance of some of
the criteria. The scaling exponent k can be chosen to give more
emphasis to low scores when the overall convergence behavior is
not satisfactory (i.e., the algorithm converges at low fitness values,
e.g.,0.8).

The following n1_,

.= 5 criteriawere implemented in our software:

(i) only desired priming conditions are realized (e.g., in the refe-
rence study, only control, DT, TD, DTTD, and DDTT trials
are presented),

Table 1| Stimulus-repetition conditions supported by our framework.

Condition Prime Probe
Target Distractor Target Distractor

DT (negative priming) A B B C

TT (positive priming) A B A C

TD (target-to-distractor) A B C A

DD (distractor repetition) A B C B

DTTD (reversed repetition) A B B A

DDTT (full repetition) A B A B

Control A B C D

Invalid All other conditions

DTTD DDTT T

control DT

FIGURE 2 | Stimuli and conditions used in a reference negative priming
study (Schrobsdorff et al., 2007, see Table 1 for the abbreviations).

(ii) priming conditions appear a desired number of times [e.g.,
each condition was to appear 80 times in Schrobsdorff et al.
(2007) study],

(iii) only three consecutive trials of the same condition are
allowed,

(iv) all objects appear as target an equal number of times (e.g.,
there have to be as many target “benches” as target “books”),

(v) all objects appear as distractor an equal number of times
(e.g., there have to be as many distractor “benches” as distrac-
tor “books”).

The choice of these criteria reflects an attempt to find the mini-
mal number of criteria such that the software produces sequences
that do not show any obvious structure. Additional criteria (e.g.,
the distribution of objects per priming condition) are usually ful-
filled when a large number of trials is generated. The implementa-
tion of more or alternative criteria is straight-forward, but requires
programming skills because the source-code of the application
needs to be adapted.

Only desired priming conditions. This criterion is implemented
as the number of trials of desired experimental conditions divided
by the number of all trials,

n, .
C1 (g) — _“desired X
M rials (2)

Desired distribution of priming conditions. The user can specify a
desired distribution r, giving the relative number of times each of
the priming conditions i € ©: = {control, DT, TT, TD, DD, DDTT,
DTTD} should occur in the generated sequence. To calculate this
criterion, we have to compare the empirical distribution e, =n/n__
(where . is the number of trials of priming condition , i.e., e, is the
relative frequency of trials of priming condition i) against the desired
distribution . The L, distance

4,(06)= Y fe,]

i€®

is a suitable measure, since the maximum of d, is2 (if Z¢,= 1 and
Xr.=1) and the criteria can therefore be calculated to lie within
the range [0,1] such that a weighted sum of the criteria can be
interpreted. The criterion can then be expressed as

Cz(g)zl—%dh (r,e). (3)

Table 2 | Typical genome for the reference study (Schrobsdorff et al., 2007).

Trial 1 2 3 . .o
Target Bed Bench Boat Boat
Distractor Bench Book Bed Bed

Mutation randomly changes one of the labels (e.g., “bed” in trial 1 to “bench”)
and cross-over concatenates two partial tables split at a randomly chosen trial.

Frontiers in Psychology | Quantitative Psychology and Measurement

September 2011 | Volume 2 | Article 225 | 4

http://www.frontiersin.org/quantitative_psychology_and_measurement/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

Ihrke and Behrendt

Randomized sequences for priming experiments

Only three consecutive trials of same condition. All trials that lie
in a consecutive sequence of more than three trials of the same
condition are counted as 1 The criterion evaluates to

consecutive”

n)
C,(g) =1 — —omeeutive
ntrials (4)

Uniform distribution of stitmuli over target/distractor. These cri-
teria are evaluated similar to the second one by calculating the L,
distance between a uniform distribution and the empirical distri-
bution. The empirical distribution is the relative frequency each
stimulus appears as target/distractor, thus

lnz“i #{j|dj=i}_L

C,(g)=1-= (5)
2 i=1 nlrials nstim
and
1 o #{J'It,:i} 1
C =1—— —_— (6)
-(8) 2 ; n n

trials stim

where #S is the number of elements (cardinality) of set S.
After the separate criteria C, to C, are calculated, they are com-
bined into an overall fitness-score F according to Eq. 1.

2.3 SOFTWARE IMPLEMENTATION
The program is available as source-code and pre-compiled bina-
ries for a variety of platforms (Microsoft Windows, Mac OS X,
Linux 32/64 bit) from the project webpage (Ihrke, 2011) and is
released under the GNU General Public License® (Free Software
Foundation, 1991). The software comes with a graphical user
interface (see Figure 3) allowing to vary all important parameters.
Documentation and installation instructions are available from the
project webpage and from within the application (“Help”-tab).
There are two separate tabs that are designated to set the experi-
mental constraints and the optimization parameters for the GA,
respectively. After providing the experimental constraints, the user
can hit the “Go” button and the GA will begin the optimization.
After the GA has converged, the best sequence found during the
optimization is presented in the “Result”’-tab along with descriptive
statistics. This sequence can be saved as a comma-separated list and,
e.g., imported into a spreadsheet program (import via comma-
separated values, CSV) or read by the experimental software. On
the project’s webpage (Ihrke, 2011), we provide example code for
several commonly used presentation environments that read our
file-format, thus making the generated sequence accessible to the
presentation routine. Furthermore, a plot of the algorithm’s conver-
gence is provided, showing the fitness-score of the worst, average,
and best individual over successive populations. This allows the user
to directly assess how well the algorithm converged and to judge
the quality of the final sequence. Also, the generated sequence can
be modified in place and re-evaluated. Finally, a configuration can
be saved to file and re-loaded into the application.

*The software depends on the freely available library for genetic algorithms GAlib
by Wall (1999).

2.3.1 Tutorial — suggested workflow

Getting the best result out of the optimization can be tricky when
the conditions posed by the experimenter are hard to fulfill. That
means, depending on the actual requirements, the optimization
problem might be very difficult or the optimal solution might not
be good enough because there is no trial-sequence that can come
close to satisfying the constraints. Our experience in working with
the program resulted in a typical workflow: First, the number of
stimuli and the choice of experimental conditions are set along
with the length of the trial sequence and the desired distribution
of the stimulus-repetition conditions. Then, a first run with the
default parameters is executed to check the general level of the solu-
tion’s fitness. If the results are unsatisfactory because the sequences
do not fulfill the constraints, the GA settings should be manipu-
lated first (i.e., larger population size, more populations) and the
resulting increase in performance be evaluated. If the algorithm is
observed to converge (when the curve approaches an asymptote)
and the performance is still suboptimal, it is necessary to increase
the number of trials and/or the number of objects in the sequence
since a good solution does not seem to exist. Finally, once a good
sequence has been generated, it can be manually tweaked to further
increase the fitness. In the following, we give a detailed account
of this procedure.

(i) Setting experimental constraints
The first step is obviously to specify the requirements of the
planned experiment. The parameters are collected in the
“Setup”-tab of the program: Number of stimuli in the expe-
riment, number of trials and the stimulus-repetition con-
ditions along with the desired frequency of the conditions.
Depending on the choice of these parameters, the difficulty
of the optimization problem is going to vary: It is for example
comparatively easy to realize an overrepresentation of control
trials because they leave the algorithm the freedom to choose
four different stimuli without constraints. In contrast, if many
full repetition (DDTT) or reversed repetition (DTTD) trials
are desired the constraints may be severe and, in fact, not pos-
sible to fulfill completely.

(ii) Running the optimization
It is suggested that an initial run using the default parame-
ter settings is performed. The default parameters have been
carefully selected to be successful for a number of require-
ments. The main parameter is the “number of generations”:
It directly determines how many iterations are run and should
be the first to be increased. In the next steps the results of the
algorithm need to be validated and adjusted to yield optimal
results.

(iii) Checking algorithm convergence
The “Convergence”-tab presents a plot of the popula-
tion scores as a function of population index similar to
Figure 4. The user should verify that the score has set-
tled at a high level and does not continue to grow. If the
scores have not yet converged, the number of generations
should be increased and the algorithm rerun. The default
number of generations was set to an intermediate value
(5000 generations) in order to provide a fast initial result.
The program’s runtime will increase proportionally to the

www.frontiersin.org

September 2011 | Volume 2 | Article 225 | 5

http://www.frontiersin.org/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

Ihrke and Behrendt

Randomized sequences for priming experiments

GAMixit - Trial Sequence Generation for Priming Experiments (=[=](x]
File
Help Setup - GA Settings ’ Result ’ Convergence Log
Rank: 1 Overall Score: 0.86
Target| Distractor|-Condition - | Desired Conditions: 0.76 Uniform Distr. Target: 0.93
) Uniform Distr. Conditions: 0.62 Uniform Distr. Distractor: 0.97
1ol O 8 begin
| Sequence-Effects: 0.97
2 4 9 td .
Target Distractor
2 3 6 control 14 ; R— 12
12 10
4 (9 1 control 10 g
g
5 1 7 dt
: ;
6 7 1 dttd 4
vl 2
S 0 5 control 0 0
[TT T[T T T[T T T[T T T TrTT] [T T[T T[T T T T r[rr1rr]
g 0 5 ddtt 0 2 4 3] g 10 0 2 4 51 g 10
' Conditions
9 5 9 control
60 :
10 |4 7 control 50
el ol 4 3 tt .
30
12 |8 7 control 20
10
1306 9 control ¥
0 Illllllllllll|||||||||||||I|||||||||||||]|||||||l|
Evaluate || > begin invalidcontrol dt td tt dd dttd ddtt
I 0% Cancel | Go ’
FIGURE 3 | Screenshot of the “result”-tab. Statistics are located next to a table containing the generated trial-sequence, making it easy to modify and evaluate the
sequence.

number of generations. If the initial run was fast enough,
the number of generations can safely be doubled or tri-
pled (resulting in a run twice or three times as long) to see
whether additional value can be gained by longer conver-
gence. Note, that the number of iterations required to solve
the problem is dependant on the number of trials in the
genome: The longer the trial-sequence, the more iterations
have to be run to find a good solution (since the search-
space is much larger).
(iv) Check best genome

The “Result”-tab provides an editable table showing the best
sequence encountered during optimization along with a
graphical summary of the properties of the sequence: There
are histograms showing the distribution of the stimuli as tar-
get and as distractor and a histogram for the distribution of
experimental conditions. The desired distribution is depicted
in dark gray for easy orientation (Figure 3). Finally, the partial
scores defined in Section 2.2.3 are listed, giving an indication
of the quality of the sequence.

(v)In case of good convergence but poor results: Increase degrees
of freedom
Occasionally, if experimental parameters are unfortunately
selected, the GA may converge at a suboptimal level. In this
case, increasing the number of iterations will not solve the
problem as the algorithm is stuck in a local maximum. There
are a couple of parameters that can be tweaked to provide
the algorithm with more flexibility. However, the described
steps may also result in a much larger number of necessary
iterations and can even prevent the GA from converging at
all.
Different steps should be taken, depending on the distribution

of the criterion scores:

+ One score low, all others high
Sometimes, a good global score can be achieved by choosing
a “loser” criterion score that will take on low values while all
others can achieve better ones. For example, if a large number
of full repetitions (DDTT) are desired, the algorithm could

Frontiers in Psychology | Quantitative Psychology and Measurement

September 2011 | Volume 2 | Article 225 | 6

http://www.frontiersin.org/quantitative_psychology_and_measurement/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

Ihrke and Behrendt

Randomized sequences for priming experiments

choose to disregard the “only three consecutive same-condi-
tion-trials” criterion and produce a large number of conse-
cutive full repetitions. As a remedy, a larger value of k (the
power-law-scaling exponent) can be used. This will increase
the penalty given to low values of the partial scores. Increasing
the weight for the loser-criterion might help as well but can
also lead to a different loser being chosen by the algorithm.

+ All scores low
When the algorithm converges at a low level for all partial
scores, several remedies can be tried: At first the simple GA
should be examined (instead of the default steady-state GA).
This algorithm is more flexible and convergence will be slo-
wer. If the convergence is still good but at a low value, the “eli-
tism” checkbox can be unchecked increasing variability even
more. Additionally, larger populations or larger probabilities
of mutation and cross-over can help in this situation (also in
combination with a steady-state algorithm). The algorithm
should be rerun several times to check whether the conver-
gence is reproducible.

(vi) Manual tuning
Finally, the software provides facilities to change and re-eva-
luate the sequence according to the discussed criteria. The first
few best sequences encountered during the run are put into
the table in the “Result”-tab (they can be cycled through using
the arrow-buttons). It is possible to manipulate items in the
sequence and generate a new score on-the-fly which is very
convenient for manipulating a close-to-optimal sequence.
Such fine-tuning may be desired, when the algorithm inclu-
ded unwanted experimental conditions (which may happen
because of the trade-off over the criteria in Eq. 1).

Note that it might in general be more practical to generate
shorter segments of trial sequences (e.g., one for each experimental
block). This is because (i) their generation is easier to control and
(ii) they can be combined in randomized order in the experiment
without taking care of the trials on the boundary between two
blocks. In addition, the final full sequence will satisfy the constraints
also locally. However, it may be more difficult to fulfill the distribu-
tion constraints for short sequences.

3 RESULTS
The performance of the GA depends on the mix of experimental
conditions chosen by the user and on the number of stimuli and tri-
als (as well as the algorithm’s parameters). Typically, when the maxi-
mal fitness is unsatisfactory (i.e., the criteria are not fully satisfied),
an increase of the number of stimuli or trials will provide enough
degrees of freedom for the algorithm to find a more satisfactory
solution. For standard settings realized in many studies, the overall
score of the best sequence is between 90 and 100% (see Section 3.1).
An important aspect when using an optimization strategy
such as GAs is the computational complexity and hence the time
required to solve the optimization problem. The runtime of the
software depends critically on the number of iterations, the popu-
lation size, and the number of trials that are to be generated (length
of the genome)’. It is also possible that unfeasible parameter set-
tings will yield impractical running times. In our applications, the
software generally finished calculation in a reasonable amount of
time on standard desktop-computers and laptops (10 s up to sev-
eral minutes for large number of iterations). If impractical running
times are encountered, the user is encouraged to use the program’s
plot-panel to evaluate how well the algorithm converges for a low
number of generations and increase that number slowly until a
good trade-off between runtime and quality of the result is found.

3.1 EXAMPLES
The examples presented here are available as settings-files that can be
loaded directly into the software to reproduce the discussed results.

3.1.1 Example 1: standard setup

As a first example, we generate a trial sequence for a prim-
ing experiment implementing only negative (DT) and positive
priming (TT) conditions in addition to control conditions. In
order to control for a bias caused by an overrepresentation of
trials including any repeating stimulus, we generate 50% control
and 25% of each of the priming conditions. We use 10 differ-
ent stimuli and realize 400 trials. Without changing any of the

*The runtime depends linearly on the three parameters: Doubling the number of ge-
nerations/trials or the population size will approximately double the runtime as well.

condition (lower right).

0.1 0.1
m————average ?
2 m— best g 005 005
S 0.9 === worst =00 .
= &
S 0 0
0 5 10 0 5 10
0.8 ' L i target distractor
6001 »
3 it
g dttd
£ 400 %
&0 tt
g o
= 200r d}
A contro
= 0 ey invalid
10' 10° 10° 10* 0 02 0.4
Generation frequency

FIGURE 4 | Statistics for the best stimulus-sequence generated with the standard setup. Plotted are the fitness and divergence (average distance between
individuals in the population) values as a function of generation (upper and lower left; log-scale) and histograms for target/distractor stimuli (upper right) and stimulus

www.frontiersin.org

September 2011 | Volume 2 | Article 225 | 7

http://www.frontiersin.org/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

Ihrke and Behrendt

Randomized sequences for priming experiments

parameters except the number of generations (the “runtime”),
the algorithm returns almost perfect results (all scores close to
1, see Figure 4): The stimulus objects are uniformly distributed
over target/distractor and the conditions appear in appropriate
relations.

3.1.2 Example 2: Schrobsdorff et al. (2007)

The reference study presented above and illustrated in Figure 2
(Schrobsdorffetal.,2007) implemented both partial and full repeti-
tions (DT, TT, DDTT, and DTTD) besides the control condition.
Each condition was presented 80 times such that there was a total
number of 400 trials (excluding a practicing phase). Five different
stimuli were used.

The requirements for this study are rather hard to fulfill,
because the full repetitions (DTTD and DDTT) pose restric-
tions on the stimulus-sequence. A run with the default param-
eters running for 10000 generations did not succeed in producing
the desired distribution of priming conditions (control condi-
tions were overrepresented and DDTT conditions were under-
represented). By giving more weight to criterion (ii) however
(w, =032, w, = w, = w, = w, = 0.17), the algorithm was suc-
cessfully guided toward the near-optimal solution shown in
Figure 5. Target and distractor stimuli are perfectly uniformly
distributed and the few remaining discrepancies between required

and generated distribution of priming conditions are easily rem-
edied by hand (in this case, by converting two DD and one TD
trials into DDTT trials).

3.1.3 Example 3: Ihrke et al. (2011)

In a recent study, we conducted an NP experiment in which we
implemented four different priming conditions, DT, TT, TD, and
DD (Ihrke etal.,2011) that were to occur an equal number of times.
There were 840 trials and 5 different stimuli. The results after 10000
iterations are optimal (F = 1, Figure 6).

3.2 COMPARISON WITH ON-LINE RANDOMIZATION

While it is more difficult to perform an on-line randomization for
priming experiments than it is for paradigms without prime-probe
relations, it is still possible when explicitly accounting for the inter-
trial dependencies. To formulate a subroutine that can return the
next stimuli given the preceding ones, it is convenient to use the
terminology of Markov-chains. In these stochastic processes, the
probability to be in a state at a given point in time depends only on
the previous state. When associating the states with the presented
stimuli, it is possible to create an algorithm for generating the next
display which will converge to an optimal distribution of conditions
and target/distractor stimuli in the limit of large number of trials.
The details of this Markov-chain are described in the Appendix.

Ir _ 02 0.2
— verage 5
® — 3
z best g o1 ol
g 0.9} = worst §
&) 0 0
0 5 0 5
0.8 i target distractor
600 &
g ddut
g dttd
T 400 da
] ‘
t
£ 200t d
5 control
0 ; BB PTG T VR Y invalid
10' 10° 10° 10* 0 0.1 0.2
Generation frequency

FIGURE 5 | Statistics for the best stimulus-sequence generated with the setup for Schrobsdorff et al. (2007) study. Plotted are the fitness and divergence
values as a function of generation (upper and lower left; log-scale) and histograms for target/distractor stimuli (upper right) and stimulus condition (lower right).

Ir 02 02
— average &
% — best‘ % o1 o
2095 WOrSt g
& Z
12345 12345
0.9 target distractor
15001 w“
(t
g 1000} dud
3}
20 t
5} td
> 500 it
5 control
0 1 e invalid
10' 10° 10° 10" 0 0.1 0.2
Generation frequency

FIGURE 6 | Statistics for the best stimulus-sequence generated with the setup for Ihrke et al. (2011) study. Plotted are the fitness and divergence values as a
function of generation (upper and lower left; log-scale) and histograms for target/distractor stimuli (upper right) and stimulus condition (lower right).

Frontiers in Psychology | Quantitative Psychology and Measurement

September 2011 | Volume 2 | Article 225 | 8

http://www.frontiersin.org/quantitative_psychology_and_measurement/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

Ihrke and Behrendt

Randomized sequences for priming experiments

Table 3 | Comparison of the genetic algorithm and the on-line approach
for the presented examples (k= 6).

Example 1 Example 2 Example 3

GA On-ine GA On-ine GA On-line
C 0.87 0.99 0.94 0.99 0.99 0.99
C, 0.87 0.77 0.94 0.80 0.99 0.94
C, 1.00 0.74 1.00 0.99 1.00 1.00
C, 0.99 0.64 1.00 0.68 1.00 0.92
(o8 0.96 0.72 1.00 0.83 1.00 0.80
F 0.94 0.77 0.98 0.86 1.00 0.93

C, through C; are the criteria introduced in Eq. 2 through 6, F is the overall
fithess-score from Eq. 1.

Q _
. o\o/°\0/°\°~°~o_°/°
&
» A’A/A—A
g @ /A\A/A\
£ o
i /
~
S A/)
—e— on-line
o | —A— GA
o r T T T 1
200 400 600 800 1000

number of trials

FIGURE 7 | Performance of the genetic algorithm and the on-line strategy as
a function of number of trials using the standard setup presented in Section
3.1.1 (k=6). While the GA produces optimal results also for lower number of
trials, the fitness of the sequences from on-line randomization increases with the
number of trials and saturates at a lower level than the GA-solution.

In Table 3, we present a comparison of stimulus-sequences gen-
erated using the GA and the on-line randomization for the three
examples from the preceding section. The GA performs better in all
cases. Because of the stochasticity of the on-line randomization, it
can be expected that the overall quality of the method converges to
optimal values with growing number of trials. In Figure 7, we present
the score of the generated sequences using both the GA and the on-line
randomization as a function of length (number of trials). While the
GA finds an optimal solution independent of the number of trials in
the sequence, the on-line solution approaches good results only for a
large number of trials. The remaining gap between the two curvesisa
result of criterion C,; in the calculation of the fitness-scores: Because
the number of consecutive trials of the same experimental condition
is punished in the GA but not in the on-line algorithm, the fitness
of the on-line solution will always be lower than the GA-solution.

4 DISCUSSION

Priming paradigms are widely applied in behavioral research and
properly randomized trial sequences are an important basis for any
successful priming experiment. Because the cross-trial dependency
makes the use of on-line randomization more difficultand can even
pose problems in manually designing randomized trial sequences,
we developed a software that automatically generates suitable trial
sequences based on a GA optimization strategy. GAs are argued
to be particularly intuitive for behavioral researchers due to their

similarity to biological evolution which lets the meaning of the
parameters become transparent. A tool for manual tweaking of the
generated sequences is provided as well. The software is suitable
for priming tasks that vary from trial to trial on two independent
dimensions. The program is hosted as an open-source project
and is expected to evolve with the needs of experimentalists into
a more general tool for trial-sequence generation. The software
was designed to be extensible such that new requirements can be
integrated in future versions with minimal programming effort.

4.1 FUTURE DIRECTIONS
We seek to extend the functionality of our program in several ways.
Currently, if any experimental variation in addition to the priming
conditions is desired, it must be added “by hand” to the generated trial-
sequence using, e.g., a spreadsheet software. For example, recent studies
have focused on response-repetitions in addition to the stimulus-rep-
etitions covered by our software (e.g., Rothermund et al., 2005; Mayr
et al., 2011). Randomization of the response-sequence in addition to
the trial-sequence therefore includes additional inter-trial dependencies
which must be uniformly distributed as well. We opt for the inclusion
of such additional restrictions in future versions of our software.
Another important step is to increase the number of paradigms
to which the program can be applied. Consider, for example, n-back
tasks (e.g., Schmiedek, 2009): to support this task it is necessary to
model inter-trial dependencies between trial 7 and trial i — n instead
of only prime-probe dependencies. Our goal is to gradually approach
a generality that will allow to model any such experimental require-
ments. This requires, however, a much more flexible formalism
allowing the individual researcher to adapt the program to his needs.
Currently, to adapt the software to different paradigms, program-
ming skills are required: The fitness function as well as the stimulus-
dependencies must be explicitly specified in the source-code. Later
versions of our software are to include the possibility to specify any
inter-trial dependencies on a variable number of dimensions.
Finally, we want to implement a measure for the random-
ness of a trial-sequence in order to avoid predictability in the
recorded sequences. Potential candidates for such a meas-
ure are the Approximate Entropy (Pincus, 1991; Pincus and
Kalman, 1997) or a derivate (e.g., Sample Entropy, Richman
and Moorman, 2000) or the calculation of an entropy-measure
for a minimal finite-state automaton fitted to the trial sequence
(Cleeremans et al., 1989). However, there are several problems
defining “predictability” by human subjects: First and foremost
it is unclear what kind of sequential structure can be learned
and used by human subjects. Studies on implicit sequence learn-
ing show that rather complex and stochastic structure can be
exploited. Furthermore, due to the multivariate character of
most trial sequences, it is not obvious whether only the sequen-
tial structure of each dimension or also cross-dependencies can
be predicted. These considerations must be taken into account
when designing a “measure of predictability” for trial sequences.

ACKNOWLEDGMENTS

The first author acknowledges financial support by the Gottingen
Graduate School for Neurosciences and Molecular Biosciences (GGNB).
This work was supported by BMBF grant numbers 01GQ1005B and
01GQ0432. Discussions with Hecke Schrobsdorff, J. Michael Herrmann,
Floran Schmiedek, and Marcus Hasselhorn are gratefully acknowledged.

www.frontiersin.org

September 2011 | Volume 2 | Article 225 | 9

http://www.frontiersin.org/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

Ihrke and Behrendt

Randomized sequences for priming experiments

REFERENCES

Beasley, D., Bull, D., and Martin, R.
(1993a). An overview of genetic algo-
rithms: part 1, fundamentals. Univ.
Comput. 15, 58—69.

Beasley, D., Bull, D., and Martin, R.
(1993b). An overview of genetic algo-
rithms: part 2, research topics. Univ.
Comput. 15,170-181.

Behrendt, J., Gibbons, H., Schrobsdorff,
H., Ihrke, M., Herrmann, J. M., and
Hasselhorn, M. (2010). Event-related
brain potential correlates of iden-
tity negative priming from overlap-
ping pictures. Psychophysiology 47,
921-930.

Boyer, M., Destrebecqz, A., and
Cleeremans, A. (2005). Processing
abstract sequence structure: learning
without knowing, or knowing without
learning? Psychol. Res. 69, 383—398.

Cleeremans, A., Servan-Schreiber, D.,
and McClelland, J. (1989). Finite
state automata and simple recurrent
networks. Neural Comput. 1,372-381.

Cover, T. M., and Thomas, J. A.
(2006). Elements of Information
Theory, 2nd Edn. Hoboken, NJ:
Wiley-Interscience.

Damian, M. E (2000). Semantic negative
priming in picture categorization and
naming. Cognition 76, 45-55.

de Fockert, J. W., Mizon, G. A., and
D’Ubaldo, M. (2010). No negative
priming without cognitive control.
J. Exp. Psychol. Hum. 36, 1333—-1341.

Fox, E. (1995). Negative priming from
ignored distractors in visual selection:
areview. Psychon. Bull. Rev. 2,145-173.

Frings, C., and Wentura, D. (2006).
Strategy effects counteract distractor
inhibition: negative priming with con-
stantly absent probe distractors. J. Exp.
Psychol. Hum. 32, 854-864.

Frings, C., and Wentura, D. (2008).
Separating context and trial-by-
trial effects in the negative priming

paradigm. Eur. J. Cogn. Psychol. 20,
195-210.

Goldberg, D. (1989). Genetic Algorithms
in Search, Optimization and Machine
Learning. Boston, MA: Addison-
Wesley Longman Publishing Co., Inc.

Grison, S., and Strayer, D. L. (2001).
Negative priming and perceptual flu-
ency: more than what meets the eye.
Percept. Psychophys. 63, 1063—-1071.

Grison, S., Tipper, S. P, and Hewitt, O.
(2005). Long-term negative priming:
support for retrieval of prior atten-
tional processes. Q. J. Exp. Psychol.
58,1199-1224.

Thrke, M. (2011). Gamixit. Available at:
http://www.nld.ds.mpg.de/~ihrke/
gamixit

Thrke, M., Behrendt, J., Schrobsdorff,
H., Michael Herrmann, J., and
Hasselhorn, M. (2011). Response-
retrieval and negative priming. Exp.
Psychol. 58, 154-161.

Kramer, A. F, and Strayer, D. L. (2001).
Influence of stimulus repetition on
negative priming. Psychol. Aging 16,
580-587.

Kristjansson, A., and Driver, J. (2008).
Priming in visual search: separating
the effects of target repetition, distrac-
tor repetition and role-reversal. Vision
Res. 48, 1217-1232.

Livesay, K., and Burgess, C. (1998).
Mediated priming in high-dimen-
sional semantic space: no effect
of direct semantic relationships
or co-occurrence. Brain Cogn. 37,
102-105.

Lorist, M., Boksem, M., and Ridderinkhof,
K. (2005). Impaired cognitive control
and reduced cingulate activity during
mental fatigue. Cogn. Brain Res. 24,
199-205.

Lowe, D. (1998). Long-term positive and
negative identity priming: evidence
for episodic retrieval. Mem. Cognit.
26,435-443.

May, C. P, Kane, M. J., and Hasher, L.
(1995). Determinants of negative
priming. Psychol. Bull. 118, 35-54.

Mayr, S., Méller, M., and Buchner, A.
(2011). Evidence of vocal and manual
event files in auditory negative prim-
ing. Exp. Psychol. 58, 353-360.

Milliken, B., Joordens, S., Merikle, P. M.,
and Seiffert, A. E. (1998). Selective
attention: a reevaluation of the impli-
cations of negative priming. Psychol.
Rev. 105, 203-229.

Papoulis, A., and Pillai, S. U. (2002).
Probability, Random Variables and
Stochastic Processes, 4th Edn. New
York, NY: McGraw-Hill Higher
Education.

Pincus, S. (1991). Approximate entropy as
ameasure of system complexity. Proc.
Natl. Acad. Sci. U.S.A. 88,2297.

Pincus, S., and Kalman, R. (1997). Not all
(possibly)“random”sequences are cre-
ated equal. Proc. Natl. Acad. Sci. U.S.A.
94, 3513.

R Development Core Team. (2010). R:
A Language and Environment for
Statistical Computing. Vienna: R
Foundation for Statistical Computing.

Richman, J., and Moorman, J. (2000).
Physiological time-series analysis
using approximate entropy and sam-
ple entropy. Am. J. Physiol. 278, H2039.

Rothermund, K., Wentura, D., and De
Houwer, J. (2005). Retrieval of inci-
dental stimulus-response associations
asasource of negative priming. J. Exp.
Psychol. Learn. 31, 482-495.

Schmiedek, F. (2009). Interference and
facilitation in spatial working mem-
ory: age-associated differences in
lure effects in the N-back paradigm.
Psychol. Aging 24, 203-210.

Schrobsdorff, H., Thrke, M., Kabisch,
B., Behrendt, J., Hasselhorn, M., and
Herrmann, J. M. (2007). A computa-
tional approach to negative priming.
Conn. Sci. 19,203-221.

Stadler, M., and Neely, C.B. (1997). Effects
of sequence length and structure on
implicit serial learning. Psychol. Res.
60, 14-23.

Stadler, M. A. (1992). Statistical structure
and implicit serial learning. J. Exp.
Psychol. Learn. 18, 318-327.

Tipper, S. P. (1985). The negative priming
effect: inhibitory priming by ignored
objects. Q. J. Exp. Psychol. 37,571-590.

Titz, C., Behrendt, J., Menge, U., and
Hasselhorn, M. (2008). A reassessment
of negative priming within the inhi-
bition framework of cognitive aging:
there is more in it than previously
believed. Exp. Aging Res. 34, 340-366.

Visser, I, Raijmakers, M. E.]., and Pothos,
E. M. (2009). Individual strategies in
artificial grammar learning. Am. J.
Psychol. 122,293-307.

Wall, M. (1999). Galib. Available at: http://
lancet.mit.edu/ga/

Conflict of Interest Statement: The
authors declare that the research was con-
ducted in the absence of any commercial
or financial relationships that could be
construed as a potential conflict of interest.

Received: 13 May 2011; accepted: 24 August
2011; published online: 19 September 2011.
Citation: Ihrke M and Behrendt J (2011)
Automatic generation of randomized
trial sequences for priming experiments.
Front. Psychology 2:225. doi: 10.3389/
fpsyg.2011.00225

This article was submitted to Frontiers in
Quantitative Psychology and Measurement,
a specialty of Frontiers in Psychology.
Copyright © 2011 Thrke and Behrendt. This
is an open-access article subject to a non-
exclusive license between the authors and
Frontiers Media SA, which permits use, dis-
tribution and reproduction in other forums,
provided the original authors and source are
credited and other Frontiers conditions are
complied with.

Frontiers in Psychology | Quantitative Psychology and Measurement

September 2011 | Volume 2 | Article 225 | 10

http://www.frontiersin.org/quantitative_psychology_and_measurement/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

Ihrke and Behrendt

Randomized sequences for priming experiments

APPENDIX

ON-LINE RANDOMIZATION FOR PRIMING EXPERIMENTS

Since in priming experiments the dependency is only between prime
and probe, it is possible to use an on-line randomization approach
based on Markov-chains (for an introduction to Markov-chains, see
Papoulis and Pillai, 2002). A Markov-chain is a stochastic process
X, that is characterized by the Markov-property: The probability
distribution for trial r depends only on the previous outcome,

P(X,=s,|X, ., =5_p.X,=5,)=P(X, =5,|X,_ =5,,).

Because the condition in trial i depends only on trial i — 1 for
priming experiments, it is possible to formulate this requirement
in terms of a Markov-chain.

Given n__ different stimuli, we formulate the state-space of a
Markov-chain that consists of each possible individual display, i.e.,
each possible combination of two different stimuli (each display
consists of target and distractor)

Q={(1,2),1,3),..0» (L7143,)s 215 (235 (2115)
(nslim’nstim - 1)}

(trials in which target and distractor are identical are excluded,
because they are considered to be invalid). The initial state is chosen
randomly and the transition probabilities

Table A1 | Number of possible probe displays given a prime display
when a specific priming condition is desired.

Condition Number of transitions N,
DT (negative priming) Nyr=ng. -2

TT (positive priming) Nep=ng, =2

TD (target-to-distractor) Np=ng.—2

DD (distractor repetition) Npp=ng =2

DTTD (reversed repetition) Nyrrp =1

DDTT (full repetition) Npprr =1

Control Nt = (e = 20y, = A1
Invalid Niaia =0

invalid —

A;=P(X,=5,|X, =5,
with s, € Q are determined by the required distribution of prim-
ing conditions 7, i € © with X7, = 1. As before, this distribution
is specified by the experimenter. Depending on which priming
condition is chosen, the stimuli in the next display are restricted:
In full repetition or full reversal trials, the stimuli will be the same
as in the current trial (so there is only one possible transition).
For all conditions with a single repetition, the number of possible
stimuli for the probe is n, — 2, because one stimuli is fixed (the
repeated one) and the other one can be any stimulus except the
current target or distractor. In order to achieve a uniform distribu-
tion over the stimuli, the probability for the priming conditions in
the probe is equally divided among all possible stimuli that real-
ize this condition, such that A, = p, = m /N, for all i,j that result
in priming condition k € ®. The number of possible transitions
N, per priming condition k is given in Table Al. For example, if
the relative frequency of DT conditions in the trial sequence is to
be m = 0.2, then Aij =0.2/(n_, - 2) for all i,j that will result in
a DT condition. This will ensure that stimuli will be uniformly
distributed in the limit of large number of trials. The process is
illustrated in Figure A1.

A script written in the R environment for statistical computa-
tion (R Development Core Team, 2010) that implements this idea
is available from the website (Thrke, 2011).

I0108NSIP

FIGURE A1 | lllustration of a Markov-chain for n_, =4 different stimuli.
The chain is currently in state (1,2) shown in blue (target 1 and distractor 2)
and moves to a new stimulus combination with the transition probabilities A,
as defined in the text.

www.frontiersin.org

September 2011 | Volume 2 | Article 225 | 1

http://www.frontiersin.org/
http://www.frontiersin.org/quantitative_psychology_and_measurement/archive

	Automatic generation of randomized trial sequences for priming experiments
	1 Introduct iIon
	2 MateriIals and Methods
	2.1 Genet iIc Aal gGor iIth mMs
	2.2 Aappl iIcatiIon to tr iIal-sequence gGeneratiIon
	2.2.1 Scope of the approach
	2.2.2 Coding and genetic operators
	2.2.3 Fitness function

	2.3 Ssoftware imIMple mMentatiIon
	2.3.1 Tutorial – suggested workflow

	3 Rresults
	3.1 Eexa mMples
	3.1.1 Example 1: standard setup
	3.1.2 Example 2: Schrobsdorff et al. (2007)
	3.1.3 Example 3: Ihrke et al. (2011)

	3.2 Cco mMpariIson w iIth on-l iIne rando miMIzatiIon

	4 DidIscuss iIon
	4.1 Ffuture d iIrect iIons

	Aacknowled gmGMents
	references
	Aappend iIx
	Oon-l iIne rando miMIzatiIon for pr imiIMIn gG exper imIMents

