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Interactive activation models (IAMs) simulate orthographic and phonological processes in
implicit memory tasks, but they neither account for associative relations between words
nor explicit memory performance. To overcome both limitations, we introduce the asso-
ciative read-out model (AROM), an IAM extended by an associative layer implementing
long-term associations between words. According to Hebbian learning, two words were
defined as “associated” if they co-occurred significantly often in the sentences of a large
corpus. In a study-test task, a greater amount of associated items in the stimulus set
increased the “yes” response rates of non-learned and learned words. To model test-
phase performance, the associative layer is initialized with greater activation for learned
than for non-learned items. Because IAMs scale inhibitory activation changes by the initial
activation, learned items gain a greater signal variability than non-learned items, irrespec-
tive of the choice of the free parameters.This explains why the slope of the z-transformed
receiver-operating characteristics (z-ROCs) is lower one during recognition memory. When
fitting the model to the empirical z-ROCs, it likewise predicted which word is recognized
with which probability at the item-level. Since many of the strongest associates reflect
semantic relations to the presented word (e.g., synonymy), the AROM merges form-based
aspects of meaning representation with meaning relations between words.
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INTRODUCTION
Interactive activation models (IAMs) have been used successfully
to predict human word recognition performance, when the task
implicitly requires retrieval of orthographic or phonological word
forms from memory, such as perceptual identification, naming,
lexical decision, or word stem completion (e.g., McClelland and
Rumelhart, 1981; Grainger and Jacobs, 1996; Perry et al., 2007;
Klonek et al., 2009). However, IAMs have not yet been applied to
model performance in explicit memory tasks, such as the recog-
nition of a set of studied words. Since Berry et al. (2008) propose
that the same signals are detected in implicit and explicit mem-
ory, in this paper we explored the versatility of IAMs to predict
explicit memory performance. This seemed like a natural exten-
sion, given that in an implicit memory task the multiple read-out
model (MROM; Grainger and Jacobs, 1996) already successfully
predicted receiver operation characteristics (ROCs; Jacobs et al.,
2003), which are crucial for the development of formal memory
theories (cf. Malmberg, 2008, for a recent overview).

A distinctive strength of IAMs is that they allow item-level pre-
dictions for various dependent variables, such as “yes” response
rates, mean response times, or mean amplitudes in electrophysio-
logical responses (e.g., Spieler and Balota, 1997; Perry et al., 2007;
Hofmann et al., 2008; Rey et al., 2009). IAMs are currently able to
simulate effects resulting from lexical whole word representations

or from smaller, sub-lexical representations during word recogni-
tion (e.g., Perry et al., 2007; cf. Ziegler and Goswami, 2005). So far,
however, they neglect the fact that words are embedded into an
experimental context of other meaningful words that potentially
share a common learning history with the target word. Contex-
tual between-word associations – as for instance the semantic
relation of “lung” to its hypernym “organ” – were discussed as
extension possibilities for connectionist models (e.g., Rumelhart
and McClelland, 1982; Seidenberg and McClelland, 1989; Colt-
heart et al., 2001). However, they were never used for quantitative
performance predictions. Such inter-item associations are better
understood in the explicit memory literature (e.g., Roediger and
McDermott, 1995; Nelson et al., 1998; Kimball et al., 2007), while
item-level predictions of recognition memory performance are
still lacking. Therefore, the present study aimed to keep the IAMs’
quantitative strengths of z-ROC and item-level predictions, while
seeking to overcome an important weakness: predicting the impact
of associative relations between words in an explicit recognition
memory task.

DOES ASSOCIATIVE-SPREADING ACTIVATE “FALSE MEMORIES”?
The probably best-known associative memory phenomenon is the
so-called“false memory effect”(Deese,1959; Roediger and McDer-
mott, 1995): learning associated items (e.g., “table,”“sit,”“legs”) to
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a non-learned target item (e.g., “chair”) favors its erroneous recall
or recognition. Moreover, when learning“chair” in the company of
such associates, its “veridical recall” is more likely (Kimball et al.,
2007). These experiments rely on tediously collected free asso-
ciation performance to define associations in subjective terms: a
target is presented and participants name the first associates com-
ing to their minds. Learning all of the most strongly associated
items increases the target’s retrieval probability in a later memory
experiment. However, such an experimental design takes only a
small subset of the possible associations between the items of an
experiment into account (Ratcliff and McKoon, 1994). The present
study tested a simple co-occurrence approach allowing to con-
sider all associations between all items (cf. Landauer and Dumais,
1997; Bullinaria and Levy, 2007; Griffiths et al., 2007; Jones and
Mewhort, 2007; Andrews et al., 2009): two words were defined
as being “associated” when they occurred significantly more often
together than alone in a sample of 43 million sentences (Quasthoff
et al., 2006) 1. Hebbian learning is the only assumption required
for this definition: stimuli being repeatedly presented together are
likely to be associated (Hebb, 1949; Rapp and Wettler, 1991).

Roediger and McDermott (1995) compared targets of which
all of the most strongly associated items were learned, to targets
of which no (freely) associated item occurred in the experimental
context. Here, we challenged this rationale in a more fine-grained,
parametric fashion. We hypothesized that the more associates
occurred to a non-learned (new) target in the stimulus set, the
greater is the amount of erroneous “yes” responses. Similarly,
learning the most strongly associated items of an old target word
should increase the tendency to freely recall it (Kimball et al.,
2007). This led to the hypothesis that learned targets with more
associates in the stimulus set should produce greater recognition
rates. We tested these hypotheses in a study-test paradigm with the
experimental factors old/new and co-occurrence level (low/high):
low co-occurrence target items had less than eight significantly co-
occurring items in the stimulus set, and high co-occurrence words
had at least eight.

To theoretically frame these hypotheses, we extended the
MROM by an associative layer (Grainger and Jacobs, 1996). The
MROM consists of three layers of interacting processing units
(Figure 1): the visual features of the target stimuli serve as input
variables for the model’s feature layer. Feature units activate letter
units, which in turn excite units of the orthographic word layer
(McClelland and Rumelhart, 1981). In the associative read-out
model (AROM), an associative unit for each item presented in
the experiment was added. Since the process of word identifica-
tion is necessary for recognizing it as learned, each association
unit obtained an excitatory word identification signal from its
corresponding orthographic word unit. The co-occurrence statis-
tics implemented excitatory associative connections between the
units in the associative layer. These linkages are assumed to reflect
the pre-wired long-term structure of the human associative mem-
ory system that matured by experience with words (Hebb, 1949).
When the target item is presented to the model, its association
unit transiently activates all associated item units, which in turn

1http://corpora.uni-leipzig.de/

FIGURE 1 | Basic architecture of the AROM. The lower three layers
correspond to previous IAMs (McClelland and Rumelhart, 1981; Grainger
and Jacobs, 1996). Target stimuli are presented to the feature units, which
in turn activate the letter and (orthographic) word layer. The associative
layer’s unit of the target receives the word identification signal from the
orthographic word layer. Moreover, associated item units contained in the
stimulus set are activated by the target unit, and activate the target in turn.
Thus activations to item units with many associated items are greater,
which predicts their higher probability of “yes” responses. Translations are
bracketed.

activate the target unit. Thus, the greater the associative-spreading
along the associative connections is (Collins and Loftus, 1975;
Anderson, 1983), the greater is the activation “echo” from asso-
ciated units back to the target item’s unit (Nelson et al., 1998).
Since greater activation signals of IAMs typically predict a greater
amount of “yes” responses (e.g., Grainger and Jacobs, 1996; Hof-
mann et al., 2008), the AROM allows the following hypothesis: the
more associated items a target has, the larger is its associative acti-
vation. This should result in a greater amount of “yes” responses
for both, new and old high co-occurrence target items. Apart from
this qualitative, condition-wise prediction, we fitted the AROM to
(cross-condition) ROCs, and tested whether the obtained signal
strengths accounted for item-level variances.

CAN EACH ITEM’S SIGNAL BE DETECTED IN AN EXPLICIT MEMORY
TASK?
To allow for signal-detection analyses, participants in the experi-
mental study were instructed to rate their recognition confidence
on a six-point scale ranging from“sure no”(“1”) to“sure yes”(“6”).
For all but the ROC analyses, “4” (“unsure yes”) to “6” counted
as “yes” response. Based on these confidence ratings, the signal-
detection approach (Green and Swets, 1966) allows for simulating
performance from the most liberal response bias by the criterion
C(1) to the most conservative bias: C(5) is prone to elicit the fewest
“yes” responses by counting all “1” to “5” responses as “no.” The
criteria C(i) are assumed to reflect empirical “yes” response prob-
abilities on a bimodal Gaussian distribution of (memory) signal
strength of the items: one distribution for the new target items,
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and another one for the old ones (cf. Figure 2, upper panels).
Signal-detection theory describes episodic memory traces result-
ing from study-phase presentation by the ad hoc assumption of
greater mean memory signal strength for old than for new items.
To generate ROCs, the “yes” probabilities for all criteria (Figure 2,
middle panels) are plotted for new items on the x-axis, those to old
items on the y-axis. When z-normalizing these ROC probabilities
(cf. Figure 2, lower panels), the so-called z-ROCs typically reveal
a slope of less than one during recognition memory tasks (e.g.,
Ratcliff et al., 1992; Glanzer et al., 1999). Single-process signal-
detection models describe this by a second ad hoc assumption: the
signal strength variance is greater for old than for new items (Green
and Swets, 1966). However, such an unequal variance model does
not provide an answer to the question of why the variances are
greater to old items (Glanzer et al., 1999). In contrast, Yonelinas
(1994) dual-process model gives a simple account of the z-ROC’s
tilt-down: recollection, i.e., the detailed recognition of a particular
item, is a memory process only apparent for old items. One aim of
the present study was to provide an explanation relying on a single
signal strength variable: (associative memory) signal strength.

Jacobs et al. (2003) equated model activations with sig-
nal strength to predict z-ROCs from the MROM’s activations.

FIGURE 2 | Distributions of the AMSSs and the resulting z-ROCs for

the low (left panels) and high co-occurrence conditions (right panels).
The first row displays the associative memory signal strength (AMSS)
distributions transformed to smoothed probability density functions for the
four experimental conditions. The second row depicts these functions
transformed into cumulative “yes”-response probabilities and the five
response criteria C(i) for i = 1–5. The third row shows the empirical and
modeled z-ROCs.

To adopt signal-detection theory’s assumption of greater signal
strengths in old items (Green and Swets, 1966), the pre-activation
values were increased for association units representing learned
items, in comparison to non-learned ones: this resting-level rep-
resented every memory trace which has been potentially activated
before the presentation of the present test-phase trial, and will
be indicated as cycle 0 (see Figure 4). Learned item units were
given greater pre-activation values than non-learned ones, because
they have been presented before in any case (cf. Morton, 1964, p.
217, property “P3”). In randomized stimulus sets, non-learned
associates of a target item were exposed previous to that target
with an average probability of 50%. Therefore, the resting-level
of non-studied item units was defined to be lower than that of
learned ones. Both resting levels were initialized above the activa-
tion threshold (of zero), so that all associative units were able to
excite and inhibit each other in cycle 0. Due to excitation, new and
old associates took an active role in contextually cueing the present
item (Gillund and Shiffrin, 1984). As each active association unit
inhibited each other unit (McClelland and Rumelhart, 1981), the
amount of active units in the associative layer was limited. Since
only about 5% of the possible unit pairs were associatively con-
nected in an excitatory fashion (cf. Simulation Methods), the net
sum of inhibition was greater than the excitation in cycle 0. When
the activation change of the target item’s association unit is cal-
culated from this net inhibition in an IAM, it is weighted by
the multiplication with its present activation (McClelland and
Rumelhart, 1981). As the resting level was defined to be greater
for old than for new item units, greater inhibitions resulted for
old item units. Therefore, the target unit’s activation variability in
cycle 1 was necessarily greater for old than for new items. As a
consequence, the second ad hoc assumption of unequal variance
followed logically from the first assumption, when implementing
it into an IAM: a greater signal strength variability for old targets
items, which monotonically increased with the memory signal
strength difference between old and new items.

To predict human performance, Jacobs et al. (2003) defined sig-
nal strength as the mean activation across the first seven cycles (see
also Grainger and Jacobs,1996; Hofmann et al., 2008). Accordingly,
in the AROM a target unit’s mean associative activation in cycles
1–7 is taken as its signal strength in the associative layer, hence-
forth called associative memory signal strength (AMSS). For cycle
1, the first assumption of signal-detection theory of greater old
item variances transforms into the prediction of larger old items’
variances as compared to new items in an IAM. For AMSS, how-
ever, this prediction has to be tested within the AROM architecture
across the whole parameter space, i.e., irrespective of the choice of
the five free parameters: the scaling of excitation from the ortho-
graphic identification signal to the association units, the scaling of
excitation and inhibition in the association layer (Figure 1), and
the resting levels of old and new item units.

For obtaining signal strength distributions, the resulting AMSS
values were transformed to functional forms for all four exper-
imental conditions, i.e., the new and old low and high co-
occurrence conditions. Since AMSS is conceptualized as the signal
strength of the items, an additional source of variability of the
items’ fixed signal strengths was required. Therefore, smoothed
kernel density functions were applied for the transformation to
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functional forms, and the smoothing kernel factor κ was the
only free parameter required for z-ROC generation. κ reflects
the variability of the deterministic AMSS values of the items.
The empirically obtained “yes” response probabilities were used
as C(i; cf. Figure 2, second row). The parameters were optimized
by fitting the model-generated z-ROCs to the empirical z-ROCs
by minimizing the sum of the least squared errors of the slopes
and intercepts of the low and high co-occurrence conditions (cf.
Figure 2, third row). We then tested whether the z-ROC slopes of
the participants deviated from those predicted by the model. These
model tests were run for low and high co-occurrence conditions,
separately.

Once the parameters were fixed, the AROM was challenged to
account for item-level variance. Previous signal-detection-capable
models of recognition memory (Malmberg, 2008) targeted the sig-
nal strengths of the items, but did not specify which particular
word stimulus provides which signal strength (e.g., Glanzer et al.,
1993; Murdock, 1997; Shiffrin and Steyvers, 1997; McClelland and
Chappell, 1998). Instead of representing items by random vari-
ables, the AROM relies on local representation units (Grainger
and Jacobs, 1998; Page, 2000). That is, visual features and letters
define a particular word form (McClelland and Rumelhart, 1981;
Grainger and Jacobs, 1996). In contrast to its direct precursors, the
AROM additionally defines the meaning of a word by the com-
pany it kept during its learning history, i.e., co-occurrences (Hebb,
1949; Firth, 1957; Andrews et al., 2009). Because the AROM’s rep-
resentation variables correspond to real-world entities, e.g., words,
the face validity of its processes is testable. For instance, is it phe-
nomenally plausible that “egoism” elicits associative activation in
“vice”? We consider the transparency of such a localist approach
advantageous, particularly when aiming to integrate this represen-
tational model of meaning into a processing model of recognition
memory (Steyvers et al., 2006).

SIMULATION METHODS: THE AROM AND ITS PREDICTIONS
The feature, letter, and word layers, as well as their connec-
tions remained largely2 unaltered compared to the AROM’s
predecessors (McClelland and Rumelhart, 1981; Grainger and
Jacobs, 1996). The added associative layer in general reflects the
basic architecture of each layer of an IAM-architecture, which is
described more thoroughly elsewhere (McClelland and Rumel-
hart, 1981; Grainger and Jacobs, 1996). The activation threshold,
decay, activation minima and maxima were inherited from the
word layer. The word and associative layer lexica of the model
contained one unit for each of the 160 items presented in the
experiment. Other assumptions critical for the present findings
will be described in the following.

Word identification signals from the orthographic word layer
activated the associative units (cf. Figure 1). Each Associative

2The original IAM was designed for four-letter stimuli (McClelland and Rumelhart,
1981), and the present stimulus set contained three- to eight-letter stimuli. There-
fore, blank letters were used (cf. Coltheart et al., 2001). Moreover, the excitatory
activation forwarded from the letter to the orthographic word layer was normalized
by word length (eanorm = l∗ea/4; cf. Conrad et al., 2010). The rationale is that atten-
tion is uniformly distributed across all letters, but remains the same as in the original
IAM for four-letter stimuli. Inverted frequency class measures of the Leipzig Corpus
were used for setting the resting levels in the orthographic word layer (cf. Corpus).

word unit x in cycle c obtained input activation Ax(c) by exci-
tatory connections from the corresponding Orthographic word
unit activation of the last cycle [Ox(c−1)]. Please note that only
if the activation Ox(c−1) crosses the activation threshold (of
zero), excitation or inhibition take place. To indicate that a vari-
able must fulfill the logical condition of being positive, we use
the subscript ± . Thus, for instance Ox+ (c−1) = Ox(c−1) if it is
positive [Ox(c−1) > 0], otherwise Ox+ (c−1) = 0. The excitation
from the orthographic to the associative layer was scaled by the
free excitatory parameter αoa:

Ax(c) = Ox+ (c − 1) ∗ αoa (1)

If a word y was significantly co-occurring to the word x (i.e.,
x ∧ y), an excitatory associative connection was added. It was
quantified by log10-transformed χ2 values of within-sentence
co-occurrence statistics crossing the significance threshold of
χ2 = 6.63 (P < 0.01; Dunning, 1993; Quasthoff et al., 2006).
The free parameter αaa scales associative excitation of all
associations. Thus, the associative excitation function can be
written:

Ax(c) = Ax(c − 1) + Ay+ (c − 1) ∗ log 10χ2
x∧y ∗ αaa (2)

This function implements the active spreading of associative
activation. Moreover, all activated words [e.g., Ay(c−1)] inhibited
each other [e.g., Ax(c−1)] by an amount scaled by a free parameter
γaa:

Ax(c) = Ax(c − 1) − Ay + (c − 1) ∗ γaa (3)

According to this architecture, the AROM predicts greater acti-
vations, and thus a greater amount of “yes” responses for target
items with a greater amount of associated items in the stimulus
set. Thus, the summed net change nx(c) of each association unit is
a function of the amount of e excitatory units (i.e., the number of
significantly co-occurring items), and a function of all N neighbor
units that cross the activation threshold. These are inhibiting the
respective unit. Thus, the summed net change can be written as:

nx(c) = Ox+(c − 1) ∗ αoa +
e∑

y=1

(Ay+(c − 1) ∗ log 10χ2
x∧y ∗ αaa)

−
N∑

y=1

(Ay+ (c − 1) ∗ γaa) (4)

For simulating episodic memory traces, the resting levels ρ

were constrained to be larger for old [ρold] than for new items
[ρnew, i.e., ρold > ρnew]. Resting levels are referred to by cycle
c = 0, i.e., Ax(0) = ρold for all old items, and Ax(0) = ρnew for
all new units. All units cross the activation threshold at resting
level, and thus inhibit and excite other units. As each unit can
be connected to each other unit, but the association of a unit
to itself is set to zero, 25,440 associations between the units are
possible (1602–160 items). 1,402 of these associations (i.e., signif-
icant co-occurrences) were apparent. Most of the connections are
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inhibitory and thus a negative net inhibition nx(0) follows from
cycle 0, i.e., n(x) is negative. To obtain non-linear dynamics, with a
minimum activation m = −1, IAMs weight net inhibitory changes
by the associative activation of the unit Ax(c−1) itself. The applied
associative activation formula is thus finally (cf. McClelland and
Rumelhart, 1981, p. 381, formula 3 and 4 while decay is zero in this
case):

Ax(c) = Ax(c − 1) − nx(c − 1) ∗ (Ax(c − 1) − m) (5)

Even when the net changes would be of equal variance across
nold(0) and nnew(0), Aold(1) = ρold − nold(0)∗(ρold − m) will pro-
duce a greater variance across all old target item units than
Anew(1) = ρnew − nnew(0)∗(ρnew − m) for all new items, because
the resting level scales the activation change by multiplication. As
a consequence, activation variability must be greater when greater
resting levels are assumed in learned items.

Formally, the memory signal strength of the target item’s unit
is defined as AMSS (cf. Introduction):

AMSS =

7∑
c = 1

At(c)

7
(6)

We tested whether the old item units reveal a greater variance
across these first seven cycles (AMSS) than new item units in the
following parameter space, using step-sizes of 0.01: αoa from 0.04
to 0.09, αaa from 0.03 to 0.08, γaa from 0.03 to 0.08, ρnew from 0.01
to 0.05, and ρold from 0.06 to 0.1. This resulted in 5400 parameter
sets.

To fit the simulated to the empirical z-ROCs, we transformed
the AMSSs of the four experimental conditions into smoothed
density functions, using the smoothing kernel factor κ as free para-
meter (cf. Bowman and Azzalini, 1997; Figure 2, first row). This
factor scales the width of the Gaussian smoothing kernel. When
these functions are transformed to cumulative “yes” response
probabilities, the empirical “yes” response probabilities of new
items were used as signal-detection criteria C(i) of the model
(Figure 2, second row). κ was fitted iteratively from 0 to 30 using
step-sizes of 0.01, while minimizing the root mean squared differ-
ences between the modeled and the empirical z-ROC slopes and
intercepts for the low and high co-occurrence conditions (Figure 2,
third row). Finally, we tested whether the AMSS values of the fixed
parameter set can account for a significant portion of item-level
variance in new and old items.

EXPERIMENTAL METHODS: TESTING THE AROM’s
PREDICTIONS
PARTICIPANTS
The participants were 30 native German speakers (17 female, mean
age: 29.5, SE: 2.39, range: 16–60) without known reading disorders.
They had normal or corrected-to-normal sight, and were paid for
participation or received course credits.

CORPUS
Word frequency and co-occurrence measures were taken from the
German corpus of the “Wortschatz” project (status: December

20063; Quasthoff et al., 2006). They are based on 800 million
tokens and 43 million sentences. The corpus is largely composed
of online newspapers (1992–2006). To allow the AROM’s testa-
bility in 69 languages, corpus-size independent word frequency
class measures of this cross-linguistic project were used. There-
fore, a power function relates the frequency of each word to the
most frequent word, i.e., “der” [the] is 2class more frequent than
the given word (cf. Adelman and Brown, 2008). Thus the lower
the frequency class, the higher is the word frequency. Further, two
words were defined associated if they co-occurred significantly
more often within the same sentence than predicted from their
single frequencies by the log-likelihood test (P ≤ 0.01, χ2 ≥ 6.63;
Dunning, 1993).

STIMULI
Each cell in the 2 × 2 design (factors: old/new and co-occurrence)
contained 40 nouns. Stimuli of the high co-occurrence conditions
had at least eight significantly co-occurring neighbors in the stim-
ulus set, and low co-occurrence stimuli less than eight. To rule
out biased effects due to confounding variables (all Fs < 0.5, cf.
Table 1), we controlled for emotional valence, arousal, imageabil-
ity number of orthographic neighbors (Coltheart et al., 1977) and
letters (Võ et al., 2009), as well as word frequency class (cf. see
Corpus). Token bigram frequencies were calculated by the SUB-
LEX software (Hofmann et al., 2007), using the frequency counts
of the Leipzig Wortschatz project cleaned by all word forms not
contained in the CELEX lexical database (Baayen et al., 1995).

PROCEDURE
Eighty old words were presented in the study phase and all 160
words in the test phase. Participants were instructed to judge how
confident they are that a target stimulus was presented in the previ-
ous study phase (“yes”), or not (“no”). Participants were informed
that they receive feedback about their error scores after the test
phase. Performance data were acquired using a computer mouse.
Stimuli were presented by Presentation 9.9 software (Neurobehav-
ioral Systems Inc., Canada). To familiarize the participants with the
task, five practice items were presented before the study and the
test phase, respectively.

Study phase
Each trial began with a fixation cross remaining on the screen for
500 ms followed by a stimulus presented for 1500 ms. Five hash
marks (“#####”) appeared until a mouse button was pressed. To
avoid primacy and recency effects, three filler items were presented
before and after the critical stimuli.

Test phase
A fixation cross was presented for 500 ms. Target stimuli were
presented for 1500 ms, followed by a blank screen of 1500 ms. A
rating scale appeared on the screen, and the participants judged
their recognition–confidence via mouse clicks on a six-point scale
ranging from “1” (“sure no”) to “6” (“sure yes”). For a random
number of participants, this assignment was reversed during the

3http://corpora.informatik.uni-leipzig.de/
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experiment, but not for the analyses. Participants were instructed
to use all confidence judgments approximately equally often. A
blank screen of 500 ms was presented before the next trial started
with a new fixation cross. None of the filler and practice items had
any significantly co-occurring item in the critical stimulus set.

EXPERIMENTAL AND MODELING RESULTS
A 2 × 2 repeated measures ANOVA on the percentage of “yes”
responses revealed a significant old/new effect [F(1,29) = 167.77,
P < 0.001, ηp

2 = 0.85]. Old items produced more “yes” responses.
Moreover, a significant effect of co-occurrence was obtained
[F(1,29) = 21.91, P < 0.001, ηp

2 = 0.43], but no significant inter-
action (F < 1). The planned comparison revealed that high
co-occurrence new stimuli produced a greater “yes” response
rate (M = 0.2; SE = 0.02) than low co-occurrence new stim-
uli [M = 0.13; SE = 0.02; t (29) = 3.80, P < 0.001]. High co-
occurrence old stimuli (M = 0.76; SE = 0.04) produced more
“yes” responses than low co-occurrence old stimuli (M = 0.69;
SE = 0.03; t (29) = 3.02, P < 0.005]. Averaged across participants,
the z-ROC slopes were 0.66 in the low co-occurrence condition
and 0.70 in the high co-occurrence condition. Figure 2 displays
the empirical z-ROCs with slopes smaller than 1.

All 5400 parameter sets used for optimal parameter estima-
tion revealed a greater AMSS variance for old than for new
target items (Figure 3). The least squared differences between
the modeled and the empirically obtained z-ROCs for low and
high co-occurrence items were obtained for the parameters of
αoa = 0.09, αaa = 0.03, γaa = 0.04, ρnew = 0.05, ρold = 0.07, and
κ = 10.09. The parameters were fixed at these values. Simulated z-
ROC slopes were 0.75 and 0.77 for the low and high co-occurrence
conditions, respectively. For both co-occurrence conditions, the
modeled z-scores for the five criteria of the new and old items
were tested for their capability to predict the 10 z-scores empir-
ically obtained (cf. Jacobs et al., 2003): the model’s z-scores
accounted for 99.61% of the variance of the low co-occurrence
data [F(1,9) = 2044.85; P < 0.001; RMSD = 0.07], and 99.05%
of the high co-occurrence z-scores [F(1,9) = 834.45, P < 0.001,
RMSD = 0.10]. The behaviorally obtained z-ROC slopes of the low
and high co-occurrence conditions for the individual participants

did not differ significantly from the z-ROC slopes predicted by
the model [t (29) = 0.17; t (29) = 1.55; Ps > 0.1]4. The new target
items AMSS scores accounted for 14.32% of the variance of the
“yes” response probabilities [F(1,79) = 13.04], and the old targets
for 10.45% [F(1,79) = 9.10; Ps < 0.001; RMSDs = 0.08].

GENERAL DISCUSSION
The present study provides two novel IAM features: relying on
Hebb’s proposal that the repeated co-exposure of stimuli leads
to their “association” (Hebb, 1949), we correctly predicted that a
higher amount of associations in the stimulus set lead to higher
proportions of “yes” responses to non-learned and learned items
in recognition memory for words. Second, we extended a local-
ist connectionist word recognition model by an associative layer,
and showed that this AROM predicts recognition memory perfor-
mance from the core cross-condition level of ROCs down to the
fine-grained item-level.

The effect in non-learned items is related to “false memories”
but goes beyond Roediger and McDermott (1995) seminal work.
The false memory effect consisted of the comparison of target
items from which either all of the most strongly associated, or no
(freely) associated items were learned. The present study revealed
similar effects in a recognition memory task. However, defining
associations by co-occurrence statistics allowed for taking all asso-
ciations between all items of the stimulus set into account. Still,
when a target item contained more associations in the stimulus set,
a significant effect of co-occurrence indicated more“yes”responses
for new words.

For learned target items, we discovered that many associations
boost recognition memory performance, as indicated by a co-
occurrence effect for old words. Since the present stimulus set was
carefully controlled for all kinds of psycholinguistic single-word
features, we suggest that both, the co-occurrence effects to new and
old items, can be attributed to the manipulation of the amount of
associations of a target item.

4Zero “yes” responses were treated as one “yes” response, and only “yes” responses
were treated as all but one “yes” responses, to allow for z-transformation.

Table 1 | Displays the means (SD) of the manipulated and controlled variables of the target stimuli in the four experimental conditions.

Emotional valence ranges from −3 to +3. Imageability and arousal range from 0 to 5.

Factors: old/new

Co-occurrence

New Old

Low High Low High

Number of stimuli 40 40 40 40

Number of significantly co-occurring items in the stimulus set 3.85 (1.70) 13.90 (4.73) 3.80 (1.70) 13.85 (4.04)

Emotional valence 0.11 (1.31) 0.03 (1.23) 0.03 (1.09) 0.00 (1.34)

Imageability 3.89 (1.22) 3.96 (1.29) 3.94 (1.20) 4.01 (1.43)

Arousal 2.95 (0.53) 2.90 (0.58) 2.87 (0.54) 2.98 (0.64)

Word frequency class 11.65 (0.70) 11.65 (0.70) 11.68 (0.47) 11.57 (0.71)

Number of orthographic neighbors 1.57 (2.26) 1.32 (1.81) 1.57 (2.14) 1.70 (2.29)

Bigram frequency 17520 (106001) 17556 (9263) 16489 (9149) 16648 (8546)

Number of letters 6.08 (1.07) 6.12 (1.14) 6.22 (1.10) 5.97 (1.35)
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To account for both of these findings, the co-occurrence sta-
tistics were embedded into an associative activation-spreading
network (Collins and Loftus, 1975) that was added to an IAM-
architecture (cf. McClelland and Rumelhart, 1981; cf. Figure 1):
the MROM (Grainger and Jacobs, 1996) can account for human
performance in a variety of tasks that rely on implicit mnemonic
processes. As no top-down modulations from the associative to
the lower layers were implemented (cf. Figure 1), the AROM in
its simplest form contains an unchanged MROM. Therefore, the
AROM can still account for all of its predecessor’s effects and thus
has a higher level of generality than the MROM (e.g., Grainger and
Jacobs, 1996). Future studies will have to show which top-down
excitations or inhibitions from the associative to the lower layers
would provide the best-fitting, most parsimonious and potentially
also most general account on word recognition. It is likely,however,
that the question of which top-down feedbacks are appropriate
must be answered in a task-specific manner, because we would
assume that the cognitive system is flexibly adapting to varying task
demands for optimizing performance. Modeling human perfor-
mance in reading aloud, for instance, might be a largely bottom-up
driven process that may neglect top-down feedback for parsimony
purposes (cf. Perry et al., 2007).

For extending the scope of IAMs to explicit memory processing,
we implemented memory traces from the study-phase presenta-
tion according to signal-detection theory (Berry et al., 2008; cf.
Morton, 1964). It assumes greater signal strengths for old than
for new items (Green and Swets, 1966). Thus, the units of learned
items obtained greater resting level activations in the associative
layer than non-learned ones. Unequal variance analysis models
require a second assumption to describe the z-ROCs tilt-down,
i.e., a greater signal variance to learned items (Green and Swets,
1966; cf. DeCarlo, 2002). The present study shows that imple-
menting the first assumption of the old items’ greater memory
strength into an IAM makes the second ad hoc assumption of
unequal variances redundant. An IAM explains a slope of the z-
ROC smaller one based on its antecedent conditions (cf. Jacobs
and Grainger, 1994): an increased signal variance for old items –
critical for the z-ROC’s slope smaller than one during recognition
memory – can be explained by the non-linearity assumption of
connectionist models (cf. McClelland, 1993; O’Reilly, 1998): a
modeling unit – mirroring a neuron or a cluster of neurons in the
brain – can receive a broad range of excitatory or inhibitory sig-
nals from other neurons. To avoid catastrophic cascades of neural
activation bursts that could potentially damage neurons, an IAM
bounds this activation to a maximum. As the firing rate of a neuron
cannot be negative, a further assumption of minimum activation is
required (e.g., Bogacz et al., 2007). Connectionist models typically
meet such biological constraints by modeling the activation of a
unit as a non-linear function of the amount of net input (Gross-
berg, 1978; McClelland, 1993). Therefore, the activation change
of a unit is scaled by multiplying it with its current activation in
an IAM (McClelland and Rumelhart, 1981). Resulting from the
activation-scaling by a unit’s resting level, which is higher for old
items, incoming inhibitory signals affect the old target item units
to a greater degree than units representing new items of lower
resting-level activation. Therefore, the variability of the signal is
greater in the old items’ units starting from cycle 1. The assump-
tion of greater activation variance of old items was also confirmed

to be true across the first seven cycles. The AMSSs are greater
for old than for new items, irrespective of the choice of the free
parameters explored. Accordingly, the AROM correctly predicted
z-ROC slopes smaller than one, which are typically observed in the
recognition memory task (Ratcliff et al., 1992; Glanzer et al., 1999).
Similar to global memory models (e.g., Gillund and Shiffrin, 1984;
cf. Ratcliff et al., 1992), this mechanism of the AROM predicts that
the greater the resting-level difference between the old and new
item’s initial memory activation, the lower should be the slope
of the z-ROC. When assuming that additional study time would
increase the initial memory traces and thus the resting levels, this
would account for Glanzer et al.’s observation that not only accu-
racy would increase, but also that the z-ROC slope would decrease
(Glanzer et al., 1999). We admit, however, that these changes can
be small, which casts doubt on their detectability. Our simulated z-
ROC slopes were close to 0.8, also questioning whether they would
provide strong arguments against the “constancy of slopes” con-
ception (Ratcliff et al., 1992). We think that this is due to the fact
that the model’s necessity to produce slope changes proportional to
the resting-level difference only applies to the first simulation cycle,
i.e., the initial memory state in the test phases. While associative-
spreading is taking place, this strong prediction can be changed.
For instance, Ratcliff et al. (1992) could have concluded that the
slope varies only between subjects, because for each subject a large
set of stimuli has been randomly chosen from a larger corpus.
As a consequence, the stimuli can be arbitrarily non-associated
or strongly interconnected, which depends on the actual selection.
This associative noise may cause variability minimizing the chance
to detect significant slope changes. Though this untested specula-
tion cannot yet settle the Ratcliff–Glanzer dispute (Ratcliff et al.,
1992; Glanzer et al., 1999), after all the remaining assumption of
greater old-item resting levels leads to a further testable AROM
prediction: the higher the resting level is, the faster should be the
response times in binary decisions (cf. Grainger and Jacobs, 1996),
e.g., when comparing old and new items (Kuchinke et al., 2006).

Apart from these proof-of-concept explanations, the present
study aimed at fitting the actual z-ROCs to low and high co-
occurrence words by the AROM. Predicting z-ROCs from the
AMSS of the items involves a modeling challenge well-known in
recognition memory research (Gillund and Shiffrin, 1984, p. 16).
The overlap between the old and new item signal distributions
was too low (cf. AMSS values in Figure 3). A previous MROM-
based simulation study solved this by adding noise to the criteria
(Jacobs et al., 2003). In contrast, the present AMSS values were
transformed into smoothed kernel density functions to obtain
an estimate of the (random) signal variability of the otherwise
deterministic AMSS values. Thus even “noise” was conceptual-
ized in a fashion allowing the model to remain fully deterministic.
Moreover, instead of three free parameters required for z-ROC
generation in the MROM (Jacobs et al., 2003), the present study cut
this number down to one, the Gaussian smoothing kernel factor κ.

In addition to the z-ROC parameter, two free parameters were
necessary for the (old and new item units’) resting levels, and three
scaled the excitation from the orthographic word to the associa-
tive layer, as well as excitation and inhibition within the associative
layer. After fitting these free parameters, the empirically obtained
z-ROC slopes and z-scores did not deviate from those predicted
by the model (Figure 2).
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FIGURE 3 | AMSSs of the word units predicting the empirical “yes”

response probabilities of each of the new and old items.

The unequal variance signal-detection model just begged the
answer to the question of why the z-ROC slope is smaller than
one, by assuming greater signal strength variances of old items
(Green and Swets, 1966; Glanzer et al., 1999; cf. DeCarlo, 2002).
The dual-process model may, in contrast, provide an answer by
conceiving of recollection as a phenomenally and neurally distin-
guishable process (Yonelinas, 1994; Yonelinas et al., 2005; Wixted,
2007; cf. Malmberg, 2008). The AROM’s architecture comple-
ments previous unequal-variance based models by an answer to
the question of why the z-ROC slopes are smaller than one dur-
ing recognition memory: these are a logical consequence of the
episodic memory traces built at study itself. When many traces
actively compete in memory, each representation unit obtains net
inhibitory signals. As the resulting activation changes are scaled in
an IAM-architecture by multiplying it with the unit’s activation,
larger resting levels of old items lead to their greater signal strength
variances (Squire et al., 2007).

Although the earliest associative activation-spreading models
did not discuss false and veridical recognition, they can predict
these effects (Roediger et al., 2001; cf. Anderson, 1983, and Collins
and Loftus, 1975, and Quillian, 1967). A contemporary model-
ing approach can account for the build-up of associations, but it
ignores the effects of pre-wired long-term associations in human
memory (e.g., Danker et al., 2008). Though Ratcliff and McKoon
(e.g., 1994) envisioned the predictive power of co-occurrence
statistics early, Nelson et al. (1998) used free association per-
formance to propose a pre-quantitative model, which accounted
for effects of the number of associates in a stimulus set during
recognition memory (cf. Thompson-Schill and Botvinick, 2006;
Andrews et al., 2009). Still, a computational definition that would
allow for quantitative item-level predictions was not given. For
recall tasks, Kimball et al. (2007) recently proposed a computa-
tional model that quantitatively predicts false and veridical recall.
However, there are substantial differences between the processes
required for recall or recognition (Gillund and Shiffrin, 1984).
For instance, the AROM does not require separate short-term and

long-term memory stores (Norman, 1968). In contrast, transient
memory activations simply spread across the long-term associative
structure of human memory (Morton, 1969).

The AROM is novel in that it provides quantitative associative-
spreading predictions for recognition memory performance. Nei-
ther any other spreading-activation model, nor any recognition
memory model simulates word recognition with the same depth
as the AROM: it predicts which word is recognized with which
probability depending on the amount of its associates. The more
associated items are in the stimulus set for a non-learned or
learned target item, the larger is the probability to classify it as old.
Thereby, the false memory logic is elevated to a level capable of
making item-level predictions. For veridical memory of old items,
the AROM’s item-level performance is somewhat lower than for
the false memories in new items (see also Figure 2, lower right
panel). This potentially results from the need to consider a second
source of information for the prediction of old items (e.g., Yoneli-
nas, 1994; DeCarlo, 2002). Moreover, we are fully aware that the
AROM’s “horizontal” generality is limited (Jacobs and Grainger,
1994): other recognition memory models account for a much
broader range of explicit memory phenomena (e.g., Glanzer et al.,
1993; Shiffrin and Steyvers, 1997; McClelland and Chappell, 1998;
Malmberg, 2008; but cf. Grainger and Jacobs, 1996, for implicit
memory). In turn, the present approach “vertically” generalizes
across different instances of the same data, i.e., cross-condition
z-ROCs, condition-wise associative effects in new and old items,
and last but not least, the AROM is the first signal-detection model
of recognition memory that assigns signal strength to each partic-
ular word stimulus. This allows for predicting the percentage of
participants recognizing this particular orthographic word form
in the distinct associative context of other words, which extends
signal-detection theory to an item-level.

The item-level variances were predicted by associative cross-
trial excitation from the associative context of the experiment to
the target items. The more associated items are presented before
the target, the larger is its unit’s activation in cycle 1. Moreover,
learned items still have a larger activation than non-learned items
at this cycle. Starting at cycle 4 the visual input of the feature layer
reaches the associative layer, and the identification of the stimulus
begins to cue the associative memory layer (Gillund and Shiffrin,
1984; cf. Hofmann et al., 2009). Although we did not deviate from
the tradition to predict item- and ROC-performance by the mean
activation of the cycles 1–7 (Jacobs et al., 2003; Hofmann et al.,
2008), the face validity of the model was demonstrated at cycle 50,
at which the most strongly associated items emerged.

As is evident from Figure 4, the associates to a target item reflect
intuitively valid associations. Moreover, the AROM can simulate
semantic relations in the narrowest sense of the term, as e.g., the
associate [lung] is a hyponym of the target [organ]; [vice] can
be considered as a hypernym of [egoism]; [virtue] can be con-
ceived as the antonym of [vice]; and [wedding] and [marriage] are
(partial) synonyms. Why do the most strongly co-activated asso-
ciates often reveal a semantic relation to the target? We think that
this is because semantically related items are very likely to share
many associates with the target. Consider each common associate
as a common associative feature of two words (cf. e.g., Shiffrin and
Steyvers, 1997). When two words share many of these contextual
properties, the probability increases that they are not only related
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FIGURE 4 | Exemplary association functions for respectively one target

of the four stimulus conditions. Upper panels represent old target items
and the lower depict new ones. Left and right panels display low and high
co-occurrence stimuli, respectively. The y -axes indicate the associative layer
activations. The x -axes indicate simulation cycles. Cycle 0 activations depict
resting levels for learned (ρold = 0.07) and non-learned stimuli (ρnew = 0.05),
implementing all events before the present trial. When associative excitation

and inhibition generated the cycle 1 activations, these define the state of the
cognitive system when a test–trial starts. The target items (and their
association functions) are shown in (boxed) red (lines), old associates in green
(solid lines), and the new associates in blue (dashed lines). Though the
AMSSs as predictor variable in Figures 2 and 3 reflect mean activations
across cycles 1–7, the strongest associates at cycle 50 are shown for face
validity purposes (activations > ρnew).

in an associative sense, because they co-occur together, but also
that they will be likely to reveal a semantic relation. Moreover, as
the associative layer receives input from the orthographic layer, the
unique identity of a word is not only defined by its associations,
but also by its orthographic form-properties.

Does the orthographic layer of the AROM account for addi-
tional item-level variance? The simplifying assumption of no
top-down feedback from the associative layer allowed us to test
whether not only associative, but also mere orthographic similari-
ties between items can be accounted for by the MROM within the
AROM (cf. e.g., Grainger and Jacobs, 1996; Cortese et al., 2010).
Therefore, we calculated the global lexical activation (GLA) from
the sum of the orthographic word unit activations across the first
seven cycles (e.g., Jacobs et al., 2003; Braun et al., 2006). As the
present simulations are based on “lexica” containing all items of
the experiment, the GLA elicited by a stimulus can be regarded a
measure of the orthographic similarity of the target item to the
other items. For new items, the GLA accounted for 14.49% of the
“yes” response probability variance [F(1,79) = 13.22, P < 0.001,
RMSD = 3.35], and the GLA was not confounded with AMSS
[F(1,79) = 2.62; P > 0.1; R2 = 0.03]. For old items, in contrast, the

GLA could not account for any variance (F < 0.1). So the present
AROM implementation can additionally account for orthographic
similarities between the new items and the remaining items in the
stimulus set. It remains an issue for future research whether this
second source of information can help to improve the AROM’s
z-ROC predictions (cf. Yonelinas, 1994).

Finally, form-properties and semantic-associative properties of
words were both proposed to be crucial for morpheme representa-
tions (e.g., Devlin et al., 2004). Reviving the early theoretical per-
spective of associative-spreading models, the AROM has distinct
layers for lexical and semantic-associative networks (Collins and
Loftus, 1975). Future studies will have to show how the AROM can
account for morphemic relations between words in terms of their
conjoint co-variation of orthographic and associative-semantic
word features.

Form-constituents of meaning have been extensively mod-
eled using distributed representations (e.g., Plaut et al., 1996;
Harm and Seidenberg, 2004; see also Grainger and Ziegler, 2011).
Rumelhart and Todd (1993) assume that (hidden) units shape
associations between words, because of the repeated co-exposure
of words in sentences like “a robin is a bird” (cf. Collins and
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Quillian, 1969; Rogers and McClelland, 2008; cf. Masson, 1991,
1995). In contrast, the AROM’s associations – implemented as
two words significantly co-occurring within sentences – corre-
spond to a mature cognitive architecture. Thus, the AROM can
be considered as a first step toward a fully localist connectionist
model containing an implemented semantic layer. This has been
theoretically postulated for some time, but it resisted a compu-
tational implementation so far (e.g., Rumelhart and McClelland,
1982; Coltheart et al., 2001). Though we think that Rumelhart
and Todd’s model (1993) and the AROM could potentially com-
plement each other in a seamless theoretical symbiosis, it is
still unclear how a Hebbian learning algorithm could quantita-
tively converge on the AROM’s associative connection weights.
However, both types of models complement each other. The
first accounts for the maturing of flexible associations, and thus
reflects the plasticity of the neural system. The AROM, on the
other hand, predicts human performance from activation spread-
ing across the outlearned, stable-state associations corresponding
to the long-term structure of human memory (cf. Grossberg,
1987).

CONCLUSION
This study introduces the AROM as a model capturing explicit
memory performance for IAMs. Associative-spreading-activation
inserted into the MROM can account for cross-condition z-ROCs,
condition-wise effects of associations in new and old items, and
item-level performance. Given that many words most strongly
associated by the model reflect semantic relations (e.g., hypon-
omy), the AROM should be a convenient tool for future investi-
gations of semantic effects in word recognition, particularly also
for the tasks IAMs were originally designed for: implicit memory
tasks.
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