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Many studies suggest a large capacity memory for briefly presented pictures of whole
scenes. At the same time, visual working memory (WM) of scene elements is limited to
only a few items. We examined the role of retroactive interference in limiting memory for
visual details. Participants viewed a scene for 5 s and then, after a short delay contain-
ing either a blank screen or 10 distracter scenes, answered questions about the location,
color, and identity of objects in the scene. We found that the influence of the distracters
depended on whether they were from a similar semantic domain, such as “kitchen” or
“airport.” Increasing the number of similar scenes reduced, and eventually eliminated,
memory for scene details. Although scene memory was firmly established over the initial
study period, this memory was fragile and susceptible to interference. This may help to
explain the discrepancy in the literature between studies showing limited visual WM and
those showing a large capacity memory for scenes.
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INTRODUCTION
Real-world scenes tend to include a large number of different
objects that are arranged in a variety of different configurations. A
street scene, for example, would likely contain buildings, people,
cars, and signposts, while an office might contain a desk, computer,
telephone, bookshelves, and small objects such as cups, papers, or
pens. A fundamental challenge for cognition is to reconcile the
complexity of real-world environments, and our rich experience
of the scene, with an extremely limited attention and working
memory (WM) span (Melcher, 2001; Tatler, 2001). At any given
point in time, we are attending to one, or at most a few, items
in the scene. Is the information which is out of sight also out of
mind?

One possibility would be that memory for the scene is quickly
encoded into a relatively stable long-term memory (LTM) rep-
resentation. Traditional models of memory posit that there is a
long-term store that is effectively unlimited in capacity and dura-
tion. It has long been known that people are able to memorize a
large set of photographs of visual scenes (Shepard, 1967; Stand-
ing, 1973; Vogt and Magnussen, 2007). Similarly, when subjects are
asked to memorize a large set of pictures of objects (Brady et al.,
2008), recognition memory remains high even after hundreds of
intervening pictures. In contrast, visual short-term memory is lim-
ited to a period of seconds and its capacity is limited to at most a
handful of attended objects. This short-term memory may be par-
ticularly useful in keeping in mind exact object details (Magnussen,
2000). The information gleaned in a single glance is limited and
so the withdrawal of attention away from objects (as a result of a
shift in attention and gaze) means that information must either
be encoded in a more permanent store or else it will be forgotten.
For example, it was shown that memory for identity of items in a
nine object display dropped off rapidly after one or two fixations

to subsequent items (Zelinsky and Loschky, 2005). Thus, there are
conflicting reports regarding whether scene memory is relatively
stable and long-lasting or fragile and of brief duration.

One complication in trying to characterize the representation
underlying scene memory is that a scene can be viewed both as
a collection of objects and as a unique entity whose “gist” can be
quickly recognized and used to guide the processing of objects
(Bar, 2004; Oliva and Torralba, 2007). For example, a picture of a
beach can be discriminated from that of a street scene based on sta-
tistical differences in low-level visual properties. Since it is possible
to recognize a scene without encoding the details of the location
or visual features of specific objects, this raises the question of the
roles of scene gist (statistical representations), and object recog-
nition in perceiving and remembering scenes. It is possible, for
instance, to induce participants to recall seeing a particular object
in a scene, even when that item had not actually been present
(Miller and Gazzaniga, 1998), suggesting that gist information can
dominate object details in memory.

We tend to stay in the same scene for seconds, or even min-
utes at a time and even return often to the same location (see
Tatler and Land, 2011 for a review on differences between pictures
and real scenes). Thus, at any given point in time, performance
might reflect a combination of LTM and WM. In other words, the
on-line WM that is available while we interact within real scenes
may be a combination of bottom-up information gained through
individual fixations (traditionally thought of as visual short-term
memory) and also representations recalled out of a long-term store
(Melcher, 2001, 2006; Hollingworth, 2004). Together, this suggests
that there are two different mechanisms involved in scene per-
ception – gist and object perception – and two different memory
types. We wanted to test the roles of the relatively “superficial” gist
analysis and the detailed analysis of object details in scene memory,
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and to see which of these items were involved in a scene WM task
over a period of seconds.

Previous studies of memory for pictures of complex scenes
have shown that the ability to recall or recognize the details of
objects in the scenes increases as a function of total looking time
(Melcher, 2001, 2006; Tatler et al., 2003; Hollingworth, 2004; Tatler
and Melcher, 2007; Pertzov et al., 2009). Upon first entering a new
scene, there would be only a limited amount of information in
working memory, but this information would quickly build up
over time and across glances. Memory for object details seems
to accumulate approximately linearly over time (Melcher, 2001,
2006; Tatler et al., 2003; Tatler and Melcher, 2007; Pertzov et al.,
2009). Moreover, memory for details in a scene was not hampered
by introducing a 1 min delay period between memorization and
test during which time participants were occupied with a reading
or another VWM task (Melcher, 2006). Scene memory remained
above chance even 1 week later, as measured by an improvement
in performance for scenes viewed briefly in a previous session
(Melcher, 2010). Similarly, change detection for the replacement
or rotation of an object in a picture has been shown to improve over
time, probably because the participant had more time to fixate the
various objects in the scene (Hollingworth, 2004, 2005). Even 24 h
later, participants were able to detect these changes at above chance
level, although performance was considerably worse than imme-
diately after having viewed the initial scene (Hollingworth, 2005).

One important feature of most laboratory studies of visual
short-term memory is that they typically use many different dis-
plays (memory sets that must be remembered) in a relatively short
period of time. One of the most typical measures of visual memory
uses a limited number of colored shapes re-arranged in different
locations across trials, and studies using naturalistic stimuli have
often used a limited set of objects and potential locations (Tri-
esch et al., 2003; Zelinsky and Loschky, 2005). In real-life scenes,
multiple fixations could be integrated over time into a coherent
scene representation. In contrast, in experiments with colored
squares any LTM would likely cause interference on subsequent
trials. An interesting study, in this regard, examined LTM for pho-
tographs of doors (Vogt and Magnussen, 2007). When extra cues
were included, such as signs, lamp posts, or plants, recognition
memory was good. Removing these details, however, dramatically
reduced performance. This suggests that increasing the similarity
between different memory stimuli can dramatically reduce mem-
ory performance. Similarly, Konkle et al. (2010a) reported that
large capacity memory for object exemplars decreased when there
were a larger number of objects from the same category in the
memory set. However, the effect of doubling the number of exem-
plars within the same category was relatively small (Konkle et al.,
2010a,b).

The goal of this experiment was to examine why we forget the
details of visual scenes. Previous reports have shown a decrease in
performance over time, but the reason for this decrease has not
been explained. To this end, we investigated the role of retroac-
tive interference in visual scene memory. As stated above, many
of the studies showing limits in visual memory repeated similar
stimuli across trials. We studied interference effects using a sim-
ple scene memory task in which participants viewed a scene for
5 s and then, about 10 s later, were tested on their memory for

the visual details. Based on similar studies, we would expect good
performance in answering detailed questions about the items in
the scene as well as in recognizing objects from the memorized
scene (Tatler and Melcher, 2007). The novel aspect of this study
was the introduction of a set of 10 distracter images on some tri-
als. Participants had to pay attention to the distracters because
they knew that there would be an old–new recognition test for
the distracter items at the end of the session. The distracters were
chosen so that they either belonged to the same topical category
(such as “kitchen,” “bedroom,” “city street,” or “beach scene”) or
to completely different categories. Given that semantics in one
of the main organizing principles of LTM (Warrington and Shal-
lice, 1984; Caramazza, 1998; Gabrieli et al., 1998; Hutchison, 2003;
Baroni et al., 2010), our hypothesis was that the influence of the
distracters would depend on the number of semantically related
items.

MATERIALS AND METHODS
PARTICIPANTS
A group of 40 participants took part in the experiment for course
credit. Informed consent was obtained from all participants, who
were also fully debriefed after their participation. There were a
total of 25 female participants and 15 male participants (mean
age = 26).

STIMULI
There were 40 target pictures of natural or human-made scenes,
which had been normed for difficulty and for the effects of guess-
ing (e.g., general knowledge, without having remembered the
scene, would not be sufficient for answering the questions at about
chance level) in previous studies (Melcher, 2006, 2010; Tatler and
Melcher, 2007). The pictures contained an average of 11.4 unique
objects. Examples of the scene categories include: an airport tar-
mac with planes; a bedroom; English tea and sandwiches; a desk
with computer, papers, and objects; English breakfast; a sunroom
with furniture and plants; a kitchen; a living room with couch; chil-
dren playing with a dog; a playroom with billiard table; bathroom;
a toy train set.

The distracter items were photographs chosen among
copyright-free images available on the World Wide Web. There
were two types of distracter images: similar and dissimilar category
images. Similar images were pre-selected by the experimenters
based on satisfying the same description as the target item (e.g.,
kitchen or playground), while the dissimilar items showed a com-
pletely different subject matter (see Figure 1). The similar pictures
were not identical visually, but were chosen to differ based on over-
all range of colors, object locations, and object identities. At the
same time, similar distracter images were more likely to contain
the same types of objects as the target image, when compared to
the distracter images. However, for any given question type, the
number of distracter images which shared that object, in the same
versus different condition, varied across trials. This allowed for
some ability to separately measure the influences of the similar
scene topic (e.g., two images of a kitchen) versus shared objects
(e.g., the two images both contained a bowl of fruit).

In addition to the target and distracter images, the other stimuli
shown in the main experiment (see Figure 2) were the two types of
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FIGURE 1 | Multidimensional scaling plots showing two examples

of target images (outlined in black rectangle and marked with

“T”), similar distracters (marked with “S”), and different semantic

category distracters (labeled with “D”). Distances represent

similarity in terms of low-level visual features (see Materials and
Methods). The rightmost columns show the color channels, color
histograms, spectral frequency, and layout of the representative target
images.

FIGURE 2 | Illustration of the procedure used in the experiment. The
target image was presented for 5 s, followed by 10 distracter images (or a
blank screen) for a period of 10 s. Then participants answered a series of
multiple choice (three alternative) questions about the identity, location, and
color objects in the scene.

test question displays: questions on image content, and a pictorial
recognition test (Melcher, 2006; Tatler and Melcher, 2007). The
questions regarded the location, color, and identity of objects in
the picture and there were three alternative answers from which
to choose for each question. An example of a location question is:
“Where is the tea cup? (1) bottom right (2) bottom left (3) center.”
An example of a color question is: “What color are the towels on
the left of the picture? (1) cream (2) navy blue (3) yellow.” An
example of an identity question is: “What is sitting on top of the
computer monitor? (1) photo of a dog (2) computer cables (3)
wooden bowl.”

The recognition test contained three pictures of similar objects:
one object taken directly from that image and two similar objects
(see Figure 2, showing three similar sofa/couches). Neither of the
two foil objects was taken from the distracter images used in this
study, but were instead taken from pictures that were not used
in this study. Correct response for the object picture recogni-
tion test required detailed visual information about the objects
shown in the target image. The target, distracter, and question
stimuli were resized to have the same maximum height or width
(22.7˚ of visual angle) when shown on the screen. Each picture

www.frontiersin.org October 2011 | Volume 2 | Article 262 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cognition/archive


Melcher and Murphy Semantics and memory for natural scenes

was displayed at the center of the display (21′′ monitor) against
a clear white background and viewed from a distance of about
65 cm.

EVALUATING TOPICAL AND VISUAL RELATEDNESS
The topical similarity of target–distractor pairs was then normed
on a seven-point likert scale by a group of anonymous raters using
Amazon’s Mechanical Turk (www.mturk.com). Mechanical Turk
is widely used for norming and annotation tasks, and has been
demonstrated to give data that in aggregate is of similar quality to
that collected in more controlled settings. Its economy and effec-
tiveness has been demonstrated for a range of semantic tagging
tasks (Kittur et al., 2008; Snow et al., 2008; Sorokin and Forsyth,
2008). The on-line task was entitled “How similar are these two
images?” Pairs of images were shown along with the instructions:
“Rate to what extent these images are about the same thing or topic.
You should consider only the subject matter, not simple features
like color and brightness.” Similarity was judged on a seven-point
likert scale from “identical” to “different.” Each pair of images was
evaluated by three participants, with a total of 67 different partic-
ipants across the entire study. For each target image an aggregate
score of relatedness was computed for its “similar category” dis-
tracters, for its “dissimilar category” distracters (each a mean of 10
distracters × 3 judgments), and for its“mixed category”distracters
(the mean of similar and dissimilar aggregate figures). The results
corresponded very closely to the categories assigned by the exper-
imenters. The nominal category of distracter sets (coded as 1 for
similar, 0.5 for mixed, and 0 for dissimilar) and the normed judg-
ments of distracter similarity were found to be almost perfectly
correlated, with r = 0.993.

The low-level visual properties of each target and distracter
image were also quantified, so that any interference effects in terms
of visual similarity versus topical similarity could be interpreted.
Such measures have been shown to correlate with elicited judg-
ments of visual similarity (Rorissa et al., 2008) and are used for
finding related pictures in image retrieval systems (Deselaers et al.,
2008). Four low-level image features that correspond to perceptual
properties were considered: color histograms, image layout, and
vertical and horizontal spectral amplitudes. These four features
together capture the type of low-level information that computer
vision models and computational models of early visual process-
ing suggest are involved in low-level vision (Lee et al., 2000). The
color brightness histograms split the image into four channels
(gray, red, green, blue) and counted the frequencies in 16 equally
spaced bins. This measured reflected the global distribution of
shades and tones in each image. The measure of image layout
was calculated by resampling the image to 4 × 4 pixels and then
measuring average brightness for each pixel on each channel, giv-
ing a measure of the gross configuration of the image (e.g., blue
sky at top, green field at base). The horizontal and vertical spec-
tral amplitudes capture form and texture in an image, and were
also calculated separately for each channel using a Fast Fourier
Transform (using a zero-padded 1024 point FFT, smoothed with a
20-point moving average, unit normalized). The perceptual simi-
larity of target–distracter pairs was computed by taking the mean
of the z-score normalized Euclidean distances on each of these
four measures.

To confirm that these four dimensions capture salient but
distinct attributes of images, we calculated their mutual corre-
lation over 120 conditions (40 targets × 3 distracter categories:
similar, dissimilar, mixed). While there was a moderate correla-
tion between the horizontal/vertical spectral amplitude measures
(r = 0.38), other pairwise correlations were low (r < 0.2), indicat-
ing that these measures represent independent low-level properties
of the images. To further validate the perceptual grounding of the
measures, we noted that for 33 for the 40 target images, their
“similar category” distracters were nearer in the space of low-level
attributes than their “dissimilar category ones.” The MDS plots
in Figure 1 also illustrates this point, with visually similar images
tending to cluster closely to the target, relative to dissimilar images.
Of course since the target images are natural scenes, they varied
greatly in their general characteristics and complexity. The images
were not controlled in terms of overall number of objects, amount
of texture, complexity of forms, distribution of colors, etc. Since
these variables were be expected to affect the general perceptual
processing, encoding, and retrieval load, our goal in these analyses
was not to explain all of the variation in performance. Rather we
aimed to see what correspondences between target and distractors
had an effect on memory performance.

In addition, we also included a list of relevant image character-
istics in the regression analyses. These included the total number
of objects in the target scene and the fine and coarse scale visual
detail of the scene. The visual complexity of the target image
was estimated by the size of the file after a jpeg compression of
the stimulus at two different image scales (90% quality setting of
image dimensions of 60 or 480 pixels square). We used two dif-
ferent image sizes for this analysis in order to capture both coarse
and fine scale complexity of the image (Forsythe et al., 2008). We
expected that participants might be worse overall at responding to
questions about scenes which were highly complex visually (lots of
clutter and details) and contained a large number of objects, since
this would decrease the likelihood that they would have encoded
information about the specific objects referred to in the questions.
In addition, we also calculated the similarity of the target image
to other images across the entire stimulus set (not just the dis-
tracters shown on that particular image). This “target uniqueness”
measure counted the number of images in the stimulus set that
matched the same topic. For example, an image of a tent outdoors
had a value of zero, since there were not similar target images in the
experiment, while the scenes showing a bathroom had a value of
four since there were several target scenes which included elements
from a bathroom somewhere in the image.

PROCEDURE
The first display showed a fixation cross at the center of the screen.
Each trial began when the participant pressed a button on the
keyboard. First, the target image was shown for 5 s (Figure 2).
Then either a fixation cross (in the no distracter condition) or
10 distracter images (1 s per image) was presented for a total of
10 s. On trials with 10 distracters, the number of similar distracters
was varied (0, 5, or 10 similar distracters). Then the memory test
questions and the recognition test were displayed as text (and pic-
tures in the case of the recognition test) on the screen. For each
test item, three multiple choice answers were below the question,
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numbered from 1 to 3. Participants answered at their own pace by
pressing “1,” “2,” or “3” on the keyboard. The experiment was run
using SUPERLAB version 2.0 software. The pairing of a particular
image to a particular condition was counterbalanced across par-
ticipants. Across the participants, each image appeared an equal
number of trials in each condition. The order of the test questions
and recognition test was randomized across trials.

After completing all 40 trials, participants were given a sheet of
paper containing 20 images, half of which were new, and half had
been presented as distracters during the experiment. Participant’s
performance on this final control task was not used for any statis-
tical analysis, but rather to ensure that they paid attention to the
distracter images during the experiment. In total, the experiment
took about 40 min to complete.

ANALYSES
The main effects of distracter type (no distracters, 10 similar, 10
dissimilar, mix of 5 similar and 5 dissimilar) and question type
(color, location, identity, and object recognition) on percentage
correct were analyzed using a repeated measures, within-subject
ANOVA. In addition, the main effect of distracter was tested sepa-
rately for the four different question types with repeated measures
ANOVA tests.

RESULTS
In the no distracter condition, participants were good at answering
the object detail questions and in recognizing the correct object
from the display (Figure 3). However, the presence of distracters

led to decreased performance. This reduction in performance
depended on the number of similar distracters within the set of 10
distracter images [main effect of distracter type: F(3,37) = 55.91,
p < 0.001]. The full group of 10 similar distracters effectively elim-
inated detailed memory for the items in the target photograph,
with performance near chance (37.8% correct, with chance level of
33.3%). The distracter set containing an equal mix of similar and
dissimilar distracters caused an intermediate amount of interfer-
ence, consistent with our hypothesis that the degree of interference
would depend on the number of similar distracters.

This overall pattern of results was consistent across each of
the four memory measures tested (Figure 4). There was a main
effect of question type [F(3,37) = 29.45, p < 0.001], indicating
that the question types were not equated for difficulty. The
interaction between question type and distracter types was sig-
nificant [F(9,31) = 3.44, p = 0.005]. Despite this interaction, the
distracters influenced all of the measures of memory as shown
by a significant main effect of distracter type on color questions
[F(3,37) = 32.21, p < 0.001], identity questions [F(3,37) = 29.18,
p < 0.001], location questions [F(3,37) = 56.83, p < 0.001], and
object recognition [F(3,37) = 63.45,p < 0.001]. Thus, the interfer-
ence from distracters was not limited to a single type of question,
but rather influenced a range of the aspects of the visual object
representation.

As shown in Figures 3 and 4, the effect of the distracters on
performance appears to be driven by topical similarity to the tar-
get image. The materials were chosen with semantic similarity of
the topic in mind, meaning that the images either matched, or did

FIGURE 3 | Percent correct in the memory test, with performance shown

separately for the different distracter conditions. The number of distracters
shown during the 10-s delay between test image and memory test was either

zero (leftmost bar) or 10 (other bars). The distracters were made up of 10
topically dissimilar images, 10 topically similar images, or an equal mixture of
the two (5 similar and 5 dissimilar). Error bars show 1 SE.
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FIGURE 4 | Memory performance for each of the four question types, for each of the four experimental conditions. See the caption of Figure 3 for
details of the conditions. Error bars show 1 SE.

not match, the same topic or subject matter. However semantic
topic is likely to be confounded, at least to some extent, with
low-level visual properties of the image and with the presence
of the same characteristic objects. For example, a “beach” scene
will likely have a large upper region colored blue (of sea and sky),
and a lower region in gray or beige tones, and is likely to con-
tain objects such as palm trees or beach umbrellas. To determine
which aspect of similarity (topical, visual, or similar objects) was
responsible for the behavioral effects, we used linear regression
models to see which individual explanatory variables or combina-
tion thereof could provide the best fit of the data. Topical similarity
was described using the norms of topical relatedness between tar-
get and distracter pairs, elicited from multiple informants over the
internet (see Materials and Methods). Visual similarity was quanti-
fied using the four low-level image features described in the Section
“Materials and Methods”: distribution of colors (color layer his-
tograms of intensity), visual texture and form (spectral amplitudes
in vertical and horizontal orientations of color layers), and image
layout as captured by a low-resolution 4 × 4 pixel thumbnail of
image layers. Object similarity (number of shared objects) was
measured by counting the number of distracter images (same or
different) which also contained the object which was the subject
of one of the probe questions. For example, if the test question
asked about the color of the boat, and 5 of the 10 similar distracter
images contained a boat, then the object similarity score for similar
distracters for that scene was calculated to be five.

Aggregate relatedness measures were calculated between each
target and its similar, dissimilar, and mixed distracter sets, from
the mean of the individual target–distractor distances. All other
things being equal, we expect that targets having larger differen-
tials between their similar and dissimilar distracter sets would see

a larger differential in performance between conditions. The ques-
tion is whether topical, visual, or object similarity distance gives a
better account of this differential.

Four regression models were run, one for each of the four
behavioral tasks (color, identity, recognition, location). There were
120 cases in each regression model, representing 40 target images,
by three distracter conditions (similar, dissimilar, mixed). The
dependent variable was the mean memory performance over
participants for that combination of task, target, and distracter
category. The independent variables were the aggregate judgments
of target–distracter relatedness (see Materials and Methods), the
uniqueness of the topic of the image across the entire stimulus set
(see Materials and Methods), the four low-level visual measures
of similarity and the number of similar objects. All variables were
scale normalized using z-scores so that the beta weights assigned
to each variable would be comparable.

For the color, identity, and location questions, the only indepen-
dent variable that had predictive power was semantic relatedness
(Figure 5A), which was highly significant in all cases (p < 0.001).
The semantic relatedness could be measured in terms of topi-
cal relatedness (e.g., “kitchen”) or number of shared objects since
these two variables co-varied (r = 0.91). Of the low-level visual
variables, color similarity (brightness histograms across the var-
ious color channels) was significant in the recognition task, and
vertical spectral amplitude approached significance on the loca-
tion task (p < 0.1). For the recognition questions, the similarity
in topic between target and similar distracters was again the main
factor, although the estimated amount of coarse visual complex-
ity (see Materials and Methods) also contributed to the regression
analysis. This finding is interesting, since this question required
the most detailed visual information about the shape and textures
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FIGURE 5 | Explanatory power of semantic versus low-level visual

properties in a regression model, for the four types of questions. (A)

The top panel shows the beta weight, a measure of explanatory power, for
the semantic properties and the low-level visual properties (color brightness
histogram, brightness layout, vertical spectral amplitude, and horizontal
spectral amplitude, from left to right). Number of similar objects is not
included in this panel due to the strong correlation (r = 0.91) between
topical similarity and number of shared objects. (B) The bottom row shows
the change in the regression model from removing one of the factors, in
order to show the relative contribution of semantic factors related to
similarity between the target scene and the distracters (topic similarity and
shared objects), target uniqueness of topic compared to other target
images in the entire stimulus set, visual complexity of the target image and
the low-level visual similarity between target and distracter images. The
bars show the added advantage of including that variable in the regression
model in terms of changes in adjusted R2.

of the objects which would have been difficult to encode at a more
abstract semantic level.

To better understand the roles of each explanatory variable, in
particular the relationship between target similarity and number
of shared objects, we individually removed factors from the model
to see which factors would have the largest effect (Figure 5B).
This analysis confirmed the preeminence of semantic similarity,
with topical similarity being most important for color, recognition,
and location questions but the number of shared objects provid-
ing a better estimation of participants’ behavior on the identity
question. As described above, visual complexity helped to predict
performance in the recognition task. In all four cases, it is inter-
esting to note that the low-level visual features contributed little
or nothing.

DISCUSSION
The main finding was that retroactive interference from the simi-
lar distracter images was able to reduce or even eliminate memory
for the details of the objects in the scenes. This interference effect
was based on the semantic similarity between the distracter and
the target, rather than low-level visual similarity (see Konkle et al.,
2010a,b for similar conclusions). Our findings fit well with recent
studies of visual search in complex scenes, which have demon-
strated that a preview of the background of the scene, even without
any objects, can aid participants to quickly find a target objects in
the scene (Vo and Schneider, 2010).

One of the fundamental mysteries of visual scene memory is
how the pictorial-like information that subjects report (and seem
to use in many visual tasks) can be reconciled with the semantic
organization of concepts. For example, participants were good,
in the baseline condition, at recognizing which object exemplar
had been presented in the scene compared to semantically similar
items. Similarly, the naïve intuition is that recalling the location
of objects in the scene is based on spatial–temporal information,
and many participants reported imagining the scene in order to
answer the location questions. According to memory construc-
tion theories (Schacter, 1996; Schacter et al., 1998), however, the
scene is not represented as a single, intact picture but instead as
a collection of pieces of information which are used to construct
an incomplete memory. This point is illustrated well by studies of
change blindness, in which participants are not able to memorize
and compare a metric, pixel-based representation in memory to
what they see on the screen. Our results provide strong evidence
that the semantic coding of the visual scene in memory, based on
its topic and the identity of the objects in the scene, plays a role in
organizing the memory of the scene. In other words, even pictorial
memory is based on a semantic, rather than an exclusively visual,
representation. It may be the case that our ability to recognize large
numbers of scenes as same/different is more strongly influenced
by visual similarity and statistical representations (such as gist),
while our limited memory for object details is tied to the semantic
organization of the scene memory.

The current results fit well with previous studies showing a
rapid accumulation of memory for scene details over a period of
seconds (Melcher, 2001, 2006; Tatler et al., 2003; Hollingworth,
2004; Tatler and Melcher, 2007; Pertzov et al., 2009). Performance
in the color, location, and object identity questions was generally
quite good, and remained high even after a blank delay. The addi-
tion of 10 dissimilar distracters caused only a moderate drop in
performance, consistent with prior studies suggesting a relatively
unlimited capacity for remembering scenes. Most investigations
of LTM capacity have tested recognition of the entire stimulus,
rather than the questions about object details used here. If, as sug-
gested by those studies, the memory for the general gist and layout
of the scenes is relatively long-lasting and unlimited in capacity,
then this scene structure could be used to help remember the scene
details (Melcher, 2006, 2010). In other words, the representation
of the scene in LTM might work, metaphorically, like a coat rack
on which to hang the details of the scene.

At the same time, memory for scene details was extremely sus-
ceptible to interference. This retroactive interference worked in
a relatively straightforward and linear fashion: the more similar
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the distracters, the worse the performance in remembering the
details of the target scene. However, even the semantically dis-
similar distracters, which would have occupied VWM, decreased
memory for scene details (consistent with the hypothesis than on-
line visual memory combines working and LTM). Our results are
consistent with previous reports showing some decrease in mem-
ory for scenes after a long delay, and suggest that at least part
of this effect may come from interference from similar stimuli
or even from interference from real-world scenes viewed between
study and test (Hollingworth, 2005; Melcher, 2010). Many stud-
ies of WM for scenes have involved repeating the same set of
objects and backgrounds (Hayhoe et al., 1998; Melcher, 2001;
Triesch et al., 2003; Zelinsky and Loschky, 2005) or, in the case
of change detection, involved comparing two identical scenes at
the level of object details. Such an experimental design would
create a great deal of interference within trials and/or blocks of
trials, helping to explain why memory would seem to be so lim-
ited in such studies. The choice of using complex scenes and
objects, rather than stimuli like colored circles, should already
lead to an improvement in memory since more distinct items are
more resistant to interference from similar items in other trials.
However, the present results suggest that using natural objects
and scenes is not sufficient to maximize scene memory, since
even scenes from the same category cause greater interference
than scenes from different categories. This interference would
likely occur both at the level of scene gist, where the participant
might fail to correctly bind together objects to a particular scene,
and also at the level of individual objects (since scenes sharing
similar semantics would likely also share the same categories of
objects).

The effect of the semantically similar distracters was stronger
than might have been expected based on recent studies by Konkle
et al. (2010a,b), even if both studies agree on a central role for con-
ceptual distinctiveness in LTM. They reported that doubling the
number of distracters resulted in a 2% decrease in performance,

whereas we found that doubling the number of similar distracters
caused a more dramatic loss (around 20%). In their study, the
effect of similar exemplars ranged from about 12% (4 similar
exemplars) to 16% (16 similar exemplars) for scenes, and for iso-
lated objects only 7% (4 similar exemplars) to 11% (16 similar
exemplars). However, the paradigms used in our study and theirs
were quite different. First, participants in their experiment had to
learn nearly 3,000 scenes all at once, encouraging a different mem-
orization strategy than in our experiment. Second, Konkle and
colleagues used a two alternative forced choice test between one
of the many memorized stimuli and a foil (which could be either
similar or dissimilar). Participants in their study could have used
any number of different strategies to answer these tasks, whereas
our participants had to answer specific questions about particu-
lar details of the color, location, or identity of the items in the
scene. Overall, our results confirm and extend the conclusions of
the work of Konkle and colleagues, showing that under some con-
ditions the role of conceptual similarity can be even greater than
previously reported.

In conclusion, the current findings help to reconcile the seem-
ingly incompatible claims of high-capacity scene memory and
limited-capacity working memory. With longer viewing time,
scene details can be accumulated into memory. At least initially,
however, these scene details are only weakly linked to the scene
representation and can be easily lost. The visual scene representa-
tion that survives interference depends on a semantic encoding of
the scene, in terms of objects and categories, rather than a purely
pictorial representation.
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