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Mismatch brain response to speech sound changes in rats
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Understanding speech is based on neural representations of individual speech sounds. In
humans, such representations are capable of supporting an automatic and memory-based
mechanism for auditory change detection, as reflected by the mismatch negativity (MMN)
of event-related potentials. There are also findings of neural representations of speech
sounds in animals, but it is not known whether these representations can support the
change detection mechanism analogous to that underlying the MMN in humans. To this
end, we presented synthesized spoken syllables to urethane-anesthetized rats while local
field potentials were epidurally recorded above their primary auditory cortex. In an oddball
condition, a deviant stimulus /ga/ or /ba/ (probability 1:12 for each) was rarely and randomly
interspersed between frequently presented standard stimulus /da/ (probability 10:12). In
an equiprobable condition, 12 syllables, including /da/, /ga/, and /ba/, were presented in a
random order (probability 1:12 for each). We found evoked responses of higher amplitude
to the deviant /ba/, albeit not to /ga/, relative to the standard /da/ in the oddball condition.
Furthermore, the responses to /ba/ were higher in amplitude in the oddball condition than
in the equiprobable condition. The findings suggest that anesthetized rat’s brain can form
representations of human speech sounds, and that these representations can support the
memory-based change detection mechanism analogous to that underlying the MMN in
humans. Our findings show a striking parallel in speech processing between humans and
rodents and may thus pave the way for feasible animal models of memory-based change
detection.
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INTRODUCTION
The ability to represent individual speech sounds is a necessary
condition for understanding speech. Interestingly, this ability is
not unique to humans. For example, rodents (e.g., Kuhl and Miller,
1975; Kuhl and Miller, 1978; Reed et al., 2003; Engineer et al.,
2008), birds (e.g., Dooling and Brown, 1990), and monkeys (e.g.,
Sinnott et al., 1976; Steinschneider et al., 1995; Sinnott et al., 1998)
can be trained to discriminate speech sounds suggesting a deep
evolutionary basis of this ability.

In humans, neural representations of speech sounds are formed
already pre-attentively. They can also support automatic detection
of changes, as reflected by a component of event-related potentials
of the brain named mismatch negativity (MMN, Näätänen et al.,
1978, for a review, see Näätänen et al., 2007). MMN can be elicited
in an oddball condition comprising rare auditory event (“deviant,”
e.g., speech sound /ba/) interspersed with a repetitive one (“stan-
dard,”e.g., /da/). The disappearance of MMN in control conditions
in which the standard stimuli are removed (so called deviant-alone
condition or equiprobable condition, e.g., Alho et al., 1990; Jacob-
sen and Schröger, 2001) suggests that standard stimuli form a
memory trace against which incoming sounds are compared in
the neural level. The mismatch response is elicited when discrep-
ancy between the memory representation and the deviant input is
detected (memory-comparison explanation of MMN: Näätänen,
1990; Näätänen et al., 2005).

An alternative explanation for the generation of the MMN
response suggests that it originates from the differential activ-
ity of afferent neuronal populations. Specifically, it is assumed
that because the standard stimuli repeatedly activate their affer-
ent pathways, this leads to greater refractoriness in those pathways
than in the afferent neural pathways activated by the rare deviant
stimuli. In this way, deviant stimulus pathways may better retain
their reactivating capacity leading accordingly to enlarged neural
responses to deviant stimuli comparing to standard stimuli (for
the refractoriness explanation of MMN, see Näätänen, 1990; see
also May and Tiitinen, 2010 for related adaptation hypothesis).

In animals, MMN-like responses to deviant stimuli (i.e.,
higher amplitude responses to deviants than standards, mismatch
response1) for example in frequency and duration have been
reported in many different animal species (e.g., Csépe et al.,
1987, 1989; Javitt et al., 1992; Kraus et al., 1994; Ruusuvirta
et al., 1996, 1998; Umbricht et al., 2005; Astikainen et al., 2006).
However, there are also negative findings in rodents (frequency
changes: Lazar and Metherate, 2003; von der Behrens et al.,
2009, speech sound changes: Eriksson and Villa, 2005). Further-
more, while experiments in humans have consistently supported

1Because in some of these animal studies responses have been of positive polarities,
the term mismatch response is hereinafter used to refer to MMN-like responses in
animals.
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the memory-comparison explanation (e.g., Schröger and Wolff,
1996; Jacobsen and Schröger, 2001; Jacobsen et al., 2003), animal
studies have provided inconsistent results (support for memory-
comparison explanation: Ruusuvirta et al., 1998; Tikhonravov
et al., 2008, 2010; Ruusuvirta et al., 2010; Astikainen et al., 2011,
support for the refractoriness explanation: Lazar and Metherate,
2003; Umbricht et al., 2005). Moreover, to contrast the memory-
comparison and the refractoriness explanation, animal studies
have mainly relied on the deviant-alone condition in which stan-
dards are omitted leaving only “control–deviant” stimuli in the
series (Kraus et al., 1994; King et al., 1995; Ruusuvirta et al., 1998;
Lazar and Metherate, 2003; Umbricht et al., 2005; Tikhonravov
et al., 2008, 2010; for equiprobable control condition, see Ruusu-
virta et al., 2010; Astikainen et al., 2011). However, equiprobable
condition is a more valid method than deviant-alone condition
for testing the memory-comparison hypothesis. This is because,
unlike the deviant-alone condition, equiprobable condition pre-
serves the same overall stimulation rate as it is in the oddball
condition. In the equiprobable condition, standards are replaced
with heterogeneous stimuli (with respect to the feature that dif-
ferentiates deviants from standards) and they are all presented
with equal probability. It thus enables comparison of responses to
oddball-deviant stimuli and to those to “control–deviant” stimuli
that are physically the same sounds and also presented with the
same probability differing only in their background stimuli.

The present study addresses whether brains of urethane-
anesthetized rats generate local field potentials functionally analo-
gous to human MMN to speech sounds. Even if discrimination of
speech sounds as indexed by the mismatch response in rodents has
been reported earlier (Kraus et al., 1994) there is also a negative
finding in anesthetized rats (Eriksson and Villa, 2005). Further-
more, the underlying process of the speech sound discrimination
ability as indexed by the mismatch response (memory-comparison
versus neural refractoriness) has remained unclear. In order to
enlighten this aspect, we applied equiprobable control condition.

MATERIALS AND METHODS
SUBJECTS
The subjects were nine male adult Sprague-Dawley rats from Har-
lan Laboratories (England, UK). The rats were between 13 and
18 weeks of age and weighed 410–500 g at the time of the record-
ings. The animals were housed in groups of 2–4 in standard plastic
cages under controlled temperature and 12-h light/dark cycle,
with free access to water and food pellets in the Experimental
Animal Unit of the University of Jyväskylä, in Jyväskylä, Finland.
Experiments were carried out in accordance with the European
Communities Council Directive (86/609/EEC) regarding the care
and use of animals for experimental procedures. The license for the
present experiments has been approved by County Administrative
Board of Southern Finland (Permit code: ESLH-2007-00662).

SURGICAL PROCEDURES
All surgical procedures were done under urethane anesthesia.
The animals were initially anesthetized with intraperitoneal injec-
tions of urethane (1.2 g/kg dose, 0.24 g/ml concentration, Sigma-
Aldrich, St. Louis, MO, USA) and given an additional 10% of
the original dosage if necessary until they appeared completely

unresponsive to painful stimuli (firm toe or tail pinch). Animals
were rehydrated with a 2-ml injection of saline under the skin
every 2 h.

The anesthetized animal was moved into a Faraday cage and
mounted in a standard stereotactic frame (David Kopf Instru-
ments,Model 962,California,USA). The animal’s head was fixed to
the stereotactic frame using blunt ear bars. Under additional local
anesthesia of the skin and muscles (lidocaine 20%, Orion Pharma,
Espoo, Finland) the skull was exposed. Two stainless steel skull
screws (0.9 mm diameter, World Precision Instruments, Berlin,
Germany) positioned on the right side of the brain above the cere-
bellum (AP −11.0, ML 3.0) and frontal cortex (AP +4.0, ML 3.0)
served as reference and ground electrodes, respectively.

Unilateral craniotomy was performed in order to expose a
2 mm × 2 mm region over the left primary auditory cortex (4.5–
6.5 mm posterior to the bregma and 2–4 mm lateral to the bone
edge of the upper skull surface).

Before the electrocorticogram recording, a headstage composed
of a screw and dental acrylic was attached to the right prefrontal
part of the skull to hold the head in place and allowing removal
of the right ear bar. After the experiment, the animals were fur-
ther anesthetized with urethane and then sacrificed by cervical
dislocation.

STIMULI
Two stimulus conditions were applied: the oddball condition
and the equiprobable condition. In the oddball condition, fre-
quently repeated “standard” stimulus, consonant–vowel (CV)
stimulus /da/ (p = 10:12), was pseudorandomly replaced by two
rare “deviant” stimuli, /ga/ or /ba/ (p = 1:12 each). At least two
standard stimuli were presented between two consecutive deviant
stimuli. The stimuli in the oddball condition were five-formant
stop CV syllables synthesized with male voice. The most promi-
nent difference between the syllables was in the direction of the CV
frequency transition and in the duration of this transition in the
second formant (F2; Figure 1). The F2 frequency increased slightly
during the transition in /ba/ but decreased for /ga/ and /da/ tran-
sitions. For F2, the duration of CV transitions was 20 ms for /ba/
(deviant), 35 ms for /da/ (standard), and 45 ms for /ga/ (deviant).
The transition duration for all other formants was fixed to 40 ms.
These stimuli were modified with Praat software (Paul Boersma
and David Weenink, University of Amsterdam, the Netherlands),
shortened to a uniform length (110 ms) and normalized for peak
intensity. The waveform and spectrograms of the oddball stimuli
are presented in Figure 1. The main frequencies in the formants
of the stimuli are shown in Table 1.

In the equiprobable condition, the three syllables applied in the
oddball condition (/da/, /ba/, and /ga/) were presented together
with nine other syllables to set their occurring probabilities equal
to that of the syllables presented as deviant stimuli in the oddball
condition (p = 1:12 for each). /Ba/ and /da/ syllables presented
in the equiprobable condition are hereafter called as “control–
deviant” stimuli. Half of the stimuli in the equiprobable condition
were synthesized similarly to the stimuli in the oddball condi-
tion and half were naturally produced (see Table 1). The natural
sounds were spoken by a male voice and normalized for peak inten-
sity. In order to make the stimulation heterogeneous, syllables in
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FIGURE 1 | Waveforms (the upper row) and spectrograms (the lower row) of the speech syllables used in the experiments. In the spectrograms, the
dark areas indicate the time and frequency points where the acoustic energy is the highest.

Table 1 | Average fundamental frequency (F0) and the averages of the formant frequencies (F1, F2, F3, F4, F5) of the stimuli applied in the study.

/da/ /daa/ /ba/ /baa/ /ga/ /gaa/ /ta/* /taa/* /pa/* /paa/* /ka/* /kaa/*

F0 119 116 119 115 121 117 124 120 127 125 122 119 Hz

F1 712 706 714 698 625 706 614 654 688 646 545 605 Hz

F2 1204 1219 1213 1202 1212 1207 1278 1140 981 1120 1256 1179 Hz

F3 2591 2693 2508 2507 2490 2623 2550 2401 2516 2497 2266 2359 Hz

F4 3656 3650 3669 3580 3741 3637 3224 3639 3519 3741 3528 3512 Hz

F5 4937 4846 4955 4812 4786 4944 5365 5200 5095 5194 5258 5250 Hz

Syllables /da/, /ba/, and /ga/ were applied in the oddball condition (printed in bold), and all the stimuli in the equiprobable condition. /Da/ was used as a standard and

/ba/ and /ga/ as deviant stimuli in the oddball condition. The stimuli marked with asterisk (*) were synthesized and the others were naturally spoken (male-voiced)

speech sounds. The shorter sounds (/da/, /ba/, /ga/, /ta/, /pa/, ka/) were 110 ms and the longer ones (/daa/, /baa/, /gaa/, /taa/, /paa/, kaa/) 250 ms in duration.

the equiprobable condition were of two different durations. The
shorter syllables (/da/, /ba/, /ga/, /ta/, /pa/, /ka/) were 110 ms and
the longer ones (/daa/, /baa/, /gaa/, /taa/, /paa/, kaa/) 250 ms in
duration. The stimuli were partly the same applied previously in
human studies (Molfese and Molfese, 1997; Guttorm et al., 2001).
Please note that even if the relatively low frequencies of stimuli
were suboptimal for the rat hearing, our previous studies have
shown that rats are able to represent also low frequencies such as
750 and 1000 Hz (Astikainen et al., 2006).

The offset-to-onset intervals between consecutive syllables were
350 ms and a total of 1200 stimuli were presented in both the
oddball and equiprobable conditions. Across animals, the two con-
ditions were presented in a counterbalanced arrangement, aiming
to control for the possible effects of the order of the sequences and
possible variations in the level of anesthesia.

The stimulus presentation was controlled by E-prime software
(Pittsburg, PA, USA), and stimuli were played from a PC via an

active loudspeaker system (Studiopro 3, M-audio, Irwindale, CA,
USA). The stimulation was presented with the passive part of the
loudspeaker system directed toward the right ear of the animal at
a distance of 20 cm. The sound pressure level for each tone was
70 dB with C-weighting (optimized for 40–100 dB measurement),
as measured with a sound level meter (type 2235, Bruel and Kjaer,
Naerum, Denmark), in the location where the animal’s right pinna
was during the recording.

RECORDING AND ANALYSIS
After the surgery, the right ear bar was removed and recording
started. Continuous electrocorticogram was first 10-fold ampli-
fied using the AI 405 amplifier (Molecular Devices Corporation,
Union City, CA, USA), high-pass filtered at 0.1 Hz, 200-fold ampli-
fied, and low-pass filtered at 400 Hz (CyberAmp 380, Molecular
Devices Corporation), and finally sampled with a 16-bit precision
at 2 kHz (DigiData 1320A, Molecular Devices Corporation). The
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data were stored on a computer hard disk using Axoscope 9.0 data
acquisition software (Molecular Devices Corporation, Union City,
CA, USA).

Local field potentials were recorded with a teflon-coated stain-
less steel wire (200 μm in diameter; Medwire, Sigmund Cohn
Corp., Mount Vernon, NY, USA) located on the dura surface above
the left primary auditory cortex of the animal. The position of the
electrode on the dura was set on the basis of evoked potentials
(a sharp peak of positive polarity approximately at 35 ms latency
from stimulus onset) to the tones of 4000 Hz presented 1/s. The
anesthetic state of animals was monitored periodically throughout
the experiment.

The data were offline filtered (0.1–30 Hz, 24 dB/octave), base-
line corrected (based on the average amplitude of the 50-ms
pre-stimulus period) and averaged separately for deviants and
standards for each animal. In order to have same amount of
standard and deviant stimulus responses in the analysis (i.e., 100
responses for both), only the responses to the standard stim-
uli immediately preceding the deviant stimuli were analyzed.
First, the responses to the deviant stimuli in the oddball con-
dition were compared to the responses to the standard stimuli
on a point-by-point basis (1–300 ms from stimulus onset) with
a two-tailed t -test. p-Values smaller than 0.05 for at least 20
consecutive sample points (i.e., for the period of 10 ms) were
required for the difference in local field potentials to be con-
sidered robust (see also Guthrie and Buchwald, 1991). Second,
in order to test whether the mismatch response was dependent
on the context provided by the standard stimuli, as assumed,
the amplitude of the responses to the deviant stimulus in the
oddball condition was compared with the point-by-point t -tests
with the amplitudes of the responses to the control–deviant
stimulus (i.e., the same stimulus presented in the equiprobable
condition).

RESULTS
In the oddball condition, responses between the standard /da/ and
the deviant /ba/ stimulus differed significantly [t (8) = 2.33–2.98,
p = 0.017–0.049] in amplitude at 30–80 ms from stimulus onset
(Figure 2A). Responses to the deviant stimulus were higher in
amplitude than those to the standard stimulus (mean values in
the latency range of 30–80 ms were 49.8 μV for the deviant stimuli
and 11.6 μV for the standard stimuli). There was no significant
difference in the response amplitude between the standard /da/
and the deviant /ga/ stimulus (Figure 2B).

Next we tested the dependency of the found differential
response to the context of the repetitive standard stimuli.
Responses to the deviant stimulus /ba/, which differed in ampli-
tude from responses to the standard stimulus /da/ in the oddball
condition, were compared to responses to control–deviant stim-
ulus (i.e., physically the same /ba/ as in the oddball condition)
interspersed with other syllables in the equiprobable condition.
Responses to the /ba/ syllable were found to be significantly
[t (8) = 2.36–3.40, p = 0.009–0.046] higher in amplitude in the
oddball condition than in the equiprobable condition at a latency
of 29–69 ms (Figure 2C). The mean response amplitude in this
latency range for the /ba/ in the oddball condition was 58.1 μV
and for the /ba/ in the equiprobable condition 23.1 μV.

FIGURE 2 | Grand-averaged responses to syllables in the oddball and

equiprobable conditions. (A) Responses to the standard syllable /da/ and
deviant syllable /ba/ presented in the oddball condition; (B) responses to
the standard syllable /da/ and deviant syllable /ga/ presented in the oddball
condition; (C) responses to the deviant syllable /ba/ in the oddball condition
and control–deviant syllable /ba/ in the equiprobable condition. The latency
ranges that indicated significant differences between the responses in
t -tests are marked with a rectangle.The y -axis indicates the stimulus onset.

DISCUSSION
We found that the anesthetized rat brain responds to one type of
stimulus contrast in a repeated human spoken syllable (change
from /da/ to /ba/) but not to the other (change from /da/ to /ga/).
The difference between the local field potential responses to /ba/
versus /da/ was observed at the latency range of 30–80 ms after the
stimulus onset. The neural mechanism underlying this response
was examined by applying the equiprobable control condition.
The response to the deviant syllable /ba/ was found to be specific
to the repetitive context provided by the standard stimuli. Namely,
the response was higher in amplitude in the oddball than in the
equiprobable condition at the latency of 29–69 ms. In this respect,
at the latency of 30–69 ms, the response was analogous to human
MMN (e.g., Schröger and Wolff, 1996; Jacobsen and Schröger,
2001), suggesting that in the animals, the mismatch response is,
as MMN in humans, triggered by a memory-comparison process
rather than due to neural refractoriness.

It is noteworthy that the equiprobable control condition
applied in the current experiment preserves the overall rate of
auditory stimulation present in the oddball condition and, there-
fore, provides a more valid control than the deviant-alone control
condition that alters this rate by completely omitting standard
stimuli from the series. There are a few studies in humans (e.g.,
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MMN to sound intensity: Schröger and Wolff, 1996, MMN to
sound frequency: Jacobsen and Schröger, 2001; Jacobsen et al.,
2003) and also in animals (mismatch response to sound frequency:
Ruusuvirta et al., 2010; Astikainen et al., 2011) that have applied
equiprobable control condition. However, in studies of speech
sound processing this control has mostly been ignored (see how-
ever, Jacobsen and Schröger, 2004 in humans). There is thus an
obvious need for studies exploring the underlying mechanism of
MMN to speech sounds.

In the current study, the infrequently presented syllable /ga/
interspersed with the standard /da/ in the oddball condition did
not elicit the mismatch response. The reason for an observable
mismatch response for /da/–/ba/ contrast, but not for the /da/–/ga/
contrast, is most probably explained by the differences between
these stimuli during about the first 50 ms in the F2 formant (see
Materials and Methods and Figure 1). First, the stimuli differed
in their CV transition direction in F2. The frequency increased
slightly during the transition in /ba/ but decreased for /ga/ and
/da/ transitions allowing thus probably better discrimination of
/ba/ than /ga/ from /da/. Second, there were also differences in CV
transition durations between these syllables in F2 (transition dura-
tion for all other formants was fixed to 40 ms). These durations
were 35 ms for /da/ (standard), 20 ms for /ba/ (deviant), and 45 ms
for /ga/ (deviant). This also resulted in the faster sound energy level
rise for /ba/ than for /da/ or /ga/, which is also evident in Figure 1.
The current experiment cannot,however,determine to what extent
the mismatch response is due to the difference in the direction
of the CV transition (decrease versus increase), the difference
in the duration of this transition (15-ms shortening versus 10-
ms lengthening), or other differences in spectro-temporal aspects
between the stimuli. Nevertheless, the results show that urethane-
anesthetized rats, even without previous training, were capable of
discriminating subtle changes in these spectrally complex auditory
stimuli.

Our results from the epidural recording above the primary
auditory cortex showing neurophysiological discrimination of
/da/–/ba/ contrast but not /da/–/ga/ contrast are partly in line
with the results obtained from the thalamus (caudomedial por-
tion of the medial geniculate nucleus) of anesthetized guinea pigs
(Kraus et al., 1994). Namely, mismatch response was not found
to /ga/–/da/ contrast, while another contrast (/ba/–/wa/) elicited
the response. However, in the epidural midline surface (sec-
ondary albeit not primary auditory cortex) a significant mismatch
response was found to the both contrasts. The current positive
finding of the mismatch response in anesthetized rats to speech

sounds is in contrary to a previous negative one (Eriksson and
Villa,2005). Future studies are needed to solve whether for example
the different anesthetic agent (urethane versus ketamine–xylazine)
or differences in stimulation (e.g., inter-stimulus interval of 350
versus 750 ms) may have caused these inconsistent findings in rats.

Using partly the same stimuli, albeit in different stimulus condi-
tions as in the present study, Guttorm et al. (2001) has shown that
newborns at risk for dyslexia differ mostly in their responses to the
syllable /ga/ from controls (although some group differences were
also found to /da/ and /ba/) and that the response to /ga/ predicts
later pre-reading skills (Guttorm et al., 2010). In addition, Kraus
et al. (1996) found that children with learning disabilities differ
from controls in their mismatch response to deviant syllable /ga/
interspersed with /da/. These findings are somewhat reminiscent
of the present results of the mismatch response to the /da/–/ba/
contrast but not to the /da/–/ga/ contrast in rats, suggesting that
discriminating acoustic features of formant transitions in /ga/ is
particularly difficult for both human and rat auditory cortex.

Our finding of speech sound discrimination may pave the way
for feasible animal models of memory-based speech sound dis-
crimination. Pharmacological and genetic modulations (for elec-
trophysiological studies utilizing the mismatch response, see, e.g.,
Javitt et al., 1996; Ehrlichman et al., 2008; Tikhonravov et al., 2008)
as well as subcortical recordings (e.g., Astikainen et al., 2005) can
only be conveniently done in animals. Animal models also provide
a unique possibility to address how linguistic and non-linguistic
stimuli are dealt with by non-linguistic brains, allowing theoreti-
cally important implications to be drawn from parallel findings in
humans with linguistic brains.

In conclusion, we found a mismatch response in urethane-
anesthetized rats to one type of contrast in stop CV syllables,
change from /da/ to /ba/, but not to the other type, change from
/da/ to /ga/. As indicated by the equiprobable control condition,
this response had its origin in a memory-based mechanism anal-
ogous or homologous to that underlying human MMN. Neural
representations of the syllables were thus similarly accessible to the
auditory change detection mechanism as they are in humans, sug-
gesting a fundamental parallel in processing of spectro-temporally
complex speech sounds between humans and animals.
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