
et al. (2011) found that pre-stimulus alpha power is correlated 
with subjects’ judgment of attentional state (see also VanRullen 
et al., 2011 for a review of evidence linking alpha oscillations to 
perception and attention).

Multivariate methods are often used to characterize the 
 spatial–temporal variance in each trial in order to derive pattern 
classifiers (see however Friston et al., 1996 for a more traditional 
use). For instance, Touryan et al. (2011) used the variance in 
space and time to train a discriminant function to classify, in 
real time, brain activity related to familiar and unfamiliar faces. 
In their experiment, although the group ERPs differed between 
familiar and unfamiliar faces over frontal and parietal electrodes, 
the classification revealed that only the parietal response allowed 
the discrimination of the stimulus category on a single-trial basis. 
This result illustrates that group averaging may be misleading, 
presenting an abstract signal that cannot be found in individual 
subjects (see also Gaspar et al., 2011). Wutte et al. (2011) also used 
a pattern classification technique (support vector machine) to 
read-out motion direction from areas V1 and MT+ using fMRI. 
Although the spatial variance reflected the direction of perceived 
stimuli, individual perceptual thresholds were predicted by the 
relative variance in amplitude between activation and rest trials, 
thus illustrating the complementarity of univariate and multi-
variate methods.

In addition to a unique window on brain mechanisms, single-
trial analyses also allow researchers to interpret individual differ-
ences by quantifying effects within and between subjects, providing 
a richer data description mandatory to build efficient models of 
perception and decision-making. It is often said that single-trial 
analyses require either too many trials, or dense coverage (dense 
arrays in MEEG or fast TR in fMRI), or both. It is true that in order 
to obtain good signal-to-noise ratio (regression over trials) many 
trials are necessary and, in order to obtain good patterns (“weight-
ing” across electrodes/voxels, time intervals, frequency intervals), 
dense coverage is mandatory. Many trials are nevertheless also 
mandatory for an average to be a meaningful measure (Rousselet 
et al., 2008), just as dense coverage is necessary to ensure that min-
ima or maxima located between sampled time points in fMRI or 
between channels in MEEG are not overlooked. There are a growing 
number of user friendly toolboxes available to perform single-trial 
analyses (e.g., Parra et al., 2005; Hanke et al., 2009; Delorme et al., 
2011; Hartmann et al., 2011; Oostenveld et al., 2011; Pernet et al., 
2011). We encourage everyone interested in understanding how the 
stimulus space and behavioral response map onto brain activity 
to use these tools rather than merely amass binary results showing 
group differences in brain activity among conditions (Rousselet 
and Pernet, 2011).

Neuroimaging techniques have been traditionally used to dem-
onstrate differences between means calculated across conditions 
or groups of subjects. However, as illustrated by the articles in 
this research topic, by studying the variability across trials, single-
trial analyses can in some situations allow us to go beyond this 
kind of imaging to the mean. Indeed, single-trial analyses can 
provide additional information that is unobservable if we collapse 
the data to a mean. For example, single-trial analyses can help 
us provide a systematic mapping between (i) brain activity and 
stimulus information space (Schyns, 2010; Rousselet et al., 2011), 
(ii) brain activity and subject’s behavioral variability (Ratcliff 
et al., 2009), and (iii) brain activity measured using different 
imaging techniques, e.g., fMRI and EEG (Goldman et al., 2009; 
deBettencourt et al., 2011). Importantly, using certain paramet-
ric experimental designs, single-trial analyses can give us access 
to brain mechanisms, by allowing us to specify the information 
content of brain activity and its transformation (Schyns, 2010; 
Rousselet and Pernet, 2011).

Single-trial analyses refer to methods that consider the vari-
ance within subjects. Two broad families of methods can be dis-
tinguished: univariate methods extract information among trials 
in space, time, or both; multivariate methods extract information 
across space, time, or both, in individual trials. Single-trial analyses 
may thus be used for behavioral experiments (e.g., Etchells et al., 
2011) and neuroimaging experiments (e.g., Cohen and Cavanagh, 
2011; Macdonald et al., 2011; Milne, 2011; Rousselet et al., 2011; 
Touryan et al., 2011; Wutte et al., 2011). Single-trial analyses of 
neuroimaging data have seen their use increase since the late 1960s, 
starting with Donchin (1969). Despite this long tradition and sev-
eral advantages over group analyses, single-trial analyses remain 
nevertheless marginal.

The simplest form of univariate single-trial analysis is a regres-
sion over all of the trials in single subjects, to measure the rela-
tionship between, e.g., the signal amplitude and a parameterized 
stimulus space. This approach is often referred to as parametric 
design in fMRI. In this Research Topic, Rousselet et al. (2011) 
showed that a similar approach can be used in EEG to quantify 
brain responses to stimulus information in individual subjects, 
and characterize the probability of observing a mapping between 
stimulus information and EEG amplitude, thus going beyond the 
study of the average brain. Cohen and Cavanagh (2011) also dem-
onstrated that the single-trial parametric approach can be extended 
to time–frequency decompositions of power and phase. Variance 
among trials also contains information about subjects or cognitive 
states. For instance, Milne (2011) established that children with 
autism have significantly more variance in the latency of their P1 
response to Gabor patches than control participants. Macdonald 
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