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Many previous studies have used the presentation of multiple stimuli in the receptive
fields (RFs) of visual cortical neurons to explore how neurons might operate on multiple
inputs. Most of these experiments have used two fixed stimulus locations within the RF
of each neuron. Here the effects of using different positions within the RF of a neuron
were explored. The stimuli were presented singly at one of six locations, and also at 15
pair-wise combinations, for 24 V2 cortical neurons in two macaque monkeys. There was
considerable variability in how pairs of stimuli interacted within the receptive field of any
given neuron: changing the position of the stimuli could result in enhancement, winner-
take-all, or suppression relative to the strongest response to a stimulus presented by itself.
Across the population of neurons there was no correlation between response strength and
response latency. However, for many stimulus pairs the response latency was tightly locked
to the shortest response latency of any single stimulus presented by itself independent of
changes in response magnitude. In other words, a stimulus that by itself elicited a relatively
long latency response, would often affect the magnitude of the response to a pair of stim-
uli, but not change the latency.These results may provide constraints on the development
of models of cortical information processing.
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INTRODUCTION
The cerebral neocortex is notable for the richness of inputs to each
area and also to each neuron. How a cortical neuron operates on
these multiple inputs to produce an output is a major ongoing
area of research. Unlike other areas of the brain, such as the hip-
pocampus, the anatomy of the cerebral neocortex is such that an
experimenter cannot easily control the direct inputs to a single
neuron. Many experiments have used the presentation of two sep-
arate visual stimuli in the receptive field (RF) of a visual cortical
neuron as a surrogate for stimulating two inputs. This is a pow-
erful technique, and much has been learned using it, especially as
regards the effect of changes in selective attention.

In general, studies using two stimuli in the RF of visual corti-
cal neurons in a wide array of different areas have each found a
diversity of results between different neurons. Some studies have
found that the general tendency is for the response to two stimuli
to be near the weighted average of the responses to each stimu-
lus presented separately (Moran and Desimone, 1985; Luck et al.,
1997; Reynolds et al., 1999; Reynolds and Desimone, 2003; Zoc-
colan et al., 2005). Other studies have found that it was more
common for the response to two stimuli to be similar in magni-
tude to the larger of the responses to the two stimuli presented
separately, a winner-take-all or “MAX” result, at least for high-
contrast stimuli (Sato, 1989; Heuer and Britten, 2002; Rolls et al.,
2003; Lampl et al., 2004; Finn and Ferster, 2007; Oleksiak et al.,
2011). In an attempt to limit the possible interactions at earlier
processing stages, studies in this laboratory used two stimuli that
were presented as far apart from each other as possible while
still remaining within the RF (Gawne and Martin, 2002a; Gawne,

2008), and found a strong tendency for a MAX operation. It has
also been proposed that both weighted averaging and MAX are
too simplistic and that models of summation within a RF with
more free parameters are required (Ghose and Maunsell, 2008).
It must also be pointed out that previous studies show a wide
diversity of selection criteria for choosing the stimuli, which could
account for the diversity of results between different studies. How-
ever, this still does not explain the diversity of results seen within
each study.

Most of these previous studies used only two fixed stimulus
locations within the RF of each neuron. Given that these stud-
ies typically find a wide range of behaviors between neurons, this
raises the question as to whether this response diversity is due to
different neurons implementing different operations which they
each apply uniformly to all stimuli, or if different positioning of
stimuli within the RF could lead to apparently different combina-
torial rules for a single neuron. To address this issue the responses
of 24 single primate V2 neurons to stimuli presented at six fixed
locations within the RF and to all 15 pair-wise combinations were
recorded. The results indicate that, for closely apposed stimuli
within the RF, different configurations of stimuli often result in
different operations as reflected in the response magnitude (spike
count). Therefore you cannot generalize the operation performed
by a visual cortical neuron by sampling at a limited number of loca-
tions with the RF. However, there were some surprising patterns of
results in the response latencies. In particular, the response latency
to two simultaneously presented stimuli was often locked to the
shortest latency to a single stimulus, even though the magnitude
of the response was changed.
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MATERIALS AND METHODS
ELECTROPHYSIOLOGICAL RECORDINGS
Recordings were made from V2 in two awake macaques (one
Macaca mulatta and one Macaca fascicularis) using methods
described previously (Gawne, 2010). Using standard sterile tech-
nique, each monkey was anesthetized with isoflurane, and an
18-mm-diameter PEEK (Polyetheretherketone) plastic recording
chamber was implanted over the dorsal posterior skull. High-
strength plastic strips were also bolted to the skull with ceramic
screws and connected to a head-fixation system.

After recovery, each animal was trained to fixate on a small white
square displayed on a computer monitor. Eye position was mon-
itored with a video tracking system (ISCAN), and juice rewards
given for maintaining fixation to within ±0.5˚ of the target square.
The video display was run at a frame rate of 85 Hz, positioned
57 cm away from the eye, and was 39 cm wide and 27 cm tall.
Single-unit recording was made through a 23-gage guide tube
that penetrated the dura and allowed parylene-insulated micro-
electrodes (Microprobe) with tip impedances of approximately
1.2 megohms to be introduced into cortex. Position was checked
both via stereotaxic coordinates and MRI imaging. Peripheral V2
was used because the larger RFs reduced the effects of small errors
of eye fixation. Microelectrodes were advanced using an hydrauli-
cally driven microdrive (Narishige MO95). The electrode signal
was amplified with an A-M Systems 1801 amplifier, and digi-
tized at 32 kHz. Final spike isolation was performed offline using
a principal-components based technique (Abeles and Goldstein,
1977).

STIMULUS CONFIGURATION
The stimulus configuration is illustrated in Figure 1. The individ-
ual stimuli consisted of two white and two black squares positioned
inside a larger square. These individual stimuli were luminance-
balanced with the uniform gray background (6.96 cd/m2). As
illustrated in Figure 1A, one stimulus was placed in the center of
the receptive field of each neuron and the remaining five arranged
around it. The distance between adjacent squares was always one-
half the width of the squares. The size of the squares, and hence
the overall spatial extent of the rectangular grid of six stimuli, were
sized for each neuron individually so that all the stimuli lay within
the extent of the RF as determined by hand mapping. As illustrated
in Figure 1B, the stimuli were then presented both separately and
in every possible pair-wise combination. The normalized distance
of separation between the stimuli was indicated as a“D”(Distance)
metric that varied from 1.0 for immediately adjacent stimuli to
2.2 for stimuli two over and one up or down. A null stimulus was
also presented to determine the spontaneous firing rate over the
recording interval.

The receptive field centers ranged from 9.2˚ to 26.8˚ from the
center of gaze (median 19.1˚), and the size of the individual stim-
uli varied from 0.64˚ to 1.68˚ in width. The stimulus combinations
were presented in shuffled random order,minimally 20 repetitions,
and with a median of 32 repetitions. Trials where the animals did
not maintain fixation were not included in these totals and were
not analyzed. Rewards were given after every three or four stimulus
presentations, and a 3-s interval was inserted after the reward to
minimize lick artifact in the spike channel.

FIGURE 1 | Stimulus configuration. (A) One single stimulus was placed
centered in the receptive field (indicated by dashed circle, not shown in the
actual display) of each neuron, and five other stimuli were arranged around
it separated by a spacing of one-half the stimulus width. Stimuli were black
and white and presented on a uniform gray background. (B) Combinations
of stimuli included: all six single stimuli, all 15 combinations of two stimuli,
and a null stimulus. The paired stimuli were classified according to a
normalized distance metric: D = 1 means adjacent stimuli, D = 1.4 means
diagonally adjacent stimuli, D = 2 means stimuli two places removed, and
D = 2.2 means two spaces horizontal and one vertical.

While the stimuli were not explicitly optimized for each neu-
ron, only neurons that responded robustly to the single stimuli
were used in this study. All neurons had statistically significant
responses to single stimuli that were at least twice baseline for at
least four of the six locations within the RF, and only five neu-
rons did not meet this criteria for all six locations. The mean spike
count for all single stimuli and all neurons was 23.96 spikes/s, and
90% of the mean spike counts were between 4.1 and 50.0 spikes/s.

The stimuli were flashed on for 24 video frames at 85 Hz
(approximately 282 ms duration), in a data acquisition win-
dow that lasted 440 ms. These 440 ms epochs were separated by
intervals that varied randomly from 400 to 800 ms, except when
a reward was given. Presenting the stimuli in short temporal
epochs is consistent both with the brief duration of inter-saccadic
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intervals, and with the observed high speed of the visual system
(Thorpe et al., 1996). Additionally, for most visual cortical neurons
the effects of flashing a stimulus on in the receptive field with the
eyes fixed is comparable to having a saccade bring a constant stim-
ulus into the receptive field (Richmond et al., 1999; Gawne and
Martin, 2002b). Hence, this paradigm closely approximates the
normal operating conditions of primate visual cortical neurons.

The animals were in a controlled behavioral state, performing
a fixation task, where all the different stimulus configurations had
the same lack of behavioral relevance. It is possible that there could
have been uncontrolled covert shifts in attention, but because the
stimuli were presented in random order, and because of the short-
time analysis intervals, this could not have caused any systematic
bias in the results.

DATA ANALYSIS
The single-unit responses were quantified by convolving the raw
spike times with a Gaussian kernel with a σ = 3 ms, which has
the effect of low-pass filtering with a cutoff frequency of 44 Hz.
This creates a continuous spike density function (Silverman,1986),
which is essentially a smoothed post-stimulus histogram, but with
the advantage that it does not suffer from “bin-edge artifact” (the
problem with histograms when changing spike times near the
edge of two bins radically alters the appearance of the response).
These filter parameters can result in spike density functions with
very high peak rates with very few spikes: a burst of just three
spikes separated by inter-spike intervals of 3 ms results in peak
rates of 300 spikes/s. While lower-frequency cutoff filters increase
the precision of estimation of the firing rate over a defined epoch,
exploring rapid response dynamics requires high-frequency cutoff
filters. This could result in a selection bias for units that produce
high-temporal precision firing: using a broader sigma (such as
75 ms as was used in Ghose and Maunsell, 2008), would allow sig-
nificant responses to be obtained from units that fire at low rates or
with low temporal precision relative to stimulus onset times, but
would also make it difficult or impossible to study the short-time
scale dynamics studied here.

Response latency was defined as the time that it took the
response to go halfway from baseline to the maximum of the spike
density function in the range of 30–150 ms after stimulus onset.
Starting at baseline is a general procedure used for this technique
to avoid false triggering for cells with high baselines and low peak
responses (Lee et al., 2007). Response magnitude, in mean spikes
per second, was also defined during this interval. Using the time
to half-maximum response has the advantage that the number of
trials per stimulus condition does not influence the measure of
latency as compared to using the time where the response sur-
passed a particular SD (Lee et al., 2007), and has been shown
to be a relatively robust and reliable indicator of latency (Lev-
ick, 1973). For some cells, latency values could not be assigned
for some stimulus cases because few or no spikes were produced,
and these data were excluded from any analysis involving latency.
The data were resampled with replacement 1000 times, and the
latency recalculated each time, which allowed a bootstrapped 95%
confidence interval to be calculated.

In order to quantify the interaction between stimuli within the
RF of a neuron, we used a response index defined as the spike

count for two stimuli presented simultaneously (R12), divided by
the maximum of the response to each stimulus of the pair (R1, R2)
presented individually.

Response Index = R12
/

max (R1, R2)

Thus, a response index value of 1.0 indicates a winner-take-all
or “MAX” operation, a value less than 1.0 indicates suppression,
and a value greater than 1.0 indicates summation. It has been
pointed out that accurately modeling the spatial summation of
multiple stimuli within a RF can require models with more free
parameters (see Ghose and Maunsell, 2008). However, the pur-
pose of this response index was to provide a simple and robust
indicator of the interaction between stimuli. Using more complex
models of summation with multiple free parameters per stimulus
pair would also have been hard to interpret with more than two
locations of stimulus positions within a RF.

All experimental procedures and care of the animals were
carried out in compliance with guidelines established by the
National Institute of Health and were approved by the University
of Alabama at Birmingham Animal Care and Use Committee.

RESULTS
Figure 2 shows example results from three neurons. Each row rep-
resents a subset of the results from a single neuron. Each panel
illustrates the average spike density function of the responses,
overlaying the responses to both stimuli presented separately,
and both presented together. The neuron in the topmost row
(Figures 2A–D) showed either weighted averaging (Figures 2A,D)
or MAX behavior (Figures 2B,C) in the response magnitude.
However, for all pairs of stimuli, the response latency was pre-
cisely locked to the shortest latency of the responses to both
stimuli presented separately. For the neuron in the middle row the
response magnitude showed weighted averaging (Figures 2E,H),
MAX (Figure 2G), or enhancement (Figure 2F) depending on
which pair of stimuli were used. As with the first neuron, the
response latency for two stimuli was generally very tightly locked
to the shortest latency response of the individual stimuli, but there
was one exception (Figure 2E). When the response to a pair of
stimuli has a different latency than the shortest latency to one stim-
ulus by itself, this will be termed a latency shift. The third neuron in
this example Figures 2I–L also had response magnitude effects that
ranged from MAX (Figure 2I), weighted averaging (Figures 2J,L),
and enhancement (Figure 2K). However, the latency shifts were
more common here: in Figures 2I,J the latency shifts were on the
order of 1 ms, and in Figures 2K,L on the order of 8 ms. This neu-
ron showed the highest incidence of latency shifts in the sample
population.

Figure 3 shows summary data from all pair-wise stimulus
combinations for all neurons in the study. Figure 3A shows the
response index vs. normalized inter-stimulus distance. The ten-
dency across all neurons and all inter-stimulus separation dis-
tances was for there to be suppression/averaging, but the range of
the results was considerable. Figure 3B shows the same index only
this time separated out by individual neuron. Some neurons did
tend to have the same sort of interaction for all pairs of stimuli,
but most neurons displayed a wide range of different sorts of inter-
actions within their RFs depending on the specific configuration
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FIGURE 2 | Examples of interactions between stimuli in the receptive

fields of visual cortical neurons. (A–D) are from one neuron, and (E–H)

from another, and (I–L) from a third. Data are plotted as spike density
waveforms as a function of time. Stimulus onset was at time = 0 ms. The
configurations of the stimuli are indicated schematically in each panel
similar to that shown in Figure 1. Black lines are the responses to both
stimuli presented at the same time, and red and blue lines are for each
stimulus presented separately. Dashed lines are the mean plus or minus
one SE. (A,D) The response to the pair has a magnitude in between the

responses to the stimuli presented separately (weighted averaging).
(B,C,G) The magnitude of the response to a pair is equal to the magnitude
of the larges response to a single stimulus (MAX). (E) In this case the
magnitude of the response to both stimuli is closer to the weakest of the
two responses, but there is also a strong latency shift. (F) The magnitude
of the response to the pair is greater than the response to either stimulus
presented separately (summation). (I,J) Latency shifts are on the order of
1 ms. (K,L) Large latency shifts are observed for both summation (K) and
suppression (L).

of the stimulus pairs. A one-way ANOVA on the mean response
index for each neuron was significant P < 0.001, demonstrating
that there was a significant difference between cells in how pairs
of stimuli interact in their RFs, but it only explained 27.6% of the
variance. In other words, some neurons tend to respond to pairs
of stimuli with a degree of consistency, but overall, the results are
dominated by the variability within a single neuron.

Figures 4A–C shows plots of response strength vs. response
latency for three example neurons. There is an occasional ten-
dency for the weakest responses to have the longest latencies
(see Figure 4C), but in general there was no correlation between
response strength and latency.

Figure 5A plots the normalized response strength vs. the rel-
ative latency shift for all pair-wise stimulus combinations for all
neurons in this study. Strength was normalized to the strongest
response of any condition for each neuron, and latency is rela-
tive to the median latency for each neuron. There is effectively
no correlation between the response strength and latency for the
stimuli used in this study. Figure 5B illustrates the response latency
shift for a pair of stimuli relative to the response shortest latency
to either of the two stimuli presented alone. There is a significant
dispersion of latency shifts, with a roughly equal tendency for the

latencies to be shifted to shorter or longer times. However, there
were many cases where the response latency to two stimuli was
precisely locked to the shortest of the latencies of to each stimulus
presented separately. Note that the distribution is not a Gaussian,
but rather has a strong peak at zero phase delay that falls away
in an approximately exponential manner, suggesting that there is
something special about small latency shifts. The SD of this dis-
tribution is large because of outliers (±9.3 ms), but 51.9% of the
distribution lies within ±2 ms of zero.

DISCUSSION
At least for the population of neurons and stimulus conditions
used in this experiment, there is very little consistency in how
the responses to two stimuli are related to the responses to single
stimuli. We can consider that the function applied to two visual
stimuli is more strongly related to the positions of the stimuli
within the RF than it is a fixed property of a specific neuron itself.
With hindsight this should not be surprising: two widely sepa-
rated stimuli may have separate perceptual identities, but when
stimuli are in close proximity their relative position should have
strong effects on their perceptual meaning and hence on their
neural processing. For example, as two separate spots are brought
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FIGURE 3 | (A) The degree to which two stimuli interact (“Response
Index”) in their effect on the responses of a visual cortical neuron, as a
function of the normalized distance between stimuli. Each point is from a
single pair of stimuli for a single neuron. The Median and ±25% quartile
ranges for the data are also shown. (B) The response index plotted as a
function of each individual neuron. Some neurons did tend toward one level
of response, but overall the trend was weak, and neurons typically showed
a wide variety of behavior depending upon the position of the stimuli within
their receptive fields.

closer together they could start to be treated as a single bar, and
different positional shifts could engage end-stopping mechanisms,
etc. However, as with most previous studies of this nature, here it
was not possible to probe how the monkey perceived the pairs of
stimuli, so this remains speculative. Studies where different con-
figurations of stimuli have different behavioral relevance, or are
specifically designed to be part of larger forms, may help to answer
such questions.

The lack of an effect of the distance of separation between stim-
uli was unexpected (see Figure 3A), but even those stimuli with
the greatest degree of separation were still not as far apart as was
the case in previous studies in this lab.

It has been proposed that many cortical neurons perform a sin-
gle canonical operation on their inputs. For example, the output of

FIGURE 4 | Plot of response latency vs. strength for three example

neurons (A–C). Responses to single stimuli are indicated via blue circles;
responses to pairs of stimuli via black squares. Horizontal bars are SE of the
mean; vertical bars are bootstrapped 95% confidence intervals. In general
there is no relationship between response strength and latency. In (C) for
the weakest responses latency is prolonged, but this was rarely seen,
because for many cells all the responses were relatively robust, and also
because for the weakest responses it was often the case that latency could
not be defined.

a neuron could be driven by the single strongest input, a “winner-
take-all”rule (Riesenhuber and Poggio, 1999). However, the results
of this study demonstrate that you cannot in general determine the
rule by only using two stimulus locations, because the rule could
be different for stimuli that are located in different areas of the RF.

It must be emphasized that stimulating a visual cortical neuron
with discrete visual stimuli is not the same thing as directly con-
trolling the inputs to that neuron. This is because there are many
processing stages between the visual image that is focused on the

www.frontiersin.org November 2011 | Volume 2 | Article 323 | 5

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Gawne Visual cortical dynamics multiple stimuli

FIGURE 5 | (A) Plots of normalized response strength vs. relative latency
for all neurons and all stimulus combinations in this study. For each cell,
strength was normalized to the strongest response, and latency was
calculated as a difference relative to the median latency. (B) Plot of the shift
in latency for the response of a cell to two stimuli, relative to the shortest
latency of the response to each stimulus in the pair presented separately. A
negative number means that the response to two stimuli has a
shorter-latency than the shortest of the response to a single stimulus (this
could be considered a phase-advance).

retina, and a visual cortical neuron, including the processing in the
neural retina, thalamus, and any earlier cortical areas. Therefore
it is possible that many of the neurons in this study did have a
single computational rule that they applied to all of their direct
inputs equally, but that the observed sensitivity of the responses to
changes in position within the RF was due to interactions between
the stimuli at earlier stages in processing.

The lack of correlation between response strength and response
latency was striking. As you change the configurations of stimuli
inside the RF of a visual cortical neuron, the response strength
varies in complicated patterns that presumably reflect aspects of
form processing. However, the response latency has a very differ-
ent pattern of results, and tended to remain fixed as stimuli were
combined in different ways. If these neurons were summing up
excitatory and inhibitory inputs over some period of time, there
should have been a link between strength and latency: for exam-
ple, if the response to two stimuli was larger than the response
to either alone, the response latency should have been shorter.

Previous studies have demonstrated a separation of the response
magnitude and latency of visual cortical neurons (Carandini and
Heeger, 1994; Albrecht, 1995; Gawne et al., 1996; Reich et al.,
2001), and the results here are in accord with and extend these
previous results. One interpretation is that response strength rep-
resents visual form, and that it therefore changes with changes in
the relative configuration of the two stimuli in the RF of the neu-
rons. Latency, however, could represent stimulus saliency, and at
least under some conditions the saliency of an entire form could
be inherited from the most salient single component.

In previous studies from this laboratory, relative response times
were varied by either changing the spatial frequency of the stimuli
(Gawne and Martin, 2002a; for references to the effects of spatial
frequency on response latency see Marr and Poggio, 1979; Nishi-
hara, 1984; Anderson and Van Essen, 1987; Parker et al., 1997;
Bredfeldt and Ringach, 2002; Menz and Freeman, 2003; Frazor
et al., 2004), or by changing the contrast and also the relative onset
timing of the stimuli (Gawne, 2008). Evidence for rapid temporal
gating was observed in these studies, where the temporal response
to pairs of stimuli was completely dominated by the temporal
response to the stimulus that by itself elicited the shortest latency.
A similar effect is seen here, in that the response to two stimuli
often has the same latency as the shortest single latency response,
and there is no second peak in the response to two stimuli that
would correspond to the peak of the longer latency response.
However, the results of this study showed an important differ-
ence from previous studies: the stimulus that by itself elicited the
longest response latency could often affect the magnitude of the
shorter-latency response, but without always shifting its latency.

It has been proposed that much of cortical computation is
performed at the millisecond level using feed-forward circuitry
(Delorme and Thorpe, 2001; VanRullen and Thorpe, 2002; Van-
Rullen, 2007; Liu et al., 2009). A consequence of rapid feed-forward
processing should be that changing the configuration of the stim-
uli could change the magnitude of the response, but have little or
no effect on the latency of the response (because the computations
are so rapid). Therefore, it is hypothesized that for those specific
cases when you change the configuration of visual stimuli, and
you change the response magnitude of a visual cortical neuron,
but you do not change the response latency, this may indicate the
involvement of rapid feed-forward processing. On the other hand,
imagine a processing mechanism that integrates inputs over a rel-
atively long period of time before generating a response. In this
case, changes in response magnitude should often be coupled with
significant changes in response latency. It is difficult to conceive
of a mechanism that integrates inputs over a long period of time,
where changing the inputs results in changes in response magni-
tude but not latency. Such a system could in principle exist, but it
would need to be precisely and deliberately tuned to consistently
produce such a result.

Many researchers have argued that much of visual percep-
tion is due to a hierarchical feed-forward system of processing
(Fukushima, 1980; Rolls, 1991; Riesenhuber and Poggio, 1999;
VanRullen and Thorpe, 2002). However, it has also been argued
that feedback mechanisms are critical for vision (Lamme and
Roelfsema, 2000; Bullier, 2001; Hochstein and Ahissar, 2002; Gar-
rido et al., 2007). More work remains to be done, but it is
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hypothesized that the relationship between changes in response
latency and response magnitude as a stimulus configuration is
changed, constitutes a temporal signature that can, at least under
some conditions, distinguish between these different mechanisms.
At the very least, these results should provide powerful constraints
on the development of dynamical models of cortical processing.
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