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1. INTRODUCTION

Research progress in machine vision has been very significant in recent years. Robust
face detection and identification algorithms are already readily available to consumers, and
modern computer vision algorithms for generic object recognition are now coping with
the richness and complexity of natural visual scenes. Unlike early vision models of object
recognition that emphasized the role of figure-ground segmentation and spatial informa-
tion between parts, recent successful approaches are based on the computation of loose
collections of image features without prior segmentation or any explicit encoding of spatial
relations. While these models remain simplistic models of visual processing, they suggest
that, in principle, bottom-up activation of a loose collection of image features could support
the rapid recognition of natural object categories and provide an initial coarse visual rep-
resentation before more complex visual routines and attentional mechanisms take place.
Focusing on biologically plausible computational models of (bottom-up) pre-attentive visual
recognition, we review some of the key visual features that have been described in the lit-
erature. We discuss the consistency of these feature-based representations with classical
theories from visual psychology and test their ability to account for human performance
on a rapid object categorization task.
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frequency analysis as the building block of early vision remains

Object recognition is concerned with determining the identity of
an object in our visual field of view. Such process relies on visual
representations that need to be both selective (recognizing our
friend among many other faces) and invariant (recognizing our
friend irrespective of drastic changes in visual appearance due to
changes in position, size, viewpoint, illumination, or even facial
expression; Ullman, 1996; Riesenhuber and Poggio, 1999). The
computations carried out on these representations feel effortless
and almost immediate (our subjective experience suggests that we
know what it is that we are looking at as soon as we see it).
Progress in our understanding of the computational mecha-
nisms underlying visual object recognition has been significant,
with converging evidence from neuroscience, psychology, and
computer science (Serre and Poggio, 2010). Shape and object
category information has been traditionally associated with pro-
cessing in the ventral stream of the visual cortex. A long-standing
metaphor for the underlying processes is that of filtering. The
princeps discovery was made by Hubel and Wiesel (1959, 1968),
who first reported the existence of bar and edge detectors in the
primary visual cortices of the mammalian brain. They further
proposed the first cortical model of visual processing thereby sug-
gesting that such selectivity for oriented bars could be achieved
via selective pooling mechanisms from the spatial arrangements
of center-surround ganglion cells in the Lateral Geniculate Nucleus
(LGN; Hubel and Wiesel, 1962). These ideas later formed the basis
of Marr’s primal sketch in his prominent computational theory of
visual processing (Marr, 1982). Today, edge detection and spatial

the dogma. However, our understanding of subsequent stages of
processing along the visual hierarchy remains a matter of debate.
Marr famously postulated that the next stage of visual pro-
cessing was concerned with the building of intermediate 2(1/2)D
representations for surfaces toward the explicit construction of 3D
representations for matching stimuli to internal representations
of objects and/or storage into memory. These ideas motivated
a subsequent theory by Biederman (1987), the recognition-by-
components (RBC), which emphasizes the role of figure-ground
segmentation and explicit encoding of spatial relations between
3D object parts. These 3D parts, named geons, are analogous to
syllables in linguistics and constitute a generic vocabulary for rep-
resenting objects with different combinations and spatial arrange-
ments of these elements. A typical processing pipeline is sketched
on Figure 1 (left) with key stages of visual processing including:
edge detection — grouping — segmentation — matching.
Around the same time, several psychophysical studies suggested
thata coarse image analysis based on simple feature detectors could
be done very rapidly in parallel across the visual field (Treisman
and Gelade, 1980; Julesz, 1981; Bergen and Julesz, 1983). The study
of what can be seen “at first sight” has since been intensively pur-
sued using the visual search paradigm. Two prominent theories
seem to account for most experimental data: the Feature Integra-
tion Theory by Treisman and Gelade (1980) and the Guided Search
Theory by Wolfe (2006). Both suggest that simple image features
such as color, orientation, motion, or size (see Wolfe and Horowitz,
2004 for an extensive review) can be processed pre-attentively and
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FIGURE 1 | (Left) Overview of the successive steps involved in classical
theories of object recognition (see text for details). (Right) An alternative
view is that the bottom-up activation of a loose collection of hardwired feature
detectors via a hierarchy of increasing complex processing stages may provide
a coarse initial visual representation for more complex routines and several
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feedforward/feedback iterations to solve specific tasks including contours
detection, grouping, figure segregation as well as the computation of spatial
relations between parts, and more generally, the parsing and interpretation of
complex visual scenes (see for instance: Hochstein and Ahissar, 2002; Zheng
et al.,, 2007; Epshtein et al., 2008; Serre and Poggio, 2010 for a review).

in parallel. However, any search for more complex combinations of
features (e.g., T among Ls) for which hardwired feature detectors
are not readily available will lead to reaction times that are depen-
dent on the number of distractors in the display; a phenomenon
consistent with a serial attentional process.

Studies conducted on natural visual scenes came to challenge
some of these ideas by demonstrating the incredible speed and
accuracy of our visual system for some of the most challeng-
ing visual recognition tasks in natural scenes. For instance, the
rapid serial visual presentation (RSVP, Potter and Levy, 1969) and
the rapid visual categorization (Thorpe et al., 1996) paradigms
showed that human subjects are able to recognize (and remember)
objects presented very rapidly in the absence of eye movements
and potentially, shifts of attention. Further EEG studies measuring
event related potentials (ERPs) directly on the scalp showed robust
differential activity between target and distractor images within
150 ms after stimulus presentation (VanRullen and Thorpe, 2001).
Recent studies using backward-masking (Bacon-Macé et al., 2005)

and saccadic responses (Kirchner and Thorpe, 2006; Crouzet et al.,
2010) suggest that recognition is possible under even more severe
time constraints, possibly via a single feedforward sweep through
the visual system (Lamme and Roelfsema, 2000; VanRullen and
Koch, 2003). The underlying visual representation remains rela-
tively coarse as it was shown that participants frequently fail to
localize targets that they had correctly detected in an RSVP stream
(Evans and Treisman, 2005). In particular, this seems inconsistent
with recognition processes that rely on explicit encoding of spatial
relationships between parts and suggest instead that rapid recog-
nition may rely on the detection of an “unbound” collection of
image features.

Consistent with this idea, the rapid recognition of natural object
categories such as animals does not seem to require attention: The
level of performance of human observers remains high even when
two images are flashed simultaneously (Rousselet et al., 2002) and
when stimuli are presented in the periphery while an attention-
demanding (letter discrimination) task is performed at the fovea
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(dual-task paradigm, Li et al., 2002). To account for these results,
VanRullen suggested that the recognition of natural object cate-
gories must be based on a dictionary of features that are hardwired
in the visual system (VanRullen, 2007).

This idea is, in fact, consistent with the unsupervised learning
mechanisms of feature hierarchies postulated by current models of
the visual cortex (see Serre et al., 2007a for a review) and provides
a compelling explanation for why ecologically important stimuli
such as animals can be recognized in a dual-task paradigm but
artificial stimuli such as a bicolor disks cannot: Through develop-
ment, our visual system learns a dictionary of features that forms
the basis of the position and scale tolerant representation which is
found in higher level visual areas (Serre et al., 2007a). One hypoth-
esis is that the underlying visual representation is well adapted to
natural object categories but poorly adapted to artificial ones due
to lack of training.

Opverall, the argument above leaves open the question of the
nature of the visual features that form the coarse image representa-
tion underlying rapid categorization tasks, which will be discussed
in the next section. The goal of the present study is: (1) to inves-
tigate the ability of current biologically plausible models of rapid
recognition to perform object recognition in natural scenes and
(2) to compare the performance of these models with the state-of-
the-art in computer vision as well as human observers on a rapid
visual categorization task.

2. COMPUTATIONAL MODELS OF VISUAL RECOGNITION
Progress in computer vision over the past decade has been signifi-
cant. Challenging visual recognition tasks such as the recognition
of objects in natural scenes are no longer considered to be beyond
the reach of artificial vision systems. Face detection systems are
now readily available on consumer-grade digital cameras and
automated face identification algorithms are being integrated in
digital photo library suites. Automated pedestrian detection and
computer systems for driver assistance are already available in
selected vehicles, and these will become standard equipment on
most models by 2014,

Beyond domain-specific applications, computer vision systems
for the generic recognition of objects are becoming increasingly
robust, as reflected by their performance on competitions such as
the Pascal Challenge?. The number of object categories to be rec-
ognized has been increased steadily every year as the performance
of the top computer vision systems has continued to improve. As
it started in 2005, the challenge contained only four object cat-
egories. This year, the ImageNet Large Scale Visual Recognition
Challenge’® involved the recognition of a thousand object cate-
gories and millions of images. Overall, computer vision databases
have been growing rapidly over the years with systems now being
routinely tested on hundreds of object categories (Russell et al.,
2007; Torralba et al., 2008, 2010; Deng et al., 2009; Everingham
et al., 2010; Xiao et al., 2010).

Similarly, progress in our understanding of the computational
mechanisms underlying visual recognition in cortex has been

Uhttp://www.mobileye.com.
Zhttp://pascallin.ecs.soton.ac.uk/challenges/VOC
3www.image-net.org/challenges/LSVRC/2010

significant. Computational models have been described that have
been quantitatively fitted to monkey electrophysiology data for
both the processing of shape information in the ventral stream
(Rust et al., 2005; David et al., 2006; Cadieu et al., 2007; Lee et al.,
2007; Serre et al., 2007¢; Zoccolan et al., 2007; Li et al., 2009; Cao
etal, 2011; Grossberg et al., 2011; but see also Kayaert et al., 2005;
Kriegeskorte et al., 2008; Op de Beeck et al., 2008; Kayaert et al.,
2011) and motion information in the dorsal stream (Rust et al.,
2006).

In addition, several computational models of rapid catego-
rization have been described. Figure 2 shows how computational
models of visual recognition can be organized along three main
dimensions: Feature complexity, sparse vs. dense representations,
and statistical vs. non-statistical models. All the models included
in this review have been shown to perform well on various visual
tasks (e.g., natural scene classification, object detection, texture
analysis), but the focus of the present study is limited to the ability
of these models to perform well on specific visual task, namely a
rapid animal categorization task (Thorpe et al., 1996). It is com-
mon to find the terms model and features used interchangeably in
the literature. For clarity, in this review, we will refer to a model as
a whole architecture (i.e., Hmax) and features for specific layers
or components of a model (i.e., the Cy, C,, Cyp, and Cs features
of the HMax model).

2.1. FEATURE COMPLEXITY

Virtually all biological models of visual processing start by assum-
ing an initial filtering stage. The simplest image feature that has
been suggested for natural images is the WEIBULL image contrast
statistics, which measures the distribution of contrast values for
an image that is readily available from the response of the X and
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FIGURE 2 | Various computational models of visual recognition
organized along three main dimensions: feature complexity, sparse vs.
dense representations, and statistical vs. non-statistical models.
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Y cells in the LGN (Ghebreab et al., 2009; Scholte et al., 2009).
WEIBULL image contrast statistics were described as a model for
natural scene identification and were shown to provide a good
model of the ERP selectivity observed in EEG data.

The bottom-up SaLIENCY algorithm by Itti and Koch (Itti et al.,
1998; Itti and Koch, 2001) and the Gist algorithm by Oliva and
Torralba (2001) are two examples of algorithms based on rela-
tively low-level image features. Compared with the WEIBULL image
contrast statistics model described above, these two models corre-
spond to processing in the next stage of the visual hierarchy. Such
models are built on the output of filter pyramids such as Gabor or
steerable filters that model processing by simple and complex cells
as found in the primary visual cortex (Hubel and Wiesel, 1962).

In addition to orientation, the bottom-up SALIENCY algorithm
also includes simple feature dimensions such as contrast and color
information (although only gray-value stimuli were used in the
present study). While there is no a priori reason for the image
saliency to be predictive of the presence or absence of an object
category, Elazary and colleagues have shown that objects in nat-
ural scenes tend to be more salient than the background (Elazary
and Itti, 2008). The performance of the SALIENCY model for the
animal categorization task thus constitutes an interesting baseline.

Mid-level TExTON features corresponding to combinations of
oriented linear filter responses were shown to account for the level
of performance of human observers for the classification of visual
scenes (Renninger and Malik, 2004). The task tested involved
the classification of natural scenes in ten categories (beach, for-
est, mountain, city, farm, street, bathroom, bedroom, kitchen, and
living-room). Features of similar complexity were also used in the
TEXTSYNTH texture synthesis algorithm by Portilla and Simon-
celli (2000) and were shown to predict human performance in
crowding experiments (Balas et al., 2009; see also Freeman and
Simoncelli, 2011).

At the top of this hierarchy are visual features of higher com-
plexity corresponding to multiple stages of visual processing com-
puted by the Hmax hierarchical model of visual processing (see
Serre et al., 2007a for details). Here we consider four stages of this
model: (1) The C; stage, which corresponds to the output of V1-
like oriented complex cells (and similar to the GisT features); (2)
the Cy;and (3) C;p stages, which have been matched to the tuning
properties of cells in intermediate areas of the ventral stream of
the visual cortex (area V4: Cadieu et al., 2007; Serre et al., 2007a;
and PIT: Serre et al., 2007a) and correspond to features tuned to
combinations of V1-like complex (C;) units at multiple orienta-
tions, exhibiting some tolerance to changes in the position and
scale of the preferred stimulus; and (4) the Cs stage that corre-
sponds to combinations of units from the C; stage. From the Cj,
C», and C,p to the Cj; layer, the visual architecture builds a hier-
archical feature representation that is both increasingly complex
and invariant to 2D transformations such as changes in position
and scale.

To provide a baseline for the biological models, we further
considered a state-of-the-art machine vision system. This pop-
ular algorithm originally introduced by Lazebnik et al. (2006) is
called the Spatial Pyramid (SpaTiALPYR). The complexity of the
features used in this algorithm is similar to the C,/C3 stage of the
Hmax described above. The overall approach has been shown to

perform well on a number of visual recognition tasks (Lazebnik
et al., 2006, 2009; Bosch et al., 2007; Varma and Ray, 2007; Yang
et al., 2009, 2010; Boureau et al., 2010a; Gao et al., 2010; Wang
etal., 2010; Zhou et al., 2010). We believe this algorithm is repre-
sentative of the current state-of-the-art in computer vision and is
certainly one of the most popular.

2.2. DENSE VS. SPARSE

Another useful dichotomy between the various feature representa-
tions described above corresponds to the sparsity of the underlying
visual representation. The WeiBULL, GisT (and C; stage), as well
as the TexToN, and the SPATIALPYR are based on dense repre-
sentations whereby features are matched at every location of an
image.

This can be contrasted with sparse representations such as the
C,p and Cj stages of the Hmax. Rather than measuring the degree
of similarity between an input image and a stored representation at
every position and scale, the underlying similarity in such model is
based on the best match between a stored template and the whole
image (as computed by a max operation computed across all loca-
tions and scales). Such pooling mechanisms allow the underlying
representation to be tolerant to changes in position and scale.

The TextsynTH algorithm probably falls somewhere in
between these two extremes as it computes the statistical mean
of the match across an image. For a strongly peaked distribution
(as is the case for a salient object), we expect the statistical mean
to closely approximate a max pooling operation and therefore
behave like a sparser representation. Conversely for more textured
images, one expects a broader distribution and thus the approach
to behave more like a dense representation.

2.3. STATISTICAL VS. NON-STATISTICAL MODELS

Non-statistical models here refer to algorithms that are based on
features computed via a simple template matching operation. Such
an operation encodes the similarity between an image patch and
a stored representation. In the HmAx model, an image feature at
the top of the hierarchy corresponds to the best match between
every patch of an input image and a stored template via a max
operation.

Similarly, the Gist and the SALIENCY algorithms as well as some
of the features of the TexTsyNTH algorithm are based on the
response of feature detectors. The WEIBULL image contrast sta-
tistics, the TeExTON algorithm, and the SPATIALPYR are based on
first order statistics over the computed features (i.e., histograms
of the count of the index of the closest image feature over loca-
tions and scales). The TexTsyNTH model also computes higher
order statistics such as the skewness and kurtosis of the feature
distributions.

3. RESULTS

3.1. MODELS PERFORMANCE IN A CATEGORIZATION TASK

Animals in natural scenes constitute a challenging class of stimuli
because of the very large intra-class variations that they present.
This includes large changes in appearance (terrestrial, aerial, and
water animals all with a large spectrum of possible sizes) and
non-rigid changes in pose, as well as clutter and changes in size
and position in the visual scene. The human data presented here

Frontiers in Psychology | Perception Science

November 2011 | Volume 2 | Article 326 | 4


http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive

Crouzet and Serre

Visual features underlying rapid recognition

appeared in a study by Serre et al. (2007b). To vary the diffi-
culty of the task, four sets of balanced image categories were used
(150 animals and 150 matching distractors in each set, i.e., 1,200
total stimuli; see Materials and Methods), each corresponding to
a particular viewing distance from the camera, from an animal
head to a small animal or groups of animals in cluttered natural
backgrounds (see Serre et al., 2007b for details).

To minimize the role of cortical feedback by forcing visual pro-
cessing to be based on a single feedforward sweep, as well as to try to
minimize possible attentional shifts across the image, a backward-
masking protocol (1/f dynamic noise image lasting 80 ms) was
used with a long 50-ms stimulus onset asynchrony (20-ms stim-
ulus presentation followed by a 30-ms interstimulus interval). It
was found (Bacon-Macé et al., 2005) that increasing the SOA on
a similar animal vs. non-animal categorization task beyond this
value only has a minor effect on performance (accuracy scores
for longer SOA conditions were not significantly different). At the
same time, for this duration, the mask is expected to block sig-
nificant feedback effects from higher level visual areas through
back-projections.

Figure 3A provides an overview of the performance of the var-
ious models computed as d’ for a zero threshold value. Baseline

performance by human observers (error rate calculated across
all subjects; n=22) is indicated with a black vertical line (the
95% confidence interval of the bootstrapped distribution is indi-
cated with a gray shaded area). The estimated confidence intervals
reveal that Hmax and TEXTSYNTH reached a higher level of per-
formance than all other models (including the SPATIALPYR, a
state-of-the-art computer vision system). Most importantly, the
average performance of human participants fell within the con-
fidence intervals of these two models. The performance of the
remaining models decreased from the SpaTiALPYR and GIsT to
TEXTON, WEIBULL, and SALIENCY.

The performance of individual subjects is shown on Figure 3B
overlaid with the Receiving Operator Characteristic (ROC) curves
of the computational models (corresponding to their level of per-
formance for all possible discrimination threshold values). Each
of the black dots (n=22) corresponds to the performance of
one of the human participants. The best four models (HmAX,
TEXTSYNTH, SPATIALPYR, and Gist) capture relatively well the
variety of behaviors exhibited by human participants: Some partic-
ipants seem closer to the GisT, others to the HMax or TEXTSYNTH).
Also, it seems that the TExTsYNTH algorithm tends to perform best
at regimes with higher false alarm rates while the Hmax tends to
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FIGURE 3 | Models performance in the animal vs. non-animal
classification task. (A) Models performance measured with the d' value (at a
zero discrimination threshold value, see Materials and Methods for details).
Average values (bold) as well as upper and lower limits of the corresponding
confidence intervals (95% Cl obtained over independent cross-validations) are
reported with each bar. The performance of human observers is indicated
with a black horizontal line (95% ClI calculated across all subjects is indicated
with a gray shaded area; see text for details). (B) Receiver Operating

Characteristic (ROC) curves for all models tested. This shows the sensitivity
(True Positive rate vs. False Alarm rate) of the different models as the
discrimination threshold is being varied. Curves were averaged across
multiple splits of the stimulus database used for training and testing the
models. Shaded areas indicate 95% CI. Black dots correspond to the
performance of individual human subjects (n=22). (C) Performance of the
various feature types in the Textsynth and Hmax models. A classifier was
trained and tested independently on each feature type.
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perform better at lower false alarm rates, which also seems to be
the regime that best correspond to most human participants.

The HmAx and the TexTsyNTH algorithms both rely on differ-
ent types of features (see Materials and Methods). Do all features
contribute equally to the reported classification results? To answer
this question, we trained a classifier for each type of features sep-
arately for the two models. Figure 3C shows the classification
performance of the resulting systems. Overall this analysis sug-
gests that the key features are those encoding the correlations of
the magnitude of responses of oriented filters for the TEXTSYNTH

and the C,p features for the Hmax. These two types of features
indeed exhibit a similar level of complexity and tolerance to posi-
tion and perform at a very similar level of performance (d’ ~ 1.8).
The C;p features have been shown previously to contain a similar
amount of category information (and similar tolerance to changes
in position and scale) as a representative population of IT neurons
(Serre et al., 2007a).

Figure 4 shows, for each model, the six images that were classi-
fied as most animal-like and most non-animal-like (as measured
by the confidence of the classifiers trained on the features from

__Less animal

Animalness

More animal

TeExXTON

TEXTSYNTH

FIGURE 4 | The six most animal-like and non-animal-like images for each
model. This was measured through the probability output of the classifier for
each image and averaged over multiple random splits. When the six extreme

>
>

images did not contain an error (e.g., an animal considered as very
non-animal), the first error was added next with the corresponding score.
Saliency was excluded because of its poor level of performance in the task.
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each model and averaged over all random splits). From visual
inspection, it appears that the most non-animal-like images for the
three models that are based on first order statistics and higher (i.e.,
TexTON, TEXTSYNTH, and the SPATIALPYR) are mostly repeated
textured patterns typically associated with urban scenes (e.g.,
buildings). Consistent with this idea, animal images that are most
similar to non-animal images correspond to far groups of sim-
ilar animals (e.g., flock of birds). The most animal-like images
correspond to animal heads and bodies on relatively simple, near-
uniform backgrounds (grass, water, snow). This is consistent with
the fact that these types of features have been traditionally used
for the recognition of textures (Julesz, 1981).

Interestingly the WEIBULL image contrast statistics seem to cap-
ture well the complexity of the stimuli with the least/most animal-
like images corresponding to subjectively more complex/simpler
cluttered backgrounds. However, this led to relatively poor clas-
sification performance for the present animal vs. non-animal
categorization task. The behavior of the GistT and Hmax algo-
rithms seem a bit more complex to interpret. While the GisT seems
to rely heavily on the presence of vertical elements in an image,
typically associated with urban and man-made scenes, for classi-
fying an image as non-animal, no simple pattern seems to explain
what constitutes representative animal-like images for either ones
of the algorithms.

How do the computational models predict human performance
on an individual image basis? Figure 5 shows the correlation
between the various models and human observers computed using

an “animalness” score as described in Serre et al. (2007b). For
human observers, this index was computed as the fraction of
human observers that classified a specific image as an animal
irrespective of whether its true label is animal or distractor. A
score of 1.0/0.0 means that all participants classified this image as
animal/non-animal. Any value in between reflects some variability
across subjects.

Similarly for the computational models, a confidence score for
each image was computed every time the image was selected as
part of the test set (this score reflected the normalized distance
to the separating decision function for this particular image on
this particular split). Averaging these confidence scores across all
splits resulted in one score per image that we correlated with the
average scores obtained from the human observers. The bars in
Figure 5A reflect the correlation coefficients obtained by corre-
lating the score from human observers with the score given by
each model for every image. The black horizontal bar corresponds
to the inter-subject correlation between half sets of participants
(procedure repeated 1,000 times with random half splits to get the
95% confidence interval indicated with the shaded area).

We found that the relative ranking of algorithms in terms of
their ability to explain human performance at the single image level
was indeed similar to the one based on the absolute performance
as shown on Figure 3. To estimate how well correct classification
alone for individual images impacts this score, we performed a
standard permutation analysis (Good, 2000) where we shuffled all
the scores randomly (diamond inset for each model) as well as a
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FIGURE 5 | (A) Correlation between the “animalness” scores (computed
for each image) from human participants vs. computational models. For
each model, the main bar corresponds to the correlation between human
participants and models (a single value is computed over the whole image
dataset hence no error bar shown). The diamond inserted in the bar
corresponds to the correlation obtained from a standard permutation test
(indicating chance level), the circle corresponds to a restricted permutation
test (randomization was done for animal and non-animal stimuli separately).
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The most interesting difference is the one between the circle and the main
bar, indicating the ability of the models to capture some of the intrinsic
difficulty of individual images beyond simply classifying animal vs.
non-animal images (see text for details). (B) Agreement matrix between
each participant and the various computational models. Participants are
sorted according the the highest agreement value. The correlation value for
the best model and those that fall within its confidence interval are all
highlighted in white.
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restricted permutation procedure where we shuffled the scores for
the animal and non-animal images separately (circle inset). The
correlations obtained from these two restricted permutation pro-
cedures were significantly lower than those obtained for all models,
except for the WerBuLL (p =0.058). This suggests that with this
one exception, the computational models are all able to capture
some of the intrinsic difficulty of individual images. However, the
correlation between even the best models and human participants
remains significantly lower than the inter-subject correlation (dark
horizontal bar).

We further computed the agreement between each model and
individual participants. In order to obtain the matrix shown in
Figure 5B, predicted labels from each model for every cross-
validation were compared to behavioral responses from each indi-
vidual participant. This allowed to get an estimate of the agreement
for each participant and each computational model (over 40 cross-
validations). As shown in Figure 5B, for every subject, Hmax was
either picked as the best model for each subject or fell within the
confidence interval of the actual best model when not selected as
the winner (all models that fall within the confidence interval of
the best model for each subject, highlighted in white). However, the
GisT also seems to match at least as well or slightly better for three
of the participants (subjects 4, 10, and 19). Between-participant
differences could thus reflect different visual processing strategies
for the task (one possibly faster but less accurate strategy based
on lower-level features and one possibly slower and more robust
based on higher level features).

3.2. ROBUSTNESS TO IMAGE MANIPULATIONS

Several image modification procedures are commonly used
in experimental studies to assess the “high-levelness” of a
visual process. Among them, the Fourier amplitude spectrum
normalization and image inversion are two of the most common.

It is generally believed that high-level visual processes should not
be disturbed after normalization of the Fourier amplitude of the
stimuli (amplitude information being low-level), but should suf-
fer with image inversion (this modification perturbating high-level
but not low-level information). It is thus interesting to test how the
computational models presented here cope with these two images
modifications. Considering what we know about these models
and the features they extract, the results are also informative for
the relevance of these image modifications in terms of how well
they differentially impact high- vs. low-level visual processes.

321. Fourier amplitude normalization
It has been shown that the Fourier amplitude spectrum contains
diagnostic information about the category of objects in natural
scenes (Torralba and Oliva, 2003). Evidence regarding the use of
this type of information by human participants seems restricted
to specific object categories (e.g., face (VanRullen, 2006; Honey
et al., 2008; Crouzet and Thorpe, 2011) but not animal category
(Gaspar and Rousselet, 2009; Wichmann et al., 2010)). Computa-
tional models and the corresponding statistical classifiers are likely
to take advantage of any bias in the statistics of the image sets and
we thus verified whether such low-level cues could be driving the
categorization performance in the previous experiment. We cre-
ated a new set of images by mixing the original phase information
of the original set with the averaged amplitude spectrum from
all images (target and distractor images mixed as in Crouzet and
Thorpe, 2011). This procedure allows to normalize the amplitude
content (generally considered as lower-level visual information)
while preserving the phase information (generally considered as
higher-level).

The results (Figure 6A) first show that the performance of
all the features is reduced by this image modification. However
none of the features performance falls to chance level. The fact
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FIGURE 6 | Classification performance (d’) of the different models
(features classified separately for the different components of Hmax and
Textsynth) with common image modifications, compared to the
performance on original images (A) Original image vs. Fourier amplitude
normalized images. The normalized set was generated after averaging the
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amplitude spectrum content in the Fourier domain over all images (targets
and distractors, a procedure identical to the one used in Crouzet and Thorpe,
2011). (B) Upright images vs. inverted images. Models were trained on
upright images and then tested on upright (0°) or inverted (180" rotated)
images. Human data from Serre et al. (2007b).
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that simple low-level features like GisT, TEXTON, or the C; fea-
tures still perform very well in the normalized condition highlights
severe shortcomings associated with this procedure and its ability
to completely remove low-level biases in a stimulus set. Looking
more precisely at the difference between models, features like the
MagnitudeStat (TExTsYNTH) as well as the C,p and C3 (Hmax)
cope very well with such image modification as observed with
human participants (Gaspar and Rousselet, 2009).

322. Rotation

It is often assumed that rotating images upside-down degrades
high-level information while maintaining low-level cues (which is
true at least for statistics like luminance distribution and contrast).
Figure 6B demonstrates that the effect of rotation on models per-
formance is consistent among most of the features, irrespective of
their underlying complexity. Overall we found that the observed
drop in performance for most models was indeed consistent with
the pattern observed for human observers in rapid categorization
tasks (Rousselet et al., 2003; Guyonneau et al., 2006; Serre et al.,
2007b). This suggests that perhaps this image transformation does
not quite produce the effect usually intended by experimenters.

3.3. ON THE BENEFIT OF HIERARCHICAL MODELS

From the results presented above, the MAGNITUDESTAT features
(as part of the TExTsyNTH model) and the features from the higher
stages of the Hmax (specifically the C,g units) remain the two key
contenders. As discussed above, these two types of features do
indeed share some similarities as they try to capture local com-
binations of orientations. One key difference between these two
types of features remain their invariance properties with respect
to 2D transformations. While the Hmax model was designed
with the goal of explaining the invariance properties of IT cells
(Riesenhuber and Poggio, 1999), TEXTsSYNTH was developed as a
general model of texture perception without any particular focus
on the problem of invariant recognition. It is thus expected that
the corresponding features will exhibit significantly less tolerance
to changes in position and scale.

Here to assess the invariance properties of the MAGNITUDESTAT
and the C,p features, we used a methodology similar to Logo-
thetis and Pauls, 1995; see also Riesenhuber and Poggio, 1999 as
well as Pinto et al., 2011 and Pinto, 2011 for a recent treatment).
Here invariance is measured by first estimating a “tuning curve”
(obtained by correlating a feature vector corresponding to one
object at a given scale with the same feature vector obtained for
the same object at different scales). An average tuning curve is
then obtained by averaging tuning curves across a set of objects.
Similarly a distractor response for each object is obtained by
estimating the maximum correlation between the feature vector
corresponding to the reference object at a given scale with the
same feature vector obtained for all other objects in the set at
the same scale. These responses are then averaged across all dis-
tractors and invariance to scale is then defined at the range of
scales for which the correlation between the original object and its
rescaled values remains significantly higher than the response to
the distractors. Using 17 linearly spaced scales and 100 real-world
isolated objects, Figure 7 shows that the invariance level increases
for the Hmax features throughout the hierarchy from C; to C,

to C2p/C3. As seen on the Figure, the invariance properties of the
C,p and Cj features remain larger than those of the TEXTSYNTH
features. The fact that these two models exhibit almost identical
levels of performance on the animal categorization task described
above reflects a limitation of the dataset in taping in these invariant
mechanisms.

As discussed in Serre and Poggio (2010), an Hmax-like rep-
resentation, with built-in tolerance to position and scale of the
stimulus, should, in principle, lead to a simpler classification func-
tion (such as a linear classifier as opposed to a higher order
polynomial, for instance) that requires fewer training examples to
achieve a specific level of performance, thus lowering the sample
complexity of the recognition problem.

4. DISCUSSION

We have reviewed current computational models of rapid catego-
rization and compared their performance to human performance
on a rapid animal vs. non-animal categorization task (Serre et al,,
2007b). This performance comparison revealed that Hmax and
TEXTSYNTH can reach a level of performance similar to the aver-
age human observer. The Gist, which (much like the TEXTSYNTH)
was not originally designed for the recognition of objects, also
stands as a realistic model of visual processing and, in particu-
lar, seemed to capture well the performance of several individual
participants.

Our results also suggest that features of intermediate com-
plexity (e.g., the C,p features of the Hmax model and the
MAGNITUDESTAT features of the TEXTSYNTH) seem to perform
better than lower-level features and on par with higher level fea-
tures (the Cj features). This is consistent with earlier proposals
that features of intermediate complexity are optimal for object
classification (Ullman et al., 2002). At the same time, the perfor-
mance of low-level models remains relatively high on this database
suggesting that despite researchers best effort to build a difficult
database with changes in the position and scale of animals in these
images, the dataset does exhibit some biases.

This point was already raised by Pinto et al. (2008, 2011)
who showed that “natural” image databases such as the popular
CalTech-101, because of biases for position and scale, may some-
times favor simpler models that are void of invariance properties
(see also Gintautas et al., 2010; Sanbonmatsu et al., 2010). As dis-
cussed by Riesenhuber and Poggio, 1999; see also Geman, 2006),
object recognition requires a difficult trade-off between invari-
ance and selectivity. In short, more invariant features tend to be
less selective and vice-versa. For instance, in Pinto et al. (2011),
the C,p features from the Hmax described above were shown to
perform worse than V1-like features as well as other computer
vision benchmarks on the CalTech-101 dataset but significantly
outperform all other approaches on an artificial dataset that exhib-
ited more variations in the position and scale of the objects thus
requiring a higher level visual representation.

This idea seems consistent with the somewhat good level of
performance obtained with low-level feature representations such
as the C; features or the Gist model. Future work should address
this question by selecting image subsets that are easy/difficult for
lower-level vs. higher-level representations (that are tolerant to
2D transformations) and correlating the performance of human
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over a set of 100 stimuli (colored curves, error bars correspond to the
95% CI). Thin black lines correspond to the average correlation for the
best distractor (i.e., the distractor for which the correlation with the
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in shaded gray). The invariance properties of each model is then
estimated by computing the “tuning width" such that the corresponding
feature vector for a reference object remains more strongly correlated
with feature vectors for the same object across scales than the best
distractor at the reference scale (width displayed with the thick black line
at the bottom of each graph).

observers vs. features of various levels of complexity on these
subsets.

Looking at finer level correlation between computational mod-
els and human observers for individual images, we found that all
tested models (with the exception of the WEIBULL) were able to
capture, to some extent, some of the intrinsic difficulty of individ-
ual images beyond what can be predicted from mere performance
and potentially reflect computational mechanisms similar to those
used by humans. However, all models exhibited a correlation with
human observers significantly lower than the inter-subject agree-
ment, suggesting that a significant fraction of the variance in the
data remains unexplained and that existing computational models
do not yet fully account for the pattern of behaviors observed from
human participants.

Would simple extensions of these models allow to account
fully for the pattern of performance of human observers? One
promising direction would involve exploring parameters (such
as receptive field sizes and connectivity) by, for example, using
computer-intensive parameter screening. Such an approach was
shown to lead to significant improvements in classification accu-
racy on a face identification task using hierarchical Hmax-
like/convolutional architectures (Pinto and Cox, 2011).

Another possibility could involve more efficient learning algo-
rithms that the random sampling procedure currently imple-
mented in the Hmax architecture. There is currently much
work on the topic of feature learning both within the con-
text of biological vision (Brumby et al., 2009) and computer
vision. In computer vision, architectures related to the Hmax
include deep learning networks Hinton (2010), convolutional
networks (Kavukcuoglu et al., 2010; Zeiler et al., 2011), and
grammar-based approaches (Fidler and Leonardis, 2007; Zhu
et al, 2008). General coding strategies based on local fea-
ture pooling (Boureau et al., 2010b) and sparse coding (Mairal
et al., 2008; Yang et al., 2009) constitute yet another possible
avenue for improving the performance of the computational
models.

Furthermore, all of the models were trained on relatively small
datasets (in comparison to the number of parameters for the mod-
els) and were not explicitly optimized to match the performance
of human observers (they were simply trained for the animal vs.
non-animal categorization task). It is possible that higher cor-
relation with human observers could be obtained by training
these models explicitly on the pattern of responses from human
observers.
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Hierarchical models of the visual cortex are complex. Several
layers of non-linearity coupled with the high-dimensionality of
the inputs to the final classifier (due to the large number of
features) makes it very hard to interpret what is driving clas-
sification accuracy in these models (Landecker et al., 2010; He
et al.,, 2011). In particular, it has been suggested that classifica-
tion of natural image categories by some of the models described
above may rely more on contextual information, i.e., features
computed from the background rather than the foreground (He
et al., 2011). These types of behavior most likely results from
the relative small number of images used to train and the com-
paratively high-dimensionality of the feature vectors used for
classification.

He et al. (2011) described a hierarchical (probabilistic) model
whereby natural object categories are represented by a coarse
hierarchical probability distribution over object geometry and
spatial configuration of object parts. Because of this and the
need for (manual) segmentation of animal images for train-
ing the model suggests that this class of models might however
require attentional mechanisms and cortical feedback. While it
might be incompatible with the severe time constraints imposed
by rapid categorization tasks, such models do however suggest
possible avenues for improving the performance of the computa-
tional models beyond the first initial feedforward sweep. Similarly
Chikkerur et al. (2010) have shown that an extension of the
Hmax model with feature-based and spatial attention was able
to further improve recognition performance of the model on
the task.

However, it is important to realize the intrinsic limitations of
the specific computational framework we have described and why
it is at best a first step toward understanding the visual cortex.
Some important limitations for these types of object representa-
tions based on a loose collection of image features is that they
remain sensitive to the presence of background clutter (Serre
et al., 2007b; Chikkerur et al., 2010), do not explicitly encode
spatial relations between parts that are known to play a key role
in object recognition (Biederman, 1987) and do not explicitly
distinguish figure from ground (Lamme and Roelfsema, 2000).
Most importantly, given enough time, humans use eye move-
ment to scan images, and performance in many object recogni-
tion tasks improves significantly over that obtained during quick
presentations.

While these models remain simplistic models of visual process-
ing, they do suggest an alternative to the classical visual pipeline
sketched on Figure 1 (left), which places an emphasis on bottom-
up computations for grouping, Figure-ground segmentation, and
spatial relations. Instead this alternative view suggests that the
bottom-up activation of a loose collection of hardwired feature
detectors via a hierarchy of increasing complex processing stages
may provide a coarse initial visual representation for more com-
plex routines and several feedforward/feedback iterations to solve
specific tasks including edge detection, grouping, figure segre-
gation, and the computation of spatial relations between parts,
among others, and more generally the parsing and interpretation
of complex visual scenes (see for instance, Hochstein and Ahissar,
2002; Bar, 2004; Zheng et al., 2007; Epshtein et al., 2008; Serre and
Poggio, 2010 for a recent review).

5. MATERIALS AND METHODS

5.1. COMPUTATIONAL MODELS

Below we describe in greater detail the models used in this study.
Most of the softwares were publicly available from the authors
web sites and/or provided by the authors. We tried to equalize
as much as possible the various model parameters when possible
(e.g., number of frequency bands and orientations, etc.,). When
the benefit on performance was not significant, default parameters
were kept.

Saliency

Models of bottom-up saliency compute the local conspicuity of
an image region with respect to its surround as measured, for
instance, by local contrast, color, or orientation. Here we used the
matlab Saliency Toolbox 2.1 (Walther and Koch, 2006). Low-level
features (pixel intensity, orientations) were extracted at multi-
ple scales and local conspicuity maps were computed using local
center-surround mechanisms. Note that color was not used here
because the stimuli used were grayscale. The resulting conspicuity
maps were then combined to form a saliency map to predict the
location of the highest saliency value for the whole image (Itti et al.,
1998; Itti and Koch, 2001). This intensity value (single feature) was
then used to try to predict the presence or absence of an animal in
images.

Weibull

The distribution of local contrast in an image can be well fitted
with the so-called WeIBuLL distribution (Ghebreab et al., 2009;
Scholte et al., 2009). Such distribution can be estimated from the
output of zero-crossing detectors similar to the center-surround
cells found in the LGN (Scholte et al., 2009). These authors further
hypothesized that this information could be available very rapidly
for the visual system and as such be used for rapid categorization.
Indeed, they showed that the 8 and y parameters of the WeiBuLL
distribution correlate well with EEG activity and could even allow
identification of the precise image presented to a human subject
among a small set of natural images (Ghebreab et al., 2009). More
precisely, the 8 and y parameters of the WeiBuLL distribution
define a space where images are ordered according to their level
of clutter/complexity and texture similarity (Scholte et al., 2009).
Here we used the code provided by the authors which uses the
simple B and y parameters from the fitted WeiBuULL distribu-
tion. We found the performance of the two models presented in
Scholte et al. (2009) to be very similar and only report here the
performance of the simpler abstract one.

Gist

The Gisr features correspond to the model by Oliva & Torralba,
who have shown that the amplitude spectrum of images in the
Fourier domain could be predictive of scene category, leading
later to the concept of spatial envelope or global image signa-
ture (Oliva and Torralba, 2001, 2006; Torralba and Oliva, 2003).
To create this representation, global features (Torralba and Oliva,
2003) were computed by convolving each image in the database
with a Gabor filter pyramid (8 levels and 8 orientations) and
further down-sampling the resulting filtered image to produce
a4 x4 x 64 (=1,024) dimensional vector, which is then used for
classification.
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Texton

The TexTON features were described in Renninger and Malik
(2004). They were computed with a filter pyramid (M = 96 Gabor
filters at 8 orientations, 6 scales, and 2 phases). A large number of
random patches were extracted from hundreds of M-dimensional
edge-response images (from the pre-training set) and subse-
quently clustered using k-means to find 100 cluster centroids. Each
of these centroids then became a TExToN feature. For every image,
an image of TEXTON counts was computed by finding the index of
the nearest TEXTON to the vector of filter responses at each pixel
location and accumulating the counts over the whole image lead-
ing to 100-dimensional histogram vector used for classification as
done in Renninger and Malik (2004 ).

TextSynth

TEXTSYNTH was originally presented as a model of parametric tex-
ture analysis/synthesis* (Portilla and Simoncelli, 2000). Its success
at producing new texture images from random noise that seem
to be perceptually similar to a seed image makes it an interesting
addition to our study. Recent work by Balas et al. (2009) and Free-
man and Simoncelli (2011) suggests that the model accounts well
for the representation of the early visual system, and in particular
can stand as a good model for crowding in the visual periphery if
filter size is made larger in the periphery.

This model first measures the responses of oriented linear
filters, which are computed using a complex-valued steerable
pyramid decomposition. This approximates the response of V1
complex cells tuned to different orientations and scales (4 orien-
tations and 4 scales, higher values for these parameters were tested
but did not improve performance) which tile all positions in the
image. Then, the model computes joint statistics of these features
to capture intermediate-level image structure. The statistics used
in this model fall into four main categories: (1) MARGINAL STA-
TIsTICS: the marginal distribution of luminance in the image (i.e.,
mean, variance, skew, and kurtosis as well as skewness and kurtosis
of the low-pass image); (2) LUMINANCE AUTOCORRELATION (as a
proxy for the detection of periodic structures in the stimulus); (3)
MAGNITUDE STATISTICS: the correlations of the magnitude of the
responses of oriented wavelets across differences in orientation,
neighboring positions, and scales (to capture simple structures in
the image such as lines, edges, corners, and junctions); and (4)
PHASE STATISTICS: phase correlation across scales (in order to
capture the alignment of phase structure in local features).

Hmax

The Hmax model of object recognition combines a hierarchical
build-up of invariance and complexity (inspired by Fukushima,
1980) with the idea of view-based recognition of 3D objects
(Riesenhuber and Poggio, 1999, 2000). Here we used the extended
model described by Serre et al. (2007b,c). Over the years, several
related hierarchical models have been developed (Mel, 1997; Wallis
and Rolls, 1997; LeCun et al., 1998; Riesenhuber and Poggio, 1999;
Ullman etal., 2002; Amit and Mascaro, 2003; Wersing and Koerner,
2003; Masquelier and Thorpe, 2007; Mutch and Lowe, 2008; Jar-
rett et al., 2009; Pinto et al., 2011; Saxe et al., 2011). We here focus

*http://www.cns.nyu.edu/lcv/texture/

on the Hmax because the underlying parameters of the archi-
tecture were explicitly derived from available neuroscience data.
This system-level computer model seems consistent with monkey
electrophysiological data in different cortical areas of the ventral
visual pathway (Serre et al., 2007a) as well as human behavioral
data during rapid categorization tasks with natural images (Serre
et al., 2007b). These findings suggested that bottom-up processes
may provide a satisfactory description of the very first pass of
information in the visual cortex.

Here, we used the GPU implementation developed by Mutch
et al. (2010), with the default parameters of the Hmax demo with
the exception of the number of orientations and scales that were
set to 8 (to better match the parameters of the other models). The
dictionary was learned/extracted on a pre-training set of 128 nat-
ural images (different from the ones used for the training and test
of the recognition stage). Here we used 2,048 C; and C, features
selected at random. All 2,048 C, and 1,024 C3 features were used.

SpatialPyr

This state-of-the-art computer vision system (Lazebnik et al., 20065
Yang et al., 2009, 2010; Boureau et al., 2010a; Gao et al., 2010; Wang
etal.,2010; Zhou etal.,2010) provides a useful baseline for the bio-
logically inspired models described above. The approach is based
on increasingly fine sub-divisions of an image into partitions and
the computation of local features histograms within these sub-
regions. The resulting spatial pyramid has been shown to provide
a simple and computationally efficient representation as demon-
strated by the high-level of performance of the system on several
image classification tasks (Lazebnik et al., 2006; Yang et al., 2009,
2010; Boureau et al., 2010a; Gao et al., 2010; Wang et al., 2010;
Zhou et al., 2010).

5.2. IMAGE DATABASE

Here we consider the animal and non-animal dataset from the
study by Serre et al. (2007a). The dataset contains 1,200 images
(600 animals and 600 non-animals). As a pre-processing step,
images were converted to grayscale and resized to be 256 x 256.
Two of the computational models tested (TExTon and Hmax)
required the learning of a dictionary of features. As done in Serre
etal. (2007a), we considered an additional set of 128 natural images
containing various categories (from animals and vehicles to land-
scapes and human faces) specifically for the extraction of features
and the learning of codebooks in these two models.

53. HUMAN DATA

Here we compare the models presented above to the human
behavioral data collected by Serre et al. (2007b). In this rapid cat-
egorization task, the images were flashed for 20 ms on the screen,
followed by a blank screen for 30 ms, and then a mask appeared for
80 ms (the Stimulus Onset Asynchrony was thus 50 ms). The par-
ticipants had to respond as quickly as possible, indicating whether
they saw an animal or a distractor image by pressing one of two
keys (see Serre et al., 2007b) for a more detailed description. A
total of twenty-four human observers participated in the origi-
nal study. Two of the participants were excluded because of their
overall poor level of performance.
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5.4 CLASSIFICATION

To assess the diagnosticity of the various visual features described
above for the categorization of animal and non-animal images, a
linear Support Vector Machine (SVM) classifier was used (Fan
et al., 2008, LIBLINEAR 1.7). The procedure runs as follow:
First, the 1,200 image from the animal/non-animal database were
equally split in a training set and a test set that contains an equal
proportion of target (300) and distractor images (300). Second,
an optimal cost parameter C was determined through line search
optimization using 8-fold cross-validation on the training set of
images. An SVM classifier was then trained and tested on the vari-
ous types of features (the exact number of features used depended
on the type of models considered, see above). For each model,
the reported results correspond to the average performance (and
corresponding 95% confidence intervals) using a cross-validation
procedure (n=40) whereby different training and test sets were
selected each time at random.

55 INVARIANCE TEST

Here we considered the database of images used in Konkle and
Oliva (2011) containing 100 isolated real-world objects. Features
were extracted from all images at seventeen different scales and

the middle scale was selected as reference. For each object and
computational model, we computed a “tuning curve” based on
the correlation between the feature vector obtained for the refer-
ence scale and the feature vector obtained for all remaining scales
for the same object. We also computed a “distractor curve” based
on the maximum correlation between the feature vector obtained
for the reference object at the reference scale with all remain-
ing (distractor) objects at the same reference scale (see Logothetis
and Pauls, 1995 for details). A ¢-test (Two-sample, False Detection
Rate correction for multiple comparison, « corrected from 0.05 to
0.024) was performed at every scale in order to compare the val-
ues obtained for the “tuning curve” and for the “distractor curve.”
This allows to obtain the “tuning width” of the representation
(thick black bar on Figure 7).
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