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Emotion-cognition interactions are critical in goal-directed behavior and may be disrupted in
psychopathology. Growing evidence also suggests that emotion-cognition interactions are
modulated by genetic variation, including genetic variation in the serotonin system. The goal
of the current study was to examine the impact of threat-related distracters and serotonin
transporter promoter polymorphism (5-HTTLPR/rs25531) on cognitive task performance
in healthy females. Using a novel threat-distracter version of the Multi-Source Interfer-
ence Task specifically designed to probe emotion-cognition interactions, we demonstrate
a robust and temporally dynamic modulation of cognitive interference effects by threat-
related distracters relative to other distracter types and relative to no-distracter condition.
We further show that threat-related distracters have dissociable and opposite effects on
cognitive task performance in easy and difficult task conditions, operationalized as the level
of response interference that has to be surmounted to produce a correct response. Finally,
we present evidence that the 5-HTTLPR/rs25531 genotype in females modulates sus-
ceptibility to cognitive interference in a global fashion, across all distracter conditions, and
irrespective of the emotional salience of distracters, rather than specifically in the presence
of threat-related distracters. Taken together, these results add to our understanding of the
processes through which threat-related distracters affect cognitive processing, and have
implications for our understanding of disorders in which threat signals have a detrimental

effect on cognition, including depression and anxiety disorders.
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INTRODUCTION

The ability to successfully carry out a task despite interference from
task-irrelevant stimuli is a crucial requirement for goal-directed
behavior. According to accepted models of selective attention
and cognitive-control, task-irrelevant stimuli interfere with cog-
nitive task performance by competing with task-relevant stimuli
for attentional and response-selection resources (Desimone and
Duncan, 1995; Miller and Cohen, 2001). However, the impact
of distracters on task performance — or conversely, our ability to
resist interference from these distracters — can vary considerably,
depending on the attributes of the distracters and the attributes of
the task itself (Lavie, 2005), as well as on individual differences in
susceptibility to various distracters.

Critically, with respect to distracter attributes, such interference
can come from both neutral and emotionally salient stimuli, high-
lighting the fact that emotional and cognitive processes are closely
interrelated, giving rise to complex and bidirectional emotion-
cognition interactions (Davidson, 2003; Blair et al., 2007). In
particular, if neutral distracters impair task performance, threat-
related distracters should be even more effective in high-jacking
attention and interfering with the task at hand due to the

preferential processing of threat stimuli over non-threat stimuli
in the brain. This rapid and automatic processing of threat signals
is possible because the amygdala receives threat-related informa-
tion through a fast subcortical pathway as well as through a slower
cortical route (Romanski and LeDoux, 1992; Morris et al., 1999),
a finding supported by functional neuroimaging studies show-
ing that the amygdala responds to threat stimuli that are outside
of attentional focus or conscious awareness (Whalen et al., 1998;
Vuilleumier et al., 2001). From an evolutionary perspective, in
humans as in many other species, such preferential processing of
potential threat signals serves the adaptive function of facilitat-
ing rapid threat detection and fight-or-flight responses essential
for survival (Ohman and Mineka, 2001). However, although sup-
ported by some studies (Vuilleumier et al., 2001; Dolcos and
McCarthy, 2006; Blair et al., 2007; Mitchell et al., 2008), such
increased distractability by threat-related distracters relative to
neutral distracters in behavioral measures has not been consis-
tently demonstrated in healthy subjects (Bar-Haim et al., 2007),
suggesting that additional modulatory factors may be at play.
Neuroimaging evidence also suggests that the effects of threat
distracters on interference processing may dynamically change
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over the time-course of the task, because the amygdala response to
threat stimuli is temporally dynamic due to both habituation and
regulation processes. Salient or novel stimuli initially elicit a strong
neural and behavioral response, because they may signal threat or
reward, and are thus potentially important to the organism’s sur-
vival. Habituation refers to a diminished reactivity to a specific
stimulus or stimulus class following repeated presentation with
no important consequences for the organism, and it is believed
to serve an adaptive function of preserving cognitive and behav-
ioral resources and allowing continuous vigilance (Wright et al.,
2001). Growing evidence from neuroimaging studies in humans
shows that the amygdala habituates to repeatedly presented threat
stimuli both in healthy individuals (Breiter et al., 1996; Whalen
et al., 1998; Wright et al., 2001) and in patients with anxiety dis-
orders such as post-traumatic stress disorder (Shin et al., 2005).
In addition, neuroimaging studies of emotion regulation show
a decrease in amygdala response to threat-related stimuli when
human subjects actively regulate their emotional response using
cognitive-control strategies such as reappraisal, distraction, or sup-
pression (Ochsner et al.,2002; Phan et al., 2005; Eippert et al., 2007;
Kim and Hamann, 2007; Wager et al., 2008; McRae et al., 2010),
and convergent results have been obtained in animals in the con-
text of fear extinction (Quirk and Beer, 2006; Hartley and Phelps,
2010). This temporally dynamic character of amygdala response
to threat stimuli may also be a factor modulating threat-distracter
effects on cognitive task performance.

Another important factor that may modulate — or obscure —
threat-distracter effects on cognitive task performance is the diffi-
culty level of the task itself. For instance, high perceptual load has
been shown to decrease distracter effects relative to low percep-
tual load for neutral distracters (Rees et al., 1997), although salient
distracters such as images of human faces appear to escape this
modulation (Lavie et al., 2003). In contrast, high cognitive load
increases distracter effects relative to low cognitive load (Lavie,
2005). In particular, a task that is too easy to perform may not
allow detection of threat-distracter effects due to ceiling effects in
performance, an issue particularly relevant to studies of healthy
adults. Ideally, therefore, the impact of threat distracters should be
investigated and compared in two different task conditions vary-
ing in difficulty, or in the level of cognitive demand required to
successfully perform the task.

Finally, growing evidence suggests that common genetic vari-
ation in the serotonin system modulates both emotional reactiv-
ity and cognitive processing in the human brain, and may also
modulate the impact of threat distracters on cognitive task perfor-
mance. Serotonin, or 5-hydroxytryptamine (5-HT), is known to
be involved in a range of behavioral control processes (Cools et al.,
2008,2011; Dayan and Huys, 2009). Serotonergic neurons densely
innervate the anterior cingulate cortex (ACC), ventromedial pre-
frontal cortex (VMPEC), and the amygdala (Hensler, 2006), the
key brain circuits involved in resolving interference (Carter et al.,
1999) as well as integrating emotional and cognitive influences
on behavior (Barbas, 2000; Bechara et al., 2000). Importantly,
the serotonin transporter gene (SLC6A4) contains a well-studied
promoter polymorphism (5-HTT-linked polymorphic region, or
5-HTTLPR; Heils et al., 1996). The short (S) allele, consisting of 14
repeats, has been associated with decreased transporter expression

and decreased 5-HT uptake in vitro, compared to the long (L)
allele with 16 repeats (Heils et al., 1996; Lesch et al., 1996). In
addition,an A — G single nucleotide polymorphism (SNP) within
the 5-HTTLPR (rs25531) produces Ly and L alleles, with the Lg
allele being functionally equivalent to the S allele (Hu et al., 2006).
With respect to emotional and stressor reactivity, the S allele has
been associated with higher measures of anxiety-related personal-
ity traits such as neuroticism (Lesch et al., 1996; Sen et al., 2004)
and with an increased attentional bias to negative emotional stim-
uli such as images of spiders (Osinsky et al., 2008) relative to the
L allele. The S allele has also been linked to a greater suscepti-
bility to depression, depressive symptoms and suicide following
adverse early-life experiences or stressful life events in adulthood
(Caspi et al., 2003; Eley et al., 2004; Kendler et al., 2005; Taylor
et al., 2006; Zalsman et al., 2006), findings supported by a recent
meta-analysis (Karg et al., 2011, although see Risch et al., 2009).
Converging evidence from neuroimaging studies shows that the
S or Lg allele carriers display a heightened amygdala response to
threat stimuli (Hariri et al., 2002, 2005; Dannlowski et al., 2007,
2010; Munafo et al., 2008) and an increased functional connectiv-
ity between the amygdala and VMPFC during the processing of
threat stimuli (Heinz et al., 2005; Pezawas et al., 2005; Friedel et al.,
2009), relative to the L/L or Lo/La group.

Growing evidence also suggests that the 5-HTTLPR/rs25531
modulation extends to cognitive processes (Homberg and Lesch,
2010). Although improved cognitive function in the S or Lg
allele carriers relative to L/L or Ly/Ly homozygotes has also been
reported (Roiser et al., 2007; Borg et al., 2009), a majority of stud-
ies have shown that the S or Lg allele is associated with a relative
impairment in cognitive task performance relative to the L or Ly
allele (da Rocha et al., 2008; Holmes et al., 2010), including dose
effects of the SLg allele on disadvantageous choices in the Iowa
Gambling Task (Homberg et al., 2008) and on impulsive respond-
ing in the Continuous Performance Task (Walderhaug et al., 2010,
although see Lage et al., 2011). Studies of 5-HTTLPR/rs25531
modulation of cognitive interference effects remain few in number.
Using a simple flanker interference task, one group (Holmes et al.,
2010) reported altered post-error behavioral adjustments in the
S or Lg carriers relative to the Ly/La group, while another larger
study (Olvet et al., 2010) found no effect of 5-HTTLPR/rs25531
genotype on task performance. However, both studies may have
been hindered by ceiling effects in task performance, making subtle
genetic effects difficult to detect.

In the current study, we employed a novel and demanding
threat-distracter version of the Multi-Source Interference Task
(MSIT; Bush and Shin, 2006) in healthy females genotyped for the
5-HTTLPR/rs25531 promoter polymorphism, in order to examine
the impact of threat-related distracters and 5-HTTLPR/rs25531
genotype on cognitive task performance. Based on previous stud-
ies (Vuilleumier et al., 2001; Dolcos and McCarthy, 2006; Blair
et al., 2007; Mitchell et al., 2008, although see Bar-Haim et al,,
2007), we hypothesized that threat distracters would potenti-
ate interference effects relative to other distracter types and
relative to a no-distracter condition. With respect to genetic
effects, the simplest model is that functional variants affect gene
transcription and protein function in a dose-dependent manner,
without dominance, and this model is supported by some evidence
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for additive effects of the SLg allele on cognitive task perfor-
mance (Homberg et al., 2008; Walderhaug et al., 2010) as well
as on reactivity to environmental adversity (Caspi et al., 2003).
Although non-additive effects have also been reported (Kendler
et al., 2005), these reports have not been consistent and may be
due to ceiling effects in measurement. Therefore, we expected
that the SLg allele of 5-HTTLPR/rs25531 would increase inter-
ference effects in a dose-dependent or additive manner, such that
the effect of genotype on interference would follow a specific
order: Ly/La <La/SLg < SLG/SLg. We further tested two com-
peting hypotheses about the scope of 5-HTTLPR/rs25531 effects
on cognitive task performance. Specifically, genetic effects could
be present exclusively in the threat-distracter condition, or alter-
natively, genetic effects could extend to all distracter conditions,
irrespective of emotional salience of distracters. We also tested
whether the effects of threat distracters change over the time-
course of the task, and whether these effects are modulated by
task difficulty. We expected that threat distracter effects would
decrease over time due to habituation and regulation processes,
and that the effects of threat distracters would be greater in the
more difficult incongruent task condition compared to the easier
congruent task condition.

MATERIALS AND METHODS

SUBJECTS

Seventy-one healthy, right-handed Caucasian females aged 18—
34 years (M = 23.0 years, SD = 4.0 years) participated in the study.
All subjects had normal or corrected-to-normal vision. Exclusion
criteria included any serious medical condition, head injury or
trauma, lifetime diagnosis of psychiatric illness, current use of a
psychoactive medication, and smoking. Only females were stud-
ied at this stage, in order to maximize the power to detect genetic
modulation of threat-distracter effects in light of prior evidence
of interactions between sex hormones and serotonin transporter
gene variation on threat reactivity (Josephs et al., 2012), as well as
sex differences in the serotonin system (Jovanovic et al., 2008) and
in the processing of emotional stimuli in the brain (Klein et al.,
2003; Wrase et al., 2003). The study was approved by the University
of Michigan Medical School IRB and all subjects provided written
informed consent.

TASK: THREAT-DISTRACTER MSIT

We employed a modified version of the MSIT (Bush et al,
2003; Bush and Shin, 2006). The MSIT is a validated response-
interference paradigm which combines the sources of interference
from Erikson, Stroop, and Simon tasks, in order to maximally tax
the interference processing associated with the ACC (Bush et al,,
2003). The MSIT has been shown to produce a robust and tempo-
rally stable interference effect both in reaction times (RTs) and in
accuracy (Bush et al., 2003).

In the MSIT, subjects were presented with a set of three num-
bers from 0 to 3, one of which was different from the other two (the
oddball number). Subjects were instructed to indicate the identity
of the oddball number with a corresponding key press: a key press
with the index finger if the oddball number was “1,” with the mid-
dle finger if the oddball number was “2,” and with the ring finger
if the oddball number was “3.” On congruent trials, the identity of

the oddball number corresponds to its location and the other two
numbers are 0’s, not related to any valid key press response. On
incongruent trials, the identity of the oddball number is incon-
gruent with its position and the other two numbers are related
to competing key press responses, resulting in stimulus-response
incompatibility and response interference. The incongruent condi-
tion vs. congruent condition contrast yields the interference effect
in RTs (Incongruent RT — Congruent RT) and interference effect
in accuracy (Congruent Accuracy — Incongruent Accuracy).

We modified the MSIT to include three categories of task-
irrelevant flanker distracters, threat, neutral, and scrambled, in
addition to the null distracter condition. Threat distracters were
images of human faces signaling the presence of a threat (angry
or fearful expression). To isolate the effects specific to emotionally
salient stimuli, we included neutral distracters (images of human
faces with neutral expression), and scrambled distracters (images
retaining the basic oval shape of a face but no facial features). Face
stimuli were carefully selected from standardized sets (Ekman and
Friesen, 1976; Gur et al., 2002; Tottenham et al., 2009). Angry and
fearful faces displayed intense emotion and showed bared teeth
and/or open mouth as an additional perceptual homogeneity crite-
rion. In contrast, all neutral faces had closed mouths. All faces were
Caucasian, to optimally control for potential sources of variability
in emotional responses. All images were presented in grayscale,
with hair and background cropped to yield an oval shape. Scram-
bled distracters were generated from the human face stimuli used
in the other two distracter conditions by randomly rearranging
the pixels within the oval while preserving the brightness of the
image.

EXPERIMENTAL PROTOCOL

A timeline of events in a single trial is shown in Figure 1. The
MSIT stimuli and two identical flanking distracter images were
presented simultaneously for 500 ms, followed by a black screen
for 1000 ms, and then a fixation cross for another 500 ms. The
durations of these three events added up to the overall response
limit of 2000 ms. A black screen presented for 100 ms separated
two consecutive trials. Subjects were instructed to respond as fast
and as accurately as they could. The task stimuli were presented
and the key press responses collected using E-Prime 2.0.

After a self-timed tutorial in the task and a short practice
run, subjects completed a total of 640 trials, divided into 2 runs,
four blocks per run, 80 trials per block. A short intermission
separated run 1 (blocks 1-4, a total of 320 trials) from run 2
(blocks 5-8, a total of 320 trials). The order of the trials was
pseudo-randomized within each block, with the provision that
no two consecutive trials (1) had the same correct response or
(2) both included threat distracters. Each block lasted approxi-
mately 3 min and consisted of 40 congruent and 40 incongruent
trials. Within the sets of 40 congruent and 40 incongruent trials,
10 trials included threat distracters (five angry faces, three female,
two male or two female, three male; and five fearful faces, three
female, two male or two female, three male), 10 trials included
neutral distracters (five female, five male), 10 trials included scram-
bled distracters, and 10 trials were no-distracter trials (i.e., with
MSIT stimuli only). The whole experiment lasted approximately
30 min.
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Trial 1
MSIT: Congruent
Distracter: Neutral

MSIT/Distracter \\J

FIGURE 1 | The anatomy of a trial in threat-distracter MSIT. The
MSIT stimuli and two identical flanking distracter images were
presented simultaneously for 500 ms, followed by a black screen
for 1000 ms, and then a fixation cross for another 500 ms. The

500 ms I~ o L -9 MSIT: Incongruent
Black Screen N "?,’ Distracter: Threat
1000 ms t <
Fixation
S~ 500 ms
Trial1 T~ ~ Black Screen
Overallresponse ~ ~ _ 100 ms
limit: 2000 ms RN MSIT/Distracter

500 ms

N

Trial 2

Black Screen

1000 ms
Fixation
500 ms

durations of these three events added up to the overall response
limit of 2000 ms. A black screen (100 ms) separated two
consecutive trials. Face images reproduced with permission from
Gur et al. (2002).

GENOTYPING OF 5-HTTLPR/rs25531

Genomic DNA was obtained from saliva using the Oragene
saliva collection system and extracted using the protocol provided
(Genotek, Ontario, Canada). The extracted DNA samples were
genotyped for 5-HTTLPR and rs25531 in two steps, according
to Wendland et al. (2006). In the first step, the 5-HTTLPR was
amplified via polymerase-chain reaction (PCR) using site-specific
forward and reverse primers, yielding “short” (14-repeat, 375 bp)
and “long” (16-repeat, 419 bp) products. In the second step, the
PCR product from the first step was digested with Hpa II restric-
tion enzyme to genotype the A — G SNP (rs25531) by identifying
Lg (305bp) and Ly alleles. All PCR products were visualized via
gel electrophoresis on a 3% agarose gel using ethidium bromide
under ultraviolet (UV) light.

STATISTICAL ANALYSES

The data were analyzed in a series of steps using repeated-measures
Analysis of Variance (ANOVA), correlations, and #-tests as imple-
mented in SPSS 19.0. We used two behavioral indices of task
performance as dependent variables, RTs on correct trials and
accuracy rates. The MSIT interference effects (congruent vs. incon-
gruent) in RTs and in accuracy were used as a global measure
of the efficiency of interference processing, with greater interfer-
ence effects indicating less efficient interference resolution. We
conducted two separate 4 x 2 x 3 repeated-measures ANOVAs —
one on interference effects in accuracy and one on interference
effects in RTs — with distracter type (four levels: threat-related,
neutral, scrambled, or null) and run (two levels: pre-intermission

run 1 or post-intermission run 2) as within-subject factors, and
5-HTTLPR/rs25531 genotype (three levels: 0 SLg alleles, 1 SLg
alleles, or 2 SLg alleles) as a between-subject factor. Because we
conducted two separate ANOVAs, we used a Bonferroni-corrected
p value of 0.025 as our statistical threshold for the ANOVA results.
The t-tests and Pearson’s correlations are two-tailed unless stated
otherwise.

RESULTS

FINAL SAMPLE

Out of the 71 healthy female subjects who participated in the
study, the data from the final sample of 69 subjects were ana-
lyzed and are reported below. The data from two subjects were
excluded from analysis due to concerns about task compliance
and performance accuracy. One subject did not follow the task
instructions and responded to the position of the oddball num-
ber rather than to its identity (M = 0.05 accuracy on incongruent
trials), an occurrence reported in approximately 5% of partici-
pants in prior work using the original version of the MSIT (Bush
and Shin, 2006). Another subject had a mean accuracy of 0.34 on
incongruent trials, corresponding to a chance level of responding
in a three-choice task.

GENOTYPING RESULTS

We observed the following 5-HTTLPR genotype counts (and
frequencies): 25 (0.35) L/L homozygotes, 35 (0.49) L/S het-
erozygotes, and 11 (0.16) S/S homozygotes (Table 1). The
observed genotype frequencies did not deviate from the
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Table 1| Distribution of 5-HTTLPR and 5-HTTLPR/rs25531 alleles and genotypes.

5-HTTLPR genotype count (frequency)

5-HTTLPR allele count (frequency)

L/L L/S S/S L S

25 (0.35) 35 (0.49) 11 (0.16) 85 (0.60) 57 (0.40)
5-HTTLPR/rs25531 genotype count (frequency) 5-HTTLPR/rs25531 allele count (frequency)

Func L/L Func L/S Func S/S Func L Func S

23(0.32) 36 (0.51) 12 (0.17) 82 (0.58) 60 (0.42)

La/La La/Lg La/S Lg/Lg Lg/S S/S La Lg S

23(0.32) 2(0.03) 34 (0.48) 0 1(0.01) 11 (0.16) 82 (0.58) 3(0.02) 57 (0.40)

S allele and L allele are denoted as functional S alleles.

Hardy-Weinberg Equilibrium (x?=0.047, p = 0.828). The com-
bined 5-HTTLPR/rs25531 functional genotypes were grouped as
follows: 23 (0.32) subjects were La/La, 36 (0.51) subjects were
LA/LGS (2 La/Lg and 34 La/Sa ), and 12 (0.17) subjects were S/S (1
Lg/Sand 11 S/S). SLg denoted S or Lg allele (Table 1). Neither the
5-HTTLPR genotype groups nor the 5-HTTLPR/rs25531 geno-
type groups differed in age, education, or socio-economic status
(Table 2).

BEHAVIORAL RESULTS

Robust MSIT interference effects across all distracter conditions
Consistent with previous reports (Bush et al., 2003; Bush and Shin,
2006), we observed a robust and highly significant MSIT interfer-
ence effect (i.e., a main effect of congruency) in both measures of
task performance. Overall, subjects were significantly less accurate
in the incongruent condition compared to the congruent con-
dition (congruent accuracy, M =0.993, SE=0.001; incongruent
accuracy, M =0.838, SE =0.016; interference effect in accuracy,
M =0.158, SE=0.015; F(1, 66) = 107.290, p < 0.0001, partial eta
squared = 0.619), and they were also significantly slower to cor-
rectly respond in the incongruent condition compared to the
congruent condition (congruent RT, M =492 ms, SE=11ms;
incongruent RT, M = 710 ms, SE = 16 ms; interference effect in RT,
M =218 ms, SE=9 ms; F(1,66) =579.179, p < 0.0001, partial eta
squared = 0.898).

The interference effects were robust and highly signifi-
cant in all four distracter conditions (all p’s <0.0001, paired-
sample t-tests). The accuracy results per distracter condi-
tion are summarized in Table 3 and the RT results per dis-
tracter condition are summarized in Table 4. In addition,
the interference effect on accuracy was significant in both
runs (run 1, M =0.192, SE=10.017; #(68) =11.077, p < 0.0001;
run 2, M=0.124, SE=0.013; ¢(68)=9.993, p<0.0001),
although it significantly diminished from run 1 to run 2,
t(68)=7.319, p<0.0001, as also indicated by a significant
two-way interaction between congruency and run on accu-
racy, F(1, 66) =72.882, p <0.0001, partial eta squared = 0.525.
The interference effect in RTs was also significant in both
runs (run 1, M =221 ms, SE=9 ms; #(68) =26.795, p < 0.0001;

Table 2 | Demographic profiles of the 5-HTTLPR and
5-HTTLPR/sr25531 genotype groups.

S/S(n=11) S/L(n=33) L/L(n=25) ¥2(p value)

5-HTTLPR GENOTYPE

Age 22.36+350 2239+4.10 24.08+4.18 19.97 (0.793)

(years)

Education 15.64+220 1555+260 15.96+1.93 19.51 (0.361)

(years)

SES 2.18+£0.60 2.30+0.53 2.244+0.44 6.56 (0.363)
SLg/SLg SLg/La La/La x? (p value)
(n=12) (n=34) (n=23)

5-HTTLPR/rs25531 GENOTYPE

Age 22.17+£3.41 2238+4.02 2435+4.25 1767 (0.887)

(years)

Education 1560+2.15 15.56+2.56 16.04+2.00 18.64 (0.415)

(years)

SES 2.17+0.58 2.29+0.52 2.264+0.45 5.88 (0.436)

Means and standard deviations are given. No group differences in age, education,
or socio-economic status (SES) were found, as assessed with a chi-square (x?)
test.

run 2, M =216ms, SE=9ms; #(68)=25.463, p<0.0001),
and did not change significantly from run 1 to run 2,
t(68) =1.496, p=0.139. These results confirmed that MSIT
produced a robust behavioral difference between the easier
congruent condition and the more difficult incongruent con-
dition, which persisted across all distracter conditions and
across time.

Threat distracters potentiate MSIT interference effects

Next, we examined whether threat-related distracters potenti-
ated MSIT interference effects. As hypothesized, the ANOVA on
interference effects yielded robust and significant main effects
of distracter type on interference effects both in accuracy,
F(3, 64)=7.803, p <0.0001, partial eta squared=0.268, and
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Table 3 | Summary of accuracy data.

Distracter type

Accuracy (proportion accurate)

MSIT condition MSIT interference effect
Congruent Incongruent Mean t p value
Threat 0.995 (0.013) 0.839 (0.121) 0.156 (0.117) 11.002 <0.0001
Neutral 0.993 (0.014) 0.844 (0.126) 0.149 (0.121) 10.297 <0.0001
Scrambled 0.996 (0.009) 0.834 (0.125) 0.161 (0.120) 11.193 <0.0001
Null 0.990 (0.015) 0.856 (0.117) 0.134 (0.110) 10.177 <0.0001
Means and standard deviations (in parentheses) are given, together with t statistics and p values for paired-sample t-tests (n= 69).
Table 4 | Summary of RT data.
Distracter type RT (ms)
MSIT condition MSIT interference effect
Congruent Incongruent Mean t p value
Threat 486 (82) 710 (116) 224 (72) 26.048 <0.0001
Neutral 489 (81) 711 (118) 222 (70) 26.272 <0.0001
Scrambled 489 (87) 714 (117) 225 (71) 26.236 <0.0001
Null 495 (84) 701 (116) 205 (64) 26.781 <0.0001

Means and standard deviations (in parentheses) are given, together with t statistics and p values for paired-sample t-tests (n= 69).

in RTs, F(3, 64) =6.309, p=0.001, partial eta squared =0.228.
Convergent results were obtained from the ANOVA on accu-
racy and RTs, which indicated a significant two-way interac-
tion between congruency and distracter type both on accuracy,
F(3, 64) =6.465, p=10.001, partial eta squared =0.233, and on
RTs, F(3, 64)=8.030, p <0.0001, partial eta squared =0.273.
The overall interference effects in accuracy per distracter
condition are given in Table 3 and the overall interfer-
ence effects in RTs per distracter condition are given in
Table 4. The interference effects in accuracy in the threat-
distracter condition were significantly greater than in the no-
distracter condition, ¢(68) = 3.415, p = 0.001, but not significantly
greater than in the neutral-distracter condition, ¢(68) =0.964,
p =0.338, or in the scrambled-distracter condition, #(68) = 1.017,
p=0.313. Similarly, the interference effects in RTs were sig-
nificantly greater with threat distracters present compared
to with no distracters present, #(68)=6.308, p <0.0001, but
not significantly different compared to neutral distracters,
t(68) =0.710, p = 0.480, or scrambled distracters, #(68) =0.211,
p=0.833. Overall, interference effects in accuracy were sig-
nificantly greater in the presence of distracters compared
to the no-distracter condition (with distracters: M =0.155,
SE =0.014; no distracters: M =0.134, SE=10.013; ¢(68) = 4.056,
p <0.0001). Similarly, interference effects in RTs were sig-
nificantly greater in the presence of distracters compared
to the no-distracter condition (with distracters: M =220 ms,
SE = 8 ms; no distracters: M =205 ms, SE =8 ms; #(68) = 5.390,
p <0.0001).

Threat-distracter effects on MSIT interference effects are transient
Overall, there was a robust and highly significant main effect
of run both on accuracy [F(1, 66) =68.309, p < 0.0001, partial
eta squared = 0.509] and on RTs [F(1, 66) = 104.982, p < 0.0001,
partial eta squared =0.614]. The overall accuracy in run 1 was
M =0.903, SE = 0.009, whereas in run 2 it significantly increased
to M =0.936, SE =0.006, 1(68) =7.249, p < 0.0001. The overall
RT in run 1 was M = 625 ms, SE = 13 ms, whereas in run 2 it sig-
nificantly decreased to M =574 ms, SE=10ms, ¢(68) =11.708,
p < 0.0001.In addition, there was a significant two-way interaction
between distracter type and run on interference effects in accuracy,
F(3,64) =4.290, p = 0.008, partial eta squared = 0.167,and in RTs,
F(3, 64) =11.932, p < 0.0001, partial eta squared = 0.359. These
data are summarized in Table 5 (accuracy) and Table 6 (RTs) and
graphically shown in Figure 2A (accuracy) and Figure 2B (RTs).
We also examined how the effects of threat distracters on
MSIT interference effects changed over time. In run 1, threat
distracters potentiated the interference effects in accuracy rela-
tive to neutral distracters, £(68) = 3.03, p = 0.004, scrambled dis-
tracters, t(68) =1.74, p=0.09, and no distracters, ¢(68) =3.73,
p <0.0001 (Figure 2A). In contrast, in run 2 (following the
intermission), the interference effects in accuracy elicited by
threat distracters appeared to be lower than those elicited by
neutral distracters, ¢(68)=—1.78, p=0.08, or scrambled dis-
tracters, t(68) = —3.24, p = 0.002, and comparable to the interfer-
ence effects observed in the no-distracter condition. Interestingly,
examining congruent and incongruent trials separately revealed
that threat distracters had dissociable and opposite effects on
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Table 5 | Summary of accuracy data (in proportion accurate) in run 1 and run 2.

Distracter type Run 1 Run 2
MSIT condition MSIT interference effect MSIT condition MSIT interference effect
Congruent Incongruent Congruent Incongruent
Threat 0.996 (0.002) 0.788 (0.021) 0.213 (0.020) 0.994 (0.002) 0.884 (0.013) 0.113 (0.013)
Neutral 0.991 (0.002) 0.808 (0.020) 0.184 (0.019) 0.996 (0.002) 0.865 (0.015) 0.136 (0.015)
Scrambled 0.993 (0.002) 0.798 (0.019) 0.196 (0.018) 0.997 (0.001) 0.860 (0.016) 0.141 (0.015)
Null 0.982 (0.004) 0.809 (0.020) 0.173 (0.018) 0.997 (0.001) 0.895 (0.014) 0.103 (0.014)
Means and standard errors (in parentheses) are given.
Table 6 | Summary of RT data (in ms) in run 1 and run 2.
Distracter type Run 1 Run 2
MSIT condition MSIT interference effect MSIT condition MSIT interference effect
Congruent Incongruent Congruent Incongruent
Threat 502 (12) 739 (18) 238 (11) 474 (10) 682 (14) 208 (10)
Neutral 516 (13) 734 (17) 217 (10) 465 (9) 689 (15) 224 (10)
Scrambled 513 (13) 737 (17) 224 (10) 471 (10) 689 (15) 219 (10)
Null 528 (13) 733 (17) 204 (8) 682 (14) 674 (15) 211 (10)

Means and standard errors (in parentheses) are given.

accuracy in congruent and incongruent trials across time. As
expected, in run 1, subjects were less accurate on the more dif-
ficult incongruent trials in the presence of threat distracters than
in the presence of neutral distracters, #(68) = —2.231, p=0.029,
or null distracters, t(68) = —2.379, p =0.020, although not rela-
tive to scrambled distracters, #(68) = —1.203, p = 0.233. However,
this relationship was reversed in run 2, and subjects appeared
more accurate on incongruent trials with threat distracters rel-
ative to neutral distracters, +(68) =1.615, p=0.111, or scram-
bled distracters, #(68) =3.010, p=0.004, although not different
in accuracy compared to incongruent trials with no distracters
present, ¢t(68) =—0.967, p=0.337. In addition, and unexpect-
edly, in run 1, subjects were actually more accurate on the easy
congruent trials in the presence of threat distracters relative to
neutral distracters, #(68) =2.013, p = 0.048, and relative to no dis-
tracters, t(68) = 3.570, p =0.001, although not relative to scram-
bled distracters, £(68) = 0.479, p = 0.638. In run 2, these apparent
performance-enhancing effects of threat distracters were abol-
ished, and subjects’ accuracy on congruent trials in the presence
of threat distracters did not significantly differ from their accuracy
in the presence of neutral distracters, #(68) = —0.397, p =0.693,
scrambled distracters, 1(68) = —1.413, p = 0.162, or no distracters,
1(68) =—1.383, p=0.171.

The results were similar for RTs (Figure 2B). In run 1, threat
distracters potentiated the interference effects in RTs relative
to neutral distracters, (68) =4.31, p <0.0001, scrambled dis-
tracters, #(68) =2.38, p=0.020, and no distracters, ¢(68) =7.36,
p <0.0001. In contrast, in run 2 (following the intermission),

the interference effects in RTs observed in the threat-distracter
condition were lower than in the presence of neutral dis-
tracters, 1(68)=—3.87, p<0.0001, or scrambled distracters,
t(68) = —3.28, p=0.002, and comparable to the no-distracter
condition. As described above for accuracy, threat distracters
appeared to have dissociable and opposite effects on the speed
of correct responses in congruent and incongruent trials across
time. As might be expected, in run 1, subjects were somewhat
slower to correctly respond on the more difficult incongruent
trials in the presence of threat distracters than in the presence
of neutral distracters, #(68) = 1.626, p =0.108, or no distracters,
t(68) =2.595, p=10.012, although not relative to scrambled dis-
tracters, t(68) = 0.407, p = 0.685. This relationship was reversed in
run 2, in which subjects were somewhat faster to correctly respond
on incongruent trials with threat distracters relative to neutral
distracters, #(68) =—1.987, p=0.051, or scrambled distracters,
t(68) = —2.776, p = 0.007, although still somewhat slower to cor-
rectly respond than on incongruent trials with no distracters
present, t(68) = 1.847, p = 0.069. In addition, and again unexpect-
edly, in run 1, subjects were actually faster to accurately respond
on the easy congruent trials in the presence of threat distracters
relative to neutral distracters, #(68) = —5.702, p < 0.0001, scram-
bled distracters, ¢(68) = —3.848, p <0.0001, or no distracters,
t(68) = —8.615, p < 0.0001. This performance-enhancing effect
of threat distracters was again transient, as seen above for accu-
racy. In run 2, the relationship was reversed and subjects were
slower to correctly respond on congruent trials with threat dis-
tracters relative to neutral distracters, ¢(68) =4.482, p < 0.0001,
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scrambled distracters, t(68) =1.613, p=0.111, or no distracters,
1(68) =5.925, p < 0.0001.

In sum, threat distracters increased the interference effect in
accuracy and in RTs compared with neutral or scrambled dis-
tracters in the first half of the experiment, but these effects were
reversed in the second half, following an intermission. In addi-
tion, this transient increase in interference effects in the presence
of threat distracters was driven both by a threat-distracter-related
impairment in performance on the more difficult incongruent tri-
als, and, unexpectedly, by a threat-distracter-related enhancement
in performance on the easy congruent trials.

5-HTTLPR/rs25531 genotype modulates interference effects
irrespective of emotional salience of distracters

Next, we tested whether the 5-HTTLPR/rs25531 genotype modu-
lated the impact of threat-related distracters on cognitive task per-
formance. Collapsing across both runs and across distracter con-
ditions, genotype did not have a significant effect on interference
effects either in accuracy, F(2, 66) =0.983, p=0.379, or in RTs.
F(2, 66) =0.399, p=0.673. But there was a significant two-way
interaction between genotype and run on interference effects in

accuracy, F(2, 66) =5.111, p =0.009, partial eta squared = 0.134.
These results were confirmed by the ANOVA on accuracy, which
produced a significant two-way interaction between genotype
and run on accuracy, F(2, 66) =4.082, p=0.021, partial eta
squared =0.110.

Specifically, there was an increase in interference effects in accu-
racy with the number of the SLg alleles, which was significant
inrun 1 (La/La: 0.156 4= 0.027; SLg/La: 0.176 & 0.021; SLg/SLg:
0.243 £0.046; r = 0.207, p = 0.044, one-tailed correlation) but did
not reach significance in run 2 (La/La: 0.107 £0.021; SLg/La:
0.130+0.016; SLg/SLg: 0.133 £0.036; r =0.103, p = 0.201, one-
tailed correlation). A comparison of the 5-HTTLPR/rs25531 geno-
type groups on interference effects in accuracy separately for
each distracter condition is given in Figure 3. The increase in
interference effects in accuracy with the number of the SLg
alleles was also significant or marginally significant in all four
distracter conditions in runl (threat: r =0.195, p =0.054; neu-
tral: r=0.170, p=0.082; scrambled: r=0.192, p=0.057; null:
r=0.218, p = 0.036; all one-tailed correlations).

There were no comparable effects of genotype on interference
effects in RTs. The magnitude of interference effects in RTs was
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not significantly associated with the number of SLg alleles either
in run 1 (La/La: 230 4= 14 ms; SLg/La: 225 4 12.2 ms; SLG/SLg:
207 +£20ms; r=—0.103, p=0.201, one-tailed correlation) or
in run 2 (La/La: 226 £13ms; SLg/La: 217 £ 13 ms; SLg/SLg:
204 +24ms; r=—0.107, p=0.192, one-tailed correlation). A
comparison of the 5-HTTLPR/rs25531 genotype groups on inter-
ference effects in RTs separately for each distracter condition is
given in Figure 4.

DISCUSSION

Our data demonstrate that threat-related distracters robustly
modulate cognitive interference effects but the modula-
tion dynamically changes over time. Threat-related distracters

potentiated interference effects in both accuracy and in RTs rel-
ative to non-threat-related distracter types and relative to the
no-distracter condition in the first half of the experiment, prior
to the intermission. However, these effects were reversed in the
second half of the experiment, in which the interference effects in
accuracy and in RTs in the presence of threat distracters decreased
below the interference effects seen in other distracter conditions,
to the level observed when no distracters were present. Further-
more, by examining the congruent and incongruent conditions
separately, we were able to show that this transient potentiation
of interference effects by threat distracters had a dual source: on
the one hand, it was due to a predicted threat-related impairment
in task performance in the more difficult incongruent condition
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(i.e., subjects were less accurate and slower to correctly respond
on incongruent trials in the presence of threat distracters relative
to other distracter conditions), but on the other hand, it was also
due to an unexpected threat-related enhancement of task perfor-
mance in the easy congruent condition (i.e., subjects were actually
more accurate and faster to correctly respond on congruent trials
in the presence of threat distracters compared to other distracter
conditions).

We propose that the temporally dynamic character of threat-
distracter effects may be due to both habituation and regulation of
amygdala response to threat stimuli. Both habitation and regula-
tion would result in diminished amygdala reactivity. Amygdala
habituation to threat stimuli has been demonstrated in neu-
roimaging studies involving both healthy individuals (Breiter et al.,
1996; Whalen et al., 1998; Wright et al., 2001) and patients with
anxiety disorders such as post-traumatic stress disorder (Shin
et al., 2005). A separate line of neuroimaging evidence also shows
a decrease in amygdala response to threat-related stimuli when
people actively regulate their emotional response using cognitive-
control strategies such as reappraisal, distraction, or suppression
(Ochsner et al., 2002; Phan et al., 2005; Eippert et al., 2007; Kim
and Hamann, 2007; Wager et al., 2008; McRae et al., 2010), with
convergent evidence coming from animal studies of fear extinction
(Quirk and Beer, 2006; Hartley and Phelps, 2010). We propose that
both processes — habituation and regulation of amygdala response
to threat stimuli — may be at work in our study. Habituation
may be gradually produced by repeated harmless presentation of
threat stimuli over the time-course of the task, whereas regulation
may be triggered specifically by the intermission separating run
1 from run 2, giving subjects a short reprise from the demands
of the task and permitting them to “take stock” and adjust their
emotional response to the threat stimuli in run 2. Unfortunately,
we are unable to fully dissociate the role of these two processes
in the observed decrease in threat-distracter effects on cognitive
performance over time using the current study design.

An intriguing finding in our study is the dissociable and oppo-
site character of threat effects on task performance in congruent
vs. incongruent task conditions. The transient increase in inter-
ference effects in the presence of threat distracters was driven
both by threat-distracter-related impairment in performance on
the more difficult incongruent trials, and by threat-distracter-
related enhancement in performance on the easier congruent tri-
als. Threat-related impairment in task performance has been doc-
umented before (Vuilleumier et al., 2001; Dolcos and McCarthy,
20065 Blair et al., 2007; Mitchell et al., 2008), although the findings
have been inconsistent (Bar-Haim et al., 2007). Our data sug-
gest that the inconsistencies may come from variable level of task
difficulty, with more robust threat-related impairment observed
in more difficult task conditions requiring additional time and
processing steps to resolve cognitive interference arising from com-
peting stimulus-to-response goal representations, as compared to
easier task conditions involving one simple stimulus-to-response
mapping.

In this respect, our finding of threat-related enhancement of
task performance specific to the easier congruent task condition
is informative. We speculate that this threat-related enhancement
of both accuracy and speed of correct responding in the easier

task condition may reflect a general priming of the motor sys-
tem in response to threat signals. Our findings resonate with
previous reports of enhanced response speed and force due to
exposure to unpleasant stimuli during a preparation of a simple
motor response (Coombes et al., 2005, 2009). Consistent with the
adaptive function of rapid behavioral response to potential threat
signals in the environment, threat-related stimuli may act to prime
the motor system for action (Coombes et al., 2005) regardless of
their status as task-relevant targets or task-irrelevant distracters.
Therefore, both threat-related enhancement of task performance
in the absence of cognitive interference (easier task condition)
and threat-related impairment of task performance when the task
requires resolution of cognitive interference (more difficult task
condition) would reflect the priming of the simple, prepotent
motor response — but the primed response itself would be cor-
rect in the former case and incorrect in the latter case. We further
speculate that the impact of threat distracters on task performance
may be mediated primarily through the effects of threat stimuli on
the selection and execution of the motor response within broadly
defined attentional control processes. Specifically, the detection
of a potential threat signal and the subsequent activation of the
threat-processing pathway could act either to directly facilitate
the execution of the prepotent motor response, or to remove the
inhibition of this prepotent response. In either case, performance
would be expected to improve when the prepotent response is
desired (e.g., in the easier congruent task condition), but suffer
when the inhibition of a prepotent response in required for the
selection and execution of a correct response (e.g., in the more dif-
ficult incongruent task condition). Thus, one possible strategy to
reduce threat-related impairment may be to automatize the perfor-
mance of a given task (i.e., to render the desired task response the
prepotent response) through intense practice and habit formation,
consistent with the theory of Norman and Shallice (1986).

We also report evidence that the serotonin transporter pro-
moter polymorphism (5-HTTLPR/rs25531) modulates cognitive
task performance in healthy female subjects in a global fashion,
irrespective of the presence or emotional salience of distracters.
Specifically, we observed dose effects of the SLg allele on inter-
ference effects in accuracy (but not in RTs) in the expected direc-
tion: La/La interference effects < SLg/La interference effects <
SLg/SLg interference effects. In addition, the modulation of inter-
ference effects by 5-HTTLPR/rs25531 genotype was not specific to
threat distracters, but instead extended to all four distracter con-
ditions, including threat, neutral, scrambled, and no distracters.
Furthermore, the genetic modulation of interference effects was
observed exclusively in the first half of the experiment, prior to
the intermission, and was abolished in the second half of the
experiment.

This pattern of genetic results is particularly intriguing in light
of the robust (if transient) potentiation of the interference effects
by threat-related distracters observed in the whole sample, col-
lapsing across genotypes. The pattern strongly suggests that the
5-HTTLPR/rs25531 genotype modulates susceptibility to cogni-
tive interference in healthy females in general, rather than to
cognitive interference produced specifically by threat-related dis-
tracters. In this respect, our results are broadly consistent with
the view that the 5-HTTLPR genotype may affect susceptibility
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to environmental influences in general rather than modulating
specifically the impact of adverse stimuli (Uher, 2008; Belsky and
Pluess, 2009), a trait described as hypervigilance (Homberg and
Lesch, 2010). Thus, the S or Lg allele is associated with worse
behavioral and clinical outcomes in the context of adverse envi-
ronmental conditions, such as childhood maltreatment or stressful
life events, but it can also lead to more favorable outcomes in
protective, nurturing environments, relative to the L allele (Caspi
et al., 2003; Eley et al., 2004; Taylor et al., 2006). Indeed, Roiser
etal. (2009) provided elegant evidence for such increased “framing
effects” during decision-making, as well as for the correspond-
ing changes in the amygdala-PFC circuitry, in S/S homozygotes
compared to Ly/Ly homozygotes. Although the neurobiological
mechanisms involved are likely to be highly complex and thus
challenging to fully elucidate, we recently proposed one possible
molecular mechanism underlying the interaction of stressors and
5-HTTLPR/rs25531 genotype on the amygdala-VMPFC-dorsal
raphe nucleus circuitry and the risk of depression (Jasinska et al.,
2012).

Some limitations of the current study should be acknowl-
edged. Although our sample size was sufficiently large to give
us high statistical power to detect main and interactive effects
of the task, it was relatively small to detect genetic effects. The
genetic effects in particular should therefore be considered pre-
liminary until replicated in a larger independent sample. It will
also be important to replicate the results in both sexes. Fur-
thermore, cognitive function may also be modulated by other
functional variants in the serotonin transporter gene (e.g., sero-
tonin transporter intron 2 polymorphism, STin2; Payton et al,,
2005; Sarosi et al., 2008), in other serotonergic genes (e.g., TPH2;
Strobel et al., 2007), or in genes involved in gene-gene interac-
tions with the serotonin transporter gene (e.g., BDNF), either in
isolation or in interaction with the 5-HTTLPR/rs25531. These

effects were unmeasured in our study. Finally, the level of emo-
tion regulation exerted by subjects while performing the task
may also modulate performance on tasks which engage emotion-
cognition interactions by altering the activity and functional
connectivity within the amygdala-PFC circuitry, consistent with
recent reports (Schardt et al., 2010; Enge et al., 2011; Lemogne
et al., 2011). Therefore, an important goal of future studies will
be to measure and manipulate emotion regulation, particularly
with respect to serotonin transporter gene effects, to determine
to what degree it alters task performance and can compensate
for genetic vulnerability to threat reactivity and to cognitive
interference.

In conclusion, using a novel threat-distracter MSIT, we demon-
strated that threat distracters robustly but transiently potentiate
cognitive interference effects, and that 5-HTTLPR/rs25531 geno-
type modulation of these cognitive interference effects extends to
all distracter conditions, irrespective of emotional salience of dis-
tracters, in healthy female subjects. These results add to our under-
standing of the processes through which threat-related distracters
affect cognitive processing, and have implications for our under-
standing of disorders in which threat signals have a detrimental
effect on cognition, including depression and anxiety disorders.

ACKNOWLEDGMENTS

We thank Ms. Ela Sliwerska for her generous help in carrying
out the genetic portion of this study. This research was sup-
ported by the Rackham Graduate Student Research Award and
the Center for the Education of Women Student Research Award,
University of Michigan (Agnes J. Jasinska). When conducting this
research, Agnes J. Jasinska was additionally supported by William
Orr Dingwall Foundation Fellowship and by Sarah Winans New-
man Scholarship from the Center for the Education of Women,
University of Michigan.

REFERENCES

Barbas, H. (2000). Connections under-
lying the synthesis of cognition,
memory, and emotion in primate
prefrontal cortices. Brain Res. Bull.
52,319-330.

Bar-Haim, Y., Lamy, D., Pergamin,
L., Bakermans-Kranenburg, M. J,,
and van IJzendoorn, M. H. (2007).
Threat-related attentional bias in
anxious and nonanxious individu-
als: a meta-analytic study. Psychol.
Bull. 133, 1-24.

Bechara, A., Damasio, H., and Dama-
sio, A. R. (2000). Emotion, decision
making and the orbitofrontal cortex.
Cereb. Cortex 10, 295-307.

Belsky, J., and Pluess, M. (2009). Beyond
diathesis stress: differential suscep-
tibility to environmental influences.
Psychol. Bull. 135, 885-908.

Blair, K. S., Smith, B. W., Mitchell, D. G.,
Morton, J., Vythilingam, M., Pessoa,
L., Fridberg, D., Zametkin, A., Stur-
man, D., Nelson, E. E., Drevets, W. C.,
Pine, D. S., Martin, A., and Blair, R.
J. (2007). Modulation of emotion by

cognition and cognition by emotion.
Neuroimage 35, 430-440.

Borg, J., Henningsson, S., Saijo, T.,
Inoue, M., Bah, J., Westberg, L.,
Lundberg, J., Jovanovic, H., Andrée,
B., Nordstrom, A. L. Halldin,
C., Eriksson, E., and Farde, L.
(2009). Serotonin transporter geno-
type is associated with cognitive
performance but not regional 5-
HT1A receptor binding in humans.
Int. ]. Neuropsychopharmacol. 12,
783-792.

Breiter, H. C., Etcoff, N. L., Whalen, P. J.,
Kennedy, W. A., Rauch, S. L., Buck-
ner, R. L., Strauss, M. M., Hyman,
S. E., and Rosen, B. R. (1996).
Response and habituation of the
human amygdala during visual pro-
cessing of facial expression. Neuron
17, 875-887.

Bush, G., and Shin, L. M. (2006).
The Multi-Source Interference Task:
an fMRI task that reliably activates
the cingulo-frontal-parietal cogni-
tive/attention network. Nat. Protoc.
1,308-313.

Bush, G., Shin, L. M., Holmes, J., Rosen,
B. R, and Vogt, B. A. (2003). The
Multi-Source Interference Task: vali-
dation study with fMRI in individual
subjects. Mol. Psychiatry 8, 60-70.

Carter, C. S., Botvinick, M. M., and
Cohen, J. D. (1999). The contribu-
tion of the anterior cingulate cortex
to executive processes in cognition.
Rev. Neurosci. 10, 49-57.

Caspi, A., Sugden, K., Moffitt, T. E., Tay-
lor, A., Craig, I. W., Harrington, H.,
McClay, J., Mill, J., Martin, J., Braith-
waite, A., and Poulton, R. (2003).
Influence of life stress on depres-
sion: moderation by a polymor-
phism in the 5-HTT gene. Science
301, 386—-389.

Cools, R., Nakamura, K., and Daw,
N. D. (2011). Serotonin and
dopamine: unifying affective, acti-
vational, and decision functions.
Neuropsychopharmacology 36,
98-113.

Cools, R., Roberts, A. C., and Rob-
bins, T. W. (2008). Serotoninergic
regulation of emotional and

behavioural ~ control  processes.
Trends Cogn. Sci. (Regul. Ed.) 12,
31-40.

Coombes, S. A., Janelle, C. M., and
Duley, A. R. (2005). Emotion and
motor control: movement attributes
following affective picture process-
ing. J. Mot. Behav. 37, 425-436.

Coombes, S. A., Tandonnet, C.,
Fujiyama, H., Janelle, C. M., Cau-
raugh, J. H., and Summers, J. J.
(2009). Emotion and motor prepa-
ration: a transcranial magnetic
stimulation study of corticospinal
motor tract excitability. Cogn. Affect.
Behav. Neurosci. 9, 380-388.

da Rocha, E FE, Malloy-Diniz, L.,
Lage, N. V., Romano-Silva, M. A,,
de Marco, L. A, and Correa, H.
(2008). Decision-making impair-
ment is related to serotonin trans-
porter promoter polymorphism in
a sample of patients with obsessive-
compulsive disorder. Behav. Brain
Res. 195, 159-163.

Dannlowski, U., Konrad, C., Kugel,
H., Zwitserlood, P., Domschke, K.,

www.frontiersin.org

May 2012 | Volume 3 | Article 139 | 11


http://www.frontiersin.org
http://www.frontiersin.org/Emotion_Science/archive

Jasinska et al.

Threat, 5-HTTLPR/rs25531, and interference effects

Schoning, S., Ohrmann, P., Bauer,
J., Pyka, M., Hohoff, C., Zhang, W.,
Baune, B. T., Heindel, W., Arolt, V.,
and Suslow, T. (2010). Emotion spe-
cific modulation of automatic amyg-
dala responses by 5-HTTLPR geno-
type. Neuroimage 53, 893-898.

Dannlowski, U., Ohrmann, P, Bauer, J.,
Kugel, H., Baune, B. T., Hohoff, C.,
Kersting, A., Arolt, V., Heindel, W.,
Deckert, J., and Suslow, T. (2007).
Serotonergic genes modulate amyg-
dala activity in major depression.
Genes Brain Behav. 6, 672-676.

Davidson, R. J. (2003). Seven sins in the
study of emotion: correctives from
affective neuroscience. Brain Cogn.
52,129-132.

Dayan, P, and Huys, Q. J. (2009). Sero-
tonin in affective control. Annu. Rev.
Neurosci. 32, 95-126.

Desimone, R., and Duncan, J. (1995).
Neural mechanisms of selective
visual attention. Annu. Rev. Neurosci.
18,193-222.

Dolcos, E, and McCarthy, G. (2006).
Brain systems mediating cognitive
interference by emotional distrac-
tion. J. Neurosci. 26, 2072-2079.

Eippert, E, Veit, R., Weiskopf, N., Erb,
M., Birbaumer, N., and Anders,
S. (2007). Regulation of emotional
responses elicited by threat-related
stimuli. Hum. Brain Mapp. 28,
409-423.

Ekman, P, and Friesen, W. V. (1976).
Pictures of Facial Affect. Palo Alto,
CA: Consulting Psychologists Press.

Eley, T. C., Sugden, K., Corsico, A.,
Gregory, A. M., Sham, P., McGuf-
fin, P, Plomin, R., and Craig, L
W. (2004). Gene-environment inter-
action analysis of serotonin system
markers with adolescent depression.
Mol. Psychiatry 9,908-915.

Enge, S., Fleischhauer, M., Lesch, K. P,
and Strobel, A. (2011). On the role
of serotonin and effort in voluntary
attention: evidence of genetic varia-
tion in N1 modulation. Behav. Brain
Res. 216, 122-128.

Friedel, E., Schlagenhauf, E, Sterzer, P,
Park, S. Q., Bermpohl, E, Strohle,
A., Stoy, M., Puls, I, Higele, C.,
Wrase, J., Biichel, C., and Heinz,
A. (2009). 5-HTT genotype effect
on prefrontal-amygdala coupling
differs between major depression
and controls. Psychopharmacology
(Berl.) 205, 261-271.

Gur, R. C,, Sara, R., Hagendoorn, M.,
Marom, O., Hughett, P, Macy, L.,
Turner, T., Bajcsy, R., Posner, A,
and Gur, R. E. (2002). A method
for obtaining 3-dimensional facial
expressions and its standardization
for use in neurocognitive studies. J.
Neurosci. Methods 115, 137-143.

Hariri, A. R., Drabant, E. M., Munoz,
K. E., Kolachana, B. S., Mattay, V.
S., Egan, M. E, and Weinberger, D.
R. (2005). A susceptibility gene for
affective disorders and the response
of the human amygdala. Arch. Gen.
Psychiatry 62, 146—152.

Hariri, A. R., Mattay, V. S., Tessitore,
A., Kolachana, B., Fera, E, Goldman,
D., Egan, M. E, and Weinberger,
D. R. (2002). Serotonin transporter
genetic variation and the response
of the human amygdala. Science 297,
400-403.

Hartley, C. A., and Phelps, E. A. (2010).
Changing fear: the neurocircuitry
of emotion regulation. Neuropsy-
chopharmacology 35, 136—146.

Heils, A., Teufel, A., Petri, S., Stober, G.,
Riederer, P., Bengel, D., and Lesch, K.
P. (1996). Allelic variation of human
serotonin transporter gene expres-
sion. J. Neurochem. 66, 2621-2624.

Heinz, A., Braus, D. F, Smolka,
M. N., Wrase, J., Puls, I., Her-
mann, D., Klein, S., Griisser, S. M.,
Flor, H., Schumann, G., Mann, K,
and Biichel, C. (2005). Amygdala-
prefrontal coupling depends on
a genetic variation of the sero-
tonin transporter. Nat. Neurosci. 8,
20-21.

Hensler, J. G. (2006). Serotonergic mod-
ulation of the limbic system. Neu-
rosci. Biobehav. Rev. 30, 203-214.

Holmes, A.J., Bogdan, R., and Pizzagalli,
D. A. (2010). Serotonin transporter
genotype and action monitoring
dysfunction: a possible substrate
underlying increased vulnerability
to depression. Neuropsychopharma-
cology 35, 1186-1197.

Homberg, J. R., and Lesch, K. P. (2010).
Looking on the bright side of sero-
tonin transporter gene variation.
Biol. Psychiatry 69, 513-519.

Homberg, J. R.,, van den Bos, R,
den Heijer, E., Suer, R., and Cup-
pen, E. (2008). Serotonin trans-
porter dosage modulates long-term
decision-making in rat and human.
Neuropharmacology 55, 80—84.

Hu, X. Z., Lipsky, R. H., Zhu, G., Akhtar,
L. A., Taubman, J., Greenberg, B.
D., Xu, K., Arnold, P. D., Richter,
M. A., Kennedy, J. L., Murphy, D.
L., and Goldman, D. (2006). Sero-
tonin transporter promoter gain-
of-function genotypes are linked to
obsessive-compulsive disorder. Am.
J. Hum. Genet. 78, 815-826.

Jasinska, A. J., Lowry, C. A, and
Burmeister, M. (2012). Serotonin
transporter gene, stress and raphe-
raphe interactions:
mechanism of depression. Trends
Neurosci. doi: 10.1016/j.tins.2012.
01.001. [Epub ahead of print].

a molecular

Josephs, R. A., Telch, M. J., Hixon, J.
G., Evans, J. J., Lee, H., Knopik,
V. S., McGeary, J. E., Hariri, A. R,
and Beevers, C. G. (2012). Genetic
and hormonal sensitivity to threat:
testing a serotonin transporter
genotype x testosterone interac-
tion. Psychoneuroendocrinology 37,
752-761.

Jovanovic, H., Lundberg, J., Karlsson,
P, Cerin, A., Saijo, T., Varrone, A.,
Halldin, C., and Nordstréom, A. L.
(2008). Sex differences in the sero-
tonin 1A receptor and serotonin
transporter binding in the human
brain measured by PET. Neuroimage
39, 1408-1419.

Karg, K., Burmeister, M., Shedden, K.,
and Sen, S. (2011). The serotonin
transporter promoter variant (5-
HTTLPR), stress, and depression
meta-analysis revisited: evidence of
genetic moderation. Arch. Gen. Psy-
chiatry 68, 444—-454.

Kendler, K. S., Kuhn, J. W., Vittum,
J., Prescott, C. A., and Riley, B.
(2005). The interaction of stressful
life events and a serotonin trans-
porter polymorphism in the predic-
tion of episodes of major depression:
a replication. Arch. Gen. Psychiatry
62, 529-535.

Kim, S. H., and Hamann, S. (2007).
Neural correlates of positive and
negative emotion regulation. J.
Cogn. Neurosci. 19, 776-798.

Klein, S., Smolka, M. N., Wrase, J.,
Grusser, S. M., Mann, K., Braus,
D. F, and Heinz, A. (2003). The
influence of gender and emotional
valence of visual cues on FMRI acti-
vation in humans. Pharmacopsychi-
atry 36(Suppl. 3), S191-S194.

Lage, G. M., Malloy-Diniz, L. F., Matos,
L. O, Bastos, M. A., Abrantes, S.
S., and Correa, H. (2011). Impul-
sivity and the 5-HTTLPR polymor-
phismin a non-clinical sample. PLoS
ONE 6, e16927. doi:10.1371/jour-
nal.pone.0016927

Lavie, N. (2005). Distracted and con-
fused? Selective attention under
load. Trends Cogn. Sci. (Regul. Ed.)
9, 75-82.

Lavie, N., Ro, T., and Russell, C. (2003).
The role of perceptual load in pro-
cessing distractor faces. Psychol. Sci.
14, 510-515.

Lemogne, C., Gorwood, P., Boni, C., Pes-
siglione, M., Lehericy, S., and Fos-
sati, P. (2011). Cognitive appraisal
and life stress moderate the effects
of the 5-HTTLPR polymorphism
on amygdala reactivity. Hum. Brain
Mapp. 32, 1856-1867.

Lesch, K. P, Bengel, D., Heils, A., Sabol,
S.Z.,Greenberg, B. D., Petri, S., Ben-
jamin, J, Miiller, C. R., Hamer, D. H.,

and Murphy, D. L. (1996). Associ-
ation of anxiety-related traits with
a polymorphism in the serotonin
transporter gene regulatory region.
Science 274, 1527-1531.

McRae, K., Hughes, B., Chopra, S.,
Gabrieli, J. D., Gross, J. J., and
Ochsner, K. N. (2010). The neural
bases of distraction and reappraisal.
J. Cogn. Neurosci. 22, 248-262.

Miller, E. K.,and Cohen, J. D. (2001). An
integrative theory of prefrontal cor-
tex function. Annu. Rev. Neurosci. 24,
167-202.

Mitchell, D. G., Luo, Q., Mondillo, K.,
Vythilingam, M., Finger, E. C., and
Blair, R.J. (2008). The interference of
operant task performance by emo-
tional distracters: an antagonistic
relationship between the amygdala
and frontoparietal cortices. Neu-
roimage 40, 859-868.

Morris, J. S.,Ohman, A., and Dolan, R. J.
(1999). A subcortical pathway to the
right amygdala mediating “unseen”
fear. Proc. Natl. Acad. Sci. U.S.A. 96,
1680-1685.

Munafo, M. R., Brown, S. M., and Hariri,
A. R. (2008). Serotonin transporter
(5-HTTLPR) genotype and amyg-
dala activation: a meta-analysis. Biol.
Psychiatry 63, 852-857.

Norman, D., and Shallice, T. (1986).
“Attention to action: willed and
automatic control of behaviour,” in
Consciousness and Self-Regulation:
Advances in Research and Theory,
Vol. 1V, eds R. J. Davidson, G. E.
Schwartz, and D. E. Shapiro (New
York: Plenum Press), 1-14.

Ochsner, K. N., Bunge, S. A., Gross, J. J.,
and Gabrieli, J. D. (2002). Rethink-
ing feelings: an FMRI study of the
cognitive regulation of emotion. J.
Cogn. Neurosci. 14, 1215-1229.

Ohman, A., and Mineka, S. (2001).
Fears, phobias, and preparedness:
toward an evolved module of fear
and fear learning. Psychol. Rev. 108,
483-522.

Olvet, D. M., Hatchwell, E., and Haj-
cak, G. (2010). Lack of association
between the 5-HTTLPR and the
error-related negativity (ERN). Biol.
Psychol. 85, 504-508.

Osinsky, R., Reuter, M., Kupper, Y.,
Schmitz, A., Kozyra, E., Alexander,
N., and Hennig, J. (2008). Varia-
tion in the serotonin transporter
gene modulates selective attention to
threat. Emotion 8, 584-588.

Payton, A., Gibbons, L., Davidson, Y.,
Ollier, W., Rabbitt, P., Worthing-
ton, J., Pickles, A., Pendleton, N.,
and Horan, M. (2005). Influence
of serotonin transporter gene poly-
morphisms on cognitive decline and
cognitive abilities in a nondemented

Frontiers in Psychology | Emotion Science

May 2012 | Volume 3 | Article 139 | 12


http://dx.doi.org/10.1371/journal.pone.0016927
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Emotion_Science
http://www.frontiersin.org/Emotion_Science/archive

Jasinska et al.

Threat, 5-HTTLPR/rs25531, and interference effects

elderly population. Mol. Psychiatry
10, 1133-1139.

Pezawas, L., Meyer-Lindenberg, A., Dra-
bant, E. M., Verchinski, B. A.,
Munoz, K. E., Kolachana, B. S.,
Egan, M. F, Mattay, V. S., Hariri,
A. R., and Weinberger, D. R. (2005).
5-HTTLPR polymorphism impacts
human cingulate-amygdala interac-
tions: a genetic susceptibility mech-
anism for depression. Nat. Neurosci.
8, 828-834.

Phan, K. L., Fitzgerald, D. A., Nathan,
P. J., Moore, G. J., Uhde, T. W., and
Tancer, M. E. (2005). Neural sub-
strates for voluntary suppression of
negative affect: a functional mag-
netic resonance imaging study. Biol.
Psychiatry 57,210-219.

Quirk, G. J., and Beer, J. S. (2006).
Prefrontal involvement in the reg-
ulation of emotion: convergence of
rat and human studies. Curr. Opin.
Neurobiol. 16,723-727.

Rees, G., Frith, C. D., and Lavie,
N. (1997). Modulating irrelevant
motion perception by varying atten-
tional load in an unrelated task.
Science 278, 1616-1619.

Risch, N., Herrell, R., Lehner, T., Liang,
K. Y., Eaves, L., Hoh, J., Griem, A.,
Kovacs, M., Ott, J., and Merikangas,
K. R. (2009). Interaction between
the serotonin transporter gene (5-
HTTLPR), stressful life events, and
risk of depression: a meta-analysis.
JAMA 301, 2462-2471.

Roiser, J. P.,, de Martino, B., Tan, G. C.,
Kumaran, D., Seymour, B., Wood, N.
W.,and Dolan, R.J. (2009). A geneti-
cally mediated bias in decision mak-
ing driven by failure of amygdala
control. J. Neurosci. 29, 5985-5991.

Roiser, J. P, Muller, U, Clark, L.,
and Sahakian, B. J. (2007). The
effects of acute tryptophan depletion
and serotonin transporter polymor-
phism on emotional processing in
memory and attention. Int. J. Neu-
ropsychopharmacol. 10, 449-461.

Romanski, L. M., and LeDoux, J.
E. (1992). Equipotentiality of

thalamo-amygdala and thalamo-
cortico-amygdala  circuits  in
auditory fear conditioning. J.
Neurosci. 12, 4501-4509.

Sarosi, A., Gonda, X., Balogh, G.,
Domotor, E., Szekely, A., Hejjas, K.,
Sasvari-Szekely, M., and Faludi, G.
(2008). Association of the STin2
polymorphism of the serotonin
transporter gene with a neurocog-
nitive endophenotype in major
depressive disorder. Prog. Neuropsy-
chopharmacol. Biol. Psychiatry 32,
1667-1672.

Schardt, D. M., Erk, S., Nusser, C.,
Nothen, M. M., Cichon, S., Rietschel,
M., Treutlein, J., Goschke, T., and
Walter, H. (2010). Volition dimin-
ishes genetically mediated amyg-
dala hyperreactivity. Neuroimage 53,
943-951.

Sen, S., Burmeister, M., and Ghosh, D.
(2004). Meta-analysis of the asso-
ciation between a serotonin trans-
porter promoter polymorphism (5-
HTTLPR) and anxiety-related per-
sonality traits. Am. . Med. Genet. B
Neuropsychiatr. Genet. 127B, 85-89.

Shin, L. M., Wright, C. 1., Cannistraro,
P. A., Wedig, M. M., McMullin, K.,
Martis, B., Macklin, M. L., Lasko, N.
B., Cavanagh, S. R., Krangel, T. S.,
Orr, S. P, Pitman, R. K., Whalen, P.J.,
and Rauch, S. L. (2005). A functional
magnetic resonance imaging study
of amygdala and medial prefrontal
cortex responses to overtly presented
fearful faces in posttraumatic stress
disorder. Arch. Gen. Psychiatry 62,
273-281.

Strobel, A., Dreisbach, G., Muller, J.,
Goschke, T., Brocke, B., and Lesch,
K. P. (2007). Genetic variation
of serotonin function and cogni-
tive control. J. Cogn. Neurosci. 19,
1923-1931.

Taylor, S. E, Way, B. M., Welch,
W. T., Hilmert, C. J., Lehman, B.
J., and Eisenberger, N. I. (2006).
Early family environment,
rent adversity, the serotonin trans-
porter promoter polymorphism,

cur-

and depressive symptomatology.
Biol. Psychiatry 60, 671-676.

Tottenham, N., Tanaka, J. W., Leon, A.
C., McCarry, T., Nurse, M., Hare,
T. A., Marcus, D. J., Westerlund, A.,
Casey, B. J., and Nelson, C. (2009).
The NimStim set of facial expres-
sions: judgments from untrained
research participants. Psychiatry Res.
168, 242-249.

Uher, R. (2008). The implications
of  gene-environment
tions in depression: will cause
inform cure? Mol. Psychiatry 13,
1070-1078.

Vuilleumier, P., Armony, J. L., Driver,
J., and Dolan, R. J. (2001). Effects
of attention and emotion on face
processing in the human brain: an
event-related fMRI study. Neuron
30, 829-841.

Wager, T. D., Davidson, M. L., Hughes,
B. L, Lindquist, M. A, and
Ochsner, K. N. (2008). Prefrontal-
subcortical pathways mediating suc-

interac-

cessful emotion regulation. Neuron
59, 1037-1050.

Walderhaug, E., Herman, A. 1., Mag-
nusson, A., Morgan, M. J., and Lan-
dro, N. I. (2010). The short (S)
allele of the serotonin transporter
polymorphism and acute trypto-
phan depletion both increase impul-
sivity in men. Neurosci. Lett. 473,
208-211.

Wendland, J. R., Martin, B. J., Kruse,
M. R,, Lesch, K. P, and Murphy,
D. L. (2006). Simultaneous geno-
typing of four functional loci of
human SLC6A4, with a reappraisal
of 5-HTTLPR and rs25531. Mol.
Psychiatry 11, 224-226.

Whalen, P. J., Rauch, S. L., Etcoff, N.
L., McInerney, S. C., Lee, M. B., and
Jenike, M. A. (1998). Masked presen-
tations of emotional facial expres-
sions modulate amygdala activity
without explicit knowledge. J. Neu-
rosci. 18,411-418.

Wrase, J., Klein, S., Gruesser, S. M., Her-
mann, D., Flor, H., Mann, K., Braus,
D. F, and Heinz, A. (2003). Gender

differences in the processing of stan-
dardized emotional visual stimuli in
humans: a functional magnetic reso-
nance imaging study. Neurosci. Lett.
348, 41-45.

Wright, C. 1., Fischer, H., Whalen, P.
J., MclInerney, S. C., Shin, L. M,,
and Rauch, S. L. (2001). Differen-
tial prefrontal cortex and amygdala
habituation to repeatedly presented
emotional stimuli. Neuroreport 12,
379-383.

Zalsman, G., Huang, Y.-Y., Oquendo,
M. A, Burke, A. K., Hu, X.-Z,
Brent, D. A, Ellis, S. P, Gold-
man, D., and Mann, J. J. (2006).
Association of a triallelic serotonin
transporter gene promoter region
(5-HTTLPR) polymorphism with
stressful life events and severity of
depression. Am. J. Psychiatry 163,
1588-1593.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 26 March 2012; paper pend-
ing published: 13 April 2012; accepted:
20 April 2012; published online: 10 May
2012.

Citation: Jasinska AJ, Ho SS, Taylor SF,
Burmeister M, Villafuerte S and Polk
TA (2012) Influence of threat and sero-
tonin transporter genotype on interfer-
ence effects. Front. Psychology 3:139. doi:
10.3389/fpsyg.2012.00139

This article was submitted to Frontiers in
Emotion Science, a specialty of Frontiers
in Psychology.

Copyright © 2012 Jasinska, Ho, Taylor,
Burmeister, Villafuerte and Polk. This is
an open-access article distributed under
the terms of the Creative Commons Attri-
bution Non Commercial License, which
permits non-commercial use, distribu-
tion, and reproduction in other forums,
provided the original authors and source
are credited.

www.frontiersin.org

May 2012 | Volume 3 | Article 139 | 13


http://dx.doi.org/10.3389/fpsyg.2012.00139
http://www.frontiersin.org
http://www.frontiersin.org/Emotion_Science/archive
http://creativecommons.org/licenses/by-nc/3.0/

	Influence of threat and serotonin transporter genotype on interference effects
	Introduction
	Materials and methods
	Subjects
	Task: threat-distracter MSIT
	Experimental protocol
	Genotyping of 5-HTTLPR/rs25531
	Statistical analyses

	Results
	Final sample
	Genotyping results
	Behavioral results
	Robust MSIT interference effects across all distracter conditions
	Threat distracters potentiate MSIT interference effects
	Threat-distracter effects on MSIT interference effects are transient
	5-HTTLPR/rs25531 genotype modulates interference effects irrespective of emotional salience of distracters


	Discussion
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 500
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 500
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


