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A growing set of data show that adults are quite good at accumulating statistical evidence
across individually ambiguous learning contexts with multiple novel words and multiple
novel objects (Yu and Smith, 2007; Fitneva and Christiansen, 2011; Kachergis et al., 2012;
Yurovsky et al., under resubmission); experimental studies also indicate that infants and
young children do this kind of learning as well (Smith and Yu, 2008; Vouloumanos and
Werker, 2009).The present study provides evidence for the operation of selective attention
in the course of cross-situational learning with two main goals. The first was to show that
selective attention is critical for the underlying mechanisms that support successful cross-
situational learning. The second one was to test whether an associative mechanism with
selective attention can explain momentary gaze data in cross-situational learning. Toward
these goals, we collected eye movement data from participants when they engaged in a
cross-situational statistical learning task. Various gaze patterns were extracted, analyzed
and compared between strong learners who acquired more word-referent pairs through
training, and average and weak learners who learned fewer pairs. Fine-grained behavioral
patterns from gaze data reveal how learners control their attention after hearing a word, how
they selectively attend to individual objects which compete for attention within a learning
trial, and how statistical evidence is accumulated trial by trial, and integrated across words,
across objects, and across word–object mappings. Taken together, those findings from
eye movements provide new evidence on the real-time statistical learning mechanisms
operating in the human cognitive system.
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INTRODUCTION
Everyday word learning occurs in noisy contexts with many words
and many potential referents for those words, and much ambi-
guity about which word goes with which referent. One way to
resolve this ambiguity is for learners to accumulate evidence across
individually ambiguous contexts (Pinker, 1984; Gleitman, 1990).
Recent experimental studies showed that both adults and young
children possess powerful statistical computation capabilities –
they can infer the referent of a word from highly ambiguous
contexts involving many words and many referents by aggregat-
ing cross-situational statistical information across contexts (Fisher
et al., 1994; Akhtar and Montague, 1999; Smith and Yu, 2008;
Vouloumanos et al., 2010; Scott and Fisher, 2011). The open
question is what the responsible learning mechanism is.

One way to attempt to understand this learning process is to
start with the simplest mechanisms that are known to exist in the
human learning repertoire and see how well these simple and
known mechanisms can do. One such possible learning process
is Hebbian-like associative learning, a form of learning known
to be fundamental to many perceptual and cognitive capabilities
(Smith, 2000). In statistical cross-situational learning, a learner
could simply store all associations between words and referents.
For example, given four words {a, b, c, d} and four visual objects

{A, B, C, D} in a training trial, if the learning system stored only
associations between words and whole objects, there would be 16
associations formed on trial one (a–A, a–B,. . .,b–A, b–B, . . .. . .,
d–A, d–D). On the second trial containing {e, f, d, g, E, F, D, G},
one of the associations (d–D, etc.) would be strengthened more
than the others. Across trials, the relative strengths of associations
between words and their potential referents would come to reflect
the correct word–referent mappings.

Simple associative models such as this have been criticized on
the grounds (Keil, 1992) that there are just too many possible
associations across situations to store and to keep track of. This
raises the key question for the present study: whether learners
do not actually store all co-occurrences, but only some of them.
If so, on each trial of statistical learning, how much and what
kind of information is selected, processed and stored by learn-
ing processes? Even if one assumes that the units for learning are
whole words (not their parts or phrases) and whole objects (not
their parts, properties or sets) and even if one limits the learning
environment to that of laboratory cross-situational studies, there
are still several words and several referents at each moment and
thus potentially many different solutions to information selection.
As illustrated earlier, an ideal learner could register all the word–
referent pairs on every trial; that is, all the possible hypotheses
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or associations consistent with the input on each trial might be
stored. Alternatively, and consistent with what is known about
human attention (Kruschke, 2003; Rehder and Hoffman, 2005),
one might attend to only a subset of words and referents, register-
ing just partial information –some words, some referents – from
all that is available on a single trial. Selection, could be very narrow
(e.g., looking at only one object after hearing a word) or it could
be broader. Further, if learners do select just some of the infor-
mation, what guides information selection? It could be random
and unrelated to past experience. Or the learner could attend to
words, referents and word–referent pairs based on prior knowl-
edge. Recent simulation studies in Yu and Smith (2012) show that
the same statistical computational mechanism can generate dra-
matically different results depending on the amount and the kind
of information selected and used, suggesting the importance of
understanding information selection as a critical part of statistical
learning mechanisms.

Selective attention is fundamental to almost all learning tasks,
which allows learners to focus cognitive resources on vital informa-
tion (while ignoring unnecessary input), and by so doing facilitate
internal cognitive processes. As pointed out in Shiffrin and Schnei-
der (1977), the extent to which attentional resources are necessary
during a task greatly depends on the ease of cognitive processing.
With multiple words and multiple referents co-occurring within
and across multiple trials, successful learning requires considerable
attentional effort to perceive, select and then map the phonological
sequences of a word with its referent object, focusing on cor-
rect word–object mappings while disregarding irrelevant spurious
co-occurrences between words and referents. Selective Attention
in cross-situational statistical learning can be driven by multiple
forces (Kachergis et al., 2012; Smith and Yu, accepted), such as low-
level perceptual characteristics of stimuli which do not necessarily
have any bearing on building word–referent mappings, familiarity
effects of heard words or seen objects, prior knowledge of word–
object mappings, internal learning states of word–object pairs, and
competition of attention between multiple objects within a learn-
ing trial. Influenced by these forces, where learners look reflects,
in real-time learning, what information is required from the inter-
nal learning processes. Therefore, if we were able to decode their
looking behavior, we would advance our understanding of the
mechanisms of statistical word learning. Thus, selective attention
is so closely tied to real-time learning processes that not only is it
driven by statistical learning processes but it also provides input to
learning processes to update internal learning states which in turn
drive selective attention and information selection in subsequent
learning.

Our empirical approach in the present study, then, is to con-
tinuously track eye-gaze direction throughout learning as a direct
measure of selective attention. The assumption here is that when a
learner associates a word with a referent among other simultane-
ously presented referents, the learner is likely to be preferentially
looking toward that referent and this looking behavior indicates
that the learner selects this word–object pair to register the associ-
ation between the two. In this way, different learners may attend to
different referents in a visual scene when hearing the same word.
Further, by the assumption that learners link the word to the object

they are attending to at that moment; these differences in attention
will lead directly to different learning results.

Recent psycholinguistic studies already suggest that speech and
eye movements are closely linked in both language comprehen-
sion and production (Tanenhaus et al., 1995; Griffin and Bock,
1998; Meyer et al., 1998; Griffin, 2004; Trueswell and Gleitman,
2004; Knoeferle and Crocker, 2006). For example, Griffin and
Bock (1998) demonstrated that speakers have a strong tendency
to look toward objects referred to by speech and that words begin
roughly a second after speakers gaze at their referents. Meyer et al.
(1998) found that when speakers were asked to describe a set of
objects from a picture, they usually looked at each new object
before mentioning it, and their gaze remained on the object until
they were about to say the last word about it. Several recent devel-
opmental studies, though not addressed to the specific questions
in this paper, have shown the utility of using these finer-grained
real-time measures in studies of early development and learning
(von Hofsten et al., 1998; Johnson et al., 2003; Aslin and McMur-
ray, 2004; Trueswell and Gleitman, 2004; Halberda, 2006; Plunkett
et al., 2008).

Moreover, Ballard et al. (1997) proposed that momentary eye
movements entered directly into cognitive computations, e.g., eye-
direction does not just reflect internal cognitive states but directly
influences them. Studies in adult category learning showed that
learners tend to fixate all stimulus dimensions early in learning
but selectively attend to relevant dimensions useful for classi-
fication only after errors were largely eliminated (Rehder and
Hoffman, 2005). The study was the first to use eye tracking to
examine attention in category learning, showing the usefulness
of eye tracking for testing existing categorization theories and
forming new hypotheses. More recently, Fitneva and Christiansen
(2011) used eye movement data to measure word–referent pairs
that participants attend at the beginning of training in the cross-
situational learning paradigm and showed that inaccurate initial
word–referent mappings may actually lead to better learning.

Motivated by those studies, an eye-tracking paradigm is used
in the present study of cross-situational word–referent learning
which relies on eye movements, and the synchrony of those move-
ments with respect to the heard object names, as a measure of
moment-by-moment learning and as a clue to the momentary
internal states of the learner. Thus, we will take the presence of eye
fixations to spatially separated objects after hearing a spoken word
as a proxy measure of attention to those objects, which are tightly
tied to and revealing of internal cognitive learning processes. We
ask whether learners’ attention to and thus selective storage of
word–referent pairs affects learning and if this is so, could eye
movement patterns in training be directly related to successful
learning at test? If looking does predict learning, then we need to
know more about the looking patterns themselves. Accordingly, a
major component of the present study is a deeper understanding
of the dynamics of those looking patterns, how they change over
the course of the learning trials, and how they relate to more or
less successful learning outcomes. If learners are not simply pas-
sive accumulators of data but instead actively learn by selecting
among the available data, information selection becomes a critical
component in statistical learning. Even with the same association
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mechanism to register selected word–referent associations, learn-
ers choose some pairings over others to notice and store – and if
these pairings guide later selections – then individual learners may
distort the regularities in the input both in ways that enhance the
learning of the right word–referent pairs and in ways that hinder
them. Hence, understanding moment-by-moment selective atten-
tion and information selection in statistical learning can shed light
on fundamental aspects of cross-situational learning.

MATERIALS AND METHODS
The stimuli used are exactly the same as those in Yu and Smith
(2007) and the current study followed the design from Klein et al.
(2008) in which participants were trained to learn a small set of
words before cross-situational training. Later, these pre-trained
words were mixed with to-be-learned words. There were three
purposes of using this design. First, previous results (Klein et al.,
2008) show that a small number of learned words can significantly
improve overall learning outcomes as participants effectively use
these words to reduce the degree of uncertainty in cross-situational
learning trials and thus bootstrap statistical learning. The present
study intended to replicate such finding. Second, since we know
the learning states of these pre-trained words at the beginning of
training, we can then measure their looking behaviors toward these
pre-trained words and further use these behavioral patterns from
pre-trained words to estimate and infer the learning states of other
to-be-learned words which we cannot otherwise directly access in
the middle of training. For instance, if participants generate simi-
lar looking patterns toward a to-be-learned object as what they did
toward a pre-trained object, this observation can be used as evi-
dence to infer that they also learned that to-be-learned object in the
course of statistical learning. Third, we can investigate the under-
lying mechanisms of using prior knowledge in cross-situational
statistical learning to facilitate the learning of new words.

STIMULI
Word stimuli were 18 computer-generated disyllabic pseudowords
pronounced by a computerized voice. Referents were 18 100 × 100
pixel color images of uncommon objects. Each word was randomly
selected and paired with an object to form a word–object map-
ping. In total, there were 18 word–object pairs. These stimuli were
taken from a subset of audio–visual stimuli used in one of the five
conditions in Yu and Smith (2007).

There were 27 training trials with a total duration of 303.25 s.
Each trial simultaneously presented four objects on the screen for
11.25 s; the onset of a learning trial was followed first by a 2250-
ms silence and then by the four spoken words. This salience at
the beginning of a trial provided enough time for participants to
quickly examine the four objects presented in a new trial if they
decided to do so. Following that, four words were played sequen-
tially and each said once with a 2250-ms window between the
onset of the current word and the onset of the next word. Figure 1
illustrates the timing of words in a trial with gaze data examples
from participants. Across trials, the words and the objects were
arranged such that there was no relation between the temporal
order of the words and the spatial position of the referents. Each
correct word–object pair occurred six times in total across the
whole training session. The four words and four objects appearing

together on a trial were randomly determined. Among 16 possi-
ble word–referent associations within a trial, only 4 were correct
and the others were spurious correlations of irrelevant words and
referents that created within-trial ambiguities.

APPARATUS
The learners’ eye gaze was measured by a Tobii 1750 eye tracker
(www.tobii.se). The principle of this corneal reflection tracking
technique is that an infrared light source is directed at the eye
and the reflection of the light on the corneal relative to the center
of the pupil is measured and used to estimate where the gaze is
fixated. The eye-tracking system recorded gaze data at 50 Hz (accu-
racy = 0.5˚, and spatial resolution = 0.25˚) as a learner watched an
integrated 17 inch monitor with a resolution of 1280 × 1024 pixels.

PARTICIPANTS
Sixty-four undergraduate students at Indiana University partici-
pated in this study for course credit or $8 for their participation.
Fine-grained data analyses require reliable eye tracking. In an ideal
scenario, a complete eye-tracking session should collect 15,162
(303.25 s × 50 Hz) gaze data points from a participant. In prac-
tice, perfect tracking in a continuous mode is not possible due
to both participants’ involuntary head movements and technical
limitations of the eye tracker. However, the overall tracking results
in the present study are quite good – 51 (out of 64) participants
reached 85% (roughly 13,000 data points per participant) and
therefore were included in the following data analysis.

PROCEDURE
The whole experiment consisted of three consecutive phases. The
first phase provided pre-training of three objects. During this
phase, three objects were displayed on the computer screen, along
with a button labeled “Ready for Test.” Participants were told that
they were to learn the correspondence between the referents dis-
played and the words that correspond with them, and that clicking
on a referent would cause its corresponding word to be played over
the computer speakers. They were instructed to study these items
freely until they were ready to be tested on them. During this test,
names for the pre-trained words were played and participants had
to select the correct referent for each name from a set composed
of three pre-trained objects and five novel referents. These novel
referents were not used in any other part of the experiment. If
performance at test was not errorless, the pre-training screen was
redisplayed and participants were instructed to study more before
being retested.

The second phase was identical to the training phase employed
by Yu and Smith (2007). A series of training trials were displayed
to participants, during each of which four objects appeared on
four corners of the screen, and the corresponding names were
presented auditorily in a temporal order having no relation to
the locations of the referents on the screen. Participants made no
responses during this phase; they were simply instructed that they
would be trying to learn a set of name–referent correspondences
that would include the pre-trained vocabulary. The whole training
took about 303.25 s.

The third phase was an 18-alternative forced-choice test. Dur-
ing each test trial, all of the 18 objects in training were displayed on
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FIGURE 1 |The temporal order of four spoken words is shown in the

middle panel. Each trial has a length of 11.25 s which can be
decomposed as a salience period at the beginning followed by four word
segments each corresponding to one heard word. Examples of gaze data
from two learner groups at the first and last (27th) learning trials are
shown at the top and bottom panels. Since four objects appeared in each

trial, there were four distinct colors in each panel. Each row in a panel
shows a temporal sequence of eye fixations from a participant when
hearing four words sequentially. Both learner groups started with rather
random looks. However, at the last learning trial, strong learners show
more consistent gaze patterns toward correct objects after hearing
corresponding words.

the screen while the name corresponding to one of those referents
was played auditorily. Participants were instructed to select the
referent of the heard name using a computer mouse. A response
was required to advance to the next trial. Every word was tested
once; thus, there were 18 test trials in total.

WORD LEARNING RESULTS AT TEST
Both three pre-trained words and 15 to-be-learned words were
tested at the end of training. For pre-trained words, as expected,
participants performed very well (M pre_trained = 91.87%). We have
taken this to mean that very little forgetting of these items occurred
over the course of training, and that prior knowledge was available
throughout the training session. On average, participants learned
58.12% of the to-be-learned words, which was far above chance
[t (50) = 12.35; p < 0.001]. However, learning results at test have
a rather wide range from 0% (one participant) to 100% (six par-
ticipants), clearly showing that some participants learned many

word–referent mappings close to perfect, some learned quite a few
and others learned very few. To systematically analyze their look-
ing behavior in the course of learning, we divided participants
into three groups – strong, average, or weak learners – based on
their performance at test. We then extracted the eye movement
patterns characteristic of these groups during the learning phase,
with the goal to compare and discover both shared patterns across
groups and different patterns that may contribute to more suc-
cessful or less successful statistical learning between the groups.
The shared patterns reveal general underlying factors and con-
straints that control learners’ looking behavior in the task, while
understanding behavioral patterns of strong learners that support
successful learning in comparison to the less success from weak and
average learners provides an empirical route to understanding the
mechanisms that underlie cross-situational word learning.

The grouping rule was straightforward and meant as an approx-
imate division by learning. More specifically, participants who
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correctly selected more than 13 out of 18 answers were grouped
as strong learners (M strong = 91%); those who selected 8 to 13
correct word–referent mappings were labeled as average learners
(M average = 62%); and the rest who selected correct answers for
fewer than 8 words were treated as weak learners (M weak = 26%).
As a result, among 51 adult participants, 17 were in the strong
learner group, 17 in the average learner group and 17 in the
weak learner group. Note that even weak learners acquired a cer-
tain number of words from training which was far above chance
[t (16) = 6.95; p < 0.001]. Dividing three learner groups allows us
to have a finer-grained distinction to separate learners, which also
decreases within-group variations, and meanwhile ensures a suffi-
cient number of participants in each group. This grouping-based
approach on analyzing gaze data has been successfully used in
previous research (Johnson et al., 2004, 2008; Amso and Johnson,
2006; Yu and Smith, 2011).

EYE MOVEMENT DATA PROCESSING AND ANALYSIS
METHODS
Learning the mappings between words and referents requires
attending to the whole objects as a candidate referent. Therefore,
we treated a visual object as a whole and measured sustained atten-
tion on individual objects and attention switches between objects
(but not at which spatial location or object part a participant was
looking). However, participants most often did not fixate on only
one specific location of a visual object. Instead, they switched their
gaze from one part of the object to another part, yet still be attend-
ing to the same object and potentially linking that object to the
heard word. To deal with such situation, a region-based fixation
finding method was implemented in which we defined four rec-
tangular region-of-interests (ROIs) that cover the areas of four
visual objects displayed on screen. Each ROI covers the area occu-
pied by one of four visual objects with a 10-pixel margin along
four directions. We then grouped raw eye position data (x and y
coordinates) that fell within the same ROI as a single fixation. This
process converts continuous gaze data into five categories, namely,
four visual objects, or somewhere else. One potential problem
with this thresholding-based approach is that it cannot handle
data points close to the boundaries of ROIs. For example, in a seg-
ment in which all data points belong to a pre-defined ROI except
one single data point within the segment that is just out of the pre-
defined ROI. This outlier would split the whole segment into two
fixations instead of maintaining one big fixation. In order to gener-
ate more reasonable results and remove artificial effects from the
thresholding method, two additional data processing steps were
applied to smooth fixation data. First, we merged two consecutive
fixations sharing the same target object into one big fixation if
the gap between these two was small enough (<200 ms or 10 data
points). This smoothing step was based on the assumption that a
short period of time out of a ROI was likely to be caused by artifi-
cial effects of the thresholding-based method because a participant
was less likely to switch their visual attention to the background
(e.g., the middle of the screen with nothing displayed, etc.) and
immediately switch back to the target object in such a short period
of time. The second step was to remove those short fixations that
lasted less than 200 ms (10 data points). Again, we suspected that
those transitional fixations were likely caused either by accidental

eye-tracking errors or by the thresholding-based fixation finding
method and therefore are not relevant to register word–referent
associations. The final result of this thresholding and smoothing
is an event stream with each fixation entry consisting of three ele-
ments (t1, t2, target) representing the onset of a fixation, the offset
of the fixation, and the target object fixated upon respectively.
Figure 1 shows an example of eye fixation data in which each
color represents 1 of 18 visual objects that participants attended
trial by trial (4 distinct colors in each panel corresponds to four
objects in a trial). Raw fixation data shown in Figure 1 reveal that
participants’ looking behaviors were quite dynamic – they actively
switched their attention among four objects while perceiving heard
words.

From such dense data, the research goal in the analyses was
to discover the nature of looking patterns during training, and
particularly those that may lead to more successful learning. The
statistical analyses and results reported next are based on linear
mixed-effects models by using the lmer function of the R package
lme4 (Bates and Sarkar, 2007). Unless specified otherwise, each
of gaze patterns extracted from raw data is treated as a depen-
dent variable (e.g., fixation duration, longest long time, number of
looks). The model included group (strong, average, or weak learn-
ers) as a fixed factor. Random effects for subjects, trials and objects
were also included to account for any non-independence among
different learners’ looking behaviors, among their looks toward
different objects, and in different trials (Baayen et al., 2008). All p-
values and confidence intervals reported in mixed-model analyses
were derived from posterior simulation using the language package
(Baayen, 2008), which can be used to assess statistical significance
like a standard p-value in t-test and ANOVA.

RESULTS FROM DATA MINING EYE MOVEMENT DATA
The first empirical question is this: what looking patterns did par-
ticipants generate in the course of cross-situational learning. As
noted earlier, our data analyses are based on the following princi-
ple: their looking behavior in this paradigm was driven by spoken
words. After hearing a word, participants dynamically allocated
their attention between four objects on the screen and thus where
they looked indicated what word–object mapping they selected
and processed. We also note here it is plausible that participants
may occasionally attend to an object while trying to link that object
with another word that was not presented at the moment, and
more generally, attention can dissociate from eye gaze under cer-
tain circumstances (Posner, 1980). But we argue that given the
accumulation of empirical evidence using eye tracking in many
domains, the interpretation of eye movements as a surrogate mea-
sure of attention is a reasonable and feasible idea. Eye movements
are most often tightly coupled with attention and immediately
driven by on-going audio–visual stimuli and the learning task
(Kowler et al., 1995). This assumption is further confirmed by
both recent psycholinguistic studies on language comprehension,
showing that listeners are likely to look at the target object after
hearing its name (Allopenna et al., 1998), and the preferential
looking paradigm in developmental studies (Hollich et al., 2000),
demonstrating that the object infants choose to attend after hear-
ing a word indicates the knowledge of the association between
the two.
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Accordingly, we divided a learning trial into four segments, each
of which was based on the onset of a spoken word. As shown in
Figure 1, eye movements that were generated from the 350 ms
following the word’s onset to the onset of the other word for the
first three words or the end of the current trial for the last word
were grouped together and treated as eye movements driven by the
concurrent spoken word. The definition of the relevant window as
beginning 350 ms after a word onset is based on the assumptions
that it takes at least 150 ms to process and recognize a word and that
it takes at least 200 ms for participants to plan and execute an eye
movement1. So defined, a whole learning trial was decomposed
into four 1900-ms word segments (2250 − 350 = 1900), each of
which corresponded to one spoken word. Also note here that there
was a 2250-ms salience at the beginning of each trial (before the
onset of the first spoken word) which was designed for participants
to quickly examine what objects were in a trial before hearing the
first word. We found that among 48.51% of the total number of
trials (27 trials × 51 participants), learners have briefly attended
to all four visual objects before the first word, and among 24.62%
of the total number of trials, they attended to three objects in the
silence period at the beginning of a trial. These empirical results
from participants’ looking behavior further support our assump-
tion that learners’ eye movements thereafter were primarily driven
by and dedicated to the learning of spoken words as they already
knew what visual objects were presented in a trial.

With the present cross-situational learning paradigm, informa-
tion selection and information processing may happen at different
temporal scales, in different ways and be driven by different nested
factors moment by moment (Smith and Yu, accepted; Yu and
Smith, 2012). As shown in Figure 2, we proposed a principled way
to systematically analyze gaze data at three temporal scales/levels.
First, at each word segment level with a temporal window of
1900 ms, we measured participants’visual attention toward objects
as a direct and immediate response to spoken words. Next, at the
trial level which was composed of four word segments, we ana-
lyzed how information selection was accomplished within a single

1Two other timing offsets (400 and 500 ms, etc.) were selected but this parameter
did not make any difference in our results.

learning trial with multiple visual objects competing for atten-
tion in the context of multiple heard words. Third, we investigated
selective attention across multiple learning trials which revealed
how participants aggregated statistical information across trials.

ANALYSIS OF EYE MOVEMENTS AT THE WORD LEVEL
After hearing a word, participants had a temporal segment of
1900 ms to look at visual objects that may link to the heard word
before hearing the next word. The first question here is how they
distributed their attention in each word segment. Human adults
produced on average three fixations per second (Ballard et al.,
1997). Given this, each word segment in the present study had
enough time for participants to generate multiple fixations and
attend to all of the four objects in a trial if they wanted to do so.
But effective statistical learning may require their attention to be
more selective and more stable. Indeed, we found that the average
number of fixations per word segment is approximately two with
no significant difference between strong, average and weak learn-
ers (M strong = 2.05, M average = 2.19, and M weak = 2.15, β = 2.03,
p = 0.20). A closer examination revealed that 21.26% of word seg-
ments had only one look on a particular object, 47.59% had two
looks on two objects, 26.58% had three looks on three objects, and
only 4.30% had four looks on all four objects.

The number of looks is just one aspect of the dynamics of
eye movements that might be relevant to learning. With the same
number of attention switches, learners can generate different look-
ing durations. For example, one group might have more or less
uniform looking durations for each attended object. The other
group might have a more uneven distribution of looking dura-
tions containing one longer fixation with several shorter looks.
To capture the dynamics of looking durations, we measured the
average length of the longest accumulated look on a particular
object for each word segment. The results show that participants
spent on average more than 60% of time (1320 ms out of 1900 ms)
focusing on one object per word segment, and there is no signifi-
cant difference between three learner groups (M strong = 1360 ms;
M average = 1260 ms; M weak = 1300 ms; β = 1.32, p = 0.13).

Previous research studies show that the location and dura-
tion of the longest looks reveal learners’ referent decision (Schafer

FIGURE 2 |Three levels of eye movement analysis: (1) word level:

where participants attended when hearing a word; (2) within-trial

level: how they coordinated their attention on objects when hearing

several words within a trial; (3) across-trial level: how they adjusted

their attention on objects in a new trial based on where they looked

in previous trials.
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and Plunkett, 1998; Fitneva and Christiansen, 2011). The longer
duration that they looked at a particular object, the more likely that
they attempted to learn to map that object as the target referent
of the concurrent word compared with objects that were fixated
less frequently and with shorter durations. In light of this, we next
measured the proportion of word segments that contained more
than 1200 ms of the accumulated look on a particular object; that
is, an object was attended for more than 60% (1200 ms/1900 ms)
of the time after hearing a word. On average, there were 61.76% of
word segments for strong learners, 52.12% for average learners and
44.12% for weak learners, in which participants selected and fixed
on one particular object for longer than 1200 ms after hearing a
word. Figure 3 shows the proportion of long look word segments
based on word occurrence as each word appeared 6 times through-
out the whole training. Note that the order of word appearance is
closely related to the trial order – the first appearances of 18 words
are always in the first several training trials and the last appearances
of words are always at the last few training trials. For average and
weak learners, there are no differences between when a word was
heard the first time and when a word was heard the last (sixth) time
(βaverage = 0.01, p = 0.32; βweak = 0.01, p = 0.42). Strong learners,
on the other hand, generated more long accumulated looks at the
end of training (from 53.59 to 75.16%, βstrong = 0.05, p < 0.001).
A longer fixation indicates more stable attention on a particular
object when hearing a word. More stable attention from strong
learners can be viewed as either the cause or the outcome of
successful learning – a question we investigate with further data
analysis in the next section.

The results so far show the overall patterns of their looking
behavior – how long they looked at objects and how frequently
they switched their attention, but do not have information on
where they looked. In particular, the relevant question to statisti-
cal word learning is whether they looked at the correct object after
hearing a word. Figure 4 shows the proportion of time looking
at the correct object after hearing a word. There is no difference
between three learner groups in the first and second occurrences
of a word (β1-appearance = 0.01, p = 0.31; β2-appearance = −0.03,

FIGURE 3 |The proportion of word segments containing a long

accumulated look on an object (>1200 ms) after hearing a word. Each
word appeared six times in training. For all three groups, more than 40% of
time they generated a long look throughout the training. In addition, strong
learners gradually produced more and more long looks (75% at the end of
training) while average and weak learners did not show the same trend.

p = 0.12). After the second appearance, their looking patterns
began to diverge. Average and weak learners generated fewer looks
toward the correct objects compared with strong learners who
increasingly looked at the correct object for the heard word while
they were exposed to more statistical evidence of those word–
referent correspondences. At the end of training, strong learners
spent almost 75% of time looking at the target object after hear-
ing a word while weak learners spent only less than 40% of time
on the target object (β6-appearance = −0.145, p < 0.001). This dra-
matic difference between strong and weak learners directly reflects
their learning performance at test. Also note that average learners
showed a similar trend toward looking at correct objects more
(βaverage = −0.03, p < 0.005), but not as significantly as strong
learners did (βstrong = 0.12, p < 0.001). Overall, the results indicate
that all learners started by randomly selecting candidate objects
(which may or may not be correct) after hearing a word. This
rules out one plausible explanation of successful learning – initial
information selection determines more or less successful learn-
ing – thus, strong learners happened to select correct ones to start
with and therefore can easily confirm these correct word–referent
mappings in later learning, while average and weak learners hap-
pened to randomly select wrong ones and had to recover and
correct these wrong selections in subsequent learning.

To summarize the results of gaze patterns at the word-segment
level, participants did not look randomly when hearing a word.
Instead, their attention is selective and most often they spend a
larger proportion of time on a single object after hearing a word.
All learners, no matter if they were more or less successful in sta-
tistical learning, revealed several similar characteristics in their
visual attention at this level, such as the number of fixations per
word segment, and the duration of the longest accumulated look
on a particular object. However, strong learners tended to look
more toward the target object after hearing a corresponding word.
What might these patterns mean? One possibility is that all learn-
ers are alike at the beginning because they enter the task with the
same knowledge, knowing three pre-trained words but not know-
ing any of the to-be-learned word–referent pairs. All learners on

FIGURE 4 |The proportion of time on target after hearing a word.

Strong learners looked more and more toward correct objects in the course
of statistical learning while average learners showed the similar trend.
However, weak learners did not show any linear increases.
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the initial trials must randomly sample some word–referent pairs
by preferentially looking at one of the four objects when hear-
ing one of the words. They may all start this sampling process
in a similar way and thus there are no differences in their eye
movement patterns. The diverging patterns of learning that then
follow are built upon this initial information selection which sets
up different learning trajectories to ultimately lead to either more
successful or less successful resolution of the statistical ambiguities
inherent in the learning trials. However, our results rule out this
possibility as both learners that acquire more words and learn-
ers that acquire fewer words have similar looking behaviors at
the beginning of training. Given that they seem to have a sim-
ilar start, a new conjecture is that with similar initial random
guesses/looks, how learners select and integrate statistical infor-
mation in subsequent learning, both across multiple words in
a trial and across trials, may be the key for successful statistical
learning. With this conjecture in mind, we next examine looking
behavior within a learning trial – how multiple objects within
a learning trial may compete for attention with co-occurring
words.

ANALYSIS OF EYE MOVEMENTS WITHIN A TRIAL
As reported earlier, participants were likely to generate a long
look at a particular object after hearing a word, which may be
directly related to register a word–object association while other
short looks within a word segment may be transitional and spo-
radic. Each learning trial is composed of four word segments.
Within each trial, participants produced on average 2.33 long looks
(> 1200 ms). How did they distribute more than one long look in
each trial? Did they pay more attention to the same object across
multiple word segments in a trial?

As shown in Figure 5, in less than 10% of trials across all
three learner groups, participants did not generate any long
fixation on any particular object in a trial (M strong = 5.22%;
M average = 7.84%; M weak = 7.18%; β = −0.04, p = 0.53). Mean-
while, in about 20% of trials, they generated only one long

FIGURE 5 |The proportion of trials with long looks across multiple

word segments within a trial. There are four trial categories: (1) no long
look in a trial; (2) only one long look in one of the four word segments; (3)
more than one long look on different objects when hearing different words;
and (4) long looks on the same object across different word segments.

fixation within a trial (others are short fixations on the rest
of three word segments, M strong = 18.74%; M average = 17.42%;
M weak = 23.97%; β = −0.08, p = 0.23). For the rest of the cases
with more than one long look per trial, both strong, average and
weak learners rarely looked at the same object more than once
in different word segments (M strong = 2.17%; M average = 5.66%;
M weak = 3.92%). Further, strong learners are less likely to do
so than average and weak learner (β = 0.09, p = 0.16). Instead,
participants most often attended to different objects with
long looks when hearing different words (M strong = 73.86%;
M average = 69.06%; M weak = 64.92%). This suggests a mutually
exclusive looking behavior within a trial – looking at different
objects in different word segments, and by doing so each object
receives at most one long look in one of the four word segments. In
addition, even though all learners followed a similar trend, strong
learners showed a stronger mutual-exclusivity effect within a trial
than average and weak learners (β = −0.03, p < 0.01), indicating
that selective attention based on within-trial mutually exclusive
looks is an important component in statistical computation and
may directly contribute to successful learning.

Another way to measure the distribution of their attention
within a trial is to ask whether they attended to all of the four
objects presented. Figure 6 shows the results using two thresh-
olds – 500 and 1000 ms, measuring the proportion of trials that
participants at least spent a certain amount of time on each of
four objects in a trial. For example, in more than 90% of trials
(M strong = 94.71%; M average = 94.11%; M weak = 94.55%), learn-
ers from all three groups spent at least 500 ms on each of the
four objects in a trial and on average they spent more than
1000 ms on each object in about 70% of trials (M strong = 79.73%;
M average = 72.11%; M weak = 74.72%). There are no differences
between different learners groups (β500ms = −0.001, p = 0.94;
β1000ms = −0.02, p = 0.32), suggesting that these patterns capture
fundamental properties of their selective attention and informa-
tion selection, no matter they learned more or fewer words at
the end.

In summary, selective attention and information selection
within a trial follows the form of mutual exclusivity at two lev-
els. Fist, at the trial level, participants’ attention was more or less
evenly distributed over all of the four objects instead of focusing

FIGURE 6 |The proportion of trials that participants paid attention to

each of four objects for at least 500 or 1000 ms.
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on one to two particular objects. Second, at the word level, they
tended to attend to different objects when hearing different words.
If an object has already been attended in a previous word segment,
the same object would not be attended again in any next word
segment of the same trial.

The design of the experiment included 3 (out of 18) pre-trained
words and these three words were mixed with other 15 to-be-
learned words in the learning session. Given that participants
already knew three word–referent mappings at the beginning, this
design allows us to systematically study how learners distributed
their attention within a trial with a mixture of pre-trained and
to-be-learned words. Figure 7A shows the proportion of time
that participants looked at the target object when hearing a pre-
trained word with two noticeable patterns: (1) participants did
attend to the target object which is consistent with the find-
ing in language comprehension – listeners tend to look at the
referred object when they hear the object name (Allopenna et al.,
1998); they spent, on average, a significant proportion of time
on the pre-trained objects (M strong = 46.46%; M average = 36.29%;
M weak = 41.05%, β = −0.02, p = 0.24) when hearing pre-trained
words; (2) participants also distributed their attention on other
to-be-learned objects. One plausible explanation is after partic-
ipants heard a pre-trained word, they first looked for the target
object to confirm the correct word–referent mapping that they
have already learned. Thereafter, they used the rest of the time to
study new objects even though they knew those objects should
not go with the pre-trained word. This attention strategy seems
to be more effective than spending all of the time on looking at
and confirming pre-trained word–object pairs (that they already
knew). Instead, attending more to to-be-learned objects (even
without correct words heard at the moment) may help learners
to recognize and memorize those objects better for later learning.
This observation can also be explained as visual novelty effects
toward new objects in this context. That is, speech-driven visual
attention and visual novelty effects jointly control learners’ atten-
tion. When they heard a to-be-learned word, both novel words
and novel objects pulled their attention toward novel objects.
When they heard a pre-trained word, they first attended to the
corresponding pre-trained object as a response to the heard

word, but thereafter their attention was attracted by the novel
objects presented in the same trial. According to this explana-
tion, strong learners, who presumably already learned most (if
not all) word–object pairs at the end of training, would look
more toward the correct object (but not other objects) since the
novelty effects of to-be-learned objects diminished as learning
proceeded. That is, at the end of training, their attention was pri-
marily driven by spoken words for strong learners, while these
two forces still competed for attention in the cases of weak and
average learners who have not yet acquired all the word–object
mappings. Indeed, our prediction was confirmed by empirical
data. Participants in the strong learner group tended to look
more toward correct objects at the end of training (from 42.12 to
75.25%, β = 0.06, p < 0.001) while weak learners seemed to main-
tain unchanged patterns from the beginning to the end (from
48.32 to 53.18%; β = 0.01, p = 0.33). Note that average learn-
ers had a moderate increase (from 35.23 to 55.24%, β = 0.02,
p = 0.02).

However, there is an alternative explanation of gaze patterns
from participants when hearing pre-trained words. They may not
remember pre-trained word–object associations and failed to suc-
cessfully identify the correct object. Therefore, they looked at both
the correct object and other objects in a trial, considering both
as candidate referents of a pre-trained word. One way to distin-
guish these two explanations is to examine whether they looked
at pre-trained objects when hearing to-be-learned words. If they
knew the pre-trained object should go with a pre-trained word,
when hearing a new word, they should be less likely to consider
pre-trained objects as a candidate of the new word and therefore
they should look more toward novel objects instead of pre-trained
objects (Markman, 1992). Figure 7B shows the proportion of
time looking at pre-trained objects after hearing to-be-learned
words. Strong learners looked at pre-trained objects only 6.74%
of time compared with a 25% chance (four objects in a trial,
β = −0.19, p < 0.001). Even average and weak learners looked
less toward a pre-trained object (M average = 9.53%, β = −0.17,
p < 0.001; M weak = 12.12%, β = −0.15, p < 0.001), showing a
preference for to-be-learned objects when hearing a to-be-learned
word. A similar finding was reported in many developmental

FIGURE 7 |The proportion of time looking at pre-trained objects when hearing pre-trained words (A) and to-be-learned words (B).
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studies of young children who map a novel word onto a previ-
ously unnamed object (Golinkoff et al., 1992; Halberda, 2006).
In summary, in the learning trials with a pre-trained word, par-
ticipants in all three groups tended to briefly check the target
object when hearing a pre-trained word and thereafter attended
to other to-be-learned objects. When to-be-learned words were
heard, they tended to not look at pre-trained objects but only focus
on to-be-learned objects as candidate referents. This result suggests
that learners use prior knowledge as the mutual exclusivity con-
straint within a trial, assuming that one word goes with one object
and therefore to-be-learned words should go with to-be-learned
objects but not pre-trained objects. By so doing, prior knowledge
of correct word–object mappings limits the number of candidate
objects for each to-be-learned word and reduces the degree of
uncertainty within a trial to facilitate cross-situational learning.

Putting together the results from within-trial data analysis, we
conclude that participants from three learner groups shared simi-
lar looking patterns and their attention within a trial demonstrates
mutual exclusivity in their information selection, suggesting that
the ME constraint is clearly a part of statistical computation.
Further, the ME constraint is implemented through external infor-
mation selection. ME is most often considered as a constraint or
an inference in internal computations (Halberda, 2006). In this
top-down view, external information selection can be viewed as
reflecting the outcome of internal ME-based computations and
inferences as the internal learning mechanism controls where and
how participants should allocate their attention when hearing
a word. Alternatively, the exact same outcome can be achieved
through information selection itself. Thus, selective attention can
be viewed as a part of computation – implementing the ME con-
straint in a bottom up way, by selectively attending to certain
word–referent pairs before such information is fed into an internal
learning mechanism. For example, mutually exclusive long looks
across multiple word segments within a trial can emerge from
participants’ preference to attend to novel objects that have not
attended before when hearing a new word – a novelty effect at
the perceptual level. In this bottom-up view, since the outcome
from information selection already provides ME-compliant input
to further internal computations, there is no need to add the ME
constraint as a part of internal computations. Further, compared
with an internal mechanism to enforce ME, an external solution

through selective attention can be more efficient by reducing the
computational load in internal learning processes.

As further studies are needed to explicitly test these two plausi-
ble explanations, at the very least, the results here further highlight
the importance of selective attention and information selection
in understanding learning mechanisms – they not only provide
input to internal learning processes but they are a part of learn-
ing processes. Toward this goal, however, the consistent results
of looking behavior from three learner groups cannot explain
away the differences between strong and weak learners – an open
question that leads to the next analysis on selective attention and
information selection across trials.

SELECTIVE ATTENTION ACROSS TRIALS
In the cross-situational learning paradigm, learners cannot figure
out correct word–referent mappings from a single trial. Instead,
cross-trial statistics need to be selected, processed, and aggregated
to lead to successful learning. Hence, it is critical to understand
how selective attention and information selection in the present
trial depends on where they looked before. At the beginning of
training, after hearing a new word, statistical learners had to select
one or more objects to attend from all the novel objects in a
trial without any prior knowledge which to-be-learned word goes
with which novel object. Their initial guess/selection may be right
or wrong. However, as learning proceeds, given that the learner
already paid attention to a certain object when hearing a word,
would they attend to the same object again if that object co-
occurs with the word in a new trial. We hypothesized and tested
two potential effects through which prior knowledge and looking
behavior from previous trials may influence selective attention and
information selection in subsequent learning.

Familiarity effects to confirm previously attended word–referent
pairs
If the learner paid attention to an object after hearing a word in
previous trials, the learner is likely to continue to attend to the same
object after hearing the same word again in subsequent learning
but not switch his attention to other co-occurring objects. This
is evident from the results shown in Figure 8 which divided gaze
patterns into four cases based on two factors – whether statistical
learners looked at the same object that they attended to before

FIGURE 8 | Looking behavior across trials organized by

object/word appearance for strong (A), average (B), and weak

learners (C). When hearing a word, participants may repeatedly
look at the same object that they attended before, or they may

decide to look at a new object instead. Meanwhile, whether
repeated or not, the attended object in the current trial may or may
not be correct. Taken together, there were four possible gaze
patterns across trials.
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when hearing the same word and whether the repeatedly attended
object was correct: (1) repeated/correct: when hearing the same
word again, participants generated a long look (using a 1200-ms
threshold as before) at the object that was attended previously, and
that repeatedly seen object was the correct referent of the heard
word; (2) repeated/incorrect: when hearing a word again, partici-
pants looked at the same object as before but that repeatedly seen
object was not the correct referent; (3) new/correct: even though
one of previously seen objects co-occurred with the same word
in the present trial, participants selected a new object to attend
instead and the newly selected object was the correct referent of the
heard word; (4) new/incorrect: Participants selected a new object
in the present trial which was not the correct referent. Figure 8
shows the results from these four cases by computing the propor-
tions of word segments that participants either looked at repeated
objects, or ignored repeated ones and instead switched to attend
new objects.

Since this measure is based upon where they looked previ-
ously when hearing a word, as shown in Figure 8, all learners
started from 0 in the first appearance of a word with no previous
experience. Starting from the third appearance and after, two dra-
matic differences between strong and weak learners were shown.
First, strong learners were more likely to look at the object they
were attending to before when hearing the same word. That is,
if the same object appeared again with the word, strong learners
preferred to look at that object (from 12% in the second appear-
ance to 72% in the last appearance). There were significant effects
of learner groups (β = 0.08, p < 0.001) and appearance (β = 0.11,
p < 0.005). In particular, with each additional appearance, there is
a significant increase of repeatedly looking toward correct objects
generated by strong learners (β = 0.23, p < 0.001). At the percep-
tual level, this can be explained as familiarity effects across trials –
looking at the familiar object when hearing a familiar word. At the
cognitive level, this can be explained as when learners paid atten-
tion to the word–referent pair in previous trials, they built working
memory representations of the stimulus which can be viewed as
an initial association or hypothesis; in other words, the repeated
word–referent pair allowed learners to confirm the initial hypothe-
sis or strengthen the initial association (Schöner and Thelen, 2006;
Turk-Browne et al., 2008). Meanwhile, the likelihood of looking at
non-repeated objects decreased over the course of learning for
strong learners (β = 0.02, p < 0.001). Note that in the context
of statistical learning, correct word–referent pairs repeatedly co-
occurred together more often than incorrect mappings, therefore
the chance that repeated objects were correct was much higher
than non-repeated ones. For this reason, both repeated/incorrect
and non-repeated/correct cases rarely happened. In contrast to
strong learners, weak learners tended to look more to new objects
but not repeated ones, and therefore they were less successful in
looking at correct ones (repeated ones were more likely to be
correct while non-repeated ones were more likely to be incor-
rect). The results in Figure 8 also show that average learners
seemed to be in between strong and weak learners – their atten-
tion to repeated ones increased but not as dramatically as the one
from strong learners did (β = 0.14, p < 0.001). Putting together
this result with those from the word-segment and within-trial
levels, we suggest that successful learning seems to critically rely

on integrating information across trials. Strong learners were able
to keep track of information attended to in previous trials and
used that information to guide attention and learning in subse-
quent trials. By so doing, they successfully integrated statistical
evidence across multiple trials to gradually converge to correct
word–referent mappings.

Novelty effects in new information selection
If the learner attended to an object after hearing a word in a
previous trial, but the previously seen object did not appear in
the current trial with the target word, then the learner had to
select other objects to attend. Which object(s) should be cho-
sen in this context? One principled way to do that is to select
objects that have not been attended before when hearing other
previous words. For example, assume that a learner hears a word
“a” with four visual objects {A B C D}. If the learner has already
attended to {C D} in previous trials when hearing other words,
participants should select a novel object {A or B} as a candidate
referent for the novel word “a.” This can be viewed of applying
the mutual exclusivity principle across trials – resulting in novel
words mapped to novel (previously not attended) objects across
trials. Four selection strategies are defined based on ME and cor-
rectness: (1) ME/correct: participants decided to attend to a new
object which has not been previously attended to and this selected
object was the correct referent of the heard word; (2) ME/incorrect:
participants attended to a new object that has not been attended
previously, and that object was not the correct referent of the
heard word; (3) Not ME/correct: participants selected an object
which has been attended to in previous learning trials when hear-
ing other words, and that object was correct; (4) Not ME/incorrect:
participants selected a previously attended object which was not
correct. As shown in Figure 9, there are no significant differences in
three out of four strategies (except for not-ME/incorrect) between
strong, average and weak learners. More specifically, at the begin-
ning, they all randomly selected an object when hearing a word
which may or may not follow ME. There are no effects of learn-
ing group in the first appearance (β = 0.05, p = 0.34). Thereafter,
however, average and weak learners (compared with strong learn-
ers) were more likely to select not-ME objects and those objects
were likely to be incorrect (β = 0.03, p < 0.001). Taken together
with the results shown in Figure 8, strong learners attended more
to objects that they previously attended and they seemed to rarely
attend to the same object that was previously selected when hear-
ing other words. In contrast, when hearing a word, average and
weak learners were more likely to select an object that they have
attended before (not-ME) when hearing other words in previous
trials. Consequently, these not-ME selections were more likely to
be incorrect which caused less successful learning.

In summary, even though all learners started with randomly
selecting objects when hearing a word, strong learners were capable
of remembering what they have attended before and they tended to
attend to the same objects repeatedly if these objects co-occurred
with the same words. By doing so, they created a “rich get richer”
effect through selective attention and information selection which
ultimately led to successful learning. In contrast, weak learners did
not seem to be able to recall (or reluctant to attend to) the objects
that they attended before, and selective attention and information
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selection in weak learners seemed to be more or less isolated trial by
trial without showing a sign of using prior knowledge accumulated
from previous trials to guide information selection in subsequent
trials. This capability of integrating and using information across
trials seems to be the key to statistical word learning.

GENERAL DISCUSSION
Table 1 summarizes the major findings from analyzing gaze data
at three temporal levels in the course of cross-situational learning.
In the following, we consider the implications of these findings for
understanding how information selection operates in real-time
learning, and, in particular, for understanding different princi-
ples of attention at different temporal contexts, the role of initial
states of learning, and how information is aggregated as learning
proceeds.

ATTENTION AT MULTIPLE TEMPORAL LEVELS
One critical question in cross-situational learning is how partic-
ipants may aggregate information within and across individual
trials. A better understanding of this topic may shed light on
on-going debates about the nature of fundamental learning mech-
anisms, e.g., hypothesis-testing vs associative learning debate (Col-
unga and Smith, 2005; Smith et al., 2006; Medina et al., 2011; Yu
and Smith, 2012; Yurovsky et al., under resubmission). The results

of gaze data analyses at three temporal scales, from a word level, to
a trial level, and finally to an across-trial level, show that attention
is controlled by several nested factors. However, at each level, there
seems to be one dominating factor/constraint that controls learn-
ers’ attention. More specifically, at the word level, learners most
often selectively pay attention to one object after hearing a word.
At the trial level, learners distribute their attention on all of the four
objects. For example, given four words {a b c d} and four objects
{A B C D}, if a learner happens to take a long look at object A after
hearing a, then the learner is less likely to look at A again when
hearing any other words. This attention mechanism can facilitate
learning if the previously attended pair is correct (e.g.,A–a). There-
fore, the learner can use prior knowledge of some learned pairs in
a trial to limit the candidate referents for a new word. However,
the same mechanism may also hinder learning if the previously
attended pairs are not correct. Finally, across trials, strong learn-
ers use knowledge gained from previous trials to guide selective
attention in the current trial which gradually leads to more looks
toward correct objects.

Putting everything together, we can see how the above fac-
tors/constraints at different levels may work together as an inte-
grated learning system. First, across-trial aggregation allows strong
learners to pay more attention to pairs that they paid atten-
tion to before – those pairs are more likely to be correct as

FIGURE 9 | Looking behavior across trials organized by object/word

appearance for strong (A), average (B), and weak learners (C). When
previous attended objects were not in the current trial co-occurring with the
target word, participants had to select a new object. This selection can be

based on not choosing the objects that have already associated with other
previous words (ME constraint) or choosing ones that have already attended
before when hearing other words. Four gaze patterns were shown in three
learner groups based on ME and correctness.

Table 1 | Summary of gaze patterns at different temporal levels and from different learner groups.

Level Pattern Learner group

Strong Average Weak

Word

segment

Looking longer at a particular object in each word segment • • •
Looking more toward correct objects • � ◦

Within-trial Looking at different objects in different word segments • • •
Looking at all objects in a trial • • •
Looking at pre-trained objects after hearing pre-trained words, but also looking at other objects • • •
Not looking at pre-trained objects after hearing to-be-learned words • • •

Across-trial Repeatedly looking at the objects that were previously attended when hearing the same word • � ◦
Looking more toward the objects that were attended before with previous words, when hearing a new word ◦ • •

• Means a pattern is significant, ◦ means a pattern is not revealed by the data from a particular group, and � means a pattern is significant compared with a

baseline but not as significant as the strongest group (e.g., there is a significant difference between the group with • and the group with �).
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correct word–referent pairs co-occur more frequently than spuri-
ous pairs do. In addition, within-trial ME at the trial level can work
together with across-trial integration as a complimentary way to
further propagate previously accumulated knowledge to not only
just confirm already learned pairs but also generate knowledge-
able guesses by linking new words with to-be-learned objects in
the trial, from familiar-word-to-familiar-referent to novel-word-
to-novel referent. By so doing, strong learners achieve better
learning performance since the sensitivity to across-trial statis-
tics should lead to correct word–referent pairs which co-occur
more frequently than incorrect ones, and furthermore correct
pairs inferred from across-trial statistics can facilitate the learning
of new pairs in the trial through within-trial ME. This explana-
tion supports an associative account with cross-trial integration
and within-trial competition. Indeed, recent associative models
of cross-situational learning have implemented these principles
through various routes (Siskind, 1996; Yu, 2008; Frank et al.,
2009; Fazly et al., 2010a,b; Nematzadeh et al., 2011; Kacher-
gis et al., 2012; Yurovsky et al., under resubmission). However,
it is not clear that a single hypothesis model without integrat-
ing information within and across trials can explain empiri-
cal findings of gaze data reported in the present study (Smith
et al., 2006; Medina et al., 2011). Even though the results here
cannot rule out other possible learning mechanisms, any valid
mechanism or theory should be able to account for behavioral
data by offering a mechanistic explanation. Hence, fine-grained
gaze patterns extracted from the present study pose a challenge
for both associative and hypothesis-testing models to account
for micro-level gaze behaviors in the course of statistical learn-
ing (e.g., shown in Figure 1) – modeling not only just test
results but also moment-by-moment attention (Siskind, 1996;
Smith et al., 2006; Yu, 2008; Frank et al., 2009; Fazly et al.,
2010b). A computational model that can explicitly model both
real-time attentional processes and latent learning states will
give us a leap to understand the mechanisms of moment-by-
moment and trial-by-trial cross-situational learning (Kachergis
et al., 2012).

ACCURACY OF INITIAL INFORMATION SELECTION
In the present study (and as well as in previous ones), participants
as a group learned a number of word–referent mappings through a
brief training. Meanwhile learning performance reveals individual
differences – some learners were able to acquire a larger number of
words while others could learn only a few. There are two plausible
explanations of individual learning results. One is that all learners
follow the same learning strategy to start with. However, strong
learners happen to select correct word–referent pairs by chance
and this good first guess bootstraps learning as they can quickly
confirm and strengthen correct mappings through repeatedly see-
ing the same object while hearing the same word. In contrast,
weak learners with the same learning strategy may start with link-
ing wrong pairs. Therefore, in the next encounter of a word, the
best they could do is to identify the wrong pair (the previously
attended object does not co-occur with the word) and replace it
with a new hypothesized pair which requires further evidence to
confirm. In this way, the same learning mechanism may naturally
create individual differences in learning performance, building on

the accuracy of word–referent selection at the beginning of learn-
ing. Alternatively, the other possibility is that bad initial guesses
may lead to better learning. This idea was evidenced by a recent
study (Fitneva and Christiansen, 2011) showing the initial accu-
racy of word–referent mappings was negatively correlated with test
performance. The result is explained as participants with incorrect
initial word–referent mappings tend to engage in more systematic
and elaborate processing (Oppenheimer, 2008) and adopt a more
analytical approach which results in better learning. In addition, if
participants are more sensitive to disconfirming than confirming
evidence when they accumulate cross-situational statistics, then
inaccurate initial word–referent mappings may actually benefit
learning.

However, the results from the present study do not support
the above two accounts. Instead, as we reported earlier, various
measures of gaze data (e.g., shown in Figures 3–6), such as long
looks toward correct objects, proportion of long looks, and prob-
ability of looking at the objects previously attended, show no
difference between strong and weak learners at the beginning of
learning (e.g., the first and second appearances of word–referent
pairs). Their looking behavior begins to diverge later as learn-
ing proceeds. Therefore, how they start may not matter much for
successful learning. Instead, what may really matter is how they
aggregate information over cross-situational trials which leads to
the different learning outcomes – the topic discussed next.

We suggest that the differences between our findings and the
results reported in Fitneva and Christiansen (2011) can be caused
by the different degrees of within-trial uncertainty in the designs
of the two studies. In their experiment, there were two words and
two objects presented in each trial (two correct mappings among
four possible associations), while our learning trials are composed
of four words and four objects, which is much more complex.
As a result, participants in Fitneva and Christiansen (2011) can
recover from initial wrong hypotheses from cleaner learning envi-
ronments while participants in our case which demands greater
cognitive, attentional, and computational resources did not show
any difference due to a tradeoff between having more or less
accurate guesses at the beginning. Namely, even though having
incorrect guesses may ultimately improve learning for the reasons
suggested by Fitneva and Christiansen (2011), those learners with
inaccurate initial guesses also have a disadvantage. With the fixed
number of training trials, learners with correct initial guesses can
rely on their correct initial states and further confirm those correct
guesses in subsequent learning while learners with incorrect initial
guesses do not accumulate and gain any useful information from
wrong initial guesses and have to change and correct them later
in training. Therefore, when facing with more complex learning
environments, learners with correct initial guesses can accumulate
and take advantage of more statistical regularities than learners
with initial incorrect guesses. Therefore, both the learners with
initial correct guesses and the learners with initial inaccurate guess
may produce similar learning results but in different ways – the
first group can easily take advantage of their good starting point
while the second group is more engaged in later learning due
to the detection of their wrong initial guesses. This observation
also points out the flexibility and complexity of statistical learning
mechanisms: on the one hand, as explained here, the same learning
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results can be achieved through different routes; on the other hand,
as we illustrated earlier, the same learning mechanism can produce
different learning outcomes depending on selective attention and
information selection. At the very least, both the study in Fitneva
and Christiansen (2011) and our study here argue for the impor-
tance of understanding the role of information selection at the
beginning of statistical learning as a necessary step to gain a better
understanding of learning mechanisms.

AGGREGATION OF CROSS-SITUATIONAL STATISTICS
There are two noticeable patterns that are characteristic of the
temporal dynamics of various measures reported in the present
study (e.g., Figures 3, 4, and 8). First, for strong learners, learn-
ing is incremental as more statistical evidence is accumulated.
At this point, it becomes clear that at the very least, learners
in the cross-situational paradigm need to accumulate statistical
evidence across trials and by so doing they gradually look more
toward correct objects. A recent simulation study offered for an
alternative account of cross-situational results, showing that it is
mathematically possible that a simulated learner may not inte-
grate information across trials but still demonstrate above-chance
learning performance (Smith et al., 2006). This argument cannot
explain gradually increasing and consistent gaze patterns toward
correct objects produced by strong learners. Meanwhile, weak
learners seem to more or less randomly select objects to attend
trial by trial without evidence of retaining previous experiences.
Indeed, there are three plausible reasons on how weak learners
were much less successful. First, at the perceptual level, they may
not be sensitive to multimodal occurrences between correct word–
referent pairs. They may not be able to remember what they were
exposed to before and therefore they did not demonstrate famil-
iarity effects – looking at familiar objects after hearing familiar
words, nor novelty effects – looking at novel objects when hearing
new words. These basic perceptual capabilities may be sufficient to
build correct word–referent associations from ambiguous data. At
the cognitive level, weak learners may not be able to form longer-
term representations but only have transient working memory
representations in linking heard words and seen objects. There-
fore, they could not use information in previous exposures to guide
attention and learning in subsequent trials. At the computational
level, weak learners may generate individual hypotheses in a trial
but they never cross-tabulate these hypotheses via statistical pro-
cedures (Medina et al., 2011). Although the current eye-tracking
study cannot yet further distinguish these possibilities, it is clear
that the key to successful learning is to carry out knowledge and
experiences gained from past learning situations into subsequent
learning. The above three explanations at different levels can be
based on the same underlying resource but just be conceptual-
ized in different ways and from different perspectives. However,
it is also possible that the three explanations may have profound
theoretical differences.

Second, strong and weak learners do not differ in the first
few training trials but looking behaviors begin to diverge only
after/around the middle of training. In particular, there are no sig-
nificant differences in various temporal profiles shown in Figures 3
and 4, until the third appearance of co-occurring pairs. At a
first thought, this observation seems to be counter intuitive with

the fundamental idea of associative learning which would pre-
dict incremental learning from the beginning as more and more
statistical evidence is accumulated. However, simulation studies
of statistical associative learning have shown that the same sta-
tistical learning mechanism, operating incrementally and without
any significant internal changes, is able to give rise to a dramatic
change in learning rate (Plunkett et al., 1992; McMurray, 2007; Yu,
2008;Yurovsky et al.,under resubmission). The performance of the
same learning mechanism can be significantly improved by stor-
ing lexical knowledge previously accumulated and then recruiting
it in subsequent learning. With more knowledge accumulated and
then recruited, participants become more efficient word learn-
ers. However, without enough statistical evidence in the early part
of training, the very same mechanisms cannot operate efficiently
and demonstrate their effects with sparse data. Only after a cer-
tain amount of cross-situational statistics has been accumulated,
dramatic behavioral changes are observed, suggesting the effects
of accumulating statistical evidence. In such a learning system,
even though there are no observed changes in the early training,
the initial accumulation of statistics is critical as they incremen-
tally build an underlying foundation for the later bootstrapping.
Without latent (and probably partial) knowledge accumulated,
the learning system would not be able to produce more learning
outcomes at a faster pace which makes the same associative mech-
anism much more effective. Compared with hypothesis-testing
based mechanisms, the power of statistical learning is to con-
tinuously and accumulatively gather various kinds of statistical
evidence which can later be utilized to lead to efficient learning.
This accumulated effect can be a key characteristic of statistical
associative learning, which is certainly consistent with many for-
mal theories of early word learning. For example, it has been shown
that vocabulary growth begins slowly with a gradual increase in the
number of new words but then quickens to a noticeably fast rate of
word acquisitions (Benedict, 1979; Dromi, 1987; Gopnik and Melt-
zoff, 1987; Lifter and Bloom, 1989; Goldfield and Reznick, 1990;
Gershkoff-Stowe and Smith, 1997). However, empirical evidence
to support this idea focuses on such changes in a rather large tem-
poral span/scale (e.g., vocabulary growth over several months or
computational simulations over large corpora). Here we demon-
strate that the accumulated effects that bootstrap learning also
happen at a much short temporal span of statistical learning (less
than a 6-min training, etc.). Taken together, accumulative effects
through associative learning may operate at multiple temporal
scales, from second to second information aggregation, to day
by day and month by month learning, suggesting that the same
mechanism of associative learning may serve as a fundamental
mechanism to learning and cognition.

CONCLUSION
Participants in cross-situational paradigms (and as well as young
language learners in the real world) cannot pay attention to all
the regularities in a complex environment with many objects and
many words co-occurring, and many events happening concur-
rently. Therefore, selective attention and information selection
provide the foundation for what is perceived and learned, as
selecting right information is critical for successful statistical learn-
ing. It is one thing to point out that information selection in
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cross-situational learning is likely to be driven by spoken words,
and is likely to be influenced by mutual exclusivity, or to make a
grand argument on underlying mechanisms, whether it is asso-
ciative learning or hypothesis testing, but it is another to quantify
and describe what exactly happens moment by moment in real-
time learning, how several nested factors may work individually
and together, and what drives attention to more successful or less
successful learning. The application of eye tracking to statistical

cross-situational learning is new (Fitneva and Christiansen, 2011;
Yu and Smith, 2011), and from this perspective, our results provide
a useful initial framework for the evaluation of eye movements
as a way to understand real-time learning mechanisms. Toward
this goal, various results derived from learners’ gaze data not only
provide useful insights to understand statistical learning, but also
generate testable predictions and hypotheses for future empirical
and modeling work.

REFERENCES
Akhtar, N., and Montague, L. (1999).

Early lexical acquisition: the role
of cross-situational learning. First
Lang. 19, 347.

Allopenna, P., Magnuson, J., and Tanen-
haus, M. (1998). Tracking the time
course of spoken word recogni-
tion using eye movements: evidence
for continuous mapping models. J.
Mem. Lang. 38, 419–439.

Amso, D., and Johnson, S. P. (2006).
Learning by selection: visual search
and object perception in young
infants. Dev. Psychol. 42(6), 1236.

Aslin, R., and McMurray, B. (2004).
Automated corneal-reflection eye
tracking in infancy: methodologi-
cal developments and applications
to cognition. Infancy 6, 155–163.

Baayen, R. H. (2008). Analyzing Lin-
guistic Data: A Practical Introduc-
tion to Statistics Using R. Cambridge:
Cambridge University Press.

Baayen, R. H., Davidson, D. J., and Bates,
D. M. (2008). Mixed-effects model-
ing with crossed random effects for
subjects and items. J. Mem. Lang. 59,
390–412.

Ballard, D. H., Hayhoe, M. M., Pook,
P. K., and Rao, R. P. N. (1997).
Deictic codes for the embodiment
of cognition. Behav. Brain Sci. 20,
723–742.

Bates, D., and Sarkar, D. (2007). Lme4:
Linear Mixed-Effects Models Using
S4 Classes. Madison: University of
Wisconsin.

Benedict, H. (1979). Early lexical
development: comprehension
and production. J. Child Lang. 6,
183–200.

Colunga, E., and Smith, L. B. (2005).
From the lexicon to expectations
about kinds: a role for associative
learning. Psychol. Rev. 112(2), 347.

Dromi, E. (1987). Early Lexical Develop-
ment. London: Cambridge Univer-
sity Press.

Fazly, A., Ahmadi-Fakhr, F., Alishahi, A.,
and Stevenson, S. (2010a). “Cross-
situational learning of low frequency
words: the role of context familiar-
ity and age of exposure,” in Pro-
ceedings of the 32nd Annual Confer-
ence of the Cognitive Science Society

(Portland: Cognitive Science Soci-
ety), 2615–2620.

Fazly, A., Alishahi, A., and Steven-
son, S. (2010b). A probabilistic
computational model of cross situ-
ational word learning. Cogn. Sci. 34,
1017–1063.

Fisher, C., Hall, D. G., Rakowitz, S.,
and Gleitman, L. (1994). When it is
better to receive than to give: syn-
tactic and conceptual constraints on
vocabulary growth∗ 1. Lingua. 92,
333–375.

Fitneva, S. A., and Christiansen, M.
H. (2011). Looking in the wrong
direction correlates with more accu-
rate word learning. Cogn. Sci. 35,
367–380.

Frank, M. C., Goodman, N. D., and
Tenenbaum, J. B. (2009). Using
speakers’ referential intentions to
model early cross-situational word
learning. Psychol. Sci. 20, 578.

Gershkoff-Stowe, L., and Smith, L. B.
(1997). A curvilinear trend in nam-
ing errors as a function of early
vocabulary growth∗ 1. Cogn. Psychol.
34, 37–71.

Gleitman, L. (1990). The structural
sources of verb meanings. Lang. Acq.
1, 3–55.

Goldfield, B. A., and Reznick, J. S.
(1990). Early lexical acquisition:
rate, content, and the vocabulary
spurt. J. Child Lang. 17, 171–183.

Golinkoff, R. M., Hirsh-Pasek, K., Bai-
ley, L. M., and Wenger, N. R. (1992).
Young children and adults use lexical
principles to learn new nouns. Dev.
Psychol. 28(1), 99.

Gopnik, A., and Meltzoff, A. (1987).
The development of categorization
in the second year and its relation to
other cognitive and linguistic devel-
opments. Child Dev. 1523–1531.

Griffin, Z. (2004). “Why look? Reasons
for eye movements related to lan-
guage production,” in The Interface
of Language, Vision, and Action: Eye
Movements and the Visual World,
ed. J. Henderson and F. Ferreira
(New York: Taylor and Francis),
213–247.

Griffin, Z., and Bock, K. (1998). Con-
straint, word frequency, and the rela-
tionship between lexical processing

levels in spoken word production. J.
Mem. Lang. 38, 313–338.

Halberda, J. (2006). Is this a dax
which I see before me? Use of the
logical argument disjunctive syllo-
gism supports word-learning in chil-
dren and adults. Cogn. Psychol. 53,
310–344.

Hollich, G. J., Hirsh-Pasek, K.,
Golinkoff, R. M., Brand, R. J,
Brown, E., Chung, H. L., Hennon,
E., and Rocroi, C. (2000). Breaking
the language barrier: an emergentist
coalition model for the origins of
word learning. Monogr. Soc. Res.
Child Dev. 65, 1–123.

Johnson, S., Amso, D., and Slemmer,
J. (2003). Development of object
concepts in infancy: evidence for
early learning in an eye-tracking par-
adigm. Proc. Natl. Acad. Sci. 100,
10568–10573.

Johnson, S. P., Davidow, J., Hall-Haro,
C., and Frank, M. C. (2008). Devel-
opment of perceptual completion
originates in information acquisi-
tion. Dev. Psychol. 44, 1214.

Johnson, S. P., Slemmer, J. A., and
Amso, D. (2004). Where infants look
determines how they see: eye move-
ments and object perception perfor-
mance in 3-month-olds. Infancy 6,
185–201.

Kachergis, G., Yu, C., and Shiffrin, R.
M. (2012). An associative model
of adaptive inference for learning
word–referent mappings. Psychon.
Bull. Rev. 1–8.

Keil, F. (1992). Concepts, Kinds, and
Cognitive Development. Boston: MIT
Press.

Klein, K. A., Yu, C., and Shiffrin, R.
M. (2008). “Prior knowledge boot-
straps cross-situational learning,” in
Proceedings of Annual Meeting of
Cognitive Science Society (Wash-
ington: Cognitive Science Society),
1930–1935.

Knoeferle, P., and Crocker, M. (2006).
The coordinated interplay of scene,
utterance, and world knowledge:
evidence from eye tracking. Cogn.
Sci. 30, 481–529.

Kowler, E., Anderson, E., Dosher, B.,
and Blaser, E. (1995). The role of
attention in the programming

of saccades. Vision Res. 35,
1897–1916.

Kruschke, J. (2003). Attention in
learning. Curr. Direct. Psychol. Sci.
171–175.

Lifter, K., and Bloom, L. (1989). Object
play and the emergence of language.
Infant Behav. Dev. 12, 395–423.

Markman, E. (1992). Constraints on
word learning: speculations about
their nature, origins, and domain
specificity. Modularity and Con-
straints in Language and Cognition,
25, 59–101.

McMurray, B. (2007). Defusing the
childhood vocabulary explosion.
Science 317, 631.

Medina, T. N., Snedeker, J., Trueswell, J.
C., and Gleitman, L. R. (2011). How
words can and cannot be learned
by observation. Proc. Natl. Acad. Sci.
108, 9014.

Meyer, A., Sleiderink, A., and Levelt, W.
(1998). Viewing and naming objects:
eye movements during noun phrase
production. Cognition 66, 25–33.

Nematzadeh, A., Fazly, A., and Steven-
son, S. (2011). “A computational
study of late talking in word-
meaning acquisition,” in Proceedings
of the 33rd Annual Conference of the
Cognitive Science Society. (Boston:
Cognitive Science Society), 705–710.

Oppenheimer, D. M. (2008). The secret
life of fluency. Trends Cogn. Sci. 12,
237–241.

Pinker, S. (1984). Language Learn-
ability and Language Development.
Cambridge, MA: Harvard University
Press.

Plunkett, K., Hu, J., and Cohen, L.
(2008). Labels can override percep-
tual categories in early infancy. Cog-
nition 106, 665–681.

Plunkett, K., Sinha, C., Martin, F. M.,
and Strandsby, O. (1992). Symbol
grounding or the emergence of sym-
bols? Vocabulary growth in children
and a connectionist net. Connect. Sci.
4, 293–312.

Posner, M. I. (1980). Orienting of atten-
tion. Q. J. Exp. Psychol. 32, 3–25.

Rehder, B., and Hoffman, A. B. (2005).
Eyetracking and selective attention
in category learning. Cogn. Psychol.
51, 1–41.

www.frontiersin.org June 2012 | Volume 3 | Article 148 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Developmental_Psychology/archive


Yu et al. Selective attention in word learning

Schafer, G., and Plunkett, K. (1998).
Rapid word learning by fifteen
month olds under tightly con-
trolled conditions. Child Dev. 69,
309–320.

Schöner, G., and Thelen, E. (2006).
Using dynamic field theory to
rethink infant habituation. Psychol.
Rev. 113(2), 273.

Scott, R. M., and Fisher, C. (2011). 2.5-
Year-olds use cross-situational con-
sistency to learn verbs under ref-
erential uncertainty. Cognition 122,
163–180.

Shiffrin, R. M., and Schneider, W.
(1977). Controlled and automatic
human information processing:
II. Perceptual learning, automatic
attending and a general theory.
Psychol. Rev. 84, 127–190.

Siskind, J. M. (1996). A computa-
tional study of cross-situational
techniques for learning word-to-
meaning mappings. Cognition 61,
39–91.

Smith, K., Smith, A. D. M., Blythe,
R. A., and Vogt, P. (2006). "Cross-
situational learning: a mathematical
approach," in Symbol Grounding
and Beyond: Proceedings of the
Third International Workshop on
the Emergence and Evolution of
Linguistic Communication, eds

P. Vogt, Y. Sugita, E. Tuci and
C. Nehaniv (Berlin: Springer),
31–44.

Smith, L. B. (2000). “Learning how to
learn words: an associative crane,”
in Becoming a Word Learner: A
Debate on Lexical Acquisition, eds
R. M. Golinkoff, K. Hirsh-Pasek,
L. Bloom, L. Smith, A. Woodward,
N. Akhtar, M. Tomasello, and G.
Hollich (London: Oxford University
Press), 51–80.

Smith, L., and Yu, C. (2008). Infants
rapidly learn word-referent
mappings via cross-situational
statistics. Cognition 106,
1558–1568.

Tanenhaus, M. K., Spivey-Knowlton, M.
J., Eberhard, K. M., and Sedivy, J.
C. (1995). Integration of visual and
linguistic information in spoken lan-
guage comprehension. Science 268,
1632.

Trueswell, J. C., and Gleitman, L. (2004).
“Children’s eye movements during
listening: developmental evidence
for a constraint-based theory of sen-
tence processing,” in The Interface
of Language, Vision, and Action: Eye
Movements and the Visual World,
eds J. M. Henderson and F. Fer-
reira (New York: Psychology Press),
319–346.

Turk-Browne, N. B., Scholl, B. J.,
and Chun, M. M. (2008). Babies
and brains: habituation in infant
cognition and functional neu-
roimaging. Front. Hum. Neurosci.
2:16. doi:10.3389/neuro.09.016.
2008

von Hofsten, C., Vishton, P., Spelke,
E., Feng, Q., and Rosander,
K. (1998). Predictive action in
infancy: tracking and reaching
for moving objects. Cognition 67,
255–285.

Vouloumanos, A., Hauser, M. D.,
Werker, J. F., and Martin, A. (2010).
The tuning of human neonates’pref-
erence for speech. Child Dev. 81,
517–527.

Vouloumanos, A., and Werker, J. F.
(2009). Infants’ learning of novel
words in a stochastic environment.
Dev. Psychol. 45, 1611.

Yu, C. (2008). A statistical associative
account of vocabulary growth in
early word learning. Lang. Learn.
Dev. 4, 32–62.

Yu, C., and Smith, L. B. (2007). Rapid
word learning under uncertainty via
cross-situational statistics. Psychol.
Sci. 18, 414.

Yu, C., and Smith, L. B. (2011). What
you learn is what you see: using
eye movements to study infant

cross-situational word learning. Dev.
Sci. 16, 165–180.

Yu, C., and Smith, L. B. (2012). Model-
ing cross-situational word learning:
prior questions. Psychol. Rev. 119,
21–39.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 04 December 2011; accepted:
24 April 2012; published online: 14 June
2012.
Citation: Yu C, Zhong Y and Fricker
D (2012) Selective attention in cross-
situational statistical learning: evidence
from eye tracking. Front. Psychology
3:148. doi: 10.3389/fpsyg.2012.00148
This article was submitted to Frontiers in
Developmental Psychology, a specialty of
Frontiers in Psychology.
Copyright © 2012 Yu, Zhong and Fricker .
This is an open-access article distributed
under the terms of the Creative Commons
Attribution Non Commercial License,
which permits non-commercial use, dis-
tribution, and reproduction in other
forums, provided the original authors and
source are credited.

Frontiers in Psychology | Developmental Psychology June 2012 | Volume 3 | Article 148 | 16

http://dx.doi.org/10.3389/neuro.09.016.{\penalty -\@M }2008
http://dx.doi.org/10.3389/fpsyg.2012.00148
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Developmental_Psychology
http://www.frontiersin.org/Developmental_Psychology/archive

	Selective attention in cross-situational statistical learning: evidence from eye tracking
	Introduction
	Materials and Methods
	Stimuli
	Apparatus
	Participants
	Procedure

	Word learning results at test
	Eye movement data processing and analysis methods
	Results from data mining eye movement data
	Analysis of eye movements at the word level
	Analysis of eye movements within a trial
	Selective attention across trials
	Familiarity effects to confirm previously attended word–referent pairs
	Novelty effects in new information selection


	General discussion
	Attention at multiple temporal levels
	Accuracy of initial information selection
	Aggregation of cross-situational statistics

	Conclusion
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages false
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages false
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages false
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


