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One form of inertia is the tendency to repeat the last decision irrespective of the obtained
outcomes while making decisions from experience (DFE). A number of computational
models based upon the Instance-Based Learning Theory, a theory of DFE, have included
different inertia implementations and have shown to simultaneously account for both risk-
taking and alternations between alternatives. The role that inertia plays in these models,
however, is unclear as the same model without inertia is also able to account for observed
risk-taking quite well.This paper demonstrates the predictive benefits of incorporating one
particular implementation of inertia in an existing IBL model. We use two large datasets,
estimation and competition, from theTechnion PredictionTournament involving a repeated
binary-choice task to show that incorporating an inertia mechanism in an IBL model enables
it to account for the observed average risk-taking and alternations. Including inertia, how-
ever, does not help the model to account for the trends in risk-taking and alternations over
trials compared to the IBL model without the inertia mechanism. We generalize the two
IBL models, with and without inertia, to the competition set by using the parameters deter-
mined in the estimation set.The generalization process demonstrates both the advantages
and disadvantages of including inertia in an IBL model.
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INTRODUCTION
People’s reliance on inertia, the tendency to repeat the last decision
irrespective of the obtained outcomes (successes or failures), has
been documented in literature concerning managerial and organi-
zational sciences as well as behavioral sciences (Samuelson, 1994;
Reger and Palmer, 1996; Hodgkinson, 1997; Tripsas and Gavetti,
2000; Gladwell, 2007; Biele et al., 2009; Gonzalez and Dutt, 2011;
Nevo and Erev,2012). For example, inertia acts like a status quo bias
and helps to account for the commonly observed phenomenon
whereby managers fail to update and revise their understanding
of a situation when it changes, a phenomenon that acts as a psy-
chological barrier to organizational change (Reger and Palmer,
1996; Tripsas and Gavetti, 2000; Gladwell, 2007). In these situ-
ations, inertia is generally believed to have a negative effect on
decision making (Sandri et al., 2010).

Inertia has also been incorporated to account for human behav-
ior in existing computational models of decisions from experience
(DFE). DFE are choices that are based on previous encounters
with one’s alternatives; as opposed to decisions from description,
which are based on summary descriptions detailing all possible
outcomes and their respective likelihoods of each option (Her-
twig and Erev, 2009). In DFE, researchers have studied both
the risk-taking behavior and alternations between alternatives
in repeated binary-choice tasks, where decision makers conse-
quentially choose between risky and safe alternatives repeatedly
(Samuelson, 1994; Börgers and Sarin, 2000; Barron and Erev, 2003;
Erev and Barron, 2005; Biele et al., 2009; Hertwig and Erev, 2009;
Erev et al., 2010a; Gonzalez and Dutt, 2011; Nevo and Erev, 2012).

The alternations explain how individuals search information and
how this search pattern changes over repeated trials. Thus, alter-
nations tell us about the information-search patterns and learning
in DFE (Erev et al., 2010a). Accounting for both risk-taking and
alternations helps to develop a complete understanding about how
decision makers reach certain long-term outcomes, which cannot
be determined by solely studying one of these measures in the
isolation of the other (Gonzalez and Dutt, 2011).

Most recently, models based upon the Instance-Based Learning
Theory (IBLT; and “IBL models” hereafter), a theory of dynamic
DFE, have shown to account for both the observed risk-taking
and alternations in a binary-choice task better than most of the
best known computational models. A number of these IBL models
have incorporated some form of the inertia mechanism (Gonza-
lez and Dutt, 2011; Gonzalez et al., 2011), while others have not
incorporated inertia and still accounted for the risk-taking behav-
ior (Lejarraga et al., 2012). For example, Lejarraga et al. (2012)
have shown that a single IBL model, without inertia, is able to
explain observed risk-taking and generalize across several vari-
ants of the repeated binary-choice task. Therefore, it appears that
inertia may not be needed in computational models to account
for the observed risk-taking. However, Lejarraga et al. (2012)
model does not demonstrate how alternations are accounted for
or how alternations and risk-taking are accounted for simulta-
neously. As discussed above, people’s experiential decisions may
likely rely on inertia, and computational models might need some
form of inertia to account for both observed risk-taking and
alternations. Yet, the role that inertia mechanisms play in existing

www.frontiersin.org June 2012 | Volume 3 | Article 177 | 1

http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/editorialboard
http://www.frontiersin.org/Psychology/about
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=VarunDutt&UID=48650
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=CleotildeGonzalez&UID=42837
mailto:varundutt@yahoo.com
http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive
http://www.frontiersin.org/Cognitive_Science/10.3389/fpsyg.2012.00177/abstract


Dutt and Gonzalez Inertia’s role in experiential decisions

computational models is unclear and needs to be systematically
investigated.

In this paper, we evaluate the role of an inertia mechanism
in an IBL model. We evaluate a model with inertia and another
without inertia for their ability to account for observed risk-taking
and alternation behaviors. In order to evaluate the inertia mecha-
nism, we use two large human datasets that were collected in the
Technion Prediction Tournament (TPT) involving the repeated
binary-choice task (Erev et al., 2010b). In what follows, we first dis-
cuss the current understanding of the role of inertia in accounting
for DFE. Next, we present the results of calibrating two existing IBL
models, with and without inertia, in the TPT’s estimation dataset
and evaluate the added value and contribution of including iner-
tia. Finally, we present the results that generalize these models into
the TPT’s competition dataset. We close this paper by discussing
our results and highlighting some future directions in this ongoing
research program.

THE ROLE OF INERTIA IN DECISIONS FROM EXPERIENCE
Inertia may be a psychological barrier to changes in an organi-
zation if decision makers fail to update their understanding of a
situation when it changes (Reger and Palmer, 1996; Hodgkinson,
1997; Tripsas and Gavetti, 2000; Gladwell, 2007). For example,
Tripsas and Gavetti (2000) provided a popular example of iner-
tia in a managerial setting concerning the Polaroid Corporation.
Polaroid believed that it could only make money by producing
consumables and not the hardware. Thus, it decided to stick to
producing only consumables. This decision led the company to
neglect the growth in digital imaging technologies. Because of the
prevailing inertial “mental model” of their business, the corpora-
tion failed to adapt effectively to market changes. Furthermore,
Gladwell (2007) has suggested that inertia is one powerful expla-
nation as to why established firms are not as innovative as young,
less established firms. For example, as an established firm, Kodak’s
management is reported to have suffered from a status quo bias
due to inertia: They believed that what has worked in the past will
also work in the future (Gladwell, 2007).

In judgment and decision making, inertia has been shown to
play a role in determining the proportion of risk-taking due to
the timing of a descriptive warning message (Barron et al., 2008).
Barron et al. (2008) compared the effect of a descriptive warning
received before or after making risky decisions in a repeated binary-
choice task. In this task, participants made a choice between a safe
option with a sure gain and a risky option with the possibility of
incurring a loss or a gain such that the probability of incurring
the loss was very small (p = 0.001). Thus, most of the time, the
task offered gains for both safe and risky choices. These authors
show that when an early warning coincides with the beginning of a
decision making process, the warning is both weighted more heav-
ily in future decisions and induces safer behavior (i.e., a decrease
in the proportion of risky choices), which becomes the status quo
for future choices. Thus, although the proportion of risk-taking
is lower for an early warning message compared to a late warning
message, the risky and safe choices in both cases show excessive
reliance on inertia to repeat the last choice made. Here, inertia acts
like a double-edged sword: It is likely to encourage or discourage
ongoing risky behavior depending upon the timing of a warning.

Some researchers have depicted inertia as an irrational behavior
in which individuals hold onto choices that clearly do not pro-
vide the maximizing outcome for too long (Sandri et al., 2010).
However, these authors have only shown that behavior may be
inconsistent with one specific rational model of maximization,
which may be an arbitrary standard that is difficult to generalize
to other rational models of maximization. There are certain other
situations where inertia is likely to produce positive effects as well.
In psychology, inertia is also believed to be a key component of
love, trust, and friendship (Cook et al., 2005). If evidence shows
that a friend is dishonest, then the decision to mistrust the friend
in future interactions would demand much more instances of dis-
honesty from the friend than that required to form an opinion
about a stranger. Thus, the inertia of continuing to trust the friend
makes it difficult to break the friendship.

Inertia has been incorporated in a number of existing cogni-
tive models of DFE. It is believed that inertia helps these models
account for both observed risk-taking and alternations in the
repeated binary-choice (Samuelson,1994; Börgers and Sarin,2000;
Biele et al., 2009; Erev et al., 2010a; Gonzalez and Dutt, 2011; Nevo
and Erev, 2012). For example, Erev et al. (2010a) observed that in
the repeated binary-choice task, participants selected the alterna-
tive that led to an observed high outcome in the last trial in 67.4%
of the trials, while they repeated their last choice for an alter-
native, irrespective of it being high or low, in 75% of the trials.
These observations suggest that participants tend to repeat their
last choice even when it does not agree with the high outcome
in their last experience, exhibiting robust reliance on inertia that
seems to be independent of observed outcomes. Some researchers
have suggested that in situations where estimating the choice that
yields high outcomes from observation is costly, difficult, or time
consuming, relying on inertia might be the most feasible course of
action (Samuelson, 1994). But other researchers have found this
inertia effect even when the forgone outcome (i.e., what respon-
dents would have gotten had they chosen the other alternative) is
greater than the obtained outcome (Biele et al., 2009).

In order to account for these observations, recent computa-
tional models of DFE have explicitly incorporated three different
forms of inertia as part of their specification (Erev et al., 2010a;
Gonzalez and Dutt, 2011; Gonzalez et al., 2011). In the first form,
inertia increases over time as a result of a decrease in surprise,
where surprise is defined as the difference in expected values of
the two alternatives (Erev et al., 2010a). This definition of iner-
tia has been included in the Inertia Sampling and Weighting
(I-SAW) model. The I-SAW model was designed for a repeated
binary-choice market-entry task, and it distinguishes between
three explicit response modes: exploration, exploitation, and iner-
tia (Erev et al., 2010a; Chen et al., 2011). The I-SAW model also
provides reasonable predictions in the repeated binary-choice task
(Nevo and Erev, 2012). Inertia is represented in this model with
the assumption that individuals tend to repeat their last choice,
and the probability of inertia in a trial is a function of surprise.
Surprise is calculated as the difference in the expected value of the
two alternatives due to the observed outcomes in each alternative
in previous trials. The probability of inertia is assumed to increase
over trials, as surprise decreases over trials. This definition based
upon surprise incorporates the idea of learning over repeated trials
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of game play where, due to repeated presentations of the same set
of outcomes, participants tend to get increasingly less surprised
and begin to stick to an option that they prefer (i.e., show inertia
in their decisions).

In the second form (that is similar to the first form), inertia
increases over time as a result of a decrease in surprise, which is
based upon the difference in blended values (a measure of utility
of alternatives based on past experience in Gonzalez et al., 2011
model). This definition of inertia has been included in the IBL
model that was runner-up in the market-entry competition (Gon-
zalez et al., 2011). This model includes an inertia mechanism that
is driven by surprise like in the I-SAW model; however, surprise
here is calculated as the difference between the blended values of
two alternatives.

In the third and simpler form, inertia is a probabilistic process
that is triggered randomly over trials, where the random occur-
rences of inertia are based upon a calibrated probability parameter,
pInertia (Gonzalez and Dutt, 2011). This definition of inertia is the
one we evaluate in this paper, as it was recently included in an IBL
model that produced robust predictions superior to many existing
models (Gonzalez and Dutt, 2011). According to Gonzalez and
Dutt (2011), the IBL model with the pInertia parameter accounts
for both observed risk-taking and alternations simultaneously in
different paradigms of DFE and performs consistently better than
most existing computational models of DFE that competed in the
TPT.

Although computational models have included inertia in sev-
eral forms, Lejarraga et al. (2012) have recently shown that a
single IBL model without any inertia assumption is also able to
account for the observed risk-taking behavior in different tasks
that included probability-learning, binary-choice with fixed prob-
ability, and binary-choice with changing probability. Although the
use of some form of inertia seems necessary in many computa-
tional models of DFE (Erev et al., 2010a; Chen et al., 2011; Gonzalez
and Dutt, 2011; Gonzalez et al., 2011; Nevo and Erev, 2012), its
role in accounting for risk-taking and alternations in DFE is still
unclear and a systematic investigation of its role in computational
models is needed.

Given the wide use of inertia in computational models, it is
likely that incorporating inertia assumptions might make them
more ecologically valid. That seems likely because if a model
accounts for risk-taking behavior already, then incorporating a
form of inertia in its specification might directly influence its
ability to account for alternations as well. However, we currently
do not know how inertia in a model might impact its ability to
account for both the risk-taking behavior and the alternations
simultaneously. The incorporation of inertia in a model is likely
to be beneficial only if it improves the model’s ability to account
for both risk-taking and alternations, and not solely one of these
measures.

MATERIALS AND METHODS
RISK-TAKING AND ALTERNATIONS IN THE TECHNION PREDICTION
TOURNAMENT
The TPT (Erev et al., 2010b) was a modeling competition orga-
nized in 2008 in which different models were submitted to predict
choices made by human participants. Competing models were

evaluated following the generalization criterion method (Buse-
meyer and Wang, 2000), by which models were fitted to choices
made by participants in 60 problems (the estimation set) and
later tested in a new set of 60 problems (the competition set)
with the parameters obtained in the estimation set. Although the
TPT involved three different experimental paradigms, here we use
data from the E-repeated paradigm that involved consequential
choices in a repeated binary-choice task with immediate feedback
on the chosen alternative. We use this dataset to evaluate the inertia
mechanism in an IBL model.

The TPT dataset’s 120 problems involved a choice between a
safe alternative that offered a medium (M) outcome with certainty;
and a risky alternative that offered a high (H) outcome with some
probability (pH) and a low (L) outcome with the complementary
probability. The M, H, pH, and L were generated randomly, and a
selection algorithm assured that the 60 problems in each set were
different in domain (positive, negative, and mixed outcomes) and
probability (high, medium, and low pH). The positive domain was
such that each of the M, H, and L outcomes in a problem were posi-
tive numbers (>0). The mixed domain was such that one or two of
the outcomes among M, H, and L (but not all three) in a problem
were negative (<0). The negative domain was such that each of the
M, H, and L outcomes in a problem were negative numbers (<0).
The low, medium, and high probability in a problem corresponded
to the value of pH between 0.01–0.09, 0.1–0.9, and 0.91–0.99,
respectively. The selection algorithm ensured that there were 20
problems each for the three domains and about 20 problems each
for the three probability values in the estimation and the compe-
tition sets. The resulting set of problems in the three domains and
the three probability values was large and representative. For each
of the 60 problems in the estimation and competition set, a sam-
ple of 100 participants was randomly assigned into 5 groups, and
each group completed 12 of the 60 problems. Each participant
was instructed to repeatedly and consequentially select between
two unlabeled buttons on a computer screen in order to maximize
long-term rewards for a block of 100 trials per problem (the end
point on trials was not provided or known to participants). One
button was associated with a risky alternative and the other button
with a safe alternative. Clicking a button corresponding to either
the safe or risky alternative generated an outcome associated with
the selected button (i.e., there was only partial feedback and par-
ticipants were not shown the foregone outcome on the unselected
button). The alternative with the higher expected value, which
could be either the safe or risky, could maximize a participant’s
long-term rewards. Other details about the E-repeated paradigm
are reported in Erev et al. (2010b).

The models submitted to the TPT were not provided with the
alternation data (i.e., the A-rate), and they were evaluated only
according to their ability to account for risk-taking behavior (i.e.,
the R-rate; Erev et al., 2010b). Gonzalez and Dutt (2011) had calcu-
lated the A-rate for analyses of alternations from the TPT datasets
and we followed the exact same procedures in this paper. First,
alternations were either coded as 1 s (a respondent switched from
making a risky or safe choice in the last trial to making a safe or
risky choice in the current trial) or as 0 s (the respondent repeated
the same choice in the current trial as that in the last trial). Then,
the A-rate is computed as the proportion of alternations in each
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trial starting in trial 2 (the A-rate in trial 1 is undefined as there
is no preceding trial to calculate alternations). The proportion of
alternations in each trial is computed by averaging the alternations
over 20 participants per problem and 60 problems in each dataset.
The R-rate is the proportion of risky choices (i.e., choices of the
risky alternative) in each trial averaged over 20 participants per
problem and 60 problems in each dataset.

Figure 1 shows the overall R-rate and A-rate over 99 trials from
trial 2 to 100 in the estimation and competition sets. As seen in
both datasets, the R-rate decreases slightly across trials, although
there is a sharp decrease in the A-rate. The sharp decrease in the
A-rate shows a change in the exploration (information-search)
pattern across repeated trials. Overall, the R-rate and A-rate curves
suggest that participants’ risk-taking behavior remains relatively
steady across trials, while they learn to alternate less and choose
one of the two alternatives more often. Later in this paper, we

evaluate the role of inertia mechanism to account for these R- and
A-rate curves in Figure 1 in a computational IBL model.

AN INSTANCE-BASED LEARNING MODEL OF REPEATED
BINARY-CHOICE
Instance-Based Learning Theory has been used for developing
computational models that explain human behavior in a wide
variety of dynamic decision making tasks. These tasks include
dynamically complex tasks (Gonzalez and Lebiere, 2005; Gonzalez
et al., 2003; Martin et al., 2004), training paradigms of simple and
complex tasks (Gonzalez et al., 2010), simple stimulus-response
practice and skill acquisition tasks (Dutt et al., 2009), and repeated
binary-choice tasks (Lebiere et al., 2007; Gonzalez and Dutt, 2011;
Gonzalez et al., 2011; Lejarraga et al., 2012) among others. Its
applications to these diverse tasks illustrate its generality and its
ability to explain DFE in multiple contexts.

FIGURE 1 | (A) The R-rate and A-rate across trials observed in human data in the estimation set of the TPT between trial 2 and trial 100. (B) The R-rate and
A-rate across trials observed in human data in the competition set of the TPT between trial 2 and trial 100.
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Here, we briefly discuss an IBL model that has shown to suc-
cessfully account for both risk-taking and alternation behaviors in
DFE (Gonzalez and Dutt, 2011). This model assumes reliance on
recency, frequency, and random inertia to make choice selections.
Here, we evaluate how the same IBL model, with and without
the random inertia mechanism, can simultaneously account for
risk-taking and alternation in repeated binary-choice. This evalu-
ation will enable us to better understand the role of this particular
simpler formulation of inertia in computational IBL models.

IBL model
All IBL models propose an “instance” as a key representation of
cognitive information. An instance is a representation of each deci-
sion alternative and consists of three parts: a situation (a set of
attributes that define the alternative), a decision for one of the
many alternatives, and an outcome resulting from making that
decision. An IBL model of repeated binary-choice has assumed
a simple instantiation of inertia mechanism (Gonzalez and Dutt,
2011): A free parameter, called pInertia, determines the repeti-
tion of the previous choice in the current decision according to
this probabilistic mechanism (see the Appendix for the formal
definitions of all the mechanisms of the IBL model for repeated
binary-choice and the pInertia parameter). If a uniformly distrib-
uted random number is less than the probability pInertia, then
the model repeats its last choice; otherwise, the model compares
blended values for the risky and safe alternatives, and makes a
choice for the alternative with the higher blended value.

In this paper, we call this IBL model implementation with the
random inertia mechanism, the “IBL-Inertia model.” In addition,
we consider another version of the same model, but without this
inertia mechanism (Lejarraga et al., 2012) as a baseline to com-
pare against the IBL-Inertia model. We call this implementation
without inertia, the “IBL model.” In the absence of inertia, this
model relies solely on the comparison between the blended val-
ues for the risky and safe alternatives to make choice selections in
each trial (the IBL-Inertia model also compares blended values to
make choice selections; however, blended values are used only in
the IBL-Inertia model when a random number is greater than or
equal to the pInertia parameter in a trial). With the exception of
the presence of pInertia in the IBL-Inertia model and its absence
in the IBL model, both models are identical in all other respects.

Blending, as proposed in both model implementations, is a
function of the probability of retrieving instances from mem-
ory multiplied by their respective outcomes stored in instances
(Lebiere, 1999; Gonzalez and Dutt, 2011; Lejarraga et al., 2012).
Each instance consists of a label that identifies a decision alter-
native in the task and the outcome obtained. For example (A,
$32) is an instance where the decision was to choose the risky
alternative (A) and the outcome obtained was $32. The proba-
bility of retrieving an instance from memory is a function of its
activation (Anderson and Lebiere, 1998). A simplified version of
the activation mechanism, which relies on recency and frequency
of using instances and noise in retrieval, has been shown to be
sufficient to capture human choices in several repeated binary-
choice and probability-learning tasks (Gonzalez and Dutt, 2011;
Lejarraga et al., 2012). The activation is influenced by the decay
parameter d that captures the rate of forgetting or reliance on

recency. The higher the value of the d parameter, the greater is
the model’s reliance on recent experiences. The activation is also
influenced by a noise parameter s that is important for capturing
the variability in human behavior from one participant to another.

For the first trial, both model implementations, IBL-Inertia
and IBL, have no instances in memory from which to calculate
blended values. Therefore, these implementations make a selec-
tion between instances that are pre-populated in their memory.
We used a value of +30 in the outcome slot of the two alternatives’
instances (Gonzalez and Dutt, 2011). The +30 value is arbitrary,
but most importantly, it should be greater than any possible out-
comes in the TPT problems to trigger an initial exploration of
the two alternatives. For the first trial, the choice between the
two alternatives in both implementations is solely based on the
blended values. From the second trial onward, the inertia mech-
anism is used along with blending in IBL-Inertia model and only
blending is used in the IBL model.

RESULTS
MODEL CALIBRATION AND EVALUATION OF INERTIA
The IBL model is compared with the IBL-Inertia model for their
ability to account for both the proportion of risk-taking (R-rate)
and alternations (A-rate) across trials. We will first calibrate the
models’ shared parameters, noise s and decay d, to the data in
the TPT’s estimation set. Then, we explore the role of adding the
pInertia parameter to the IBL model (i.e., the IBL-Inertia model)
by recalibrating all its parameters. Then, we generalize both the
calibrated models, IBL and IBL-Inertia, to the TPT’s competition
set.

Calibrating a model to human data means finding the para-
meter values that minimize the mean-squared deviation (MSD)
between the model’s predictions and the observed human per-
formance on a dependent measure. We used a genetic algorithm
program to calibrate the model’s parameters. The genetic algo-
rithm tried different combinations of parameters to minimize the
sum of MSDs between the model’s average R-rate per problem and
the average A-rate per problem measures and the corresponding
values in human data (we call this sum as the combined R-rate
and A-rate measure). Calibrating on the combined R-rate and A-
rate measure is expected to produce the best account for both
measures in human data compared to using only one of these
measures (Dutt and Gonzalez, under review). Also, calibrating on
the combined R-rate and A-rate measure allows us to test the IBL
model’s maximum potential to account for both these measures.

In order to compare results on the R-rate and A-rate during cal-
ibration, we use the AIC (Akaike Information Criterion) measure
in addition to the MSD (mean-squared deviation) measure. The
AIC definition takes into account both a model’s complexity (esti-
mated by the number of free parameters in the model), as well as its
accuracy (estimated by G2, defined the “lack of fit” between model
and human data; Pitt and Myung, 2002; Busemeyer and Diederich,
2009). The AIC definition and the computation procedures used
here are the same as those used by Gonzalez and Dutt, 2011; for
more details on the AIC definition refer to the Appendix). The
use of AIC during calibration is relevant because the IBL and IBL-
Inertia models are hierarchical (or nested) models (Maruyama,
1997; Loehlin, 2003; Kline, 2004) and they differ only in terms of
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the inertia mechanism. Thus, the IBL model can be simply derived
from the IBL-Inertia model by restricting the pInertia parameter’s
value to 0 during model calibration. Furthermore, in order to cap-
ture the trend of R-rate and A-rate from a model over trials, we
used the Pearson’s correlation coefficient (r) between model and
human data across trials (for the A-rate we used trials 2–100 and
for the R-rate we used trials 1–100; the A-rate is undefined for trial
1). Also, we computed the MSE (mean-squared error) between
model and human data across trials. For the MSE, we averaged
the R-rate and A-rate in model and human data across all partici-
pants and problems in a dataset for each trial. Then, we calculated
the mean of the squared differences between model and human
data for each trial. Because the MSE is computed across trials, it
measures the distance between the model and human data curves
trial-by-trial (for more details on the MSE definition refer to the
Appendix).

For the purpose of calibration, the average R-rate per problem
and the average A-rate per problem were computed by averaging
the risky choices and alternations in each problem over 20 par-
ticipants per problem and 100 trials per problem (for the A-rate
per problem, only 99 trials per problem were used for comput-
ing the average). Later, the MSDs were calculated across the 60
problems by using the average R-rate per problem and the average
A-rate per problem measures from the model and human data in
the estimation set. Some researchers suggest calibrating models to
the data of each participant per problem rather than to aggregate
measures (Pitt and Myung, 2002; Busemeyer and Diederich, 2009);
however, the calibration to aggregate behavior is quite common in
the cognitive and behavioral sciences (e.g., Anderson et al., 2004;
Erev et al., 2010a; Gonzalez and Dutt, 2011; Lejarraga et al., 2012).
In fact, calibrating to aggregate measures is especially meaningful
when the participant-to-participant variability in the dependent
measure is small compared to the value of the dependent mea-
sure itself (Busemeyer and Diederich, 2009). In the estimation
and competition sets, the standard deviations for the A-rate and
R-rate were similar and very small (∼0.1) compared to the values
of the R-rate (∼0.5) and the A-rate (∼0.3) measures themselves.
Thus, we use the average dependent measures for the purposes of
model calibration in this paper.

For calibrating the models, both the s parameter and the d
parameters were varied between 0.0 and 10.0, and the pInertia
parameter was varied between 0.0 and 1.0. Although the genetic
algorithm can continue to indefinitely optimize parameters, it
was stopped when there was no change in the parameter val-
ues obtained for a consecutive period of 200 generations. The
assumed range of variation for the pInertia, s, and d parameters,

and the decision process to stop the genetic algorithm are expected
to provide good optimal parameter estimates (Gonzalez and Dutt,
2011). Also, the large range of parameters’ variation ensures that
the optimization process does not miss the minimum sum of
MSDs (for more details about genetic algorithm optimization,
please see Gonzalez and Dutt (2011).

We calibrated both the IBL and IBL-Inertia models to the com-
bined R-rate and A-rate in TPT’s estimation set. The purpose of the
calibration was to obtain optimized values of d and s parameters
in the IBL model and pInertia, d, and s parameters in the IBL-
Inertia model. Later, keeping d and s parameters at their optimized
values in the IBL-Inertia model, we varied the pInertia parame-
ter from 0.0 to 1.0 in increments of 0.05. By only varying the
pInertia parameter and keeping the other parameter values fixed
at their optimized values, we were able to determine the inertia
mechanism’s full contribution in the model.

Table 1 shows the values of calibrated parameters, MSD, r, AIC,
and MSE compared to baseline for IBL and IBL-Inertia models
in TPT’s estimation set. First, both models’ d and s parameters
have values in the same range as those reported by Lejarraga et al.
(2012). Lejarraga et al. (2012) reported d = 5 and s = 1.5 for a
MSD = 0.0056 calibrated on R-rate using the IBL model. As doc-
umented by Lejarraga et al. (2012), the values of both d and s
reported in Table 1 are high compared to the ACT-R default values
of d = 0.5 and s = 0.25 (the default values were reported by Ander-
son and Lebiere (1998,2003). A high d value points to a quick decay
in memory and a strong dependence on recently experienced out-
comes (i.e., reliance on recency). The high s value allows the model
to exhibit participant-to-participant variability in capturing the R-
rate and A-rate. The pInertia value in IBL-Inertia model (=0.62)
is high and it shows that on a trial, this model is likely to repeat
its previous choice with a 62% chance. In general, the results from
both models are generally good (MSDs <0.05 and MSEs <0.05),
where both models perform slightly better at capturing the human
A-rate than the human R-rate.

Secondly, the individual MSDs, MSEs, and AICs on the R-rate
and A-rate in the IBL model are larger than those in the IBL-Inertia
model. For example, in the IBL-Inertia model, the MSDs for the
R-rate, A-rate, and the sum of R-rate and A-rate are consistently
smaller than those in the IBL model (0.008 < 0.016, an improve-
ment of +0.008; 0.003 < 0.005, an improvement of +0.002; and,
0.011 < 0.021, an improvement of +0.010). Also, the relative AIC
in the IBL-Inertia model is negative (i.e., better) for both the R-rate
and the A-rate. Thus, even with an extraparametric complexity
(the pInertia parameter), the IBL-Inertia model performs more
accurately compared to the IBL model. Although the MSE in the

Table 1 |The values of calibrated parameters for IBL and IBL-Inertia models and the MSD, r, AIC, and MSE inTPT’s estimation set.

Model Calibrated parameters MSD r AIC MSE

IBL (calibrated upon R-rate +A-rate) d = 8.31; s = 1.26 0.005 (A-rate) 0.95 (A-rate) −479.2 (A-rate) 0.0076 (A-rate)

0.016 (R-rate) 0.94 (R-rate) −546.3 (R-rate) 0.0041 (R-rate)

0.021 (R-rate +A-rate)

IBL-Inertia (calibrated upon

R-rate +A-rate)

d = 6.71; s = 1.40;

pInertia = 0.62

0.003 (A-rate)

0.008 (R-rate)

0.011 (R-rate +A-rate)

0.85 (A-rate)

0.92 (R-rate)

−561.3 (A-rate)

680.0 (R-rate)

0.0032 (A-rate)

0.0010 (R-rate)
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IBL model is larger than that in the IBL-Inertia model for both
R-rate and A-rate; however, as is also shown in Table 1, the IBL-
Inertia model does not account for the trends in the R-rate and
the A-rate across trials compared with the IBL model (the r in the
IBL model is greater than that in the IBL-Inertia model for both
the R-rate and the A-rate).

Figure 2 presents the R-rate and A-rate across trials predicted
by the calibrated IBL and IBL-Inertia models and that observed in
human data in the TPT’s estimation set. In general, these results
reveal that both models generate good accounts for both observed
risk-taking and alternation behaviors. The IBL model is able to
capture the gradual decreasing trend in the A-rate as well as the
slightly decreasing trend in risk-taking across trials. However, the
model’s account for the R-rate exhibit as lightly greater decrease
compared with that observed in human data across increasing
number of trials. Also, the model’s account for the A-rate shows
more alternations during about the first half of the trials than that
observed in human data. This latter observation is likely due to
the +30 pre-populated instances initially put in model’s memory,
which make it explore both options for a longer time and causes a
higher A-rate in the first few trials. However, with increasing trials,
the activation of these pre-populated instances becomes weak (as
these values are not observed in the problems) and their influence
on the A-rate diminishes, causing the A-rate to decrease sharply
and meet the human data.

As shown in the bottom graphs of Figure 2, the IBL-Inertia
model corrects for the under-estimation and over-estimation in
the R-rate and A-rate. However, because of the pInertia parame-
ter, the model is unable to account for the initial decrease in the
A-rate in the first few trials as well as the IBL model, which does
so naturally. A likely reason is the high calibrated value of pInertia

parameter (=0.62) that overshadows the effect of pre-populated
instances in the first few trials. Also, it seems that the random effect
of pInertia across trials causes disruptions in IBL-Inertia model’s
R-rate trends over trials. Overall, these observations explain why
the IBL-Inertia accounts for overall behavior better than the IBL
model, but it does not account for the trends in the R-rate and the
A-rate.

EVALUATING THE INERTIA MECHANISM
Although the analyses above provide some benefits of including
pInertia in the IBL model, one would like to understand these
benefits more thoroughly for different values of the pInertia para-
meter over its entire range. If including pInertia in the IBL model
is beneficial, then we should observe smaller MSDs on the R-rate
and A-rate across a large part of the parameter’s range of variation
compared with the IBL model without pInertia. Also, this analysis
is important because the calibrated value of pInertia in the IBL
model was found to be high (=0.62), minimizing the role of the
blending mechanism.

For this investigation, we used the IBL-Inertia model with
its optimized parameters calibrated on the combined R-rate and
A-rate measure (i.e., d = 6.71; s = 1.40) and varied the pInertia
parameter from 0.0 to 1.0 in increments of 0.05 in TPT’s estima-
tion set. Varying pInertia like so allows us to determine the range
of values for which the sum of the MSDs computed on the aver-
age R-rate per problem and the average A-rate per problem are
minimized.

Figure 3 shows the MSDs for the IBL-Inertia model calibrated
on the combined R-rate and A-rate as a function of pInertia values
in the estimation set. It also shows the three corresponding MSDs
from the original IBL model (shown as dotted lines in Figure 3) for

FIGURE 2 |The R-rate and A-rate across trials predicted by the IBL and IBL-Inertia models and that observed in human data in theTPT’s estimation set.
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comparison purposes (these MSDs are also reported in Table 1).
The MSDs for the R-rate, the A-rate, and the sum of the MSDs for
the R-rate and A-rate in the IBL-Inertia model are below the corre-
sponding MSDs in the IBL model for all values of pInertia greater
than 0.05 and less than 0.90. Thus, including inertia in the IBL
model and calibrating all model parameters improves the model’s
ability to account for the average R-rate and A-rate compared with
the IBL model without inertia. Also, the advantages of including
pInertia parameter seem to be present over a large range of this
parameter’s variation.

GENERALIZING THE IBL MODELS TO THE COMPETITION SET
A popular method of comparing models of different complex-
ity is through models’ generalization in novel conditions (Stone,
1977; Busemeyer and Wang, 2000; Ahn et al., 2008). In general-
ization, the calibrated models with different complexities (num-
ber of free parameters) are run in novel conditions to com-
pare their performance. The novel conditions would minimize
any advantage the model with more parameters has over the
model with fewer parameters. In fact, TPT also accounted for
model complexity among submitted models by generalization,
i.e., by running models in the new competition set with the
parameters obtained in the estimation set (Erev et al., 2010b).
We used the same procedures as used in the TPT and gen-
eralized the calibrated IBL and IBL-Inertia models to TPT’s
competition set.

In related research, we have claimed that the TPT’s estima-
tion and competition data sets are too similar, raising questions

regarding the value of using the competition set for generalization
(Gonzalez and Dutt, 2011; Gonzalez et al., 2011). These similarities
arise because the problems used in the estimation and competi-
tion sets were generated by using the same algorithm. However,
given that the TPT competition set was collected in a new exper-
iment, involving new problems, and involving a different set of
participants from that of the estimation set, testing the models
in the competition set is still a relevant exercise to determine the
robustness of the models. This generalization further helps us to
take into account both models’ complexity (number of parame-
ters) and their accuracy of predictions (MSDs; Busemeyer and
Diederich, 2009).

The IBL model and IBL-Inertia model were run in the TPT’s
competition set problems using the parameters determined in the
estimation set: d = 6.71, s = 1.40, and pInertia = 0.62 (the pInertia
parameter is only for the IBL-Inertia model). As previously men-
tioned, these parameter values had resulted in the lowest MSDs on
the combined R-rate and A-rate measure for the two models in the
estimation set. Table 2 shows the values of MSD, r, and MSE for
the IBL and IBL-Inertia models upon their generalization in TPT’s
competition set. The IBL-Inertia model’s predictions resulted in
overall MSDs and MSEs for the R-rate and the A-rate that were
smaller than those for the IBL model. Like in the estimation set,
however, the IBL-Inertia model did not account for the over trial
trend in the R-rate and the A-rate compared with the IBL model
(demonstrated by the r calculations). These results demonstrate
that the IBL-Inertia model can generalize to new problems more
accurately (in terms of average overall performance in both the

FIGURE 3 |The MSD for the R-rate, the MSD for the A-rate, and the MSD

for the combined R-rate and A-rate for different values of pInertia

parameter in IBL-Inertia model (the corresponding MSDs for the IBL

model are also plotted as dotted lines for comparison). The IBL-Inertia
model used the calibrated parameters for d and s parameters (i.e., d = 6.41
and s = 1.40).
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Table 2 |The values of MSD, r, and MSE for IBL and IBL-Inertia models

upon their generalization inTPT’s competition set.

Model MSD r MSE

IBL 0.011 (A-rate) 0.96 (A-rate) 0.010 (A-rate)

0.022 (R-rate) 0.96 (R-rate) 0.010 (R-rate)

0.033 (R-rate +A-rate)

IBL-Inertia 0.003 (A-rate) 0.87 (A-rate) 0.003 (A-rate)

0.007 (R-rate) 0.94 (R-rate) 0.001 (R-rate)

0.010 (R-rate +A-rate)

A-rate and R-rate measures across problems and across trials com-
pared with the IBL model; but the IBL-Inertia model also cannot
account for trends across trials in these measures compared with
the IBL model without inertia).

Figure 4 shows the R-rate and the A-rate over trials for human
data, and how the IBL and IBL-Inertia models generalized in the
competition set. The IBL model, upon generalization, underesti-
mates the observed R-rate and overestimates the observed A-rate in
the competition set. These patterns of under- and over-estimations
are similar to those observed in the model’s predictions in the esti-
mation set in Figure 2. The IBL-Inertia model’s predictions about
the human R-rate and A-rate in the competition set, however,
were very good with very little under- and over-estimations of
the observed R-rate and A-rate curves. Furthermore, because the
pInertia parameter (=0.62) is fixed across trials at a high value in
the IBL-Inertia model, the model does not alternate as much as
humans in the first few trials. As seen in the lower right graph, the
IBL-Inertia model’s A-rate starts around 40%, rather than the 85%
as observed in human data. Thus, the IBL-Inertia model is not able
to account for the initially high A-rate and the rapid decrease in
the A-rate in the first few trials compared with the IBL model in
its predictions.

DISCUSSION
Some computational models of DFE do not include any inertia
assumptions and are still able to account for the observed risk-
taking behavior (Lejarraga et al., 2012). However, a number of
recent computational models have included some form of inertia
to account for observed DFE (Erev et al., 2010a; Gonzalez and
Dutt, 2011; Gonzalez et al., 2011). Three different inertial forms
have been proposed: random inertia (Gonzalez and Dutt, 2011);
inertia as a function of surprise determined by the differences in
expected values (Erev et al., 2010a); and inertia as a function of sur-
prise determined by the differences in blended values (Gonzalez
et al., 2011). This research uses the particular case of random iner-
tia in an IBL model and determines the benefits of this mechanism
by considering two IBL models with and without this mechanism.
We selected the random inertia form for our evaluation because of
its simplistic formulation, but also because an existing IBL model
with this definition accounts for DFE better than other best known
models of DFE (Gonzalez and Dutt, 2011).

Our results reveal that a simple instantiation of the inertia
mechanism can be used to improve the ability of the IBL model
to account for the average risk-taking (R-rate) and alternations
(A-rate; based upon MSDs, MSEs, and AICs) observed in human

data. However, we also find that the inclusion of random inertia
does not help the model to account for the trends across trials
in the R-rate and A-rate compared with the same model without
inertia (based upon correlation coefficients, r). We draw our con-
clusions based upon model calibration and model generalization
that is known to account for increased model complexity (num-
ber of parameters) in novel test environments (Busemeyer and
Diederich, 2009).

Most current models of DFE have been successful at captur-
ing the risk-taking behavior, but not the underlying alternations
observed in repeated binary-choice; such as the tendency to repeat
choices irrespective of the obtained outcome in the last trial (Biele
et al., 2009). This observation is perhaps not a coincidence, because
predicting risk-taking behavior and alternation effects simultane-
ously is a very challenging task (Rapoport et al., 1997; Erev and
Barron, 2005; Estes and Maddox, 2005). In order to overcome
some of the challenges, a number of computational models have
considered the inclusion of some form of inertia with some initial
success (Erev et al., 2010a; Gonzalez and Dutt, 2011; Gonzalez
et al., 2011). As can be seen in our results, the random iner-
tia’s inclusion into the IBL model helps the model to account
for both the average A-rate and R-rate in terms of MSDs, MSEs,
and AICs, but not in terms of trends in these rates over trials.
Because random inertia accounts for the average A-rate and R-rate
in human data, it helps to reduce the observed under-estimation
and over-estimation of the observed R-rate and A-rate, respec-
tively, which is seen in the model without the inertia mechanism.
This finding might suggest that the inclusion of some form of
inertia into computational models might be ecologically plausible
for capturing the average risk-taking and alternation behaviors
more accurately, but not for the trend in these behaviors over
time.

Although the introduction of inertia into the IBL model gen-
erally improves the fits to the average human data (based upon
MSDs, MSEs, and AICs), it is likely that few modelers may
be impressed by this particular result. It is well-known that
a model with more parameters (i.e., greater model complex-
ity) can fit a dataset better than a model with fewer parame-
ters (Pitt and Myung, 2002). We dealt with this issue through
model generalization (Stone, 1977). The generalization helped
to test models with different parametric assumptions in a novel
environment (Busemeyer and Diederich, 2009). We used these
procedures and generalized the IBL and the IBL-Inertia mod-
els to the TPT’s competition dataset to compare their perfor-
mance.

Although the error across trials between IBL-Inertia model and
human data was smaller compared to that between IBL model and
human data; however, unlike the IBL model, the IBL-Inertia model
did not capture the trends in the R-rate and A-rate across trials.
The most likely reason is that the inertia parameter in its current
formulation is a noisy selection of choices across trials, which dis-
regards the choices derived based upon blended values. Gonzalez
et al. (2011) had assumed an inertia formulation that was based
upon surprise, where surprise was a function of the difference in
blended values of the two alternatives. Perhaps, if the inertia mech-
anism in the model is formulated as described by Gonzalez et al.
(2011), then the trends across trials might be better accounted for
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FIGURE 4 |The R-rate and A-rate over trials predicted by the IBL and IBL-Inertia models upon their generalization in the competition set. The R-rate and
A-rate observed in human data in the competition set are also shown.

compared to that based upon inertia’s current formulation. Over-
all, these observations indicate that there are many aspects still left
in the literature to explore. For example, it is unclear whether peo-
ple exhibit inertia after receiving both rewards and punishments.
Although inertia has been defined as the tendency to repeat the last
choice irrespective of the obtained outcomes (Biele et al., 2009),
it is clear that inertia needs to be defined more precisely. Some
researchers have argued inertia as an irrational behavior in which
individuals hold onto choices that clearly do not provide the max-
imizing outcome for too long (Sandri et al., 2010). Inertia has also
been portrayed as desirable, however, as it believed to be a key
component of love, trust, and friendship in the real world (Cook
et al., 2005). Even when we consider inertia as we defined it in this
paper, it may be the result of strong preferences for the high out-
comes or the result of an apparently irrational behavior of holding
on too long to non-maximizing (low) outcomes. As part of our
future research, we propose to define the reasons for inertia more
precisely by investigating its relationship with the exploration of
alternatives due to the nature of outcomes, high or low. One way
we may do this analysis is by controlling for the nature of rewards
or punishments received after a decision choice and by evaluating
its effects on repeating the last choice as the current decision. Also,
we would like to consider the alternation behaviors of individuals
depending upon the nature of rewards or punishments received
by them in the last trial.

Finally, as part of future research, we would also like to compare
the different formulations of inertia in computational models of
DFE. As detailed above, there have been at least three different
inertia formulations proposed: A random variation across trials
(Gonzalez and Dutt, 2011), a function of surprise determined by
the difference in expected values (Erev et al., 2010a), and a func-
tion of surprise determined by the differences in blended values
(Gonzalez et al., 2011). Which one of these formulations performs
best in different DFE tasks? How well do these different formula-
tions account for the over trial trends in the R-rates and A-rates?
Still, how are these formulations impacted by task complexity: by
the nature and number of outcomes on each alternative, and the
nature of the probability distribution of outcomes on each alter-
native? These are also some important questions that we would
like to attend to as part of future research.
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APPENDIX
IBL MODEL EQUATIONS
Inertia mechanism
A choice is made in the model in trial t + 1 as:
If

The draw of a random value in the uniform distribution U (0,
1) < pInertia,
Then

Repeat the choice as made in the previous trial
Else

Select an alternative with the highest blended value as per

Eq. A2 (below) (A1)

The pInertia parameter could vary between 0 and 1, and it does
not change across trials or participants.

Blending and activation mechanisms
The blended value of alternative j is defined as

Vj =
n∑

i=1

pixi (A2)

Where xi is the value of the observed outcome in the outcome slot
of an instance i corresponding to the alternative j, and pi is the
probability of that instance’s retrieval from memory (for the case
of our binary-choice task in the experience condition, the value
of j in Eq. A2 could be either risky or safe). The blended value of
an alternative is the sum of all observed outcomes xi in the out-
come slot of corresponding instances, weighted by the instances’
probability of retrieval.

Probability of retrieving instances
In any trial t, the probability of retrieving instance i from memory
is a function of that instance’s activation relative to the activation
of all other instances corresponding to that alternative, given by

pi,t = e
Ai,t/τ∑
j eAj ,t/τ

(A3)

Where τ is random noise defined as s × √
2, and s is a free noise

parameter. The noise parameter s captures the imprecision of
retrieving instances from memory.

Activation of instances
The activation of each instance in memory depends upon the
activation mechanism originally proposed in ACT-R (Anderson
and Lebiere, 2003). According to this mechanism, for each trial t,
activation Ai,t of instance is:

Ai,t = ln

⎛
⎝ ∑

ti∈{1,...,t−1}
(t − ti)

−d

⎞
⎠ + s × 1n

(
1 − γi,t

γi,t

)
(A4)

Where d is a free decay parameter, and ti is a previous trial
when the instance i was created or its activation was reinforced
due to an outcome observed in the task (the instance i is the
one that has the observed outcome as the value in its out-
come slot). The summation will include a number of terms
that coincides with the number of times an outcome has been
observed in previous trials and the corresponding instance i’s
activation that has been reinforced in memory (by encoding a
timestamp of the trial ti). Therefore, the activation of an instance
corresponding to an observed outcome increases with the fre-
quency of observation and with the recency of those observa-
tions. The decay parameter d affects the activation of an instance
directly, as it captures the rate of forgetting or reliance on
recency.

Noise in activation
The γi,t term is a random draw from a uniform distribution U (0,
1), and the s×ln ( 1−γi.t

γi,t
) term represents Gaussian noise important

for capturing the variability of human behavior.

Definition of Akaike information criterion

AIC = G2 + 2∗k (A5)

G2 =t∗ ln
SSE

t
(A6)

SSE =
t∑

i=1

(
xmodel,i − xhuman,i

)2
(A7)

Where, G2 is defined as the lack of fit between model and human
data (Gonzalez and Dutt, 2011). Furthermore, the xmodel,i and
xhuman,i refer to the average dependent measure (e.g., average R-
rate or A-rate) in the model and human data over t trials of a
task (t = 100 for the R-rate and t = 99 for the A-rate). The aver-
age in the dependent measure (R-rate or A-rate) has been taken
over all problems and participants. The SSE is the sum of squared
errors between human and model datasets that is calculated for the
average dependent measure (A-rate or R-rate). The mean-squared
error (MSE) is defined as SSE/100 for the R-rate measure and
SSE/99 for the A-rate measure. The t is the number of trials in the
task, and k is the number of parameters in the model. The AIC
in its formulation incorporates both the effect of an MSD (the G2

term) as well as the number of free parameters in a model (the
2 ∗ k term). The smaller the value of AIC, the better the respective
model is.
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