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How does the brain bind together visual features that are processed concurrently by differ
ent neurons into a unified percept suitable for processes such as object recognition? Here,
we describe how simple, commonly accepted principles of neural processing can interact
over time to solve the brain's binding problem. We focus on mechanisms of neural inhibi-
tion and top-down feedback. Specifically, we describe how inhibition creates competition
among neural populations that code different features, effectively suppressing irrelevant
information, and thus minimizing illusory conjunctions. Top-down feedback contributes to
binding in a similar manner, but by reinforcing relevant features. Together, inhibition and
top-down feedback contribute to a competitive environment that ensures only the most
appropriate features are bound together. We demonstrate this overall proposal using a
biologically realistic neural model of vision that processes features across a hierarchy of
interconnected brain areas. Finally, we argue that temporal synchrony plays only a limited
role in binding — it does not simultaneously bind multiple objects, but does aid in creat-
ing additional contrast between relevant and irrelevant features. Thus, our overall theory
constitutes a solution to the binding problem that relies only on simple neural principles

without any binding-specific processes.
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INTRODUCTION

The term “binding” has several meanings within psychology and
neuroscience. The central assumption is that partial representa-
tions must in some way be “bound” together into a full repre-
sentation (Treisman, 1996, 1999). In particular, the term is used
in the context of visual processing; however, the issue is relevant
in understanding brain and psychological mechanisms in gen-
eral. The need for binding mechanisms is highlighted by the fact
that neurons early in the visual system respond to (and there-
fore represent) simple visual features while meaningful objects
consist of very particular conjunctions of many of these fea-
tures (e.g., perpendicular lines meeting at their ends compose
corners; corners that line up compose rectangles, etc.). Some
mechanism appears to be needed to track which of these features
belong together; that is, which ones originated from a coherent
construct in the real world, and so should be combined to pro-
duce an accurate and meaningful internal representation of that
construct.

We seek here to clarify the neural mechanisms involved in the
process of binding. In doing so, we describe a theory of how bind-
ing can be explained using only simple, generic principles of neural
processing. Our perspective on binding has much in common with
that of other theorists (Reynolds and Desimone, 1999; Shadlen
and Movshon, 1999; Treisman, 1999; Bundesen et al., 2005). In
fact, the amount of convergence on the binding problem in recent
years is striking; the novelty of our contribution is therefore largely
in adding specificity to these proposals in terms of the biological
mechanisms that underlie binding in the brain.

Our core proposal is that competitive neural inhibition, com-
bined with top-down feedback and learned selectivity for some
features over others, accounts for binding in the brain. More specif-
ically, the computational role of inhibition and top-down feedback
in binding is to ensure that only neurons with the most support
become substantially active and ultimately drive behavior. Corti-
cal inhibition thus performs contrast enhancement by suppressing
activity of neurons with significant but lower levels of excitatory
input (Kandel et al., 1995; Carandini and Heeger, 2012). Neu-
rons tuned to the less relevant information (such as features from
objects outside the focus of attention) are thus out-competed,
and so downstream neurons respond only to the most relevant
“winning” features.

Top-down feedback supplies an extra set of criteria for which
features are most relevant in a given context, supplying useful
biases to this competition (Desimone and Duncan, 1995). Top-
down feedback can thus be contrasted with feedforward, stimulus-
driven signals, that mainly convey information about the sensory
environment. However, the neural mechanisms that underlie these
two information pathways are exactly the same: standard exci-
tatory synaptic inputs (O'Reilly, 1996; O’Reilly and Munakata,
2000). Putative top-down signals include those from frontal and
parietal areas that direct spatial attention (Thompson et al., 2005;
Bressler et al., 2008), and those from prefrontal areas that con-
vey information related to the current task or goals (Miller and
Cohen, 2001), but might also include those originating from areas
only slightly higher up in the visual system that convey “work-
ing hypotheses” as to object identities or higher-level features
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(Fahrenfort et al., 2007; Boehler et al., 2008; Roland, 2010; Koivisto
etal.,2011). In each case, the type of information and therefore the
exact constraints supplied to the competition are different; but the
fundamental computational role in guiding the local competitions
that lead to binding the most relevant features is the same.

We motivate our proposal with a recent review by Vanrullen
(2009), which posits two distinct types of binding. One is an
“on-demand” process for binding together simple but arbitrary
feature dimensions into conjunctive representations (e.g., a red
circle stimulus in a visual search experiment contain both “red”
and “circular” features). Much of research on binding to date has
involved visual tasks that use these arbitrary feature conjunctions
which have been proposed to be solved by top-down attentional
mechanisms as well as inhibitory mechanisms (Treisman, 1996,
1999; Reynolds and Desimone, 1999). A second type of bind-
ing, referred to as “hardwired” binding, involves grouping together
pre-established conjunctions of features. Experiments using visual
object categorization have been used to motivate the need for
hardwired binding, with the major finding being that they pro-
ceed rapidly in the absence of top-down attentional mechanisms
(Riesenhuber and Poggio, 1999b; Serre et al., 2007; Vanrullen,
2007).

We focus here on the case of hardwired binding. However, we
propose that the same mechanisms involved in on-demand bind-
ing are also present during hardwired binding. Inhibition and
top-down feedback interact to select only the most relevant ele-
ments of visual features for further processing, eliminating less
contextually relevant features, thus minimizing binding errors. We
argue that these mechanisms are just as important for activating
the learned feature combinations used in visual object recognition
as they are in visual tasks involving arbitrary feature combinations.

Thus, our approach focuses on the binding problem inherent
in the problem of object recognition, but applies to the problem
more generally. When presented with visual information, whether
itbe in the context of a single isolated object or an array of multiple
objects, the brain relies on the same basic neural mechanisms to
form a coherent (properly bound) representation. While abstract
cognitive strategies may be important for dealing with different
tasks (e.g., visual search), it is unlikely that they are implemented
differently at the neural level or require special binding processes.
Instead, they operate on the same basic representation formed by
simple visual processing.

We explicitly demonstrate our proposal using a biologically
realistic model of visual processing (O’Reilly et al., under review;
see Methods for overview). We demonstrate three particular
aspects of our proposal in the context of a realistic object recog-
nition task that requires binding together learned object features
into a single, coherent object (i.e., part binding; Treisman, 1996).
First, we show how neurons that code complex visual features
compete during processing over the full course of recognition.
Inhibitory competition ensures that only the most relevant fea-
tures are active, while less relevant ones are ultimately suppressed.
We further show that systematically reducing the number of
category-relevant visual features in the stimulus by an occlusion
degradation weakens these competition effects, ultimately causing
binding errors in which relevant and irrelevant features become
co-active in the bound representation. Second, we show how

top-down feedback reinforces category-relevant features, includ-
ing those that may have been weakened by degrading factors like
occlusion, providing some robustness to binding errors. Finally,
we investigate the case of multiple object recognition, which has
special importance in the study of binding as it can produce
illusory conjunctions of features across objects (Treisman, 1996,
1999). We find that the same mechanisms of inhibitory competi-
tion and top-down feedback contribute to solving the problem of
properly binding learned features when selecting among multiple
objects.

The novelty of our contribution to the ongoing discussion
on binding is a synthesis between binding and object recogni-
tion theories using only the general neural mechanisms of neural
inhibition and top-down feedback. Others have put forth similar
solutions to the binding problem using only general neural mecha-
nisms (e.g., Reynolds and Desimone, 1999; Bundesen et al., 2005),
and we expand on this work with explicit simulations that make
predictions about the temporal dynamics of these mechanisms
during a hardwired binding task. Our theory can be contrasted
with more complex theories of binding, especially those that
involve multiplexed neural synchrony (e.g., Singer, 1993, 1999;
Singer and Gray, 1995; Uhlhaas et al., 2009). While there might
be additional binding-related phenomena (such as those involv-
ing working memory; see Raffone and Wolters, 2001) that require
such mechanisms, the standard object recognition functions of
visual cortex targeted by existing work on binding appear to only
require the mechanisms that we focus on here. We conclude by
discussing some of the predictions and limitations of our model
with respect to other binding theories.

NEURAL INHIBITION SUPPRESSES IRRELEVANT
INFORMATION

In the simplest sense, a bound representation in the brain consists
of the current set of actively represented features. The brain rep-
resents information in a code distributed across a large number of
neurons (Kandel et al., 1995), and thus, can represent many fea-
tures simultaneously. Binding errors can thus occur when features
that belong to different objects in the external world are incorrectly
bound together into the brain’s representation of a single object.
To minimize binding errors, the brain relies on several mecha-
nisms to ensure that only the features that belong together get
bound together in the long run. One such mechanism is neural
inhibition.

Within a given brain area, only a small percentage of neurons
are ever active at any given time. One reason for this is that cor-
tical neurons inhibit each other through disynaptic connections
with local inhibitory neurons. These inhibitory interneurons are
known to perform the function of limiting overall activity levels
throughout cortical areas. Within an area, connections to and from
inhibitory neurons seem to be relatively non-selective (Swadlow
and Gusev, 2002), making this competitive effect general: every
excitatory neuron competes with every other excitatory neuron,
to roughly the same extent. This picture of inhibitory function is,
of course, somewhat oversimplified, but it is sufficient to capture
the role neural inhibition in solving the binding problem. This
competitive inhibition is one mechanism of contrast enhance-
ment (Carandini and Heeger, 2012), and it is useful to think of the
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mechanism as enhancing contrast between firing rates of neurons
representing more- and less-appropriate features.

As an example that illustrates the role of inhibition in hard-
wired binding, we use the LVis model described in O’Reilly et al.
(under review) to demonstrate how the brain binds together a
visual representation of a fish for recognition (see Methods for
model details). Visual object recognition is thought to be sub-
served primarily by inferotemporal (IT) cortex, which responds
to moderately complex visual features (Logothetis et al., 1995;
Tompa and Sary, 2010). IT cortex contains a columnar organiza-
tion (Tanaka, 1996; Tompa and Sary, 2010), in which columns of
neurons that subtend horizontal patches of the cortex code dif-
ferent visual features. While the specific dimensions of stimuli to
which a given IT column respond are not yet well-understood
(Kourtzi and Connor, 2010), IT neurons can be conceptualized as
responding to object “parts” that represent a specific object exem-
plar at the population level (i.e., combination coding, Ungerleider
and Bell, 2011).

As a concrete example, one column of IT neurons might be
tuned to a fish’s fin, ideally firing when in the presence of a viewed
fish. A neighboring column might be tuned to a completely differ-
ent visual feature such as a bird’s wing, and thus should be silent
when viewing the fish. These columns project onto inhibitory
interneurons that create competition among columns (Mount-
castle, 1997), effectively making some combinations of columns
mutually exclusive.

In Figure 1, we show the firing patterns of simulated columns
of IT neurons when presented with a fish stimulus. Initially, a large
number of IT neurons fire, some of which belong to columns that
code fish-relevant features and some of which belong to columns
that do not. The columns selective to fish-relevant features (e.g., a
fish fin, a fish tail), however, quickly out-compete columns selec-
tive to fish irrelevant features since the former constitute a better fit
with the fish stimulus, increasing their initial evoked response. In
turn, the columns selective to fish features inhibit columns selec-
tive to irrelevant features, effectively stopping irrelevant neurons
from firing and becoming part of the bound representation. Thus,
competitive inhibition among detected features helps ensure that
a valid combination of features ultimately is bound by driving
firing of IT neurons, eliminating invalid conjunctions of features
that might lead to binding errors.

Inhibition might be especially important when visual objects
are highly ambiguous. We demonstrate this idea in Figure 1 by
partially occluding the presentation of a fish, which removes diag-
nostic visual features and impairs recognition accuracy. Other
conditions may also create stimulus ambiguity, such as a non-
standard view of an object (such as a fish’s underbelly), or an
atypical exemplar (an exotic fish, perhaps). Visual occlusion, how-
ever, allows us to parametrically measure the effects of ambiguity
on activity levels of IT neurons in our model. The general effect
of occlusion is an attenuation of the category selective IT response
due to the decreased stimulus-driven signal, a finding that has
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FIGURE 1 | Neural inhibition in visual binding. \We use the LVis model
described in O'Reilly et al. (under review) to demonstrate how IT level visual
features are suppressed by inhibitory mechanisms over the course of visual
processing. tbfTop: Visual occlusion was varied as an independent variable to
measure its effect on IT firing patterns during object categorization. Increased
occlusion results in a monotonic impairment in categorization accuracy.
Bottom: Firing rates were recorded for each IT unit in the model and grouped
according to whether they were strongly tuned to the fish category
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exemplars (dotted lines) or tuned to other categories (solid lines). The first
wave of responses from the model’s IT units area code a large number of
features, only some of which are category-relevant. Inhibitory competition,
however, suppresses the responses of irrelevant non-category units, leaving
the features coded by relevant category units to compose the final bound
representation. This competitive advantage disappears at higher levels of
occlusion (e.g., 50% occlusion) due to fewer category-relevant features being
specified in the stimulus.
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been also demonstrated in neurophysiological studies of occlu-
sion (Kovacs et al., 1995; Nielsen et al., 2006). Moreover, because
neurons in category selective columns fire at a lower rate, they indi-
rectly exert weaker levels of inhibition toward competing columns.
The result is an overall increase in the response of neurons that are
selective to category irrelevant features. Thus, both the weakened
response to category-relevant features and the erroneous height-
ened response to irrelevant features may play a role in binding
errors when stimulus conditions are highly ambiguous, leading to
impaired recognition accuracy.

TOP-DOWN FEEDBACK REINFORCES RELEVANT
INFORMATION

It is well-known that the brain contains numerous top-down con-
nections that descend from higher levels of brain systems to lower
levels (Felleman and van Essen, 1991; Scannell et al., 1995; Sporns
and Zwi, 2004; Sporns et al., 2007). In the context of vision, one
commonly suggested function of top-down connections is to con-
vey attentional signals to sensory based areas of visual cortex.
These top-down signals can take the form of spatial attention
(originating in the frontal eye fields and posterior parietal cortex,
Thompson etal.,2005; Bressler etal., 2008) or executive attentional
control (as enacted by maintained representations in prefrontal
cortex; Miller and Cohen, 2001; Herd et al., 2006).

In the case of spatial attention, top-down feedback about the
attended region of space determines which features are relevant
by selecting for features within a small spatial area and enhancing
them relative to features from neighboring, unattended areas of
space. Top-down feedback reflecting executive attentional control
works the same way, except that relevancy is determined by more
abstract feature dimensions such as color or category (Maunsell
and Treue, 2006).

In either case, top-down feedback does not require any rep-
resentation of what to exclude. Instead, it simply signals what to
attend to by providing additional excitatory bias to the sensory
representations, causing the representative neurons to fire more
strongly. This bias reinforces the activation of relevant features,
encouraging their binding at the highest levels of processing. This
explanation of attention is a further explication of the biased com-
petition framework of (Desimone and Duncan, 1995), and has
been supported by considerable empirical evidence, most notably
that of Reynolds and colleagues (see Reynolds and Chelazzi, 2004,
for a review).

While top-down feedback has been shown to be crucial for
on-demand binding tasks that require the cognitive flexibility to
bind arbitrary features together at arbitrary locations (Treisman,
1996, 1999), it is not yet understood whether top-down feed-
back similarly plays a role in hardwired binding tasks like object
recognition and categorization. Computational models have sug-
gested that these tasks can be solved in the brain in a primarily
feedforward manner with little to no influence from top-down
feedback (Riesenhuber and Poggio, 1999b; Serre et al., 2007; Van-
rullen, 2007, 2009). However, there are a number of reports of
top-down feedback playing a fundamental role in early visual
processes including object recognition (Bar et al., 2006; Fahren-
fort et al., 2007; Boehler et al., 2008; Roland, 2010; Koivisto et al.,
2011).

In an attempt to reconcile these data, we recently described
a computational model of object recognition that contains both
feedforward and feedback connections between feature process-
ing layers (O’Reilly et al., under review). One of the key findings,
which we review here, is that top-down feedback promotes robust
recognition when bottom-up signals are weak and ambiguous
due to occlusion (Figure 2). While occlusion generally attenuates
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FIGURE 2 | Top-down feedback in “hardwired” binding tasks. (A)
As a general rule, the visual system contains bidirectional (both
bottom-up and top-down) connections between any two connected
areas. The LVis model, depicted here, contains a similar organization,
with recurrent connections between hierarchically adjacent areas. (B)
Top-down feedback from higher levels enhances the neural responses
in lower-level areas, which is crucial for robust binding when stimuli are
occluded or otherwise ambiguous. Arrows indicate the enhancement
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in the representation with respect to the veridical (i.e., unoccluded)
representation at different areas within the model. Pale colors indicate
the predicted response without top-down feedback, which is
asymptotic. The Sem area exhibits a similar enhancement pattern to
areas V2/V4 and IT, but is left unannotated on the plot for clarity.
V2/V4 = extrastriate cortex; IT =inferotemporal cortex; Sem =amodal
semantic responses, such as those demonstrated by anterior IT
neurons; Name =named output responses.
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neural responses resulting in reduced recognition accuracy, the
model often exhibits intact category selective responses and correct
recognition, a property that we attribute to top-down feedback.
Specifically, top-down reinforcement enhances the responses of
neurons at lower levels that may have been weakened due to occlu-
sion. This enhancement is repeated across multiple recurrently
connected areas, essentially recovering the occluded visual features
and resulting in a complete representation. Conceptually, visible
features like the fish’s dorsal fin might evoke a partial response
in IT cortex, which could provide reinforcement to the encoding
of other relevant features that might not be visible at lower levels
like V2 or V4. Similarly, entertaining the possibility that one might
be viewing a fish (i.e., partial activation at the “Naming Output”
level of our model) can reinforce fish-relevant features encoded
by IT columns. Functional neuroimaging experiments have indi-
cated that the brain exhibits a similar object completion process in
which visual information is recovered despite its omission from a
visual stimulus (Kourtzi and Kanwisher, 2001; Lerner et al., 2004;
Johnson and Olshausen, 2005; Juan et al., 2010).

BINDING MULTIPLE OBJECTS

Thus far we have focused on the problem of binding visual fea-
tures into a singular, coherent object, and have proposed that
both neural inhibition and top-down feedback play important
roles in this process. Do these same mechanisms aid in proper
binding when multiple objects are present in a display? Proper
binding when multiple objects are present is a challenging prob-
lem because high-level visual areas such as I'T cortex have receptive
fields that span large portions of the visual field (generally 10° to
20°; Kobatake and Tanaka, 1994; Rust and Dicarlo, 2010). Thus, IT
neurons respond, by default, to visual features regardless of where
they are within the visual display, even when they occur in the
context of a second object’s features. Although the large receptive
fields of IT neurons are thought to be necessary for promoting tol-
erance to changes in object position, scale,and rotation (Logothetis
etal., 1995; Tanaka, 1996; Riesenhuber and Poggio, 2002; Rolls and
Stringer, 2006), they exacerbate the possibility of illusory conjunc-
tions being formed between the features of separate objects.

We propose that neural inhibition combined with top-down
feedback can solve the problem of binding when multiple objects
are present in a similar manner to the way they aid in binding
visual features into singular, coherent objects. We demonstrate
the plausibility of this idea in Figure 3. As is the case with single
objects presented in isolation, a large number of IT neurons fire
initially when multiple objects are present. Grouping these neu-
rons according to the object to which they are selective illustrates
the interactions between inhibition and top-down feedback. Gen-
erally, neurons that code visual features shared by both objects are
the first to respond, since they constitute the best overall fit with
the stimulus itself. In the case of the gun and bicycle pictured in
Figure 3A, these first responders might be neurons that code the
horizontal edges that compose the barrel of the gun and the top
tube of the bicycle. Neurons that code unique features for each
of the object categories are the next to respond. However, inhibi-
tion between these columns of neurons ensures that the features
of only one of these objects are selected in the end, “winning” the
competition (in this case, the bicycle neurons) and contributing

to the final bound representation. When a single object is selected
for the bound representation, top-down feedback can reinforce
neurons that code meaningful features from that object that may
not have initially responded (possibly due to initial inhibitory
influences from neurons corresponding to the “losing” object).

Binding errors can occur when neurons representing irrelevant
features are not entirely out-competed (Figure 3B). This allows
invalid feature conjunctions to manifest, which subsequently get
reinforced from top-down feedback, resulting in the formation of
illusory conjunctions. To determine more specifically how inhi-
bition and top-down feedback contribute to minimizing illusory
conjunctions, we tested the effect of removing top-down feedback
and both top-down feedback and inhibition from the model® (see
Methods for details). The results of these tests are indicated in
Figure 4.

For the IVis model (which contains both inhibition and
top-down feedback), illusory conjunctions occurred on only
4.7% of trials. Removing top-down feedback, but leaving inhi-
bition intact, had virtually no effect on the number of illusory
conjunctions. However, removing both top-down feedback and
inhibition caused illusory conjunctions to occur with much higher
frequency, on 19.3% of trials.

We also computed the ratio of relevant IT responses to irrel-
evant responses (where relevance was determined by whether
the responses corresponded to the model’s output) which can
be thought of as a kind of “signal-to-noise ratio” (Figure 4B).
A decrease in this number reflects lower proportions of relevant
information and higher proportions of irrelevant information at
the IT level, which could lead to more illusory conjunctions being
made. Accordingly, the purely feedforward model, which made the
most recognition errors, also exhibited the lowest ratio of relevant
to irrelevant information.

Removing feedback from the LVis model also lowered the ratio
of relevant to irrelevant information, but recognition performance
remained unchanged. This suggests that there is a critical signal-to-
noise ratio (in terms of relevant and irrelevant responses) above
which recognition remains robust, without many illusory con-
junctions. Inhibition was intact in this model, consistent with our
proposal that inhibitory competition is the critical mechanism that
selects relevant information over irrelevant information, thus pro-
viding a relatively stable baseline signal-to-noise ratio. Top-down
feedback can further highlight relevant information, increasing the
signal-to-noise ratio, but it is unnecessary for well-learned tasks
with little ambiguity. Top-down feedback is likely more important
in tasks where objects are degraded (e.g., from visual occlusion),
which we discussed in the previous section, or in cases where
there is more feature overlap across items (e.g., conjunctive visual
search).

GENERAL DISCUSSION
We have presented an account of binding in the brain that depends
only on well-established mechanisms of neural processing that

!Note that it is impossible to test the remaining condition in which top-down feed-
back is left intact but inhibition is removed from the model, as some mechanism is
necessary to control the overall response levels, which would saturate quickly with
repeated processing.
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FIGURE 3 | Binding multiple objects. (A) The same mechanisms of neural
inhibition and top-down feedback extend to binding when multiple objects are
present in a display. The competition created from having multiple IT units
active that represent multiple objects causes one set of units to “win” and
one set to “lose” (in this case, the bicycle units win). Inhibition suppresses
the responses from units corresponding to the losing object as well as
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responses from completely irrelevant units. Top-down feedback serves to
reinforce units from the winning object that may not have been initially active.
(B) Binding errors occur when completely irrelevant units become
erroneously active, leading to the inability to suppress invalid responses. This
creates illusory conjunctions of features across the objects in the display,
leading to a representation that does not resemble either category.
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FIGURE 4 | Results for multiple object binding. (A) We tested the effect of
removing top-down feedback and both top-down feedback and inhibitory
competition from the model. The purely feedforward model missing both of
these critical mechanisms made the most recognition errors. (B) Grouping
responses according to whether they were corresponded to the model’s
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output (relevant responses) or not (irrelevant responses) suggests that the
reason for the purely feedforward model's poor performance was that it had a
higher overall signal-to-noise ratio (mean relevant response divided by mean
irrelevant response). This type of representation could lead to illusory feature
conjunctions and thus, recognition errors.

interact over time. Two such mechanisms that we focus on here
are neural inhibition and top-down feedback. Together, these
mechanisms create an environment of local competition within
a brain area that selects only the most relevant features for the
bound representation that influences perception and behavior.

We have taken a general neural processing approach to explain-
ing how these mechanisms relate to binding. We illustrate the
mechanisms explicitly in an object recognition task that requires
binding together learned object features into a single, coherent
object, as well as a variant of this task that requires selecting from
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and identifying multiple objects. Despite our focus on “hardwired”
binding, we believe that the same mechanisms perform “on-
demand” binding (e.g., conjunctive visual search). In on-demand
binding, top-down influences bias processing toward items in a
particular region of space, and consequently, competitive inhibi-
tion eliminates those features in nearby areas of space, allowing a
properly bound representation of the novel item.

One natural consequence of our proposal is the suggestion that
perception and behavior are largely driven by an interactive process
that integrates bottom-up information with dynamic constraints
including top-down, conceptual knowledge. It is somewhat sur-
prising then, that alarge class of extant theories of visual processing
treat early perceptual processing as a feedforward set of stages that
simply transform information from one level of the visual system
to the next (Riesenhuber and Poggio, 1999b; Serre et al., 2007;
Vanrullen, 2007). Models that instantiate this feedforward theory
often include a “max” operation that selects the largest response at
each processing level, which can be viewed as a form of inhibitory
competition that suppresses less relevant responses (Riesenhuber
and Poggio, 1999a). These models, however, lack top-down feed-
back to reinforce relevant information, which can emerge at any
time over the course of processing.

Competitive dynamics reflecting inhibitory and top-down
influences within visual areas are clear if one examines popula-
tion level responses. For example, initial IT population responses
convey information about many individual object parts, but infor-
mation about the object as a whole begins to emerge over the
full time course of their response (Brincat and Connor, 2006; see
also Sugase-Miyamoto et al., 2011). Other single-cell analyses have
indicated that the selectivity of IT neurons changes over time,
beginning with a quick burst of broadly tuned activity that grad-
ually becomes more selective (Tamura and Tanaka, 2001). Similar
temporal dynamics have been demonstrated at other levels of the
visual system, such as areas V2 and V4 (Hegde and van Essen, 2004,
2006). The fact that the information content of neural responses
changes over time strongly suggests that some aspects of the rep-
resentation are being selected over others. Our account of binding
suggests that relevancy is a significant determining factor of what
parts of the representation are ultimately selected for the bound
representation at he highest levels.

Our proposal is highly congruent with many previous descrip-
tions of binding (Reynolds and Desimone, 1999; Shadlen and
Movshon, 1999; Treisman, 1999; Bundesen et al., 2005). Our
contribution is novel in implementing a biologically grounded
neural network model that embodies these theories, and in fur-
ther specifying the mechanisms involved, and how they interact.
One notable relation is to the role of top-down feedback in the
form of spatial attention in Treisman’s Feature Integration Theory
(Treisman, 1996, 1999). Top-down feedback in our model does
not directly perform binding, however, but simply prevents mis-
binding by highlighting some features over others and relying on
competitive inhibition to suppress the others.

Our proposal also has much in common with (Reynolds
and Desimone, 1999) biased competition model, which cites the
importance of competitive inhibition between populations of neu-
rons and top-down biasing of relevant features. However, the
biased competition model has traditionally focused on frontal

and parietal cortices as likely sources of the biasing signal. While
attentional signals from these areas are clearly capable of biasing
perceptual processing (Miller and Cohen, 2001; Thompson et al.,
2005; Herd et al., 2006; Bressler et al., 2008), our approach pro-
vides a more general characterization of biasing. Specifically, any
area that sends feedback to an earlier area has the potential to
bias its computations. In our simulations, this allows for repre-
sentations that are beginning to emerge at high-level areas to bias
lower-level areas, which itself can be viewed as a form of emergent
feature-based attention.

Theories centering on the role of synchrony have also been pro-
posed as a solution to the binding problem (Singer, 1993, 1999;
Singer and Gray, 1995; Uhlhaas et al., 2009). There is ample evi-
dence that neural firing does synchronize to some degree, and
that synchrony plays a role in attentive object recognition (Gray
etal.,, 1989; Buzsaki and Draguhn, 2004). We agree that synchrony
does play a role in the competitive selection process that is the
core of our proposal, acting as another form of contrast enhance-
ment by providing mutual excitation among concurrently active
neurons via recurrent feedback and lateral connections (Roland,
2010). Synchrony thus effectively gives the winners of competition
an extra advantage in controlling responses at higher levels.

This role of synchrony in sharpening neural competition
should be differentiated from early proposals that synchrony can
simultaneously bind multiple objects. No data of which we are
aware indicates that the brain performs “multiplexed synchrony,”
in which neurons representing each object remain in phase with
others representing the same object, but reliably out of phase with
neurons representing other objects. Theories of multiplexed syn-
chrony for binding have been strongly criticized on the grounds
of being both biologically implausible and unnecessary (Shadlen
and Movshon, 1999; O’Reilly et al., 2003). While it seems intuitive
that we are aware of many objects simultaneously, recent research
on change blindness indicates that we do not maintain detailed
representations outside the current focus of attention (Beck et al.,
2001; Lamme, 2003; Simons and Rensink, 2005).

Because of the level of noise from incidental processing in the
brain (compared to models, which are idealized and thus use little
to no noise) multiplexed synchrony seems likely to be unstable
beyond extremely short time periods. This drawback severely lim-
its the use of this mechanism for binding in working memory, the
other case in which intuition and some evidence suggests we main-
tain several representations simultaneously (Raffone and Wolters,
2001). One alternative to true multiplexed synchrony is that bind-
ing in working memory is performed by maintaining separate
neural substrates for separate items within prefrontal cortex, as in
the model of working memory developed by our group, reviewed
in O'Reilly et al. (2010).

Rather than supposing that the brain can represent and inter-
pret several arbitrary conjunctions of features simultaneously, it
seems more parsimonious to assume, as in our proposal, that all
features represented simultaneously are bound together. Instead
of using a particular firing phase to “tag” each neuron as belong-
ing to one object or another, the brain simply represents only one
object (or concept, etc.) at a time when binding is difficult, thus
serializing a computation that would pose unique difficulties for
parallel processing.
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While previous work on binding has presented many possible
mechanisms and argued that they are needed to solve the brain’s
binding problem, the necessity of mechanisms beyond the most
basic neural mechanisms has not been clearly demonstrated. We
have presented a solution to the binding problem of that relies
on only generic neural mechanisms to bind together features into
objects. While our proposal clearly demonstrates that the mecha-
nisms of inhibition and top-down feedback contribute in part to
solving the brain’s overall binding problem, it is possible that there
exist binding-related situations that warrant additional mecha-
nisms and processes (e.g., working memory). Only after attempt-
ing to explain these phenomena with basic neural mechanisms
(as in the proposals mentioned above) should more complicated
theories be considered.

METHODS

The LVis (Leabra Vision) model and its training/testing methods
are briefly described here. See O’Reilly et al. (under review), for a
detailed description. The model consists of a hierarchy of feature
processing layers that roughly correspond to areas within the ven-
tral stream of the brain — primary visual cortex (V1), extrastriate
cortex (V2/V4),inferotemporal cortex (IT) —as well as higher-level
layers that represent amodal semantic properties and named out-
put responses (Figure 2A). The model processes grayscale bitmap
images with filters that capture the response properties of the
retina and lateral geniculate nucleus (LGN) of the thalamus, the
results of which are used as inputs to the V1 layer. The model’s
V1 layer consists of a retinotopic grid of 3600 units that represent
V1-like features at multiple spatial scales. The V2/V4 layer con-
tains 2880 units that receive from neighborhoods of 320 V1 units.
Neighboring V2/V4 units receive from overlapping portions of
the V1 layer. The IT layer contains 200 units that receive from the
entire 2880 V2/V4 units, and thus do not contain a retinotopic
organization.

Opverall, the model can be viewed as an expansion on a large
class of hierarchical feedforward models of visual processing in
the brain (Riesenhuber and Poggio, 1999b; Delorme and Thorpe,
2001; Masquelier and Thorpe, 2007; Serre et al., 2007). The pri-
mary innovation of the model is that hierarchically adjacent layers
(e.g., V1 and V2/V4; V2/V4 and IT) are recurrently connected,
providing an account of top-down feedback connections within
the brain’s ventral stream. Feedforward connections generally con-
tribute 80-90% of the total input to a receiving layer and feedback
connections contribute the remaining 10-20% of the total input.
Overall layer activations are controlled using a k-winners-take-all
(kWTA) inhibitory competition rule (O’Reilly, 1996; O’Reilly and
Munakata, 2000) that ensures only the k most active units remain
active over time. The specific k value varies for each layer in the
model, but is generally in the range of 10-20% of the number of
units in the layer.

SINGLE OBJECT SIMULATIONS

The model was trained to categorize images from the CU3D-
100 dataset (http://cu3d.colorado.edu) using an extension of the
Leabra learning algorithm (O’Reilly, 1996; O’Reilly and Munakata,
2000). The entire dataset consisted of 18,840 total images. Training
proceeded for 1000 epochs of 500 trials, each of which consisted of

arandom image selected from the dataset which was transformed
with small variations in position, scale, and planar rotation. Images
of two exemplars from each category (4000 images total) were
reserved for a generalization test. After training, the final mean
generalization accuracy was 91.9%.

Category selective representations were obtained for each of the
100 categories by averaging the response patterns of the model’s
IT units to all training and testing images from each category. In
general, a distribution of 10-20% of the 200 units were selective
to a given category, reflecting the level of kWTA inhibition within
the IT layer. The category-relevant units for a given category were
then isolated using a simple threshold over the category selective
representations. For the fish category used in the simulations here,
avalue of 0.3 was used such that a higher response level indicated a
category-relevant unit while a lower response level indicated a cat-
egory irrelevant unit. Small variations in this parameter produced
very similar results.

To create the plots in Figure 1, the firing rate from each of the
model’s IT units was recorded and averaged across every training
and testing fish image (180 total images), then grouped accord-
ing to whether the unit was category-relevant or irrelevant. This
procedure was repeated with a visual occlusion manipulation that
used a Gaussian-based filter to delete pixels from the input image.
The filter was defined as 1.0 within a circle of radius 5% of the
image size and then fell off outside the circle as a Gaussian func-
tion. The o parameter of the Gaussian was set to 5% of the image
size. The filter was applied to the image a variable number of
times, with more applications corresponding to higher levels of
occlusion.

To create the plot in Figure 2B, the model was presented with
an unoccluded image of the fish and the response pattern was
recorded from the model’s V2/V4, IT, Semantic, and Naming Out-
put layers for 50 processing cycles. The model was subsequently
presented with a 50% occluded image of the fish, and the result-
ing response patterns were used to compute the similarity to the
unoccluded response patterns for each layer as a function of time.
The cosine angle between the unoccluded and occluded response
vectors was used as the similarity metric in this calculation.

MULTIPLE OBJECT SIMULATIONS

The multiple object simulations involved training the model to
recognize smaller versions of the CU3D-100 stimuli and testing
its ability to generalize to presentations of multiple small stimuli.
Training methods for these simulations were generally similar to
the single object simulations described above, but a subset of the
dataset was used. Five (5) exemplars from 5 categories (500 total
images) were selected from the full dataset (bicycle, car, donut,
doorhandle, and gun). Each image was downscaled to 50% of its
size (originally 320 x 320 pixels, downscaled to 160 x 160 pixels)
and randomly placed on either the left or right half of a new
320 x 320 image with variation in the y axis position. This was
repeated 25 times for each of the 500 original images, resulting
in 12500 new images. The model was trained on images from
this dataset of 4 exemplars from each category to ensure proper
generalization without over fitting. Training proceeded for 50
epochs of 500 trials. This was repeated for five instances of the
model using different combinations of the 4 training exemplars
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from each category and randomized initial weights. After train-
ing, the final accuracy over the training stimuli was 100% for each
model.

To create the multiple object stimuli that were used for testing,
images from each possible pairing of categories were randomly
combined with one 160 x 160 image on the left half of a new
320 x 320 image and one 160 x 160 image on the right half. This
was repeated 25 times for each category pairing, resulting in 250
new images containing two objects. In testing over these images,
the model was ran for 100 cycles, as it often did not fully converge
in the standard 50 cycles used in single object presentations. A
testing trial was counted as correct if the model’s output matched
either of the two categories in the image.

We tested the effect of removing top-down feedback and
inhibitory competition from the model on recognition accuracy
for the multiple object stimuli. To remove influence from top-
down feedback only, unit inputs from top-down feedback con-
nections (e.g., Naming Output to IT, IT to V2/V4) were simply
multiplied by zero during the testing phase. Removing influ-
ence from both top-down feedback and inhibitory competition
required training a variant of the model that contained only
feedforward connections (allowing for negative weights between
units) with a backpropagation algorithm. This feedforward model
required training for 100 epochs of 500 trials on the training stim-
uli before reaching 100% accuracy. Aside from these differences,
the model was architecturally equivalent to the LVis model in terms
of layer organization and numbers of units and used otherwise
identical training and testing methods.

The same method that was used in the single object simulations
was used to isolate category selective representations for each of the
5 categories, except that IT units were further grouped into those
shared across category pairings (e.g., gun and bicycle units) as well
as those that were unique to each category. These groupings were
used to create the plots in Figure 3. Similarity to category selective
representations was also measured to determine how much the
overall pattern of responses across the IT layer approximated the
category selective response to the single objects. The cosine angle
between the category selective representation and the IT response
vector was used as the similarity metric in this calculation.

To investigate how category-relevant responses were related to
a model’s output (Figure 4), the firing rates of units that corre-
sponded to the model’s output were isolated into one grouping
(relevant responses) while the firing rates of all other units were
isolated into another grouping (irrelevant responses). Our deci-
sion to refer to these responses as “relevant” and “irrelevant” was
made to keep with the theme of relevant and irrelevant responses
when a single object was presented in isolation, but one should
note that irrelevant responses encompassed what could be con-
sidered to be relevant responses. For example, if a presented
stimulus contained a gun and a bicycle and a model responded
gun, the responses from units that corresponded to the gun cate-
gory were considered to be the relevant responses while the units
that corresponded to all other categories (including bicycle) were
considered to be irrelevant. Other reasonable labels for these two
groupings might be selected/unselected or attended/unattended
responses.
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