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When looking for the referents of novel nouns, adults and young children are sensitive
to cross-situational statistics (Yu and Smith, 2007; Smith and Yu, 2008). In addition, the
linguistic context that a word appears in has been shown to act as a powerful attention
mechanism for guiding sentence processing and word learning (Landau and Gleitman,
1985; Altmann and Kamide, 1999; Kako and Trueswell, 2000). Koehne and Crocker (2010,
2011) investigate the interaction between cross-situational evidence and guidance from the
sentential context in an adult language learning scenario. Their studies reveal that these
learning mechanisms interact in a complex manner: they can be used in a complemen-
tary way when context helps reduce referential uncertainty; they influence word learning
about equally strongly when cross-situational and contextual evidence are in conflict; and
contextual cues block aspects of cross-situational learning when both mechanisms are
independently applicable. To address this complex pattern of findings, we present a prob-
abilistic computational model of word learning which extends a previous cross-situational
model (Fazly et al., 2010) with an attention mechanism based on sentential cues. Our model
uses a framework that seamlessly combines the two sources of evidence in order to study
their emerging pattern of interaction during the process of word learning. Simulations of
the experiments of (Koehne and Crocker, 2010, 2011) reveal an overall pattern of results that
are in line with their findings. Importantly, we demonstrate that our model does not need
to explicitly assign priority to either source of evidence in order to produce these results:
learning patterns emerge as a result of a probabilistic interaction between the two clue
types. Moreover, using a computational model allows us to examine the developmental
trajectory of the differential roles of cross-situational and sentential cues in word learning.

Keywords: probabilistic modeling, cross-situational word learning, syntactic bootstrapping, context-based atten-
tion mechanisms

1. LEARNING WORD MEANINGS
Learning a language involves mapping words to their correspond-
ing meanings in the outside world. Children learn most of their
vocabulary from hearing words in noisy and ambiguous contexts,
where there are infinitely many possible mappings between words
and concepts (Carey, 1978). They attend to the visual environ-
ment to establish such mappings, but given that the visual context
is often very rich and dynamic, elaborate cognitive processes are
required for successful word learning from observation.

A well-studied mechanism for learning word–world mappings
from ambiguous contexts is cross-situational word learning (Quine,
1960; Siskind, 1996; Akhtar and Montague, 1999; Yu and Smith,
2007; Smith and Yu, 2008). This mechanism follows a straight-
forward bottom-up strategy based on statistical co-occurrence of
words and concepts across situations. By observing that a partic-
ular object, action, or property is in view more often than others
whenever a certain unknown word is uttered, the connection
between the word and that object/action/property is strength-
ened over time. Numerous studies have shown that children and

adults draw on cross-situational evidence when learning words
from different categories, and in various conditions (e.g., Yu
and Smith, 2007; Childers and Paik, 2008; Smith and Yu, 2008;
Vouloumanos, 2008; Smith et al., 2011). For instance, Smith and
Yu (2008) find that children as young as 1-year-old can quickly
track the co-presence of novel nouns and objects across tri-
als when two objects and two spoken words are presented in
each trial. Yu and Smith (2007) show that adults perform above
chance in learning novel nouns in even more ambiguous con-
ditions (3–4 unknown words and objects per trial). Childers
and Paik (2008) report that 2-year-olds are able to use cross-
situational evidence for learning not only nouns, but also pred-
icate terms. Moreover, cross-situational learning has been argued
to be a graded process: Vouloumanos (2008) and Vouloumanos
and Werker (2009) show that adults and children are sensi-
tive to small differences in the word–object co-occurrence rates.
These findings all suggest that cross-situational evidence is a rich
source of information for handling noise and ambiguity in word
learning.
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In addition to the cross-situational learning, a variety of atten-
tion mechanisms have been proposed to help narrow down rele-
vant parts of an observed scene when learning a word meaning, in
order to focus on the referred objects or actions. Carpenter et al.
(1998) and Bloom (2000) argue that children use their (innate or
acquired) social skills to infer the referent of a word as intended by
a speaker. Various studies have shown that caretakers often pro-
vide consistent social cues, such as eye-gaze and gesture, when
interacting with children (e.g., Tomasello and Todd, 1983), and
that children use these cues to facilitate word learning (e.g., Bald-
win et al., 1996; Baldwin, 2000; Nappa et al., 2009). In particular,
the sentential context of a word is a powerful source of guidance
in providing cues for attending to relevant aspects of meaning
for the word. The sentential context consists of structures which
combine certain types of words in particular ways. Such acquired
associations between linguistic forms and word meanings can help
the learner make inferences about potential referents of unknown
words. It has been suggested that children draw on syntactic cues
that the linguistic context provides in order to guide word learning,
a hypothesis known as syntactic bootstrapping (Gleitman, 1990;
Gillette et al., 1999). Children and adults are shown to be sensi-
tive to structural properties of language, and to the association
of such properties with aspects of meaning (e.g., Naigles and
Hoff-Ginsberg, 1995; Fisher, 2002; Gertner et al., 2006; Piccin and
Waxman, 2007; Lee and Naigles, 2008).

Clearly, the sentential context plays a significant role in human
word learning. Nonetheless, only a few studies have examined
the interplay of the sentence-level and other well-known word
learning mechanisms such as cross-situational learning (see, e.g.,
Gillette et al., 1999; Lidz et al., unpublished manuscript). In partic-
ular, Koehne and Crocker (2010, 2011) investigate the interaction
of these two mechanisms in an artificial word learning scenario,
and this interaction is the precise focus of our study here. The
experiments of Koehne and Crocker (2010) are based on teach-
ing adult participants a semi-natural miniature language. Adult
participants are exposed to a variety of learning conditions, in
each of which the two sources of word meaning evidence (cross-
situational statistics and sentence-level constraints) interact in a
different way. For example, the two sources of information may be
pointing to the same object as the referent of a target noun, or they
might be contradicting each other. The performance of the partic-
ipants in selecting the correct referent of a novel noun is taken to
reflect how these two sources of evidence interact in human word
learning. Their results reveal that adults can successfully learn from
both cross-situational and sentence-level constraints in parallel.
In addition, these results suggest that sentence-level constraints
might be modulating the use of cross-situational statistics in cer-
tain conditions. While these studies shed light on the nature of
both learning mechanisms, a detailed and systematic account of
the dynamics and time course of their interplay is still missing.

Computational modeling is a powerful tool for the precise
investigation of the hypothesized mechanisms of word learning.
Through computational modeling, we can carefully study whether
a model that is based on a suggested theory or learning mechanism
(and is tested on naturalistic data) shows a pattern of behavior
similar to those observed in humans. Most existing computa-
tional models of word learning focus on the informativeness of

cross-situational evidence in learning word–meaning mappings
(Siskind, 1996; Li et al., 2004; Regier, 2005; Yu, 2005; Frank et al.,
2007; Fazly et al., 2010). Extensions of these models integrate cer-
tain types of social cues such as gaze and gesture (Frank et al.,
2007; Yu and Ballard, 2008), or shallow syntactic cues such as lex-
ical categories of words (Yu, 2006; Alishahi and Fazly, 2010). Only
a few models explicitly study the role of sentential context in word
learning (Niyogi, 2002; Maurits et al., 2009), extremely limiting the
possibilities for the syntactic context of the words to be learned.

In sum, there are only a few computational models of word
learning that integrate sentence-level syntactic cues. Moreover,
there is a complete lack of computational studies of the interplay
of cross-situational word learning and sentence-level constraints.
Furthermore, none of the existing models investigate the devel-
opmental trajectory of word learning, considering information
sources other than cross-situational statistics.

We propose a computational approach to fill this gap. Our
model integrates the two learning mechanisms using a proba-
bilistic framework. Importantly, there are no specific rules or
parameters in the model that indicate which mechanism has a
stronger influence in any particular learning situation. Rather,
the contribution of each source of evidence is determined by
the informativeness of that source, given what is available in the
input, and what the model has learned at each stage of learning.
We use this model to simulate the experiments of Koehne and
Crocker (2010, 2011), and to provide a more detailed explanation
of how the two sources of information affect the learned word–
meaning mappings. Our model in general behaves similarly to
the human participants in the psycholinguistic experiments, and
is able to exploit informative linguistic context to boost perfor-
mance in word learning. The sentential context in our model is
represented as a set of categories which are inferable from the lin-
guistic structure of the utterance, and carry aspects of meaning.
Cross-situational evidence and context-based cues in our model
are integrated in a seamless fashion, and their interaction is a func-
tion of the properties of the input as well as the informativeness
of each source. In addition to simulating the experimental find-
ings of Koehne and Crocker (2010, 2011), we test our model on
varying amounts of input data prior to the artificial word learn-
ing trials, and show that the contribution of sentential context is
a function of age: in order to efficiently take advantage of this
additional attention mechanism, the model has to have received
sufficient input data to establish meaningful associations between
lexico-syntactic categories and general meaning representations.

2. AN INTEGRATED COMPUTATIONAL MODEL OF WORD
LEARNING

Consider a young language learner hearing the sentence daddy is
ironing a dax, and trying to find out the meaning of dax. Usu-
ally there are many possible interpretations for dax based on the
surrounding scene, and the child has to narrow them down using
some learning strategy. One such method is to register the poten-
tial meanings in the current scene, and compare them to those
inferred from the previous usages of the same word (i.e., cross-
situational learning). Another way to make an informed guess
about the meaning of dax is to pay attention to its sentential con-
text. For example, if the child has already heard some familiar
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words in a similar context (e.g., mommy is ironing her dress; he is
ironing a shirt, etc.), she can conclude that a group of words which
can appear in the context “is ironing –” usually refer to clothing
items.

We present a computational model based on that of Fazly et al.
(2010), that integrates this particular attention mechanism – i.e.,
guidance by the sentential context, into cross-situational word
learning. This model learns word meanings as probabilistic associ-
ations between words and semantic features, using an incremental
and probabilistic learning mechanism, and drawing only on the
word–meaning co-occurrence statistics gradually collected from
naturally occurring child-directed input. The model has been
shown to accurately learn the meaning of a large set of words
from noisy and ambiguous input data, and to exhibit patterns
similar to those observed in children in a variety of tasks (see Fazly
et al., 2010, for a full set of experiments on this model). How-
ever, this model cannot explain effects such as those reported by
Koehne and Crocker (2010, 2011), where human subjects clearly
use mechanisms other than cross-situational learning in order to
guide their attention in a word leaning scenario.

The model presented in this paper extends that of Fazly et al.
(2010) in two important aspects. First, it uses a more sophisti-
cated and plausible representation for the semantics of an observed
scene. Second, it incorporates an additional learning mechanism
based on the sentential context of each word under study, and the
restrictions that it imposes on potential referents for that word1.
Importantly, our extended model integrates the two sources of
information – i.e., cross-situational and context-based evidence –
in a seamless fashion. The pattern of interaction between these
two information sources is not pre-defined. Instead, they interact
in a dynamic way, and as a response to what the model has learned
so far, and what information is available from the current context.

In the rest of this section, we first describe how the input data
for word learning (an utterance accompanying an observed scene)
and the acquired word meanings are represented in our model. We
then give an overview of the learning procedure, and explain how
cross-situational learning is augmented by a context-based atten-
tion mechanism. The mathematical formalization of the model is
presented in Section 3.

2.1. INPUT AND MEANING REPRESENTATIONS
The input to our word learning model consists of a set of
utterance–scene pairs that link an observed scene (what the learner

1A preliminary version of this model (Alishahi and Fazly, 2010) was used to demon-
strate that information about the part of speech of a word (e.g., whether a word is a
noun or a verb) improves the mapping of words to their meaning.

perceives) to the utterance that describes it (what the learner
hears). We represent each utterance as a set of words, and the
corresponding scene as a set of potential referents. For simplicity,
in the rest of this paper we refer to what appears in a scene as a
concept or a potential referent of a word – that could be an object,
an action, or a property. Each concept in a scene is represented
as a set of semantic features (e.g., the referent of the word broc-
coli is represented as the set {broccoli, vegetable, object, . . .}).
Figure 1 shows a sample input pair as represented in our model.

The goal of our model is to learn which semantic features are
most likely to be part of the meaning of a word. The knowledge
of a word meaning must be acquired gradually and by process-
ing noisy and ambiguous input, therefore the representation of
meaning must accommodate this uncertainty. We represent the
meaning of a word as a probability distribution over all the seman-
tic features. In the absence of any prior knowledge, all features can
potentially be part of the meaning of all words. However, as the
model receives and processes more usages of the same word, its
association with certain semantic features (those which co-occur
with the word, or are in line with the sentential cues) strengthens.
Similarly, the association of a word with those semantic features
which rarely co-occur with it, or are in contrast with the available
sentential cues, weakens over time.

2.2. CUES FROM THE SENTENTIAL CONTEXT
Children and adult word learners are sensitive to cues provided by
the sentential context of a novel word, such as the selectional pref-
erences of the main verb in the sentence, or the syntactic category
of the word as indicated by its surrounding context. For example,
a context pattern such as he is Xing over there suggests X to be an
action, the big X suggests X to be an object, and She ate X sug-
gests X to be an edible object. These suggestions can significantly
reduce the level of uncertainty and ambiguity when searching for
the referent of an unknown word in a scene.

We represent such cues in our model as categories. Although the
focus of this work is not on what the nature of these categories are
and how they are formed, there is ample evidence that adults and
children have access to such categories. (We will discuss the notion
of categories and their formation in more detail in Section 6.) We
assume that an independent categorization module can process
each sentence and determine the lexical category for each word
based on its surrounding context2. Each category is simply a col-
lection of word forms, weighted by their frequency of occurrence

2We make the simplifying assumption that prior to the onset of word learning, the
categorization module has already formed a relatively robust set of lexical categories
from an earlier set of input data. This assumption is justified in the case of adult

FIGURE 1 | Internal representation of the example item Mommy ate broccoli in a visual context.
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in that category. Note that a word can belong to more than one
category, depending on its context.

Since a category is a weighted set of words, it can also have a
meaning as a weighted sum of the current meaning of all words
which belong to it. In our extended model, category meanings
formed as such are one of the main means of guiding attention to
relevant objects when processing an utterance–scene pair.

2.3. THE LEARNING PROCEDURE
Word learning proceeds incrementally. That is, the knowledge of
a word’s meaning is gradually updated each time the learner hears
that word being used in a context. The model learns the meaning
of a word, by processing each input pair in two steps. The first
step is alignment : upon hearing an utterance paired with a visual
scene, the learner has to decide which concept in the scene is likely
to be the referent of each word in the utterance. The second step is
adjustment : meaning representations for each word in the utter-
ance have to be updated in accordance with the new alignments
estimated in the first step. More details on each of these two steps
come next.

2.3.1. Alignment
When aligning words to referents, several factors come into play.
One factor is the cross-situational evidence: if a word has fre-
quently co-occurred with a concept, there is a high chance that
this co-occurrence is meaningful and the concept is the intended
referent of the word. The cross-situational evidence thus far is
accumulated in the model’s learned knowledge of word meanings.
For a word heard for the first time, we assume that the learned
meaning is such that all semantic features are equally likely, and
hence all concepts are equally likely to be referents of the word
in the context of the current utterance–scene pair. In addition,
concepts compete with each other as possible referents of a word,
i.e., the concept with the strongest evidence is the one with the
strongest alignment with that word.

Another factor that can influence the alignment of a word and
a concept is the degree to which the sentential context of the word
supports the alignment. For example, if learners are aware of the
general properties of direct objects of the verb iron (as a group
or category), it is more likely that they pick a clothing item from
the scene as the potential referent of dax in the utterance daddy is
ironing the dax.

Using these factors, an alignment probability is estimated
between every word in the current utterance, and every poten-
tial referent in the scene. The alignment probability between a
word and a referent reflects the learner’s degree of confidence that
the co-occurrence is due to chance or to a meaningful relation
between the two.

2.3.2. Adjustment
The estimated alignment probabilities can be used to update the
previously learned word meanings. For each word, its meaning is
adjusted for each semantic feature that is part of the representation

learners of a second or artificial language. However, children’s acquisition of cate-
gories is most probably interleaved with the acquisition of word meaning, and these
two processes must ultimately be studied simultaneously.

of an aligned referent, in proportion to their alignment probabil-
ity. Early on in the course of learning, the meaning of a word might
change drastically as a result of processing a new input pair. As the
model ages, its acquired knowledge of word meanings becomes
more robust and stable, and adjustments are done in smaller steps.

2.4. ASSESSMENT OF LEARNING
Because learning is a gradual process and the meaning of a word
is continually changing, it is not obvious at which point in time
a word can be considered as properly learned. Intuitively, a word
is sufficiently learned when its meaning reflects strong associa-
tions with relevant semantic features, and weak associations with
irrelevant ones.

In experimental studies of word learning, a common practice
for testing whether a word is learned is to ask subjects to pick
the right referent for the target word from a set of visible objects
(within a scene or on a computer screen). We simulate such a
referent selection task in our model by presenting it with a tar-
get word and a set of objects as its possible referents. We evaluate
the performance of our model in selecting the correct referent, by
calculating the probability of choosing the correct referent given
the target word as the stimulus. This probability is measured by
looking into the similarity of the learned meaning of the target
word to the feature-based semantic representation of each of the
objects.

3. DETAILS OF OUR COMPUTATIONAL MODEL
In this section we will present a detailed version of the model, and
specify how the ideas sketched in the previous section are formally
realized.

3.1. WORD AND CATEGORY MEANING REPRESENTATIONS
3.1.1. Word meaning
Given a corpus of utterance–scene pairs, our model learns the
meaning of each word w as a time-dependent probability distrib-
ution p(t )(.|w) over the semantic features appearing in the corpus.
In this representation, p(t )(f |w) is the probability of feature f being
part of the meaning of word w at time t. In the absence of any prior
knowledge, e.g., when a word is heard for the first time, all features
can potentially be part of the meaning of all words. Hence, prior to
receiving any usages of a given word, the model assumes a uniform
distribution over semantic features as its meaning.

3.1.2. Category meaning
As previously mentioned, we assume that prior to the onset of
word learning, the learner has formed a number of categories,
each containing a set of word forms. More formally, we assume that
the word learning model has access to a categorization function
cat(w, U) which at any given time during the course of learning
can determine the category of a word w in utterance U. As the
model learns meanings of words, the categories that these words
belong to are implicitly assigned a meaning as well. Once the word
learning process begins, we assign a meaning distribution to each
category on the basis of the meanings learned for its members.
Formally, at each point in time, we estimate the meaning of a cat-
egory c, p(t )(.|c), as the average of the meaning distributions of its
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members. That is, for each feature f :

p(t )
(

f |c
)
=

1

|c |

∑
w∈c

p(t )
(
f |w

)
(1)

where |c | is the number of word tokens in category c. Prior to
observing any instances of the members of a category in the input,
we assume a uniform distribution over all the possible semantic
features for each category.

3.2. THE LEARNING ALGORITHM
The model proposes a probabilistic interpretation of word learning
through an interaction between two types of probabilistic knowl-
edge acquired and refined over time. Given an utterance–scene pair
(U(t ), S(t )) received at time t, the model first calculates an align-
ment probability a for each word w ∈U(t ) and each potential refer-
ent r ∈ S(t ). This alignment is calculated by using the meanings of
all the words in the utterance, as well as the meanings of their cat-
egories, prior to time t, i.e., p(t−1)(.|w) and p(t−1)(.|cat(w, U(t ))),
respectively. The model then revises the meanings of all the words
in U(t ) and their corresponding categories by incorporating the
recently calculated alignments for the current input pair. This
process is repeated for all the input pairs, one at a time.

3.2.1. Step 1: alignment
The goal is to align all the words w in the utterance with all the
potential referents r in the scene. As mentioned before, each con-
cept (or potential referent) is represented as a set of semantic
features, that is, r = {f }. Alignment follows a few simple intuitions:
the more similar the current learned meaning of a word to a ref-
erent, the more likely it is that the two are aligned. Conversely,
the more similar the current meaning of a word to a referent in
the scene, the less likely that the same word is aligned to another
referent in the same scene. This also implies that the alignments
between words and referents can be many-to-one (e.g., the big blue
box may be aligned to the same referent in the scene).

Recall that for each word in the utterance, we can infer its cat-
egory based on the sentential context. That is, for all w ∈U(t ), we
assume to have access to its category c = cat(w, U(t )). Since cate-
gories are also assigned a meaning at each time during learning,
we can apply the above intuitions to the categories as well: the
more similar the meaning of a word category to a referent, the
more likely it is that the word is aligned with the referent, and the
less likely it is that the word is aligned with another referent in the
same scene.

Combining these intuitions, we calculate alignments as in:

∀r ∈ S(t ),∀w ∈ U(t ) : c = cat
(

w , U(t )
)

,

a (r |w , c , t ) =
sim (r , w)× sim (r , c)∑

r ′∈S(t )
sim (r ′, w)× sim (r ′, c)

(2)

where sim(r, x) determines the similarity between potential refer-
ent r and x (which can be a word or a category) at this point
in time. Recall that each potential referent r is represented as
a set of features {f }, and each word or category is represented

as a (time-dependent) probability distribution over features. We
convert these representations into vectors over the features, and
calculate the cosine of the angle between the two vectors as their
similarity. Specifically:

sim (r , x) = cosine (Evr , Evx ) (3)

where Evr is a vector over all features, in which those features in r are
assigned the value 1

|r | , and all other features are assigned a value of

0. Evx is a vector over all features, in which each feature f is assigned
its current probability, p(t )(f | x) (note that features unseen with
a word/category are always assigned a small unseen probability;
see below for further details on how the meaning probabilities are
estimated).

3.2.2. Step 2: adjustment
We need to update the probabilities p(.|w) for all words w ∈U(t ),
based on the evidence from the current input pair reflected in
the alignment probabilities. However, word meanings are defined
as associations between words and features, whereas alignment
probabilities are estimated for words and referents, which are col-
lections of features. Therefore, as evidence for the association
between w and f, we take the maximum alignment score for
w and any of the existing referents which contain the feature f,
and add this to the accumulated evidence assoc(w, f ) from prior
co-occurrences of w and f. That is:

assoc(t )
(
w , f

)
= assoc(t−1) (w , f

)
+ max

r ′∈S:f ∈r ′
a
(

r ′|w , cat
(

w , U(t)
)

, t
)

(4)

where assoc(t−1)(w, f ) is zero if w and f have not co-occurred
before (i.e., none of the referents co-occurring with w in the
past contains the feature f). The model then uses these associa-
tion scores to update the meaning of the words in the current
utterance, as in:

p(t )
(

f |w
)
=

assoc(t )
(

f , w
)
+ λ∑

fj∈F
assoc(t )

(
fj , w

)
+ β · λ

(5)

whereF is the set of all features seen so far,β is an upper bound on
the expected number of semantic features, andλ is a small smooth-
ing factor3. We use smoothing to accommodate noisy input by
always leaving some (small) portion of the probability mass to
currently unseen features.

Once the meaning probabilities of words are updated, the
meaning of their corresponding categories are updated accord-
ingly. For each word w in U(t ), the meaning distribution of the
corresponding category c = cat(w, U(t )) is incrementally updated
as in:

p(t )
(

f |c
)
= p(t−1) ( f |c

)
+

1

|c |

(
p(t )

(
f |w

)
− p(t−1) ( f |w

))
(6)

3We set these parameters according to the criteria explained in (Fazly et al., 2010);
see Section 4 for details on the actual values used in our experiments here.
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4. EXPERIMENTAL SETUP
For the evaluation of our model, we focus on the word learn-
ing experiments of Koehne and Crocker (2010, 2011) (hence-
forth K&C). These experiments investigate whether adult learners’
knowledge of the sentential context affects their performance in
an artificial word learning scenario. We simulate some of these
experiments, and show that the behavior of our model is simi-
lar to that of adult participants in these studies. Specifically, we
simulate Experiment 2 of K&C (2010) and Experiment 2 of K&C
(2011) in order to examine the role of sentential cues as an atten-
tion mechanism in narrowing down potential referents of object
labels in a controlled word learning setup.

The experiments of K&C are based on teaching German adults
a semi-natural miniature language in a step-wise fashion. All these
experiments follow the same design: in a first phase, learners are
familiarized with a set of restrictive and non-restrictive verbs, all
of which have clear equivalents in German (e.g., bermamema,
“eat”; tambamema, “take”). In this phase, the participants watch
an animated depicted action while hearing a spoken verb, and
their task is to memorize the name of the action. (Note that this
phase is not supposed to reflect realistic verb learning, but only
to set the context for the upcoming phase of noun learning.)
In a second phase, the participants are exposed to pairs of sta-
tic scenes and spoken SVO-sentences: Each sentence consists of
one of the recently learned verbs and two novel nouns (in subject
and object positions, respectively). Each corresponding scene con-
tains referents of these nouns as well as some distractor objects.
Whereas nouns appearing in the subject position are always labels
for “man” and “woman,” nouns which appear in direct object posi-
tion are more varied and hence more difficult to learn. In a third
phase, participants are tested on how well they have learned the
nouns, using a forced choice referent selection trial for each tar-
get noun. Specifically, participants hear each target noun while
seeing a number of objects as potential referents on a computer
screen, and are asked to click on the correct referent. They are
also asked to provide a rating that reflects their confidence level in
their selected referent. Figure 2 shows a sample input from these
experiments.

FIGURE 2 | A sample input scene from experiments of Koehne and
Crocker (2010, 2011), paired with a spoken sentence Si gadis
bermamema si worel (the woman will eat the broccoli ).

Noun learning in the K&C experiments is partly based on
the information provided by the restrictive verbs that partici-
pants are familiarized with beforehand. Importantly, all verbs have
simple German translations and every adult is familiar with the
semantic and syntactic use of these German verbs. In particular,
based on years of exposure to usages of verbs such as eat and
iron in their first language, the adult participants have learned
how these verbs constrain their direct objects by imposing certain
semantic restrictions on them. That means that learners bring in
substantial information about verb selectional preferences from
their mother tongue. In our simulations, we need to first take
the model to “adult level” by pre-training it on sufficient infor-
mation from a first language. Only then we can start training it
on the artificial language data from K&C experiments. Finally,
we must evaluate the model on a task similar to the vocabu-
lary tests in these experiments. In the following sections, we first
explain each of the above stages in simulating the experiments
from K&C, i.e., pre-training, artificial novel noun learning, and
vocabulary test. We then provide details on how we construct an
input-generation lexicon of word meanings, as well as how we set
the parameters of our model for the experiments reported in this
study.

4.1. PRE-TRAINING AND THE SIMULATION OF AGE
We want our model to have robust knowledge about the semantic
requirements of the subject and direct object of our experimental
verbs before we start the noun learning stage (as do adult par-
ticipants in the experiments of K&C). We automatically extract
members of the categories Subj(V) and Dobj(V) for each verb V
in our experiments from a large corpus of English text, the British
National Corpus (BNC)4.

Each experiment consists of different simulations, represent-
ing different human participants, such that in each simulation
the model receives a different (randomly generated) pre-training
data set. To construct a pre-training data set, we randomly gen-
erate N input items (each pairing a member of a category with
its correct meaning), whose distribution reflects the relative size
of the categories and the frequencies of their members. We train
the model on these input pairs, and update the category meanings
accordingly. At the end of the pre-training phase, each category is
associated a meaning, i.e., a probability distribution over semantic
features formed as a weighted average of the learned meanings of
its members.

Using a computational model allows us to investigate the effect
of the participants’ age on their performance in the artificial noun
learning task. To simulate younger or older participants, we can
easily manipulate the amount of input in the pre-training phase.
We thus provide predictions on the role of previous exposure to
first language in the artificial noun learning task, which has not
been done in the experiments of K&C (where all participants are
young adults).

4Data cited herein has been extracted from the British National Corpus Online
service, managed by Oxford University Computing Services on behalf of the BNC
Consortium http://www.natcorp.ox.ac.uk/docs/URG/. All rights in the texts cited
are reserved.

Frontiers in Psychology | Developmental Psychology July 2012 | Volume 3 | Article 200 | 6

http://www.natcorp.ox.ac.uk/docs/URG/
http://www.frontiersin.org/Developmental_Psychology
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Developmental_Psychology/archive


Alishahi et al. Sentence-based attention in word learning

4.2. ARTIFICIAL NOUN LEARNING
Training on the artificial language has two phases. First, partic-
ipants are explicitly taught a small set of verbs in isolation and
with enough repetition, and are then tested to make sure that they
know all the verbs. Second, participants go through a set of trials,
where in each trial an utterance is heard over an image containing
an array of familiar objects and characters.

We use automatically generated material similar to those of
K&C as our training corpus, where each simulation contains a
different set of artificial noun learning trials (with the same con-
straints specified in the corresponding experiments of Koehne and
Crocker, 2010, 2011). Since learning verbs is not the main point of
these experiments and it is assumed that participants know all the
verbs by the time the trials begin, we simply remove them from
our training material. However, we assume that learners know
about the relation between each noun and the main verb in the
sentence (since they are explicitly told about the SVO word order
of the utterance). Therefore we mark each noun by the category
it belongs to, e.g., Dobj(iron). Each utterance is thus of the form
“noun: Subj(V), noun: Dobj(V),” associated with a scene repre-
sentation containing a number of objects, including the correct
referents of the two nouns as well as some distractors (each repre-
sented as a set of semantic features). The training example shown
in Figure 2 will appear to the model as shown in Figure 3.

4.3. VOCABULARY TEST: REFERENT SELECTION
To test how well a participant has learned the meaning/referent of
a recently taught novel noun, it is common to perform a forced
choice vocabulary test or referent selection. In such a task, a target
noun is presented along with its correct referent and a number of
distractor objects, and the participant is asked to choose the target
referent. We present our model with one such trial for each novel
noun w that appeared during the artificial novel noun learning
(the number of novel words to be learned varies across the experi-
ments). We then use the Shepard-Luce choice rule (Shepard, 1957;
Luce, 1959) to calculate the probability of choosing each object r
in the scene S as the referent of the target noun, as in:

Pchoice (r |w) =
sim (r , w)∑

r ′∈S sim (r ′, w)
(7)

where sim(r, w) is calculated as in equation (3) (page 8).

4.4. WORD MEANINGS AND THE INPUT-GENERATION LEXICON
We automatically construct a lexicon of semantic features for a
number of words, which will be used to find the feature-based

representation of potential referents appearing in a scene5. The
lexicon contains semantic representations for nouns and pronouns
only. For nouns, we extract the semantic features from WordNet
(Fellbaum, 1998)6 as follows: We take all the hypernyms (ances-
tors) for the first sense of the word, where each hypernym is a set
of synonym words (or synsets) tagged with their sense number.
For each hypernym, we add the first word in the synset of each
hypernym to the set of the semantic features of the target word
(see Figure 4 for examples). We noted that for some nouns appear-
ing in our experimental data, the first WordNet sense was not the
intended meaning in our experiments (e.g., the first WordNet sense
of broccoli is its “plant” meaning, whereas its intended meaning in
our experiments is the “food” sense). We thus manually correct
the senses for nouns appearing in our experiments. For pronouns,
we manually add a simple feature-based meaning representation.
This is especially important for the pre-training stage where we
construct the category meanings reflecting the selectional restric-
tions of our verbs, since many pronouns appear as the subject or
direct object of the verbs in our study.

4.5. MODEL PARAMETERS
Each experiment consists of K different simulations, such that in
each simulation the model receives a different pre-training data
set, as well as a different set of novel noun learning trials (which
naturally result in different vocabulary test trials). In experiments
reported here, we set the number of simulations K to 10. The
parameters λ and β in equation (5) are set according to the crite-
ria explained in (Fazly et al., 2010): λ is set to a small value, 10−5,
and β is set to 9000, roughly equal to the total number of semantic
features in our lexicon.

5. EXPERIMENTAL RESULTS
We present results and analyses of our simulations of two exper-
iments, where we examine the role of informative linguistic con-
text and its interplay with cross-situational evidence in a con-
trolled word learning setup: (i) K&C 2010-Experiment 2, where
the two sources of cross-situational and sentence-level evidence
provide complementary information (Section 1); and (ii) K&C
2011-Experiment 2, in which the two sources provide redundant
information (Section 2).

5Note that the model does not have access to this lexicon for learning the meanings
of words; it is only used to retrieve the set of semantic features f for a referent r when
generating the input data.
6http://wordnet.princeton.edu/

FIGURE 3 | Processed version of the training item shown in Figure 2.
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FIGURE 4 | WordNet hypernym hierarchies for broccoli (a food item) and for skirt (a clothing item), as well as their corresponding meanings in our
lexicon, extracted from the hypernym hierarchies.

5.1. CROSS-SITUATIONAL EVIDENCE AND SENTENTIAL CONTEXT ARE
COMPLEMENTARY

5.1.1. K&C 2010-Experiment 2
This experiment investigates the interaction of cross-situational
word learning and sentence-level constraints when they provide
complementary information. In Phase 1 (verb learning, see Section
4), participants were familiarized with four restrictive and two
non-restrictive verbs. In Phase 2 (noun learning), sentence-scene
pairs were provided as learning trials, as explained above. Each
scene in Phase 2 contained four objects. Twelve novel nouns were
introduced, each belonging to one of three within-subject condi-
tions: In Condition No-R(eferential)U(ncertainty), nouns were
always preceded by a restrictive verb and there was only one
object in the scene which matched the verbal restriction; in Con-
dition Low-RU, verbs were restrictive but there were two plausible
referents in the scene; in Condition High-RU, verbs were non-
restrictive, leaving four plausible referents for nouns in the direct
object position. This means that while in Conditions No-RU and
Low-RU learners could use the sentence-level constraints (i.e.,

verbal restrictions), in Condition High-RU only co-occurrence
information was available. In Condition Low-RU, however, suc-
cessful learning could be achieved only by using cross-situational
statistics in addition to this sentence-context evidence.

As predicted, learning rates and confidence ratings were high-
est in Condition No-RU and lowest in Condition High-RU (with
significant differences in confidence ratings). This means that in
those conditions in which sentence-level constraints were avail-
able (No-RU and Low-RU), learning was better than in cases
where it was not (High-RU), revealing that the sentential con-
text can boost noun learning. The fact that learning in Low-RU
was successful moreover reveals that participants applied both
co-occurrence statistics and sentence-level constraints in paral-
lel for learning noun meanings. Finally, the difference between
Conditions No-RU and Low-RU (reflected in confidence ratings)
demonstrates that using cross-situational evidence in Low-RU
did not completely compensate for the referential uncertainty
that was left after using sentence-level constraints. To summarize,
this experiment clearly reveals that cross-situational learning and
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context-based attention mechanisms can successfully be applied
in a complementary way.

5.1.2. Computational simulation
We simulate this experiment in our model, using automati-
cally generated pre-training and artificial noun learning data (as
described in Sections 4.1 and 4.2). For each condition, we run
10 different simulations, where both data sets (pre-training and
artificial) are randomly generated and are thus different for each
simulation.

To accurately simulate the knowledge of the adult participants
in the experiments of K&C about the selectional preferences of
the experimental verbs, we set the size of the pre-training data to a
relatively large number, here 5000. In addition, we use a manually
cleaned version of the selectional preference information for the
verbs, where we remove erroneous words or words whose mean-
ing does not match the intended meaning of an argument of a
verb.

A summary of results for the three conditions (averaged over
10 simulations for each) are shown as a bar graph in the right
panel of Figure 5 (the left panel shows results from the origi-
nal K&C experiment). Each bar in this graph reflects the average
choice probability Pchoice [estimated by equation (7)] of the cor-
rect referents for each of the 4 nouns in a condition, averaged
across the simulations. Note that we use a slightly different eval-
uation measure in our simulations than the one used in the
original experiments: rather than measuring the proportion of
words learned in each simulation, the graph shows the average
of the probability of selecting the correct referent in each trial
(as explained in Section 4.3). This decision was made based on
the observation that in many trials, the model does not have a
strong preference toward one referent over another. In such cases,
the referent with the highest absolute probability will be unjustly
picked as the “winner” even though the difference between its

choice probability and that of the next referent is very small7.
Therefore, the corresponding “proportion learned” measure for
the computational simulations is a rather unreliable measure, and
we decided to instead look at the choice probabilities themselves
as a more robust indication of the tendency of the model toward
treating each object as the correct referent of the target word. Ulti-
mately, we do not directly compare these measures, but rather
examine the relative strength of each measure across conditions,
as explained below.

We evaluate the model simulations of this experiment by ana-
lyzing Pchoice of the 12 novel nouns (3 conditions, 4 nouns in
each condition) by entering the continuous data into linear mixed
effect models using linear regression, with participant and item
as random factors (as in K&C 2010). Model comparison is used
to evaluate whether the fixed factor Condition has a main effect
(Baayen et al., 2008). For pairwise comparisons, we calculate
Monte Carlo Markov Chain values (MCMCs; Baayen et al., 2008).
Condition has a main effect on learning success [χ(2)= 86.202,
p< 0.001] with significantly better rates in both Conditions No-
RU and Low-RU than in Condition High-RU (see Table 1, rows
3 and 6) and significantly better rates in Condition No-RU than
Condition Low-RU (Table 1, rows 2 and 5).

5.1.3. Comparison of the original and simulation results
As is evident from Figure 5, the model’s learning performance is
in line with the experimental results for learning rates reported by
K&C (2010). In both cases, the performance in Conditions No-RU

7Our model is too good at forming small preferences toward the correct referent
based on only a few exposures, mainly due to the fact that it has perfect memory
and is not distracted by environmental factors and attention deficit the way human
subjects are. In fact, looking at the selection ratio measure might make the impres-
sion that the model performs almost at ceiling in all three conditions, but more
careful examination of the actual probabilities shows that the difference between
the probabilities is very small.

FIGURE 5 | Koehne and Crocker (2010), Experiment 2: the left panel depicts the proportion of nouns learned in each condition in the original
experiment, and the right panel shows the mean selection probability of the target object in our simulations.
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Table 1 | Lmer models and p-values from MCMC sampling for learning prob, Exp. 1 prob ∼Referential Uncertainty + (1|sub)+ (1|item).

Predictor Coef. SE T MeanMCMC pMCMC Pr (>|t |)

1 (Int) (No-RU) 0.393 0.009 43.98 0.394 0.001 <0.001

2 Low-RU −0.015 0.007 −2.27 −0.015 0.030 <0.050

3 High-RU −0.077 0.007 −10.72 −0.079 0.001 <0.001

4 (Int) (No-RU) 0.378 0.009 42.280 0.378 0.001 <0.001

5 Low-RU −0.015 0.007 2.270 0.015 0.024 <0.050

6 High-RU −0.062 0.007 −8.460 −0.063 0.001 <0.001

FIGURE 6 | Change in alignment probabilities over time, shown in
grayscale, for a sample word (sonis referring to broccoli), and for the
three conditions of K&C 2010-Experiment 2. Note that in these
experiments each word is presented in 4 consecutive trials (t = 1 .. 4).

Darker squares reflect higher probabilities. The two lightest colors show
alignments that are below or just above the baseline of 0.2, which is the
probability of randomly selecting the target referent from a set of five
objects present in the scene.

and Low-RU is significantly better than in Condition High-RU.
These results suggest that our model shows similar overall pattern
of behavior as human learners: it can use informative linguistic
context to narrow down the set of potential referents in the scene
for each novel word in an utterance. Therefore, the model performs
better when complementary cross-situational and context-based
evidence are available and lead to the same direction.

Also in line with the experimental data, the model performed
better in Condition No-RU than in Condition Low-RU. This pat-
tern reveals that while cross-situational word learning was used in
addition to sentence-level constraints in Condition Low-RU, this
did not completely compensate for the advantage of the perfectly
disambiguating sentence constraints in Condition No-RU.

5.1.4. Interactions between cross-situational and sentence-level
evidence: An example

One advantage of computational modeling is that we can closely
examine the interactions of the different information sources
available to our learner in order to see how they affect learn-
ing over time. Figure 6 depicts in grayscale the change in the
alignment probabilities over the course of training, for a sam-
ple target word (sonis) and its target referent (broccoli), and for
the three conditions of K&C 2010-Experiment 2. Recall that in
these experiments each word is presented in 4 consecutive trials.
Darker squares reflect higher probabilities, and the two lightest
colors show alignments that are below or just above the baseline
of 0.2 (i.e., the probability of randomly selecting the correct target
among the five objects in a scene).

The figure shows visualized alignment probabilities that
take into account both word-based (cross-situational) and
category-based (sentence-level) evidence, marked as “word and

category,” and calculated as in equation (2). To better understand
the interactions of the two sources of information, the figure also
shows alignments calculated using either one of the two sources,
referred to as“word-based”and“category-based”in the figure. The
latter two alignments are calculated by using variations of equation
(2), in which only the relevant similarity scores are used – sim(r,
w) and sim(r ′, w) for word-based, and sim(r, c) and sim(r ′, c) for
category-based.

The example shows that across the three conditions, the cross-
situational evidence is not sufficient to result in an alignment
higher than the baseline. The category-based alignments are also
low in the High-RU condition, but higher and more informa-
tive in the No-RU and Low-RU conditions. When we use both
sources of information, the alignments increase over time to rea-
sonably high values in the No-RU and Low-RU conditions – with
higher values in the No-RU condition – but not in the High-RU
condition.

5.1.5. Effect of age
In our simulations reported above, we assume that the model has
access to perfect categories representing the selectional preferences
of each verb. This assumption is justified in the case of adults, who
have a clear image of which semantic restrictions are imposed on
each grammatical position based on years of exposure to language
usage. However, it is interesting to look at the time course of the
development of such knowledge, and how it affects word learning.

To investigate the effect of age, we perform experiments with
the original noisy version of the selectional preference informa-
tion, where we pre-train on different amounts of input. Here
a noisy input data set represents the confusion and uncertainty
that young learners face when receiving and processing language
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data. Needless to say, children face many challenges other than a
high level of ambiguity when learning their first language (we will
discuss some of these challenges in Section 6). However, for the
purpose of investigating the developmental pattern of using sen-
tential context, using a more noisy version of the input data seems
appropriate.

Figure 7 depicts the performance of the model for two different
age groups (i.e., for 500 vs. 5000 input items). Once process-
ing 500 noisy input items, the model has a vague and not very
informative conception of each category. By the time the model
has received 5000 such input items, informative patterns start
to emerge (although not as efficiently as the ones in the “clean”
version, depicted in Figure 5). Inferential analyses reveal that
for input 500, there is a main effect of factor Condition for the
choice probability [χ(2)= 6.703, p= 0.035] and a significant dif-
ference between Conditions No-RU and High-RU (p= 0.010). For
input 5000, we find a much stronger main effect [χ(2)= 26.994,
p< 0.001] and significant differences between not only Conditions
No-RU and High-RU (p< 0.001) but also between Conditions
Low-RU and High-RU (p= 0.001). In other words, the effect of
context is much more clear after the model has received sufficient
amount of input data and formed informative categories.

5.2. CROSS-SITUATIONAL EVIDENCE AND SENTENTIAL CONTEXT ARE
REDUNDANT

5.2.1. K&C 2011-Experiment 2
This experiment investigates how cross-situational evidence and
sentential context work together when they are independently
applicable, that is, when they provide redundant information. In
Phase 1 of this experiment, participants learned two restrictive and
two non-restrictive verbs. In Phase 2, 16 novel nouns were intro-
duced. Each noun had two potential meanings: The high-frequency
referent was depicted in the scene in 83% of all presentations of
the noun (e.g., in 83% of all presentation of the noun sonis a
sausage co-occurred); the low-frequency referent co-occurred with
a noun in only 50% of the time (e.g., sonis co-occurred with
jeans). All other objects occurred only once with sonis (i.e., 17%
of the time). In addition to this manipulation, each noun was in

one of two conditions (manipulated within subjects): In Con-
dition R(estrictive), the noun sometimes followed a restrictive
verb. Importantly, this verb supported the high-frequency mean-
ing (e.g., the sausage). In Condition N(on-restrictive), the noun
was always preceded by a non-restrictive verb. That means that
while in Condition N only cross-situational evidence was available
(supporting the high-frequency meaning), in Condition R both
cross-situational evidence and sentence-level constraints pointed
to the high-frequency meaning.

In the forced choice vocabulary test, there were two different
trial types. In Test Type 1, the high-frequency object, the low-
frequency object, and two distractor objects were depicted (e.g.,
for sonis: sausage, jeans, tomato, skirt). In Test Type 2, learners
could choose among the low-frequency referent and three distrac-
tor objects, one of which shared the semantic category (e.g., food)
with the (non-present) high-frequency referent (we refer to this
referent as the category associate; e.g., apple for sonis). The partic-
ipants’ selection of referents show an interesting pattern: In Test
Type 1 trials, the high-frequency object was chosen significantly
more often than the other objects in both conditions. However,
the high-frequency object was chosen significantly more often in
Condition R than N whereas the low-frequency object was chosen
significantly more often in Condition N than R. In R-trials of Test
Type 2, participants selected the category associate significantly
more often than all other objects whereas in N-trials, both the cat-
egory associate and the low-frequency object were preferred over
the distractors.

These results reveal that pure cross-situational learning (Con-
dition N) works in a parallel and probabilistic manner: People
learned the probability of different potential referents for each
noun instead of tracking only the best candidate in a determin-
istic way. Therefore, they were sensitive to differences between
co-occurrence frequencies (83 vs. 50 vs. 17%) and preferred to
select the 50% low-frequency object over the 17% distractors when
the high-frequency object 83% was not available (Test Type 2).
However, this sensitivity to differentiate between 17 and 50% of
co-occurrence was blocked when sentence-level constraints were
available during learning (Condition R): Learning proceeded in

FIGURE 7 | Simulation results for K&C 2010-Experiment 2 on noisy pre-training data sets of different size.
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a deterministic way and only the referent which was supported
by the verb (the high-frequency object) was memorized. There-
fore, the low-frequency object was not chosen more often than the
distractors in Test Type 2, when the high-frequency was not avail-
able. Instead, participants selected an object which was semanti-
cally closest to the verb supported high-frequency object (i.e., the
category associate).

These results for Test Type 1 and Test Type 2 are shown in the
left panels of Figures 8 and 9, respectively.

5.2.2. Computational simulation
We simulate this experiment by pre-training the model the same
as in K&C 2010-Experiment 2: using 10 random simulations, each
using an automatically generated pre-training data set of size 5000,
and an automatically generated artificial data set that matches the
material used in the original experiments. The bar graphs in the
right panels of Figures 8 and 9 summarize the performance of our
model for Test Types 1 and 2, respectively.

Again we analyze the probabilities of choosing all of the
four possible objects in the vocabulary test (Test Type 1: High-
Frequency object, Low-Frequency object, Distractor 1, Distrac-
tor 2; Test Type 2: Category Associate, Low-Frequency object,
Distractor 1, Distractor 2). Here also the data is analyzed using
linear mixed effect models. In line with K&C’s results, we
find significant differences between conditions for the prob-
abilities of choosing the High-Frequency target [Test Type
1: χ(1)= 289.010, p< 0.001], the Low-Frequency target [Test
Type 1: χ(1)= 234.660, p< 0.001; Test Type 2: χ(1)= 401.960,
p< 0.001],and the Category Associate [Test Type 2:χ(1)= 80.705,
p< 0.001]: Whereas the High-Frequency object and the Category
Associate have a significantly higher probability of being chosen
in Condition R than Condition N (see Table 2, row 2; Table 3, row
2), the Low-Frequency target is chosen significantly more often in
Condition N than Condition R in both test types (see Table 2, row
4; Table 3, row 4).

5.2.3. Comparison of the original and simulation results
For both test types, the overall behavior of our model is very sim-
ilar to that of the participants in the original experiments of K&C
(2011). Firstly, learning in Condition N is parallel and probabilis-
tic: The low-frequency referent is chosen by both our model and
the human subjects more often than the distractors, and it is the
referent which is most strongly favored by our model when the
high-frequency object is not available (Test Type 2). Secondly,
when nouns are learned based on sentence-level constraints (Con-
dition R), the model shows a clear preference to choose a referent
which is congruent with these constraints (high-frequency object
in Test Type 1 and category associate in Test Type 2). Interestingly,
as the results from Test Type 2 reveal, this preference is still dom-
inant when this object (i.e., the category associate) has a lower
co-occurrence rate than another candidate (the low-frequency
object).

5.2.4. Interactions between cross-situational and sentence-level
evidence: an example

Figure 11 depicts in grayscale the change in the alignment prob-
abilities over the course of training, for a sample target word

(lebah) and its target high-frequency (HF) and low-frequency (LF)
referents (cap and tomato, respectively), and for the two condi-
tions of K&C 2011-Experiment 2. Recall that in these experiments
each word co-occurs with both its HF and LF referents in 3 con-
secutive trials, with its HF referent only in the next 2 trials, and
with none of the two referents in the final trial. Here again, the
figure shows “word-based,”“category-based,” as well as “word and
category” alignments; darker squares reflect higher probabilities;
and the two lightest colors show alignments that are below or just
above the baseline of 0.2 (since there are 5 objects in a scene).

For this example, we can see that in the Non-restrictive con-
dition, the cross-situational evidence is the only reliable source
of information, resulting in mild increases over the baseline for
the HF referent only. In contrast, in the Restrictive condition, the
sentence-level information for the HF referent (reflected in the
category-based alignments for this referent) has a very positive
effect on the alignments between the word and its HF referent,
causing them to substantially increase over the course of training.

5.2.5. Effect of age
As before, we are interested in studying the role of exposure to
linguistic knowledge (in our case, the size of the pre-training data
set) on the impact of the sentential context. Similar to the previous
simulations, we perform experiments with the original noisy ver-
sion of the selectional preference information, where we pre-train
on different amounts of input (500 and 5000 input items). Again,
the noisy input data set reflects the less than perfect conception of
each category (or contextual constraint). Results for Test Types 1
and 2 are shown in Figures 10 and 12, respectively.

We perform inferential statistical tests for input 500 and input
5000, and for Test Types 1 and 2. For Test Type 1, we find a mar-
ginal effect of factor Condition for the probability of choosing the
high-frequency object [high-freq. object:χ(1)= 2.816, p= 0.093]
but no effect for the probability of choosing the low-frequency
object for input 500 [low-freq. object: χ(1)= 2.668, p= 0.102].
For input 5000, on the contrary, we find significant effects for
both the probability of choosing the high-frequency object and
the probability of choosing the low-frequency object [high-freq.
object: χ(1)= 53.736, p< 0.001; low-freq. object: χ(1)= 53.17,
p< 0.001].

For Test Type 2, surprisingly, analyses for input 500 reveal a
significant effect of Condition for the probability of choosing the
category associate [χ(1)= 6.759, p< 0.010] and a marginal effect
of Condition for choosing the low-frequency object [χ(1)= 2.747,
p= 0.100]. For input 5000, on the contrary, we found no effect of
Condition, neither for the probability of choosing category asso-
ciate [χ(1)= 0.077, p= 0.782] nor for the probability of choosing
the low-frequency object [χ(1)= 1.455, p= 0.228].

To summarize, although cross-situational evidence can be effi-
ciently used to pick the co-occurring referents at an early stage of
learning, a significant effect of context can only be observed after
the model has received sufficient amount of input data.

6. GENERAL DISCUSSION
Our goal in this paper is to explicitly model the process of inte-
grating cross-situational learning with guidance from sentential
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FIGURE 8 | Koehne and Crocker (2011), Experiment 2,TestType 1.

FIGURE 9 | Koehne and Crocker (2011), Experiment 2,TestType 2.

Table 2 | Lmer models and p-values from MCMC sampling for chosen meanings in conditions (high-frequency meaning choices, low-frequency

meaning choices),TestType 1, Exp. 2. Chosen ∼Verb Type+ (1|sub)+ (1|item), family =binomial (link =“logit”).

Predictor Coef. SE T MeanMCMC pMCMC Pr (>|t |)

PROBABILITY HIGH-FREQUENCY CHOICES

1 (Int) (N ) 0.315 0.018 17.200 0.315 0.001 <0.001

2 R 0.093 0.003 30.500 0.099 0.001 <0.001

PROBABILITY LOW-FREQUENCY CHOICES

3 (Int) (N ) 0.258 0.010 27.090 0.258 0.001 <0.001

4 R −0.043 0.002 −24.340 −0.043 0.001 <0.001

context. In a word learning scenario where both types of informa-
tion are available to human subjects, adults demonstrate a rather
complex behavioral pattern. Simulating such patterns by a compu-
tational model gives us insight into the dynamics of the interaction
between the two mechanisms at play. Experimental studies of word
learning provide us with raw material to constrain the nature of the

underlying mechanisms. However, specific learning mechanisms
such as our model, which yield the same patterns of behavior given
similar input data, present concrete suggestions as to which plausi-
ble learning mechanisms might be at play in human word learning.

More specifically, we model a context-based attention mecha-
nism via a set of categories, which we assume are inferable from
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Table 3 | Lmer models and p-values from MCMC sampling for chosen meanings in conditions (high-frequency meaning choices, low-frequency

meaning choices),TestType 2, Exp. 2. Chosen ∼Verb Type+ (1|sub)+ (1|item), family=binomial (link =“logit”).

Predictor Coef. SE T MeanMCMC pMCMC Pr (>|t |)

PROBABILITY CATEGORY ASSOCIATE CHOICES

1 (Int) (N ) 0.258 0.022 11.780 0.258 0.001 <0.001

2 R 0.058 0.006 10.380 0.057 0.001 <0.001

PROBABILITY LOW-FREQUENCY CHOICES

3 (Int) (N ) 0.279 0.010 29.190 0.279 0.001 <0.001

4 R −0.032 0.003 −12.950 −0.031 0.001 <0.001

FIGURE 10 | Simulation results for K&C 2011-Experiment 2,TestType 1 on a noisy pre-training data sets of different size.

FIGURE 11 | Change in alignment probabilities over time, shown
in grayscale, for a sample word (lebah referring to cap and
tomato), and for the two conditions of K&C 2011-Experiment 2.
Note that in these experiments each word is presented with one or

both of its referents in 5 consecutive trials (t = 1 .. 5). Darker squares
reflect higher probabilities. The two lightest colors show alignments
that are below or just above the baseline of 0.2, since there are 5
objects in a scene.

the linguistic context and carry semantic meaning. We believe
that humans can learn associations between such context-induced
categories and aspects of meaning, and use these associations

for reducing uncertainty while learning the meaning of a novel
word. The idea of relying on lexical or syntactic categories in
word learning is not new: empirical findings suggest that young
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FIGURE 12 | Simulation results for K&C 2011-Experiment 2,TestType 2 on a noisy pre-training data sets of different size.

children gradually form a knowledge of abstract categories, such
as verbs, nouns, and adjectives (e.g., Gelman and Taylor, 1984;
Kemp et al., 2005). In addition, several unsupervised computa-
tional models have been proposed for inducing categories of words
which resemble part of speech categories, by drawing on distribu-
tional properties of their context (see for example Redington et al.,
1998; Clark, 2000; Mintz, 2003; Parisien et al., 2008; Chrupala and
Alishahi, 2010). However, explicit accounts of how such categories
can be integrated in a cross-situational model of word learning
have been rare.

Importantly, such categories are most probably not innate,
but emerge through gradual observation of consistent correla-
tion between certain semantic properties in words, and structural
and linguistic roles that they adopt in an utterance. Therefore, we
hypothesize that the contribution of context-based mechanisms
to word learning is age-dependent: the more exposure a model
has to input data, the more informative these categories become
in narrowing down the set of potential referents of a word. We
investigate this trend in Sections 5.1 and 5.2, where we show that
the behavior of the model resembles the experimental patterns
more closely when it receives more exposure to training data prior
to the artificial language training trials. To our knowledge, such
effects have not been experimentally studied on children.

In the experiments reported in this paper, we have focused on
the acquisition of nouns and how it can benefit from incorpo-
rating verb selectional preferences into cross-situational learning.
This approach might seem contradictory to previous findings sug-
gesting that nouns are generally learned before verbs. However,
assuming that a small number of basic verbs are learned before
the beginning of the artificial word learning trials was the result
of our attempt at faithfully replicating the design of Koehne and
Crocker’s experiments. But this is not an inherent aspect of our
model: we have studied simultaneous acquisition of verbs and
nouns in the previous versions of the model (Alishahi and Fazly,
2010; Fazly et al., 2010). We are particularly interested in the effect
of sentential context on learning verbs, and are planning to study
it more carefully in future.

A desirable aspect of our model is its seamless integration of the
two mechanisms under study. There are no specific rules, triggers,
or parameters that indicate which mechanism should dominate
learning in which condition. Instead, the contribution of each
information source is determined by the informativeness of that
source, and by what the model has learned so far. This is particu-
larly interesting because it shows that varied, sometimes seemingly
complex behavioral patterns, can be a result of a simple learning
core and the properties of input data.

In our experimental results, we have simulated two sets of
findings by Koehne and Crocker (2010, 2011), which investigate
adults’ patterns of learning when the two sources of information
(cross-situational and sentence-level) are either complementary or
redundant. The results of the model are in line with these exper-
imental findings on adults. Koehne and Crocker (2011) report a
third set of findings for situations where the cross-situational and
sentence-level evidence provide contradictory cues. However, this
study crucially relies on learners’ ability to carry sentence-level
constraints learned on one trial (in the absence of a scene), to
a following trial (with a scene). Our model in its current form
does not incorporate such information: Our model processes each
input, updates its knowledge of word meanings, and then forgets
all other aspects of information available during that trial, includ-
ing the sentence-level constraints. We are currently investigating
the possibility of adding this ability to our model, enabling us to
provide explanations for this rather complex interaction of the
two sources of evidence in word learning.

To our knowledge, this is the first computational model that has
been developed and used to investigate how sentence-level con-
straints interact with cross-situational statistics in word learning.
Importantly, the sentence-level constraints are incorporated into
the model as an extra source of probabilistic evidence giving more
or less weight to the evidence from cross-situational statistics. This
way of modeling the extra source of evidence as a probabilistic
piece of knowledge enables us to investigate the interactions of
other sources of information with cross-situational statistics in
the future.

www.frontiersin.org July 2012 | Volume 3 | Article 200 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Developmental_Psychology/archive


Alishahi et al. Sentence-based attention in word learning

REFERENCES
Akhtar, N., and Montague, L. (1999).

Early lexical acquisition: the role
of cross-situational learning. First
Lang. 19, 347–358.

Alishahi, A., and Fazly, A. (2010). “Inte-
grating syntactic knowledge into
a model of cross-situational word
learning,” in Proceedings of the 32nd
Annual Conference of the Cognitive
Science Society, Portland.

Altmann, G. T., and Kamide, Y. (1999).
Incremental interpretation at verbs:
restricting the domain of subsequent
reference. Cognition 73, 247–264.

Baayen, R., Davidson, D., and Bates,
D. (2008). Mixed-effects modeling
with crossed random effects for sub-
jects and items. J. Mem. Lang. 59,
390–412.

Baldwin, D. (2000). Interpersonal
understanding fuels knowledge
acquisition. Cartogr. Geogr. Inf. Sci.
9, 40–45.

Baldwin, D., Markman, E. M., Bill, B.,
Desjardins, R. N., Irwin, J. M., and
Tidball, G. (1996). Infants’ reliance
on a social criterion for establishing
word-object relations. Child Dev. 67,
3135–3153.

Bloom, P. (2000). How Children Learn
the Meanings of Words. Cambridge:
The MIT Press.

Carey, S. (1978). “The child as word
learner,” in Linguistic Theory and
Psychological Reality, eds M. Halle,
J. Bresnan, and G. A. Miller (Cam-
bridge: The MIT Press), 264–293.

Carpenter, M., Nagell, K., Tomasello,
M., Butterworth, G., and Moore, C.
(1998). Social cognition, joint atten-
tion, and communicative compe-
tence from 9 to 15 months of age.
Monogr. Soc. Res. Child Dev. 63, 174.

Childers, J. B., and Paik, J. H. (2008).
Korean- and English-speaking chil-
dren use cross-situational informa-
tion to learn novel predicate terms.
J. Child Lang. 36, 201–224.

Chrupala, G., and Alishahi, A. (2010).
“Online entropy-based model of lex-
ical category acquisition,” in Pro-
ceedings of the Fourteenth Confer-
ence on Computational Natural Lan-
guage Learning (Uppsala: Associa-
tion for Computational Linguistics),
182–191.

Clark, A. (2000). “Inducing syntac-
tic categories by context distribu-
tion clustering,” in Proceedings of
the 2nd Workshop on Learning Lan-
guage in Logic and the 4th Conference
on Computational Natural Language
Learning (Morristown, NJ: Associa-
tion for Computational Linguistics),
91–94.

Fazly, A., Alishahi, A., and Steven-
son, S. (2010). A Probabilistic
computational model of cross-
situational word learning. Cogn. Sci.
34, 1017–1063.

Fellbaum, C. (ed.). (1998). WordNet,
An Electronic Lexical Database. Cam-
bridge: MIT Press.

Fisher, C. (2002). Structural limits on
verb mapping: the role of abstract
structure in 2.5-year-olds’ interpre-
tations of novel verbs. Dev. Sci. 5,
55–64.

Frank, M. C., Goodman, N. D.,
and Tenenbaum, J. B. (2007). “A
Bayesian framework for cross-
situational word-learning,” in
Advances in Neural Information
Processing Systems 20, Vancouver.

Gelman, S., and Taylor, M. (1984).
How two-year-old children inter-
pret proper and common names for
unfamiliar objects. Child Dev. 55,
1535–1540.

Gertner, Y., Fisher, C., and Eisengart, J.
(2006). Learning words and rules:
abstract knowledge of word order
in early sentence comprehension.
Psychol. Sci. 17, 684–691.

Gillette, J., Gleitman, H., Gleitman,
L., and Lederer, A. (1999). Human
simulations of vocabulary learning.
Cognition 73, 135–176.

Gleitman, L. (1990). The structural
sources of verb meanings. Lang.
Acquis. 1, 135–176.

Kako, E., and Trueswell, J. C. (2000).
“Verb meanings, object affordances,
and the incremental restriction of
reference,” in Proceedings of the
Annual Conference of the Cognitive
Science Society, Philadelphia.

Kemp, N., Lieven, E., and Tomasello, M.
(2005). Young children’s knowledge
of the “determiner” and “adjective”
categories. J. Speech Lang. Hear. Res.
48, 592–609.

Koehne, J., and Crocker, M. W.
(2010). “Sentence processing mech-
anisms influence cross-situational
word learning,” in Proceedings of the
Annual Conference of the Cognitive
Science Society, Portland.

Koehne, J., and Crocker, M. W. (2011).
“The interplay of multiple mecha-
nisms in word learning,” in Proceed-
ings of the Annual Conference of the
Cognitive Science Society, Boston.

Landau, B., and Gleitman, L. R. (1985).
Language and Experience: Evidence
from the Blind Child. Cambridge,
MA: Harvard University Press.

Lee, J. N., and Naigles, L. R. (2008).
Mandarin learners use syntactic
bootstrapping in verb acquisition.
Cognition 106, 1028–1037.

Li, P., Farkas, I., and MacWhinney, B.
(2004). Early lexical development
in a self-organizing neural network.
Neural. Netw. 17, 1345–1362.

Luce, R. D. (1959). Individual Choice
Behavior: A Theoretical Analysis.
New York: Wiley.

Maurits, L., Perfors, A. F., and Navarro,
D. J. (2009). “Joint acquisition of
word order and word reference,” in
Proceedings of the 31st Annual Con-
ference of the Cognitive Science Soci-
ety, Amsterdam.

Mintz, T. (2003). Frequent frames as
a cue for grammatical categories in
child directed speech. Cognition 90,
91–117.

Naigles, L., and Hoff-Ginsberg, E.
(1995). Input to verb learning:
evidence for the plausibility of
syntactic bootstrapping. Dev.
Psychol. 31, 827–837.

Nappa, R., Wessel, A., McEldoon, K.,
Gleitman, L., and Trueswell, J.
(2009). Use of speaker’s gaze and
syntax in verb learning. Lang. Learn.
Dev. 5, 203–234.

Niyogi, S. (2002). “Bayesian learning
at the syntax-semantics interface,”
in Proceedings of the 24th Annual
Conference of the Cognitive Science
Society, Fairfax, 697–702.

Parisien, C., Fazly, A., and Stevenson,
S. (2008). “An incremental Bayesian
model for learning syntactic cate-
gories,” in Proceedings of the Twelfth
Conference on Computational Nat-
ural Language Learning, Manchester.

Piccin, T., and Waxman, S. (2007). Why
nouns trump verbs in word learn-
ing: new evidence from children
and adults in the human simula-
tion paradigm. Lang. Learn. Dev. 3,
295–323.

Quine, W. (1960). Word and Object.
Cambridge, MA: Cambridge Uni-
versity Press.

Redington, M., Crater, N., and Finch,
S. (1998). Distributional informa-
tion: a powerful cue for acquiring
syntactic categories. Cogn. Sci. 22,
425–469.

Regier, T. (2005). The emergence
of words: attentional learning in
form and meaning. Cogn. Sci. 29,
819–865.

Shepard, R. (1957). Stimulus and
response generalization: a stochastic
model, relating generalization
to distance in psychologi-
cal space. Psychometrika 22,
325–345.

Siskind, J. M. (1996). A computational
study of cross-situational techniques
for learning word-to-meaning map-
pings. Cognition 61, 39–91.

Smith,K.,Smith,A. D. M.,and Blythe,R.
A. (2011). Cross-situational learn-
ing: an experimental study of word-
learning mechanisms. Cogn. Sci. 35,
480–498.

Smith, L., and Yu, C. (2008). Infants
rapidly learn word-referent map-
pings via cross-situational statistics.
Cognition 106, 1558–1568.

Tomasello, M., and Todd, J. (1983).
Joint attention and lexical acquisi-
tion style. First Lang. 4, 197.

Vouloumanos, A. (2008). Fine-grained
sensitivity to statistical information
in adult word learning. Cognition
107, 729–742.

Vouloumanos, A., and Werker, J. F.
(2009). Infants’ learning of novel
words in a stochastic environment.
Dev. Psychol. 45, 1611–1617.

Yu, C. (2005). The emergence of
links between lexical acquisition and
object categorization: a computa-
tional study. Conn. Sci. 17, 381–397.

Yu, C. (2006). “Learning syntax–
semantics mappings to bootstrap
word learning,” in Proceedings of the
28th Annual Conference of the Cogni-
tive Science Society, Vancouver.

Yu, C., and Ballard, D. H. (2008). A
unified model of early word learn-
ing: integrating statistical and social
cues. J. Neurocomput. 70,2149–2165.

Yu, C., and Smith, L. B. (2007). Rapid
word learning under uncertainty via
cross-situational statistics. Psychol.
Sci. 18, 414–420.

Conflict of Interest Statement: The
authors declare that the research was
conducted in the absence of any com-
mercial or financial relationships that
could be construed as a potential con-
flict of interest.

Received: 31 October 2011; accepted: 29
May 2012; published online: 02 July 2012.
Citation: Alishahi A, Fazly A, Koehne
J and Crocker MW (2012) Sentence-
based attentional mechanisms in word
learning: evidence from a computational
model. Front. Psychology 3:200. doi:
10.3389/fpsyg.2012.00200
This article was submitted to Frontiers in
Developmental Psychology, a specialty of
Frontiers in Psychology.
Copyright © 2012 Alishahi, Fazly,
Koehne and Crocker. This is an open-
access article distributed under the terms
of the Creative Commons Attribution
Non Commercial License, which per-
mits non-commercial use, distribution,
and reproduction in other forums, pro-
vided the original authors and source are
credited.

Frontiers in Psychology | Developmental Psychology July 2012 | Volume 3 | Article 200 | 16

http://dx.doi.org/10.3389/fpsyg.2012.00200
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.frontiersin.org/Developmental_Psychology
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Developmental_Psychology/archive

	Sentence-based attentional mechanisms in word learning: evidence from a computational model
	Learning Word Meanings
	An Integrated Computational Model of Word Learning
	Input and Meaning Representations
	Cues from the Sentential Context
	The Learning Procedure
	Alignment
	Adjustment

	Assessment of Learning

	Details of our Computational Model
	Word and Category Meaning Representations
	Word meaning
	Category meaning

	The Learning Algorithm
	Step 1: alignment
	Step 2: adjustment


	Experimental Setup
	Pre-training and the Simulation of Age
	Artificial Noun Learning
	Vocabulary Test: Referent Selection
	Word Meanings and the Input-generation Lexicon
	Model Parameters

	Experimental Results
	Cross-situational Evidence and Sentential Context are Complementary
	K&C 2010-Experiment 2
	Computational simulation
	Comparison of the original and simulation results
	Interactions between cross-situational and sentence-level evidence: An example
	Effect of age

	Cross-situational evidence and sentential context are redundant
	K&C 2011-Experiment 2
	Computational simulation
	Comparison of the original and simulation results
	Interactions between cross-situational and sentence-level evidence: an example
	Effect of age


	General Discussion
	References


