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Pronunciation time probability density and hazard functions from large speeded word nam-
ing data sets were assessed for empirical patterns consistent with multiplicative and
reciprocal feedback dynamics – interaction dominant dynamics. Lognormal and inverse
power law distributions are associated with multiplicative and interdependent dynamics in
many natural systems. Mixtures of lognormal and inverse power law distributions offered
better descriptions of the participant’s distributions than the ex-Gaussian or ex-Wald – alter-
natives corresponding to additive, superposed, component processes. The evidence for
interaction dominant dynamics suggests fundamental links between the observed coor-
dinative synergies that support speech production and the shapes of pronunciation time
distributions.
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Reading scientists concern themselves with the cognitive activity
governing the translation of printed words into meaningful lan-
guage. Speech production scientists seek a coherent description of
the processes that guide production in speaking aloud. Tradition-
ally, both these dimensions of reading aloud are studied as separate
component process of cognition. Nevertheless, both aspects of
performance are in play as an individual pronounces even a single
visually presented word in a speeded naming experiment.

Speaking aloud, whether reading or in conversation, is a
fundamentally dynamic, time varying activity. The simplest of
utterances require speakers to adaptively coordinate an untidy
throng of anatomical and physiological variables. Self-organizing
coordinative synergies tame the inherent complexity of speak-
ing, however (Turvey, 2007). This article describes how pro-
nunciation times derived from a speeded naming task map into
the coordinative speech activity along empirical and theoretical
dimensions.

Historically, cognitive scientists used ideal probability distri-
butions as models to explore cognitive performance. The most
widely invoked working hypothesis was that a model’s parameters
may selectively refer to the activity of specific cognitive processes
(e.g., Townsend and Ashby, 1983; Luce, 1986). The term compo-
nent dominant dynamics refers to this long-standing hypothesis
in cognitive science: Behavioral measurements reflect the activity
of isolable cognitive components, themselves, their time-course,
and their functional details (e.g., Sternberg, 1969; Simon, 1973). A
corollary assumption is that computational or symbolic cognitive
processing operations occupy the bulk of the elapsed time between
signal and response.

This article explores an alternate tack: The parameters of an
ideal “cocktail” mixture distribution are hypothesized to collec-
tively reflect the relative stability and flexibility of coordinative
structures – the dynamics of the self-organized synergies that
support reading and speaking aloud in speeded naming perfor-
mance. The term interaction dominant dynamics codifies this
alternative hypothesis: Behavioral measurements reflect emergent,

irreducible, coordination and coupling among the processes that
support the act of word naming.

Large samples of pronunciation times, obtained from many
different individuals, are used to contrast the assumptions of the
component dominant and interaction dominant accounts of the
empirical patterns. As we describe next, speech production was
shown, via independent sources of evidence, to be governed by
self-organizing coordinative synergies. Coordinative synergies rely
on interaction dominant dynamics. Since word naming entails a
speech act, it offers a unique opportunity to directly asses how that
coordinative activity is reflected in the shapes of pronunciation
time distributions.

COORDINATIVE SYNERGIES BEHIND THE SPOKEN WORD
Pronouncing-aloud an individual word may seem effortless and
prosaic. It is well-established, however, that successfully uttering
even a single phoneme requires a speaker to produce a complicated
spatiotemporal arrangement among at least 70 muscles (Kelso
et al., 1984, 1986; Turvey, 1990, 2007). Human speech presents an
example of Bernstein’s (1967/1996)“degrees of freedom”problem;
any theory of speech control that posits direct command of the rel-
evant individual processes and variables is quickly overwhelmed
and rendered implausible by the sheer number of processes that
must be controlled. Coordinative synergies resolve the paradox.
Synergies are couplings among relevant component processes;
couplings that reduce the degrees of freedom among the possible
arrangements of the components of mind and body to produce
speech (Tuller et al., 1982; Turvey, 1990, 2007). Synergies impose
constraints that compress the potential degrees of freedom in the
possibilities for articulation or action.

A mechanical example of a coordinative link is a tie-rod that
connects the two front wheels of a vehicle. Two degrees of free-
dom are required to independently control each wheel. But any
wheel arrangement that points them in different directions is dys-
functional. A tie-rod coordinates their movements and reduces the
control problem to a single degree of freedom, instantiated in the
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position of the steering wheel. Of course biological coordinative
synergies are more subtle, flexible, and abstract, but the essentials
of the solution are the same (Tuller et al., 1982; Riley et al., 2011).

Kelso et al. (1984) conducted a seminal test of the synergy
hypothesis in speech production. The task required each partici-
pant to say “bab” and “baz” despite an unpredictable, occasional,
mid-utterance, force perturbation to their jaw. The applied force
altered the participant’s articulatory trajectory. In the case of “bab,”
participants’ upper and lower lip movements immediately com-
pensated for the jaw perturbation such that no distortion in the
utterance could be detected (<30 ms, arguably faster than the
minimum lag of a sensory-motor loop). Similarly, the same jaw
perturbation while saying “baz” yielded virtually instantaneous
and appropriate adaptation in the tongue’s trajectory that again
left no distortion in the final utterance. The linkages that compose
synergies predict such online, reciprocal compensation among the
components of speech articulation.

What is most remarkable is the local, online compensation that
emerges to render the intended utterance fully intact. The linkages
that compose the synergies allow simultaneous reciprocal com-
pensation among the elements of the pronunciation of “bab” and
“baz.” Speech acts, such as word pronunciation, are accomplished
through coordinative synergies (Kelso et al., 1984, 1986; Saltzman
et al., 1998; Turvey, 2007; for a review, see Van Lieshout, 2004).
Even elementary speech gestures require cooperative relationships
among ensembles of elemental perceptual, cognitive, and neu-
romuscular variables. The online, reciprocal compensation that is
observed at the behavioral level is an expression of interaction dom-
inant dynamics (Jensen, 1998; Van Orden et al., 2003a, 2005; Kello
et al., 2008;Holden et al., 2009, 2011). This category of coordi-
native behavior is also indicative of biological self-organization in
general, and represents an established instance of self-organization
in speaking aloud.

LINKING SYNERGIES TO A DISTRIBUTION’S SHAPE
We now explain how measures of pronunciation time are funda-
mentally related to the coordinative synergies that are known to
govern natural speech production. Pronunciation time distribu-
tions offer a probabilistic event-based assessment of the coordi-
native dynamics that arise to support performance for each target
item, or so we claim. Pronunciation times, themselves, measure the
time required for an utterance to coordinate and unfold to a point
where a participant’s audible voice-amplitude exceeds a threshold
of measurement.

While this coordinative activity unfolds over time, it is nev-
ertheless sampled as a discrete “pronunciation time” once an
utterance triggers a voice key. As such, pronunciation times sup-
ply point-samples of the evolving multidimensional dynamics of
physiological, anatomical, and acoustic variables as they unfold
and give rise to a spoken word. Instantaneous pronunciation
time measures are thus substituted for an underlying, continu-
ous dynamic trajectory and that trajectory is formally collapsed
into a point process (Lowen and Teich, 2005). Clearly, some por-
tion of each pronunciation time is unique to the particulars of the
target word: Its unique acoustic profile, measurement uncertainty,
and other idiosyncrasies. However, all aspects of the dynamic must
enfold to yield a successful, audible word pronunciation.

It is well known that cognitive, kinematic, and articula-
tory manipulations routinely influence mean pronunciation and
response time. This fact establishes that both pronunciation and
response time measurements are sensitive to a broad spectrum
of performance dynamics (e.g., Abrams and Balota, 1991; Van
Orden and Goldinger, 1994; Van Orden et al., 2003b; Perry et al.,
2010). In fact, the discovery that coordinative synergies support
speech performance implicates speech as dynamically assembled
and governed. If so, dynamical systems theory dictates that the
trajectories entailed by the larger “speaking-a-printed-word” sys-
tem are in evidence in the pronunciation time measurements.
This is key consequence of the interconnectedness of dynamical
systems.

Events that affect the dynamics of one process reverberate
through and change the dynamics of other process because they are
reciprocally intertwined. This coupling across degrees of freedom
means that appropriate measurements of just a single observable
normally reveals information about the dynamics of the system as
a whole (e.g., Takens, 1981). In fact, Takens’ embedding theorem
and related findings gave rise to an entire signal-processing dis-
cipline dedicated to uncovering and describing the dynamics of
complex systems based, in many cases, on just a single observable
(Abarbanel, 1995; Kantz and Schreiber, 1997; Gao et al., 2007).
Embedding theorems are as foundational to the statistics of non-
linear dynamic systems as the Central Limit theorem is to the
statistics of stochastic linear systems.

Our working hypothesis is that if coordinative synergies under-
lie acts of reading and speaking words aloud, it will be corroborated
in the shape of pronunciation distributions. There are two ideal
probability distributions that are symptomatic of discrete samples
of the aforementioned mutually contingent, coupled dynamics
(Montroll and Shlesinger, 1982; West and Deering, 1995; Holden
et al., 2009). The first is a lognormal distribution (Evans et al., 2000;
Limpert et al., 2001). It is a positively skewed distribution that
appears as a symmetric Gaussian distribution after a logarithmic
transform of the measured variable. The second, an inverse power
law distribution, expresses a more pronounced positive skew than
a lognormal distribution (Clauset et al., 2009). Power law behavior
is symptomatic of self-organizing physical systems poised are near
a critical point (Bak, 1996; Jensen, 1998).

ARTICLE OVERVIEW
Relating standard pronunciation time measurements to an under-
lying, largely unobserved dynamic flow requires a basis in evi-
dence. It must be demonstrated that pronunciation times are
plausibly associated with interaction dominant dynamics. The
detailed analyses of this article are directed at establishing whether
pronunciation time distributions conform to shapes that are con-
sistent with event-based samples of coordinated dynamic flows.
Thus, we seek evidence of interaction dominant dynamics from
the pronunciation time distributions of individual participants.
If pronunciation time distributions reasonably conform to either
idealized lognormal, inverse power law, or mixtures of these dis-
tributions then pronunciation events are likely contingent on
interaction dominant dynamics. After all, both classes of distribu-
tions are widely identified as symptomatic of interaction dominant
dynamical systems in nature (Montroll and Shlesinger, 1982; West
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and Deering, 1995; Bak, 1996; Jensen, 1998; Limpert et al., 2001;
Holden et al., 2009).

Over the course of this article, a refined incarnation of the
Holden et al. (2009) cocktail description based on mixtures of
lognormal and inverse power law distributions is introduced. Its
key advantage is its suitability for maximum-likelihood fitting
techniques. The refined description facilitates density estimation
and hazard function tests that contrast common exponential and
inverse power law descriptions of individual participant’s pronun-
ciation time distributions. The outcomes of our tests indicate that
power law behavior is likely a more accurate description of the
stretched, slow tails of individual participant’s pronunciation time
distributions than exponential behavior.

So far, we have detailed how pronunciation times, tradition-
ally viewed as indexes of processing time, can be reinterpreted as
indicators of the dynamic coupling entailed in the act of speak-
ing printed words. In the next section, we introduce and contrast
distributions that are symptomatic of superposed, component
dominant dynamics, such as an exponential or a Gaussian, from
those symptomatic of interaction dominant dynamics, such as an
inverse power law or a lognormal distribution. The correspon-
dence test section details the findings of our exponential versus
power law statistical contrasts on a 30 participant pronunciation
time data set from Experiment 2 of Holden et al. (2009). Follow-
ing that, the same contrasts are generalized to a much larger 470
participant pronunciation time data set from the English Lexicon
Project (ELP) described by Balota et al. (2007). In both cases, mix-
tures of lognormal and inverse power law distributions described
the empirical patterns reliably better than ex-Gaussian or ex-Wald
alternatives. Finally, our general discussion illustrates how inter-
action dominant dynamics might impact the interpretation of
several standard empirical word recognition results. We illustrate
how the understanding of linear item-level regression analyses on
large-scale pronunciation time data sets must be conditioned by
the fact the cognitive dynamics word recognition tend to unfold
on faster times-scales than articulatory dynamics.

DISTINGUISHING EXPONENTIAL FROM POWER LAW
BEHAVIOR
In science, some distinctions matter more than others. Critical
differences involve the identification of patterns with broad impli-
cations for the core assumptions of a research program. For cogni-
tive scientists, determining whether exponential decay or inverse
power law decay best characterizes the slow tails of pronunciation
time distributions is just such a crucial question – the answer could
at once render large classes of cognitive models as either plausible
or implausible.

EXPONENTIAL DENSITY FUNCTIONS
Historically the positive skew commonly expressed in both pro-
nunciation and standard response time distributions is approx-
imated as a form of exponential decay. That is, past the dis-
tribution’s mode the probability density is thought to decay as
p(t ) ≈ (1/λ)e−t where t is just the time axis of pronunciation
time. Exponential decay is, for instance, the dominant term in the
slow tails of the ex-Gaussian, the ex-Wald, the Gamma, and the
inverse Gaussian distributions (Moscoso Del Prado Martín, 2010).

Each distribution has been put forward as either a description or
a model of response time distributions (e.g., see Luce, 1986; Van
Zandt, 2000; Schwarz, 2001). In all that follows, we adopt the ex-
Gaussian and the ex-Wald distributions as canonical examples of
pronunciation time descriptions that express exponential decay.

An exponential tail could signify, for example, cognitive and
perceptual processes that conform to stochastic “counting” or
queuing output processes: The steady, reliable accrual of cogni-
tive or perceptual information, as characterized by the mean (λ)
of the distribution (e.g., Townsend and Ashby, 1983; Balakrishnan
and Ashby, 1991). Furthermore, if an exponential rate parame-
ter is sufficient to characterize a cognitive process then it could,
in principle, be identified and discriminated from other processes
with different characteristic rate parameters or distribution func-
tions. Finding in favor of an exponential description of the slow
tails of pronunciation time distributions supports the hypothesis
that cognitive components, themselves, dominate the transactions
associated with reading and speech performance – a finite set of
independent, superposed processes that conform to a character-
istic time-scale – indicated by a set of characteristic exponential
rate parameters, for instance. Given this outcome, the reductive
methods of linear analysis may best reveal and individuate the
fundamental processes that govern reading, speaking, and related
cognitive activities.

The ex-Gaussian description
The ex-Gaussian distribution represents the convolution of a
Gaussian distribution and an exponential distribution. The con-
volution operation yields a“child”random variable that represents
the sum of these two independent “parent” random variables. The
original description of the ex-Gaussian was rooted in a hypothesis
that response times represented the serial output of two process-
ing stages, a perceptual-decision stage that yields an exponential
variate and a motor-execution stage that results in a Gaussian
variate (Hohle, 1965). An opposing interpretation was also pro-
posed, where the motor response generated an exponential and
the perceptual-decision stage was Gaussian (McGill and Gibbon,
1965). Some contemporary authors limit their use of the ex-
Gaussian to a purely descriptive role (e.g., Heathcote et al., 1991;
Balota and Yap, 2011;Yap et al., 2012) while others have interpreted
the ex-Gaussian parameters in terms of distinct cognitive process
(e.g., Balota and Spieler, 1999). Still others question the motiva-
tion for using the ex-Gaussian at all, given that it lacks the peaked
hazard function that is widely indicated in empirical response time
distributions (e.g., Schwarz, 2001; Holden et al., 2009; Van Zandt,
unpublished manuscript).

The ex-Wald description
The ex-Wald distribution represents an additive combination of a
Wald (a.k.a., an inverse Gaussian) and an exponential distribution
(Schwarz, 2001). It is aimed at describing cognitive processes that
entail an additive combination of a bottom-up accumulation of
information that outputs variation in the form of a Wald distri-
bution, plus a non-decision process associated with a response
threshold that yields exponentially distributed variability. The
resulting convolution of a Wald and an exponential results in an
ex-Wald distribution.
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The ex-Wald distribution is typically implemented as an
additive, three parameter convolution of the parent Wald and
exponential distributions which facilitates selective influence tests
(Schwarz, 2001). We implemented a more flexible four-parameter
version of the ex-Wald that includes an onset threshold for the
exponential portion of the distribution. The added parameter
allows the model to capture a broader potential set of func-
tional forms than its three parameter counterpart. Since the ex-
Gaussian uses three parameters, we added a fourth parameter
to the ex-Wald to insure that a lack of flexibility resulting from
too few parameters could not be the sole reason that an expo-
nential description could succeed or fail to capture the empirical
patterns.

INVERSE POWER LAW DENSITY FUNCTIONS
More recently cognitive scientists introduced descriptions of pro-
nunciation and response time distributions that posit inverse
power law decay as the dominant term describing the positive skew
in the slow tails of response time distributions. If the extreme slow
tail of a distribution decays as a power function, then the probabil-
ity of observing a particular response time, p(t ), is the inverse of
the pronunciation time value, t, itself, raised to a scaling exponent
α, i.e., p(t ) ≈ t−α. An inverse power law entails a more dramatic
positive skew than an exponential. Examples include the Pareto
distribution, Fieller’s distribution (Moscoso Del Prado Martín,
2010), the Lévy distribution (Rhodes and Turvey, 2007), power
law tail behavior (Sigman et al., 2010), and the cocktail descrip-
tion (Holden et al., 2009). We adopt a refined version of the Holden
et al. cocktail description as a canonical example of pronunciation
and response time models that express power law behavior in their
slow tails.

An inverse power law tail implies the processes supporting read-
ing and speaking aloud are capable of spanning a wide range of
time scales, from very short to very long. Power law behavior is
associated with complex systems composed of processes that inter-
act to self-organize their behavior across multiple temporal or
spatial scales (Jensen, 1998; Van Orden et al., 2003a). The behavior
of countless complex systems relies on strongly coupled, inter-
dependent processes that yield emergent patterns, such as power
law distributions (Bak, 1996; Johnson, 2007). If power law behav-
ior is commonly expressed in naming performance then the tools
of complexity science may best aid investigations concerning the
fundamental principles and patterns expressed in speaking printed
words aloud.

The catch, however, is that in practice exponential and power
law functions, such as probability densities, are notoriously dif-
ficult distinguish empirically since both functions are so similar
(Clauset et al., 2009). In the context of favorable parameter set-
tings each function can be made to closely mimic the other. Our
statistical analyses are aimed at making just such a distinction
regarding the tail behavior of pronunciation time distributions
derived from the speeded word naming task. As we explain, the
hazard functions of the exponential and power law distributions
are quite distinct, despite the similarity of their density functions.
Thus, a distinction between exponential and power law decay
in the slow tails of a distribution does have the potential to be
determined.

PRONUNCIATION TIMES AS MIXTURES OF LOGNORMAL AND POWER
LAW SAMPLES
Each naming trial requires participants to pronounce aloud an
individual word that appears on a visual display. The resulting
pronunciation time, the elapsed time between the presentation of
the word and the moment a participant begins to utter the word, is
then recorded. Normally, participants are asked to name hundreds
of words in a single session, or perhaps thousands of words across
several sessions.

Individual pronunciation times produced by different individ-
uals are heterogeneously distributed. Figure 1 allows a cursory
contrast of three individual ELP participant’s pronunciation time
distributions. It reveals an apparently broad continuum of proba-
bility density functions. The distribution in the left plot is compact
and nearly symmetric, the distribution in the right plot reveals a
clear and potent positive skew, and the shape of the distribution
in the center plot falls between these two extremes. In lay terms,
some participants are just faster more often than others. However
the differences in the shapes of the distributions across partici-
pants are striking. Arguably, any accurate characterization of the
variety of shapes of pronunciation time distributions is a criti-
cal first step in providing a basis for understanding the process
that governs the act of speaking aloud a printed word. This and
other concerns motivated the so-called cocktail model. It mixes
samples from two idealized distributions, proportionally, like the
molecules of different liquids in a cocktail.

The refined cocktail description
The original Holden et al. (2009) cocktail description approx-
imated empirical pronunciation time distributions as a proba-
bilistic mixture of synthetic “trial” samples from either a lognor-
mal or an inverse power law distribution. The refined cocktail
model is a simpler and more compact parametric formulation of
the original lognormal and inverse power law mixture distribu-
tions. The lognormal mean and standard deviation are treated
as unknown free parameters. The inverse power law density
entails two unknown free parameters including an onset thresh-
old (a necessarily positive-valued lower bound of support for the
distribution) and a scaling exponent.

The refined model is formulated such that it is a pure lognor-
mal distribution for the values of the random variable below the
power law threshold (the “front” or left side of the distribution).
Above the threshold (the “tail” or right side of the distribution),
the refined cocktail is a mixture of a lognormal and an inverse
power law distribution with unknown weights. The refined cock-
tail model is defined so that it is guaranteed to be a continuous and
smooth probability density function over the entire positive real
line – except at the threshold value – depending on the weights of
the mixture components the density may become discontinuous
at the threshold. Thus, an interrelationship or constraint among
the parameters of the cocktail model components and their mix-
ture weights was imposed to ensure an idealized smooth, unimodal
probability density function, that by definition, integrates to unit
area.

The refined cocktail model is a function of four independent
parameters: the lognormal distribution mean and standard devi-
ation (ΩLN and σ), the inverse power law distribution scaling
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FIGURE 1 |Three example empirical pronunciation time distributions

from the English Lexicon Project data set (Balota et al., 2007). Each plot
depicts the probability density function of an individual participant’s empirical
pronunciation time distribution. The black lines represent kernel-smoothed

empirical probability density functions. Maximum-likelihood fits of the refined
cocktail description are depicted in white, behind the empirical density
functions. In each plot, the white line depicting the cocktail fit is hardly visible
because it closely matches the empirical distribution.

exponent (α), and the relative weight of the power law tail in
its mixture with the portion of the lognormal that falls above
the lognormal mean (ρPL). Three remaining parameters are all
implicitly dependent on the other four free parameters (see Appen-
dix). For a given pronunciation time dataset, the cocktail model
parameters can be estimated with standard parameter estimation
techniques, such as maximum-likelihood estimation or maximum
spacing estimation. The crux motivation for the cocktail mixture
is the hypothesis that the dynamics of word naming vary largely
in terms of their relative stability, and span a continuum rang-
ing from relatively stable lognormal behavior to less stable inverse
power law behavior.

A CORRESPONDENCE TEST OF THE ORIGINAL AND REFINED
COCKTAIL MODELS
There are any number of ways one could implement a proba-
bilistic mixture of lognormal and power law samples. Thus, it is
important that the results of the refined cocktail mixture display
evidence of correspondence to the original cocktail description.
The correspondence test amounted to comparing the parame-
ters from the original and refined cocktail descriptions to fits of
the pronunciation time data from Experiment 2 of Holden et al.
(2009).

We also used the ex-Gaussian and ex-Wald models to approx-
imate the same empirical distributions. Parameter estimates from
all three models were then used to introduce and apply a rigor-
ous goodness of fit test recommended by Clauset et al. (2009)
for distinguishing heavy-tailed distributions, such as the power
law and exponential. The test is based on a Monte Carlo version
of the standard Kolmogorov–Smirnov goodness of fit statistic.
Following that, we introduce a novel hazard function analysis,
using the Bayesian Information Criterion or BIC statistic, that
contrasts mean integrated squared error between the empiri-
cal and ideal best-fit cocktail, ex-Gaussian, and ex-Wald hazard
functions.

Since the experimental procedures used to collect these data
are described elsewhere, the bulk of our Method section supplies
the details and rationale of our statistical procedures. Our Results
and Discussion sections offer brief overviews of each of these
procedures, however. The full derivation of the refined cock-
tail model appears in an Appendix. Matlab® code is available at
http://homepages.uc.edu/∼holdenjn/. Readers that do not require
all the details of our statistical procedures may choose to skip the
Method section of this experiment.

METHOD
Participants and procedure
The Holden et al. (2009) Experiment 2 data set is composed of 30
participants’ pronunciation times to 1100 randomly selected sin-
gle and multisyllabic English words that ranged from 4 to 15 letters
in length with an average frequency of occurrence of 70.2 times
per million (SD = 295.16) according to the Kučera and Francis
(1967) norms. Readers may refer to the original article for a more
complete description of the word stimuli and laboratory methods.

Distribution fitting
Standard maximum-likelihood estimation methods were applied
to the empirical distributions to estimate a set of density function
parameters for each participant’s pronunciation time distribu-
tion. Each participants’ distribution was approximated using the
refined cocktail distribution, the ex-Wald distribution, and the
ex-Gaussian distribution.

One typically uses a Kolmogorov–Smirnov (K–S) goodness of
fit test to determine the relative match between an empirical dis-
tribution and a candidate model distribution. The test returns the
maximum distance (D) between the two distributions over the
interval of their cumulative density functions. If D is small enough,
there is insufficient evidence to reject the model as a description
of the data.

However, the assumptions of the above testing scheme are valid
only if the model is known a priori – and that criterion is so far
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unmet for pronunciation times. If the D value is derived from a
contrast between the best-fit model and the empirical distribution,
then a correlation between the data and model arises. Thus, we
used a more rigorous Monte Carlo procedure to generate an unbi-
ased goodness of fit test (Clauset et al., 2009). First, for each
model, and each participant, an ideal best-fit cumulative distri-
bution function was inverted to generate simulated pronunciation
times of the same size as the participant’s empirical distribution.
For a given model, 2500 synthetic data sets were generated using
the best-fit model parameters. Next, each synthetic distribution
was compared to the idealized model distribution function, using
the same parameters, and a D goodness of fit statistic was generated
for each synthetic data set. This operation yielded a distribution
of 2500 D values resulting from the synthetic fits. Finally, we com-
pared the D statistic derived from the given model’s best-fit of the
participant’s empirical data set to the distribution of 2500 D values
derived from all the synthetic fits.

Goodness of fit was defined in the following manner: If the
observed D statistic fell on or below the 90th percentile (i.e.,p ≥ 0.1)
of the distribution of synthetic D statistics, the model could not be
reasonably ruled out as a plausible description of the empirical
data. In our Section Results, we report the number and percent of
empirical distributions that passed this test. Next, we describe an
additional test, aimed at contrasting the hazard functions of each
model.

Hazard function estimation
We estimated empirical hazard functions by first computing a
variable-width Gaussian-kernel probability density and cumu-
lative distribution estimates for each individual’s pronunciation
time distribution (Silverman, 1986). At each point on the increas-
ing X -axis of pronunciation time t, the probability density is f(t )
and the cumulative distribution function is F(t ). The empiri-
cal hazard function, h(t ) was computed as h(t ) = f(t )/[1 − F(t )].
Likewise, ideal model hazard functions were computed on the
density and cumulative distribution functions specified by the
maximum-likelihood fits of each participant’s empirical distri-
bution using the cocktail, ex-Wald, and ex-Gaussian distributions.
Hazard functions were computed over 1024 equally spaced points
on the interval, beginning with the minimum pronunciation
time censoring value and ending with the largest observed pro-
nunciation time in each participant’s empirical distribution. The
empirical and ideal hazard functions were computed over the same
pronunciation time intervals for each participant. We contrasted
empirical and model hazard functions by first computing the mean
squared integrated error (MISE) between them (i.e., MISE, Silver-
man). We compared the three models with a BIC statistic (i.e., BIC,
e.g., Schwarz, 1978; Wagenmakers and Farrell, 2004; Chatterjee and
Hadi, 2006) was computed as:

BIC = n × ln

(
MISE

n − 1

)
+ θ × (ln n) (1)

where n is the number of pronunciation times in the empirical
distribution, MISE is the mean integrated squared error, θ is the
number of free parameters in the model (three for the ex-Gaussian,
four for the cocktail and ex-Wald). In this form, lower BIC values

indicate relatively better fits than larger values. The model with
the lowest BIC score was classified as the winning description.

We also address a need for an alternative and more flexible
hazard function routine than the classic Miller and Singpurwalla
(1980) method (see Discussion). We implemented a routine based
on a Gaussian-kernel-smoothed probability density estimate that
used a variable-width kernel. The empirical kernel-smoothed den-
sity functions were transformed into hazard functions and used
in contrasts with ideal hazard functions based on the best-fit
model for each candidate model. The main advantage of using
the Gaussian-kernel method lies in its ability to represent a wider
range of hazard function shapes than the randomized smooth-
ing methods that were the historical standard in response time
analyses.

The hazard contrast represents a separate, quasi-independent
statistical test from the maximum-likelihood fits of the models.
On one hand, it depends on the fits, on the other hand, the model
and empirical hazard functions are generated and compared by a
wholly different means. We adopted procedures to guard against
biasing the analyses in favor of either the exponential or power
law hypothesis. First, the asymptotic tail behavior of hazard func-
tions computed in the manner described is to increase toward
positive infinity as the denominator [1 − F(t )] approaches zero,
but an exponential hazard is constant and a power law hazard
decays toward zero. Second, we applied the BIC statistic to com-
pensate for the fact that both the cocktail and ex-Wald entail one
more free parameter than the ex-Gaussian distribution. Given a
distribution with 1100 observations the BIC penalty for the ex-
Gaussian distribution is 21.00 and 28.01 for the more flexible
cocktail and ex-Wald models which represents a 25% increase
in the penalty score for one additional free parameter. Next we
describe, in turn, the outcome of the maximum-likelihood fitting
and hazard discrimination analyses.

RESULTS
Distribution fitting outcomes
All statistical analyses included both correct and incorrect pro-
nunciation times that fell between 350 and 3500 ms. The small
proportion of error pronunciation times (2.45%) were included
because they made no difference in the outcome of our analyses.
Twenty-seven of the 30 participants distribution’s were reason-
ably approximated by the refined cocktail model (90%). Using the
same Monte Carlo standard for goodness of fit described in the
methods, the ex-Gaussian plausibly described 57% of the data sets.
The Monte Carlo test for goodness of fit revealed that the four-
parameter ex-Wald distribution plausibly described only 50% of
the data sets. Our procedure for assessing goodness of fit was
described in the Method section.

At the level of the density function, the cocktail model suc-
cessfully approximated the individual participant’s pronunciation
time distributions within the confines of the rigorous statisti-
cal standards recommended by Clauset et al. (2009). The ex-
Gaussian captured every distribution that was successfully approx-
imated by the ex-Wald. Neither the larger ex-Wald parameter
set, nor the lack of a penalty for more parameters enhanced its
ability to capture empirical patterns at the level of the density
function.
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The fitting outcome is informative on several points. First, the
cocktail distribution successfully approximated a much larger por-
tion of the empirical distributions than either the ex-Gaussian or
ex-Wald models. The success of the cocktail distribution is not
likely due exclusively to the fact that it has more free parame-
ters than the ex-Gaussian. The ex-Wald entailed the same number
of free parameters as the cocktail distribution, but it actually fared
worse than even the three parameter ex-Gaussian. It therefore does
not appear that we are exclusively observing the impact of fitting
more or less flexible candidate descriptions of the pronunciation
time distributions.

Cocktail correspondence assessment
The key location parameters estimated using the original and
refined versions of the cocktail model agreed with each other
surprisingly well. The average values of the four free refined
cocktail parameters were: lognormal mean ΩLN, 6.31, or 550 ms,
(SD = 0.12), lognormal SD, σ, 0.12 (SD = 0.01), scaling expo-
nent, α, 6.68 (SD = 1), and the power law proportion tail, ρPL,
0.33 (SD = 0.16). Among the 26 distributions that were plausibly
approximated by both the original and refined cocktail, the lognor-
mal mean (ΩLN), the power law scaling exponent (α), power law
threshold (ΩPL) were strongly correlated with the same parame-
ters derived from the original cocktail description r(24) = 0.97,
p < 0.05 and r(24) = 0.91, p < 0.05 and r(26) = 0.93, p < 0.05
respectively. Regression analyses revealed slopes very near 1 and
intercepts near 0 for these three parameters.

The free parameters that correspond to variability, such as the
lognormal SD (σ) and the power law weight parameter (ρPL) were
also positively correlated, but less so, r(24) = 0.53, p < 0.05 and
r(24) = 0.65, p < 0.05 for σ and ρPL, respectively. The primary dif-
ference between the two descriptions was that the refined cocktail
model successfully approximates the tails of the more heavy-tailed
empirical distribution’s with a lower weight or proportion of sam-
ples from a lognormal distribution in the distribution’s right tail.
The main discrepancy between the two descriptions loads on vari-
ables that describe variability because the original cocktail fits were
derived from contrasts of synthetic and empirical kernel density
functions, both of which relied on automatic smoothing parame-
ters that increase relative variability as the square of the smoothing
parameter (Silverman, 1986, p. 37). Overall the correspondence
between the original and refined implementations of the cocktail
description is quite remarkable given they were arrived at by such
disparate means.

Next we present an additional evaluation, focused on describing
the tail behavior of the distributions. It is based on hazard function
contrasts. Both the ex-Gaussian and the ex-Wald descriptions of
pronunciation time entail exponential tails but the cocktail model
entails power law decay. Transforming the density and distribu-
tion functions into the hazard function domain amplifies their
differences and often renders a categorical distinction between
exponential and power law tail behavior.

Hazard function contrasts
Mathematical psychologists articulated several empirical criteria
that any general description of response time distributions should
approximate. The consensus regarding the empirical standards

that must be demonstrated, in order of relative difficulty, are: (1)
capture the descriptive statistics of response times, e.g., mean, SD,
and skew. (2) Recover the cumulative distribution and probability
density functions of response time. (3) Express the three charac-
teristic hazard functions of response time (e.g., see Luce, 1986;
Townsend, 1990). To avoid the pitfalls of ad hoc statistical mimic-
king, all this must be accomplished in the context of a compelling
theoretical motivation that arises for reasons beyond the observed
empirical patterns (Van Zandt and Ratcliff, 1995).

A probability density function depicts the instantaneous prob-
ability of observing an event within an interval on the X -axis.
Similarly, a hazard function describes an instantaneous event rate,
per unit time, given that it has not yet occurred. Hazard functions
tend to amplify subtle quantitative differences among distributions
so they become visible, qualitative differences. Figure 2 illustrates
that while the probability density functions of the exponential
and power law distributions are reasonably similar, their hazard
functions are quite distinct.

An exponential distribution’s hazard function is a constant
function of time. That is, it rises to a constant, asymptotic rate
as depicted in bottom right plot of Figure 2. This fact is the
basis of the characterization of an exponential process as “mem-
ory less.” The instantaneous event rate, given that an event has not
yet occurred, is constant. That is, the ratio between elapsed events
and potential remaining events is constant for any given interval
of time. Hence the saying “used is as good as new” is directed at
tools and machinery that break or otherwise fail as an exponential
function of time. For a given interval of time, a brand new tool
is just as likely to fail as a very old tool, so there is no benefit to
paying the typical premium for “newness.”

The ex-Gaussian distribution yields a hazard function that rises
monotonically to a constant asymptote. This behavior straightfor-
wardly reflects its constituent Gaussian and exponential ingredi-
ents. A Gaussian distribution’s hazard function is increasing and
the exponential distribution’s hazard function is constant.

The ex-Wald hazard function’s behavior is more complex. It can
display a peaked then decaying hazard that resembles a lognormal
hazard function. The basis of its peak is the Wald distribution,
which itself has a peaked hazard function. In the context of cer-
tain parameters, the ex-Wald hazard function can (1) rise above
an ex-Gaussian fit to the same data (2) closely mimic the increas-
ing then constant ex-Gaussian hazard function, and (3) display a
peaked and decreasing hazard function that resembles that of the
cocktail model. This is the basic pattern that must be expressed to
capture typical empirical pronunciation time hazard functions.
Thus the superposition of a Wald distribution and a variable
threshold exponential tail allows the ex-Wald to exhibit the hazard
behavior of both its constituents. However, the normal tendency
of the ex-Wald hazard is to maintain higher overall hazard rates
than a comparable cocktail hazard function, due to its basis in
exponential rather than power law decay.

Lognormal and inverse power law distributions both yield
peaked hazard functions, they rise quickly to a maximum and
then decay toward zero past that point. The peak and rate of decay
of the lognormal hazard function is governed largely by the stan-
dard deviation of the distribution. The ideal hazard function of an
inverse power law distribution itself decays as a power law with a
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FIGURE 2 |The ideal cumulative distribution, probability density,

and hazard functions of a pure power law distribution (solid white

line, top three plots), and a pure exponential distribution

(dashed-gray line, bottom three plots). The cumulative distribution
and probability density functions of each distribution are visually quite

similar, but the hazard functions are qualitatively distinct. The power law
hazard, itself, decays as a power law. By contrast, the exponential
hazard is constant. The BIC mean squared integrated error analysis
capitalizes on the qualitative and quantitative difference in the hazard
domain.

scaling exponent of 1, regardless of the scaling exponent of the dis-
tribution’s probability density function, as in the top right plot of
Figure 2. Thus, an ideal power law hazard function, itself, is scale-
free, as is the power law density function. While specific details of
the hazard functions depend on the distribution’s parameter val-
ues, the cocktail model often yields peaked hazard functions that
decay more rapidly than the exponentially based hazard functions.

Hazard functions are normally assessed qualitatively, for peaks
and other asymptotic behavior. This is due in part to a lack well-
established quantitative methods that can be used to distinguish
hazard functions. Our Method section describes the details of a test
we developed to contrast the hazard functions of the three models.
It adopts a BIC statistic to evaluate the MISE between the empir-
ical hazard function and each best-fit model’s hazard function
(Silverman, 1986). According to the BIC hazard test the cocktail
hazard was a better description of 24 of the 30 (80%) empirical
hazard functions. The ex-Gaussian and ex-Wald each successfully
captured 3 of the 30 hazard functions for an exponential total of
six (20%) of the empirical distributions.

Figure 3 illustrates the empirical and the three ideal hazard
functions for each of the nine participants in the experiment. In

each plot, the solid black line represents an individual participant’s
empirical pronunciation time hazard function. The solid white
line depicts the ideal cocktail hazard function corresponding to
the best-fit parameters, as estimated from the empirical distrib-
ution. The lighter solid and dashed-gray lines depict the hazard
functions of the best-fit ex-Gaussian and ex-Wald distributions,
respectively. In four cases both exponential hazard functions fell
nearly atop one another, which resembles a single solid gray line
on the plots. The hazard functions of the leading edges of all
the model distributions were highly similar. However the hazard
functions of the exponential and power law descriptions tended
to diverge in the slow tails of the model distributions. Overall,
the pattern of decay in the tails of the empirical distributions was
better represented by the power law behavior entailed in the cock-
tail description than by the exponential behavior entailed in the
ex-Gaussian and ex-Wald descriptions.

Benchmarking simulations
We assessed our BIC hazard discrimination routine by replacing,
in turn, each of the 30 participant’s empirical pronunciation times
with synthetic data derived from the best-fit parameters of the
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FIGURE 3 |The X -axes of each plot track pronunciation time and the

Y -axes indicate the hazard rate, in events per millisecond. The heavy solid
black line represents the empirical hazard functions for each of the nine
participants. The ideal hazard functions for cocktail description are depicted as
heavy white lines. The hazard functions of the ex-Gaussian and ex-Wald
models are depicted as lighter, solid gray, and dashed-gray lines, respectively.
Cases that appear to only depict one solid gray line indicate the ex-Gaussian

and ex-Wald hazard functions were effectively identical. The majority of the
empirical hazard functions entail a peak and their slow tails more closely
match the power law decay indicated in the cocktail description than the
exponential decay indicated by either the ex-Gaussian or ex-Wald alternatives.
The distribution in the top left plot yielded the smallest power law scaling
exponent (α = 3.44), the bottom right plot yielded the largest scaling exponent
(α = 11.36). α = power law scaling exponent.

cocktail, the ex-Gaussian, and ex-Wald models (also, see Wagen-
makers et al., 2004 for a similar technique). Replacing the empirical
data with data from known models allowed us to assess the ability
of the hazard routine to discriminate the power law from expo-
nential models. Twenty-five realizations of the 30 participant sim-
ulations were run for each ideal model. Correct classification (hit)
rates and incorrect classification (false alarm) rates were averaged
across the 25 realizations of each 30 participant simulation.

The winning model was that model with the lowest BIC score
for the given simulated data, as specified by the parameters of one
of the three models. If either the ex-Gaussian or ex-Wald model

were the true models, we treated a win for either model as a win
for an exponential description. The ex-Gaussian description often
captured ex-Wald data since they are functionally similar and the
ex-Gaussian entails one less parameter. Similarly, if the cocktail
description was the true model, we treated a win for either the
ex-Gaussian or ex-Wald as an exponential false alarm.

When the cocktail model was the true model, it was correctly
classified as a power law 89% of the time, the exponential false
alarm rate was 11%. Given an ex-Gaussian as a true model, it
was accurately classified as exponential 90% of the time, with a
power law false alarm rate of 10%. A true ex-Wald was classified
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as exponential 98% of the time, with a power law false alarm rate
of only 2%. These hit and false alarm rates, in turn, allowed us
to estimate the sensitivity of the hazard classification routine with
the help of a d-prime (d ′) analysis.

The ability of the BIC hazard classification routine to distin-
guish the expression of exponential and power law behavior, its
sensitivity, was estimated by computing a d ′ statistic for each hit
and false alarm rate. The d ′ computation works by transform-
ing hit and false alarm rates into a standardized z-score that
represents the distance between the means of two hypothetical
Gaussian distributions that represent the“signal”(true model) and
“noise” (alternate model) distributions (Green and Swets, 1988).
The values of d ′ for the power law versus exponential contrasts
using synthetic data were 3.95, 2.56, and 2.49 for the ex-Wald, the
ex-Gaussian, and the cocktail description, respectively.

So, given the ranges of parameters represented by this data set,
the ex-Wald was the easiest to classify as an exponential model.
This was despite the ex-Wald being the most flexible exponential
model, and likely resulted from the BIC penalty imposed for the
additional parameter. The ex-Gaussian was a bit more difficult to
distinguish from the power law, as it was occasionally misclassified
as such. Likewise, the cocktail model was occasionally misclassi-
fied as an exponential. The fact that the cocktail description and
the ex-Gaussian yielded comparable d ′ values indicates that, on
average, the BIC adjustment produced a reasonably balanced con-
trast between the simplest exponential model the more complex
cocktail description.

DISCUSSION
The maximum-likelihood fits to the three ideal models strongly
favored the cocktail description of the pronunciation time distri-
butions over an ex-Gaussian or a four-parameter version of the
ex-Wald distribution. Our density fitting methods were conserva-
tive in that we followed Clauset et al.’s (2009) criteria for evaluating
the plausibility of each model. The technique was explicitly devel-
oped to distinguish different classes of heavy-tailed distributions,
such as the exponential and power law. Ninety percent (90%) of
the participant’s distributions could be plausibly approximated
using the cocktail description. By contrast the ex-Gaussian plausi-
bly approximated only 57% of the distributions and the ex-Wald
passed muster only 50% of the time.

The BIC hazard classification routine took model complexity
explicitly into account by comparing goodness of fit with a BIC
statistic that strongly punishes more complex models over sim-
pler models (Wagenmakers and Farrell, 2004). This test specifically
examined the hazard function shapes. The hazard shape is a highly
diagnostic property, not readily represented in outcomes of good-
ness of fit tests conducted on density functions. The BIC hazard
test classified 80% of the empirical distributions as most plausibly
consistent with the cocktail description of pronunciation times,
the two exponential models captured the remaining 20% of the
distributions.

Alternate censorship criteria
Notably, imposing a common but more liberal response trimming
criteria from the ex-Gaussian literature allowed the ex-Gaussian
to successfully fit the density functions of 29 of the 30 participant’s

distributions (by contrast, the cocktail captured 25 of 30, the
ex-Wald, 19 of 30). This censoring method removes errors, obser-
vations beyond 200 and 3000 ms as well as any observations
beyond 2.5 standard deviations from the distribution’s mean. Con-
sequently, the ex-Gaussian captured five additional distributions
that it otherwise failed to fit; all of which previously appeared to
express significant power law behavior.

To better understand this outcome, we generated 30 simu-
lated cocktail distributions, based on parameter estimates for
the 30 participants and applied the beyond 200 and 3000 and
beyond 2.5 SD trimming criteria to the simulated data sets. We
then attempted to fit the remaining synthetic observations with
the ex-Gaussian, and all 30 data sets were successfully approx-
imated at the p ≥ 0.1 level. Similarly, we generated synthetic
data sets that entailed compelling power law behavior, with scal-
ing exponents ranging between 2 and 4. We then applied the
same exclusive 2.5 SD trimming criteria to the data, and 43%
of the distributions were subsequently approximated by the ex-
Gaussian using the same p ≥ 0.1 criterion described earlier. By
contrast, the ex-Gaussian never successfully approximated com-
pelling power law behavior if the 2.5 SD trimming step was
omitted.

Clearly the 2.5 SD trimming rule found its utility by facil-
itating ancillary linear analyses (e.g., Yap et al., 2012). How-
ever, the historic rationale for adopting a 2.5 SD rule stems
directly from the properties of the tame, symmetric Gaussian
distribution function and no contemporary cognitive scientist
argues that pronunciation or response time distributions con-
form to a Gaussian. In any case, the 2.5 SD rule is clearly not
appropriate in the context of attempting to distinguish expo-
nential from power law behavior in light of its ability to trans-
form unequivocal power law behavior into apparent exponential
behavior.

Alternate hazard routines
Response time researchers have repeatedly described typical
empirical hazard functions as conforming to one of three cat-
egories: They either (1) rise monotonically to an asymptomatic
value, (2) rapidly rise to a peak and then decline to an asymptote,
or (3) they rapidly rise to a much higher peak and quickly fall off
past that point. Taken at face value, the second and third charac-
teristic hazard functions could be consistent with a lognormal or a
Wald distribution. Both distributions can produce peaked hazard
functions – and the first characteristic hazard function of response
time sounds surprisingly consistent with the constant, asymptotic
exponential hazard function.

An important caveat must be considered, however. The lion’s
share of empirical hazard functions that have appeared in the
response time literature used a particular hazard estimation
method called the “random smoothing” method, as described by
Miller and Singpurwalla (1980). This method uses a smoothing
parameter that specifies how many observations to include in each
point-by-point hazard estimate. The technique captures hazard
function peaks, and works well around the mode of the distri-
bution where observations are plentiful, but it asymptotes to a
constant value once the number of remaining observations falls
below the value specified by the smoothing parameter.
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While the random smoothing method supplies hazard func-
tions that facilitate some types of contrasts, it is challenged in
the case of representing decreasing hazard functions. Since the
random smoothing method is asymptotically biased to a con-
stant hazard function in the context of sparsely populated tails
of a distribution, it was not optimal for even-handed compar-
isons of the hazard function behavior of models that entail
exponential or power law tails. This motivated the use of the
variable-kernel BIC procedure described earlier in the Method
section. The observed shapes of empirical pronunciation time
hazard functions varied widely but the kernel-based method
revealed their tendency to resemble the ideal cocktail hazard, as
peaked and decreasing, an asymptotic pattern that is consistent
with power law behavior. Now that the aforementioned statis-
tical issues surrounding distribution fitting, censorship criteria,
and hazard estimation are understood, we turn to a stronger test
of the generality of the power law hypothesis by applying our
suite of statistical analyses to a much larger pronunciation time
data set.

A TEST OF THE GENERALIZABILITY OF THE COCKTAIL
DESCRIPTION
The ELP (Balota et al., 2007) maintains a repository of pronunci-
ation times that is available to researchers via the web. A total of
470 participants named two lists of approximately 1500 and 1030
items, respectively, during two experimental sessions. The ELP
database includes a vast sample of named items, and a considerable
sample of participants, originating from six different universities
across the US and Canada. Clearly, it supplies a broad cross-section
of word naming performances.

We used these data to determine whether the refined cocktail
model could accurately approximate this unusually large sam-
ple of participant’s pronunciation time distributions and hazard
functions more generally. We were also particularly interested in
determining whether the parameters derived for the two different
sessions were correlated. The cocktail description is predicated on
gaging the dynamics that support cognitive performance and there
should be a relationship among the parameters derived from two
separate laboratory sessions of a single individual naming different
lists of randomly selected words.

METHOD
Participants and procedure
Four-hundred seventy native English speaking individuals were
recruited from a total of six different universities. Each individual
received $25 in exchange for their participation. Additional demo-
graphic details about the participants are described in Balota et al.
(2007).

We applied all the same statistical methods described in the pre-
vious experiment to the present data set. We again benchmarked
our hazard discrimination routine by replacing, in turn, each of
the 470 participant’s empirical pronunciation times with synthetic
data derived from the best-fit parameters of the cocktail, the ex-
Gaussian, and ex-Wald models. Replacing the empirical data with
data from known models allowed us to assess the ability of the
hazard analysis to discriminate the power law from exponential
models.

RESULTS
Distribution fitting outcomes
By the Monte Carlo K–S test standard described above, 420 and 446
of the 470 (89 and 95%) of first- and second-session distributions
from the Balota et al. (2007) pronunciation time dataset could
be reasonably captured by the cocktail description with p ≥ 0.1 –
meaning there is at least a 10% chance the empirical distribution
could have been drawn from the given best-fit cocktail mixture.
By contrast, the ex-Gaussian captured 82 and 95 of the 470 (17
and 20%) and the ex-Wald captured 57 and 72 of the 470 (12 and
15%) of the same first- and second-session pronunciation time
distributions. The cocktail description captured the vast majority
of the individual ELP pronunciation time distributions.

Intersession relationships
The estimated parameters for each of the participant’s two sessions
were also surprisingly well correlated. The cocktail description suc-
cessfully approximated both naming sessions for 407 participants.
We eliminated one participant’s parameters because a data-gap in
his or her distribution’s tail yielded a very large threshold estimate,
for a total of 406. Their across-session correlations between log-
normal mean and SD (ΩLN and σ) and power law tail-weight para-
meters (ρPL) were r(404) = 0.87, p < 0.05, r(404) = 0.67, p < 0.05,
and r(404) = 0.64, p < 0.05, respectively. The across-session power
law scaling exponent (α) correlation was r(404) = 0.70, p < 0.05.
The average session 1 values of the four free refined cocktail para-
meters were as follows: lognormal mean ΩLN, 6.46 (SD = 0.13),
lognormal SD, σ, 0.13 (SD = 0.03), scaling exponent, α, 4.67
(SD = 1.08), and proportion power law in the tail, ρPL, 0.42
(SD = 0.13). The average session 2 values of the four free cocktail
parameters were: lognormal mean ΩLN, 6.45 (SD = 0.14), lognor-
mal SD, σ, 0.13 (SD = 0.03), scaling exponent, α, 4.69 (SD = 1.35),
and power law proportion in the tail, ρPL, 0.44 (SD = 0.13).

Overall, the aggregate shape-change between session 1 and 2
corresponded to a tradeoff in which the leading edge, up to and
including the mode of the session 2 distributions gained area at the
expense of the region just past the session 1 distribution’s mode.
A paired sample t -test indicated that both the lognormal mean
ΩLN, and the lognormal SD, σ, were reliably smaller in session 2,
t (406) = −3.61 p < 0.05, t (406) = −3.24, p < 0.05. The power law
proportion in the tail increased reliably, t (406) = 3.14, p < 0.05,
and the scaling exponent, α, did not change reliably across the two
sessions. The aggregate shape-change was relatively subtle, and did
not identify with particular parameters. It indicated the front end
of the session 2 distribution entailed a portion of somewhat faster
less variable responses than session 1, but that the slow tails of both
distributions were effectively identical. Yap et al. (2012) reported
similar outcomes in the context of an ex-Gaussian approximation
of the two ELP naming sessions. The robust across-session rela-
tionships among the parameters suggest that the refined cocktail
model may provide researchers with a useful descriptive tool that
assesses individual differences in the dynamic interactions that
support performance.

Hazard function contrasts
The cocktail hazard captured the majority of the pronunciation
time hazard functions for the session 1 data. The cocktail hazard
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function provided the best description of 329 of the 470 (70%) of
the empirical hazard functions. By contrast, the ex-Gaussian and
ex-Wald hazard functions best approximated 12 and 18% of the
empirical hazard functions, respectively. Thus, 70% of the distri-
butions were classified as consistent with the cocktail description
and 30% could be described as consistent with an exponential
description. The outcome for the session 2 analysis was similar,
312 of 470 (67%) of the empirical hazard functions were best
described by the cocktail description. The ex-Gaussian and ex-
Wald distributions best captured 13 and 20% of the empirical
hazard functions, respectively.

It is notable that the ex-Wald faired better than the ex-Gaussian
in the context of the hazard function analysis. The ex-Wald
expresses peaked hazard functions that better resemble empirical
pronunciation time hazard functions. However, the ex-Wald faired
worse than the ex-Gaussian in the context of the density estima-
tion analysis. Substituting a Wald distribution for the Gaussian
worsened the match with empirical densities, but improved sub-
sequent hazard performance. Figures 4 and 5 depict a different
random selection of 9 participants from the 470 participants that
completed the two sessions.

Benchmarking simulations
Hazard analyses of synthetic versions of the distributions revealed
nearly identical hit rates and false alarm rates across the two ses-
sions. For the first session, when a cocktail description was inserted
as the true model the hit rate was 72% and the exponential false
alarm rate was 28% (ex-Gaussian and ex-Wald combined), yield-
ing a d ′ of 1.17. When the ex-Gaussian was the true model, the
exponential hit rate was 95% and the cocktail false alarm rate was
5% yielding a d ′ of 3.29. When the ex-Wald was the true model
the hit and false alarm rates were 97 and 3%, respectively, yielding
a d ′ of 3.76.

Similarly, for the second-session, the synthetic fitting exercises
indicated a hit rate of 70% when the cocktail description was the
true model, and a 30% an exponential false alarm rate, for a d ′ of
1.04. When the ex-Gaussian was the true model, the exponential
hit rate was 96% and the cocktail false alarm rate was 4% yielding a
d ′ of 3.50. The hit and false alarm rates, and thus d ′ were identical
when the ex-Wald was the true model.

Overall, the BIC hazard routine appeared reasonably capable of
discriminating power law behavior from exponential behavior, at
least in the context of the Experiment 2 Holden et al. (2009) and
the Balota et al. (2007) pronunciation time data sets. The BIC haz-
ard analysis was more likely to misclassify the cocktail description
as an exponential than to misclassify an exponential as a cock-
tail description. As such, the direction of the statistical bias in the
routine favored the exponential hypothesis over the power law
hypothesis. It is also notable that, given the misclassification bias
in favor of the exponential hypothesis, the 70 and 67% cocktail
hit-rates for the empirical distributions would be plausible out-
comes if all the empirical distributions originated from a mixture
of samples from lognormal and power law distributions.

DISCUSSION
The empirical distribution of an individual participant is in some
sense the least-common denominator of a successful description

of pronunciation time distributions. These analyses indicate that
the refined cocktail model successfully describes the empirical
pronunciation time distributions for a large majority of individ-
ual participants. While the refined cocktail model is an idealized
description of pronunciation time distributions, it successfully
captures the descriptive statistics of pronunciation time distrib-
utions, their probability density functions, and their hazard func-
tions. It also captures the qualitative differences across individual
participants that typically emerge in naming performance. For
instance, faster more skilled participant’s distributions are often
accommodated by a majority of lognormal samples, less skilled
participant’s distributions can be largely approximated by a major-
ity of inverse power law samples, and straightforward mixtures of
lognormal and power law accommodate behavioral profiles that
span those two extremes.

It is perhaps surprising that the exponential models faired
so poorly: Could there have been an error in fitting the distri-
butions? The essential fact is that success for the ex-Gaussian
was completely contingent on implementing 2.5 SD trunca-
tion operation. For instance, we applied the more exclusive
trimming criteria associated with standard ex-Gaussian analy-
ses by deleting observations beyond 200 and 3000 ms, and
then deleting responses beyond 2.5 SD from the mean (delet-
ing altogether about 35,000 additional observations). Once
applied, the ex-Gaussian then captured 329 (70%) and 349
(74%) of the first- and second-session distributions, 301 and
267% increases, respectively. The ex-Wald yielded more modest
improvements.

The hazard plots clarify how the basis of the poor exponen-
tial fit does not result exclusively from the observations in the
distribution’s tails (e.g., Figures 4 and 5). The exponential mod-
els are unable to simultaneously capture both the typically high
hazard rates around the empirical distribution’s modes and the
much lower hazard rates that typically show up in the distrib-
ution’s tails. In short, the exponential model’s variability is too
homogeneous to accurately depict both aspects of the empirical
distributions. Excising the observations in the tails removes the
low hazard rates in the tails that are difficult for the exponen-
tials, and results in a higher overall empirical hazard rate. This, in
turn, facilitates the exponential model’s ability to approximate the
high empirical hazard rates around the empirical distribution’s
modes, leading to the appearance of better performance for the
exponentials.

Truncation procedures target anomalous data. Here we con-
front something quite different: The bulk of the participants
routinely express extreme observations, lawfully consistent with
a power law. Once those observations are systematically excised,
only then can the exponential plausibly mimic the empirical pat-
terns. Are some of those observations contaminants, such as voice
key failures, lapses in attention, working memory, or even scratch-
ing an itch during the experiment? Perhaps, but it is implausible
to claim that such a large contingent of the measurements, all sys-
tematically located on the distributions’ extrema, are exclusively
contaminants that must be ignored in the course of scientific
analysis.

In any case, the contaminant hypothesis seeks to displace a
theoretically motivated account with a vague place-holder, and
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FIGURE 4 | A depiction of the hazard functions for a random sample of

nine participants from the session 1 ELP naming data set. The X -axes in
each plot track pronunciation time and the Y -axes indicate the hazard rate. The
heavy black line represents the empirical hazard functions for each of the nine
participants. The ideal cocktail hazard functions are depicted as heavy white
lines. The ex-Gaussian and ex-Wald hazard functions are depicted as lighter
solid gray and dashed-gray lines, respectively. The case that appears to depict
just one solid gray line indicate the ex-Gaussian and ex-Wald hazard functions

were effectively identical. The majority of the hazard functions entail a peak
and their slow tails more closely match the power law decay indicated in the
cocktail description than the exponential decay indicated by either the
ex-Gaussian or ex-Wald models. The plots are depicted according to the
ascending rank order of the scaling exponent derived from the cocktail fits.
That is, the distribution in the top left plot yielded the smallest power law
scaling exponent (α = 3.74), the bottom right plot yielded the largest scaling
exponent (α = 8.01). α = power law scaling exponent.

must bear the burden of proof: What unsystematic contamina-
tion reliably mimics power law behavior so well it is mistaken for
it on hundreds of occasions? Offering up a host of unsystematic
factors, perhaps unrelated to naming, that align themselves, by
coincidence, as a power law would seem to contradict the laws
governing randomness – the Central Limit theorem indicates a
Gaussian in that case. By contrast, interaction dominant dynamics
supply a straightforward explanation of the shape of the empirical
distributions.

Model selection
The BIC model-contrasting conventions are most useful and
appropriate in the context of commensurate modeling frame-
works – models that share formative assumptions but that differ in
their details. For instance the ex-Gaussian and ex-Wald share the
assumption of a characteristic scale and the component dominant
dynamics of information accrual. The cocktail description, how-
ever is hypothesized to portray interaction dominant dynamics
associated with emergence and self-organization.

www.frontiersin.org July 2012 | Volume 3 | Article 209 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive


Holden and Rajaraman Pronunciation time dynamics

FIGURE 5 |The hazard functions for a random sample of nine

participants from the Session 2 ELP naming data set. The X -axes in each
plot track pronunciation time and the Y -axes indicate the hazard rate, in
events per millisecond. The heavy black line represents the empirical hazard
functions for each of the nine participants. The ideal cocktail hazard functions
are depicted as heavy white lines. The ex-Gaussian and ex-Wald hazard
functions are depicted as a lighter solid gray and dashed-gray lines,
respectively. The case that seems to depict one solid line indicates the

ex-Gaussian and ex-Wald hazard functions were nearly identical. The majority
of the hazard functions entail a peak and their slow tails more closely match
the power law decay indicated in the cocktail description than the exponential
decay indicated by either the ex-Gaussian or ex-Wald models. The plots are
depicted according to the ascending rank order of the scaling exponent
derived from the cocktail fits. The distribution in the top left plot yielded the
smallest power law scaling exponent (α = 3.04), the bottom right plot yielded
the largest scaling exponent (α = 7.33). α = power law scaling exponent.

The cocktail description prevailed in the probability density
and hazard analyses, despite the strict BIC penalty imposed in
the hazard analysis. Of course, there are any number of ways to
evaluate models against each other. A natural concern regarding
our BIC contrasts is they might be biased against the ex-Wald,
given a fourth parameter was added to the model. However,
our density estimation procedures did not penalize parameters,
and the ex-Wald, nevertheless, captured only a small minority of
the cases.

Most important, the d ′ analyses on the parameters from the
Balota et al. (2007) ELP data indicated that the effect of impos-
ing the BIC penalty actually reduced the likelihood of deciding in
favor of the cocktail description, not the ex-Wald or ex-Gaussian.
This was the case even when the cocktail was explicitly specified in
simulations as the true model. So, at least in the context of decid-
ing between the exponential and power law functions presented
here, the popular conventional BIC approach to model discrim-
ination has a potential to hobble rather than facilitate accurate
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model selection (cf., Gilden, 2009). These facts underscore the
critical role that a theoretical context can play in the evaluation of
statistical outcomes (Van Zandt and Ratcliff, 1995).

The cocktail description characterizes the details of pronun-
ciation times distributions more faithfully than either the ex-
Gaussian or ex-Wald alternatives. Figures 6 and 7 illustrate how
the cocktail description recovers standard descriptive statistics of

individual participant’s pronunciation time distributions better
than either the ex-Gaussian or ex-Wald distributions.

All the functions faithfully recover the distribution’s means.
However, relative to the cocktail and ex-Wald, the ex-Gaussian’s
ability to recover empirical standard deviations is somewhat
degraded. The sum of the ex-Gaussian’s mean and exponential
rate parameters is equal to the distribution’s average value. This

FIGURE 6 |The X -axis of the top three scatter plots depict estimates

of the empirical distribution’s mean, standard deviation, and

non-parametric skew against same statistics taken from one

realization of a synthetic cocktail distribution (Y -axis), using the

parameters for each of the 470 session 1 participants. The second and

third rows depict the same contrasts for the ex-Gaussian and e-Wald
distributions, respectively. Overall, the cocktail description recovers
descriptive parameters better than the exponential alternatives. The
estimates were computed for all participants, regardless of whether the
fits were reliable or not.

www.frontiersin.org July 2012 | Volume 3 | Article 209 | 15

http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive


Holden and Rajaraman Pronunciation time dynamics

FIGURE 7 |The X -axis of the top three scatter plots depict estimates

of the empirical distribution’s mean, standard deviation, and

non-parametric skew against same statistics taken from one

realization of a synthetic cocktail distribution (Y -axis), using the

parameters for each of the 470 session 2 participants. The second and

third rows depict the same contrasts for the ex-Gaussian and e-Wald
distributions, respectively. Overall, the cocktail description recovers
descriptive parameters better than the exponential alternatives. The
estimates were computed for all participants, regardless of whether the
fits were reliable or not.

and other built-in constraints may degrade the ex-Gaussian’s abil-
ity to characterize descriptive statistics for distributions that are
not true ex-Gaussians (Schmiedek et al., 2007; Van Zandt, unpub-
lished manuscript). By contrast, the cocktail distribution’s free
parameters are not similarly constrained.

Non-parametric skew indexes the inter-relationships among
three common descriptive statistics, the mean, median, and stan-
dard deviation. Only the cocktail description is reasonably capable

of mirroring the empirical measures of non-parametric skew
([M − Md]/SD). By contrast, both exponential models gener-
ally fail to successfully recover this statistic. The scatter plots
also demonstrate that the exponential models systematically
underestimate the skew of the empirical distributions.

The refined cocktail description successfully accounted for
both the 1100-trial pronunciation time distributions described
in Experiment 2 of Holden et al. (2009) and the 1500- and
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1030-trial pronunciation time distributions described by Balota
et al. (2007). In each case the empirical distributions were com-
posed of large numbers of observations. In each case the cocktail
function supplied a better approximation of both the participants’
distributions and hazard functions than the ex-Gaussian or ex-
Wald alternatives – but specific instantiations of models are highly
malleable.

The more important statistical outcome was the general sup-
port for the power law hypothesis over the exponential hypothesis.
On one hand, this finding buttresses the cocktail description as a
plausible and sufficient, but not necessary description of pronun-
ciation time distributions. On the other hand, it renders any model
rooted in assumptions consistent with an exponential process as
insufficient, and therefore suspect.

The weight of the presented evidence suggests that power law
decay is a better description of the slow, heavy tails of pronunci-
ation time distributions than exponential decay. Power laws are
symptomatic of scale-free systems. The finding in favor of the
power law suggests a perspective on cognitive performance that is
not broadly subscribed to in the discipline.

GENERAL DISCUSSION
The cocktail description of pronunciation times was motivated
within a framework supplied by complexity science. Studies con-
cerning a wide range of complex physical systems repeatedly
revealed generic patterns of interaction among a system’s com-
ponents that transcend the details of the system components
themselves (Nicolis, 1989; Bak, 1996; Jensen, 1998). Complex-
ity scientists uncovered and articulated a characteristic mode
of interaction among interdependent system components called
interaction dominant dynamics. Under specific circumstances, sys-
tem elements that entail interdependent reciprocal (feedback)
couplings are capable of coordinating their behavior in a manner
that gives rise to specific emergent patterns (e.g., Yates, 1987; Bak,
1996; Jensen, 1998; Walleczek, 2000; Camazine et al., 2001). Among
other things, interaction dominant dynamics are associated with
power law event-time distributions and long-term fractal 1/ƒ pat-
terns of temporal correlation; patterns and phenomena that are
widely observed in pronunciation time and other response time
performances (e.g., Gilden, 2001; Van Orden et al., 2003a, 2005;
Kello et al., 2008, 2010; Holden et al., 2009; for an overview, see
Turvey and Moreno, 2006).

An inverse power law distribution is symptomatic of coordina-
tive interdependence among the processes that give rise to discrete
events. The relationship between any given interval on the X - and
Y -axis of an ideal power law probability density is proportional to
the whole probability density – it is scale invariant and self-similar.
Thus, no event duration or magnitude is typical. Instead, the size of
measured events may span many orders of magnitude. In physical
and biological systems the lack of a characteristic scale is sympto-
matic of interaction dominant dynamics among the processes and
constraints that compose complex systems.

As we mentioned in our introduction, speech is known, via
independent evidence, to be governed by coordinative synergies
(Kelso et al., 1984). Coordinative synergies imply the presence of
multiplicative and reciprocal dynamics that are expressed as a mix-
ture of lognormal and power law samples. Word naming is a speech

act, and the distribution and hazard analyses revealed that pronun-
ciation times do reasonably conform to the predicted mixture.
Apparently, we have established a fundamental link between the
continuous interaction dominant dynamics of word recognition,
speech production, and the characteristic shapes of pronuncia-
tion time distributions. This narrative regarding cognitive perfor-
mance is largely consistent with the basic axioms of connectionist
modeling, broadly construed (e.g., Farmer, 1990).

LOGNORMAL STABILITY VERSUS POWER LAW FLEXIBILITY
Appropriately tuned connectionist systems that embrace or mimic
the design principles of proportional amplification and recurrent
feedback should express a continuum of distributions that resem-
ble the cocktail description. In the past, however, the connectionist
enterprise typically relied on linear statistical methods to test pre-
dictions, whereas distributional analyses have revealed non-linear
dynamics (Montroll and Shlesinger, 1982; West and Deering, 1995;
Bak, 1996).

The lognormal shape represents a special case of interdepen-
dent dynamics in which the interdependencies among processes
are minimized or absent. Just as the sum of many independent
random variables yields a Gaussian distribution, the product of
many independent random variables yields a lognormal distribu-
tion (Koch, 1966; Ulrich and Miller, 1993). The generic dynamics
of two classes of connectionist models illustrate this point. The
dynamics of an exclusively feed-forward neural-network are gov-
erned by the products of all the component artificial neuron’s states
and their respective weight functions (see Eq. 5, Farmer, 1990;
Ulrich and Miller, 1993). The only dynamics expressed under these
circumstances are time-independent and result from relatively
pure multiplicative relations among the connectionist system’s
variables. Assuming the network variables entail some random
noise and span a sufficient range of values, then the distribu-
tion of network activation outputs will approximate a lognormal
distribution in the long run.

The key to the emergence of a lognormal is the presence of mul-
tiplicative or proportional operators linking a system’s variables
(e.g., autocatalytic growth). Thus, lognormal distributions are
common in chemical and biological systems. For instance, many
viral infection incubation-times approximate a lognormal distrib-
ution because symptom onsets are linked to the proportional viral
growth-rates expressed in the host (Nishiura, 2007).

Adding feedback connections, or recurrent dynamics, to a
generic feed-forward connectionist system yields a potential for
more complex behavior. For instance, an appropriately tuned
recurrent system is capable of maintaining a given state across
many successive iterations, but a modeler may also tune it to
display oscillatory behavior, or even to change its own dynamics
over time, as when Hebbian or other learning rules are introduced
(e.g., Hinton and Sejnowski, 1986). Adding dynamic complexity
naturally yields more potential behavioral states. The increased
complexity of recurrent relations give rise to the potential expres-
sion of an inverse power law distribution (Kello et al., 2011). This
is why the lognormal and power law distributions are conceived
as two idealized poles of a continuum in the cocktail model. At
one end is exclusively lognormal behavior, at the other end of the
continuum is unadulterated power law behavior.
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So-called model “small-world” networks, when configured
appropriately, approximate a continuum of output behaviors that
range from pure lognormal behavior, lognormal-power law mix-
tures, and pure power law behavior, the same continuum approxi-
mated by the cocktail description. The distribution of a network’s
outputs depend on the nature of the links among the network’s
nodes. Minimizing feedback and interdependence by minimizing
the number and extent of the links across a network’s nodes a
yields a lognormal distribution of outputs. Progressively increas-
ing number and extent of the links approximates lognormal dis-
tributions with power law tails. Once either or both variables pass
a critical boundary point, the output distributions exhibit a phase
transition and express clear power law behavior (e.g., see Souma
et al., 2001; Garlaschelli and Loffredo, 2004). We speculate that
complex self-tuning biological systems, such as human beings,
may likewise exhibit a phase transition from the more stable log-
normal state to the more flexible power law state, and vice-versa, in
accord with available constraints (Van Orden et al., 2003a; Holden
et al., 2009, 2011). However, extant word recognition models,
connectionist or otherwise, rarely exploit or successfully mimic
the multiscale interdependence implied in interaction dominant
dynamics.

Instead, most connectionist word recognition models empha-
size additive and/or extremely stable multiplicative dynamics, and
they tend to express characteristic time scales of interaction (i.e.,
they lack power law behavior). For instance, Figure 8 depicts
the hazard function for more than 32,000 synthetic pronuncia-
tion times derived from the Connectionist-Dual-Process model
(CDP++) a successful large-scale model of reading aloud (Perry
et al., 2010). In this plot the X -axis depicts an analog of pronun-
ciation time, the number cycles the model required to output a
pronunciation. The CDP++ probability density appears to have
three distinct modes. It is also very nearly symmetrical, with a
non-parametric skew of 0.069, less than any of the empirical distri-
butions. Overall, the CDP++ model yields a hazard function con-
sistent with (at least) two distinct regimes: stable, low-variability
Gaussian or lognormal that carries with it the bulk of the cognitive
effects observed in naming, and a delayed more variable regime
that exhibits peaks consistent with (but not exclusive to) a lognor-
mal. The model yielded pronunciations for the bulk of its lexicon
(76%) by the first hazard function peak, and it pronounced 98% by
the second peak. In fact, for this model, the bulk of the benchmark
mean pronunciation time effects such as consistency, frequency,
and length, unfold prior to the first hazard peak, in the context
of a sharply increasing hazard rate that resembles the increasing
hazard function of a Gaussian, and is symptomatic of a charac-
teristic time-scale of interaction; this pattern is largely consistent
with component dominant dynamics. However, as we demon-
strated, the empirical distributions overwhelmingly indicate the
presence of interaction dominant dynamics. Put differently, the
model’s behavior reveals the dynamics of relatively independent
processes, the empirical data reveals the dynamics of relatively
interdependent processes.

As we illustrated, human pronunciation time hazard functions
are qualitatively different, their shapes vary widely across a broad
continuum, ranging from strongly peaked to barely peaked – a
spectrum of qualitative differences consistent with a continuum

FIGURE 8 |The top plot depicts the probability density function of the

synthetic pronunciation times for the CDP++ model (N = 32,263,

personal communication, Conrad Perry, April 29, 2012). The bottom plot
depicts the hazard function for the same data set. The multiple modes in
the probability density and the distinct peaks in the hazard function seem to
indicate the model expresses distinct processing regimes and very stable
dynamics.

ranging from lognormal to power law behavior. Nevertheless,
despite where an individual fell on this continuum, they had accu-
rately pronounced the bulk of the presented items. Extant word
recognition models capture only a slice of this continuum and
tend to reify it as the activity of isolable cognitive processes, such
as lexical processing (e.g., Rayner and Pollatsek, 1989; Seidenberg
and Plaut, 1998; Perry et al., 2010; see also Van Orden et al., 2001).
This is because models are designed with an eye toward capturing
mean effects, and differences in means are interpreted to indicate
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the distinct time-courses of encapsulated processing – thus theory
effectively recapitulates method.

An alternate hypothesis motivated by the presence of lognor-
mal and power law mixture distributions is that word naming
dynamics rely on many nested and reciprocally coupled time
scales of interaction. For example, eye movement dynamics, such
as saccades, unfold on very fast time scales, and are themselves
apparently organized in interaction dominant dynamics (Stephen
and Mirman, 2010). Dynamics are nested all the way down to the
ultimate time scales of neural and axonal firing and the immediate
mechanical time scales of articulation (e.g., Bassingthwaighte et al.,
1994; Turvey, 2007). Similarly, the presence of 1/ƒ noise (long-
range correlation) in trial-series of pronunciation times indicates
that faster time-scale dynamics supporting individual pronuncia-
tions are themselves nested within slower time-scale processes that
also constrain the pronunciation of printed words (e.g.,Van Orden
et al., 2003a; Holden et al., 2009). Next, we examine some potential
implications for interpreting the impact of linguistic and cogni-
tive effects in naming performance, as viewed through the lens of
standard linear analyses versus coupled dynamics, nested across
multiple time scales.

MULTIPLE TIME SCALES OF COGNITION AND ACTION
Conventional component dominant word naming models place
perceptual, cognitive, and articulatory factors in sequentially
ordered and encapsulated stages, spanning the interval between
stimulus and response (e.g., Rayner and Pollatsek, 1989), but
this narrative yields apparent paradoxes. For example, Spieler and
Balota (1997) used multivariate regression analyses to show that
phonemic and articulatory factors capture more than twice as
much unique item-level pronunciation time variance than the sum
of cognitive predictors such as word frequency, length, and Colt-
heart’s N (e.g., 30 versus 13%, Table 4, p. 414). Similarly, Balota
et al. (2004) attribute 39% of younger participant’s item-level
naming variance to onset phonemes but only about 10% to lexical
characteristics (Table 6, p. 299). Why do cognitive factors capture
so little variance?

At first glance, a pronunciation time appears to be sampled at
the transition point between the stabilization of cognitive dynam-
ics and the onset of articulatory dynamics. However, as our intro-
duction explains, a complex coordinative articulatory dynamic
must be largely in place before a participant can even utter a
word’s onset. This requires, as well, that cognitive and perceptual
constraints are largely in place to support more slowly unfolding
articulatory constraints (and consequent acoustics).

Yet a regression analysis assumes all factors entail an equiva-
lent potential to impact variability. However, consider a regression
analysis conducted on the face value sum-totals of three coins,
repeatedly and randomly sampled from the set: penny, nickel,
dime, quarter, and half-dollar. If positive and negative face val-
ues are equiprobable, then a predictor that perfectly tracks the
inclusion of the penny in the sums would nevertheless correlate
poorly with the sum-totals. Since the penny’s contribution to the
total is tiny, the predictor appears to perform poorly. When time
is the dependent measure, predictors tied to faster process behave
like the penny and necessarily capture less variability.

The perceptual and cognitive dynamics of word recogni-
tion tend to unfold on very fast time scales (e.g., <200 ms,

Pulvermüller et al., 1999; Strijkers and Costa, 2011; Strijkers et al.,
2011; Experiment 2, Van Orden et al., 1999), faster than cor-
responding articulatory dynamics. As such, they typically affect
smaller amplitude changes in variability. Since time is the depen-
dent measure in speeded naming, slower time-scale dynamics
necessarily have a larger sway in affecting variability. By defini-
tion, they generate larger amplitude changes in variability. Thus,
theoretical debates framed in terms of the percent of variance
captured are potentially misleading.

Only occasionally are faster time-scale dynamics able to reach
out and “touch” more slowly unfolding dynamics. That is, when
faster time-scale dynamics fail to stabilize and enfold with slower
time-scale dynamics, they may perturb the trajectory at the slower
time-scale. As when a participant has difficulty resolving the pro-
nunciation of items with ambiguous vowel pronunciations relative
to items with invariant vowel pronunciations (e.g., feed-forward
and feedback consistency: Stone et al., 1997; Gottlob et al., 1999;
Holden, 2002; Balota et al., 2004; Van Orden and Kloos, 2005),
or items with less constrained, more ambiguous onsets versus
those containing more constrained onsets (e.g., sin versus spin,
Kawamoto and Kello, 1999).

In samples of printed text, letter-phoneme relations recur more
often than spelling-body pronunciation-rime relations, that them-
selves recur more frequently than specific whole-words. This rank
order approximates the relative time scales of the perceptual and
cognitive dynamic coherence for these respectively nested sets
of relations, from faster to slower (Van Orden and Goldinger,
1994; Holden, 2002). The faster the dynamics stabilize, the less
variability they will contribute to the pronunciation time. Thus,
while consistency effects in the relations between spelling pat-
terns and pronunciations are nearly always present in large-scale
multiple regression analyses of pronunciation times, they tend to
account for relatively little variance, compared to word frequency,
for instance.

Furthermore, a coherent dynamic at the scale of whole-words
may simultaneously amplify the stability of the sub-word rela-
tions and facilitate the coherence of constraints for articula-
tory dynamics. For example, frequent words are associated with
shorter onset durations (Kawamoto et al., 1999). More generally,
speeded word naming emphasizes strongly constrained, largely
unique relationships between whole-word patterns of spelling
and whole-word pronunciations. These relations are so engrained
in an individual’s linguistic experience that the dynamic sup-
porting the pronunciation of both frequent and less frequently
encountered items is relatively stable, and yields only a modest
frequency “effect,” relative to lexical decision, for instance (Van
Orden and Goldinger, 1994). Perceptual and cognitive dynamics
unfold on the relatively faster time scales of the nervous sys-
tem. By contrast, articulatory dynamics unfold on the slightly
slower time scales of physiology; they require appropriate changes
in the physical configuration of muscles and vocal tracts and
take more time to cohere, hence their advantage in regression
analyses.

CONCLUSION
Tasks, manipulations, and linguistic environments tend to empha-
size different aspects of a participant’s dexterity – the fluency
of their perceptual, cognitive, and behavioral skills. Cooperative
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participants can be relied on to opportunistically optimize their
performance to best serve the experimenter assigned goals (Van
Orden and Holden, 2002; Van Orden et al., 2003a). The vari-
ables that crucially support successful performance in a given
context will tend to dominate that performance, and give rise to
“effects” that are conditional on, or interact with the particulars
of the task at hand. As such, small changes in instructions, the
laboratory context, or other relevant circumstances may yield dra-
matic changes in the measured behavior (Van Orden et al., 1999;
Kloos and Van Orden, 2005; Castillo et al., 2011; Holden et al.,
2011).

Dynamics apparently ancillary to cognition, such as response
velocity, are nevertheless measurably influenced, via interaction
dominant dynamics, by more stable versus less stable faster time-
scale dynamics. For example Abrams and Balota (1991) reported
increased response velocity was associated with high frequency
items in lexical decision. Even limb and postural trajectories are
measurably, but subtly influenced by cognitive manipulations
(Moreno et al., 2011). Similarly, frequency manipulations impact
word naming performance even after lengthy response delays are
imposed (Goldinger et al., 1997). These findings supply a differ-
ent kind of corroboration of interaction dominant dynamics, they
highlight unanticipated dynamic couplings across the spectrum of
heterogeneous processes of body and mind that support cognitive
performance.

Apparently, speeded word naming performance relies on inter-
dependent, and malleable coordinative dynamics. The parameters
of the cocktail description offer an abstract and indirect assessment
of those dynamic states. Rather than referring to specific cognitive
operations, stages, or processes, they instead estimate the aggregate

stability of the emergent coordinative activity that self-organizes
to support speaking words aloud.

This portrait specifies the challenge in skilled speeded naming
performance as achieving a functional organization that approxi-
mates a characteristic scale. This is accomplished by dynamically
enfolding environmental, perceptual, cognitive, and neuromuscu-
lar constraints that, themselves, span a range of time scales. The
transition from unskilled to skilled naming performance entails a
qualitative compression of degrees of freedom that reflects a bifur-
cation or phase transition from power law behavior to lognormal
behavior. Likewise, laboratory manipulations that increase func-
tional ambiguity will tend to destabilize performance and, past a
critical point, invite the expression of power law behavior (Van
Orden et al., 1999; Holden, 2002; Holden et al., 2009).

As we mentioned, coordinative synergies support articulation
by striking reciprocal and adaptive coupling among processes
spanning a range of time scales. In many natural systems this
form of interdependence amounts to a recipe for self-organization.
Thus, it is plausible to propose that pronunciation time mea-
surements reflect the same kinds of dynamics that support
self-organization in other natural systems.
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APPENDIX
MATHEMATICAL FORMULATION OF THE LOGNORMAL-POWER LAW
MIXTURE DISTRIBUTION DERIVED BY SRINIVASAN RAJARAMAN
In this Appendix, the probability distribution function (PDF) of
the Holden et al. (2009) cocktail model description is derived. The
PDF of the cocktail model is conceived as a mixture of a lognormal
and a power law distribution. As such, the cocktail model, f(t ), can
be mathematically expressed as follows:

f (t ) = ω ∗ pdf_LN(t ) + (1 − ω) ∗ pdf_PL(t ), (A1)

where pdf_LN(t ) = (1/(t ∗σ∗√
2π))∗ exp(− (ln(t) − ΩLN)2/2σ2)

and pdf_PL(t ) = (α−1)∗Ωα−1
PL ∗ t−α, t ≥ ΩPL, and = 0, t < ΩPL,

represent, respectively, a lognormal (Casella and Berger, 2002) and
an inverse power law PDF (Clauset et al., 2009). Here t, a ran-
dom variable, denotes the response latency, ΩLN and σ represent,
respectively, the mean and the standard deviation of the distri-
bution of the natural logarithm of the variable t, whereas α and
ΩPL represent, respectively, the scaling exponent and the threshold
parameter of the inverse power law distribution, and ω is a para-
meter, with ω ∈ [0, 1], that denotes the relative proportion of the
lognormal distribution in the cocktail model. The aforementioned
formulation of the inverse power law PDF is valid only for α > 1.

In this formulation of f (t ), as ω tends to 0, f (t ) tends to a pure
inverse power law distribution, whereas as ω tends to 1, f (t ) tends
to a pure lognormal distribution. For intermediate values of ω

and for any set of feasible values of the parameters ΩLN, σ, α, and
ΩPL, f (t ) discontinuously varies across t = ΩPL, i.e., the left-hand
limit (LHL) and the right-hand limit (RHL) of f (t ) at t = ΩPL

are always unequal. Therefore, we seek an alternative formula-
tion of the cocktail model. Accordingly, we propose a different
mathematical form of the cocktail model as follows

f (t ) =

⎧⎪⎨
⎪⎩

ρFLN

C (ΩPL)
pdf_LN(t ), t < ΩPL

ρBLN

1 − C (ΩPL)
pdf_LN(t ) + ρPL ∗ pdf_PL(t ), t ≥ ΩPL,

(A2)

where ρFLN, ρBLN, and ρPL are positive real numbers, with
ρFLN + ρBLN + ρPL = 1. Therefore, each ρFLN, ρBLN, and ρPL is less
than or equal to 1. Qualitatively speaking, the PDF of the cock-
tail model described in Eq. A2 is a pure lognormal PDF ∀t ∈ (0,
ΩPL) and a mixture of lognormal and inverse power law PDFs
∀t ∈ (ΩPL, ∞). Here, ρFLN denotes the proportion of the cock-
tail model PDF within the interval t ∈ (0, ΩPL), referred to as
the front end of the cocktail PDF, and 1 − ρFLN = (ρBLN + ρPL)
denotes the proportion of the cocktail model PDF within the inter-
val t ∈ (ΩPL, ∞), referred to as the back end of the PDF. Further,
the back end of the cocktail PDF is a mixture of lognormal and
power law distributions with ρBLN and ρPL, respectively, repre-
senting their mixture proportions. Consequently, both ρBLN and
ρPL are always ≤1 − ρFLN. That is, when ρBLN = 1 − ρFLN, ρPL = 0,

and vice-versa. Here, C(ΩPL) = ∫ ΩPL
t=0 pdf_LN(t ) dt denotes the

cumulative density of the lognormal distribution at t = ΩPL.
The advantage of the reformulated cocktail model PDF, given

in Eq. A2, is that we can achieve the continuity of both f (t ) and its

first derivative ∀t ∈ (0, ∞). Hereafter, smoothness of f (t ) implies
the continuity of the first derivative of f (t ). In particular, we need
to achieve the smoothness of f (t ) only at t = ΩPL, as f (t ) is both
continuous and smooth otherwise. In the following section, we
show what constraints are necessary to ensure the continuity and
smoothness of the proposed cocktail model PDF at t = ΩPL.

Establishing continuity and smoothness of the cocktail model PDF
To achieve the continuity of the cocktail model PDF f (t ) at
t = ΩPL, we require that LHL and RHL of f (t ) at t = ΩPL be
equal. For simplicity, let A(t ) denote pdf_LN(t ), then the equality
between the LHL and RHL of f (t ) at t = ΩPL can be expressed as
follows

ρFLN

C (ΩPL)
A (ΩPL) = ρBLN

1 − C (ΩPL)
A (ΩPL) + ρPL

(α − 1)

ΩPL
,

[
ρFLN

C (ΩPL)
− ρBLN

1 − C (ΩPL)

]
A (ΩPL) = ρPL

(α − 1)

ΩPL
.

(A3)

Further, if we seek smoothness of f (t ) at t = ΩPL, then we
require that the left-hand derivative and the right-hand derivative
of f (t ) at t = ΩPL be equal, which can be mathematically expressed
as follows

ρFLN

C (ΩPL)
B (ΩPL) = ρBLN

1 − C (ΩPL)
B (ΩPL) − ρPL

α (α − 1)

Ω2
PL

,

[
ρFLN

C (ΩPL)
− ρBLN

1 − C (ΩPL)

]
B (ΩPL) = −ρPL

α (α − 1)

Ω2
PL

,

(A4)

where, B(t ) represents dA(t )/dt. Dividing both sides of Eq. A4
by the corresponding sides of Eq. A3, and assuming ρPL �= 0, and
C(ΩPL) < 1, we obtain

B (ΩPL)

A (ΩPL)
= − α

ΩPL
. (A5)

Note that B(t ) = −
[

A(t )
t

] [
(log(t )−ΩLN )

σ2 + 1
]

, therefore we

can simplify Eq. A5 and obtain the following equation

ΩPL = exp
[
ΩLN + σ2 (α − 1)

]
. (A6)

Equation A6 represents an equality constraint among the para-
meters ΩPL, ΩLN, σ, and α that guarantees continuity as well as
smoothness of f (t ) in Eq. A2 ∀t ∈ (0,∞). Moreover, this equation
conveys that for fixed values of ΩLN and σ, ΩPL grows exponen-
tially as a function of α and because, by definition,α > 1, we require
ΩPL > exp(ΩLN), which is the median of the lognormal distribu-
tion. Using Eq. A3 and the equation ρFLN + ρBLN + ρPL = 1 and
assuming C(ΩPL) < 1, we get the following expressions for ρFLN

and ρBLN

ρFLN = C (ΩPL)∗[1−ρPL]+ C (ΩPL)∗ [1−C (ΩPL)]∗ρPL (α−1)

ΩPL ∗ A (ΩPL)

(A7)
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and

ρBLN = [1 − C (ΩPL)] ∗
(

1 − ρPL − C (ΩPL) ∗ ρPL ∗ (α − 1)

ΩPL ∗ A (ΩPL)

)
.

(A8)

Equation A8 implies that, for fixed values of the parameters ΩPL

and α, ρBLN is a decreasing function of ρPL. This is evident from
the fact that the back end of the cocktail PDF is shared between the
lognormal and the power law distributions; therefore, the propor-
tion of each of the two distributions increases as the proportion
of the other decreases. Hence, to ensure that ρBLN ≥ 0, we require
that

0 ≤ ρPL ≤
[

1 + C (ΩPL) ∗ (α − 1)

ΩPL ∗ A (ΩPL)

]−1

. (A9)

Substituting the expressions for ρFLN and ρBLN, respectively, from
Eqs. A7 and A8 and for ΩPL from Eq. A6 into Eq. A2, we obtain
f (t ) whose values are uniquely determined by the parameters ρPL,
α, ΩLN, and σ.

SUMMARY
We summarize the description of the cocktail model PDF, which
is defined in the interval t ∈ (0, ∞), as the mixture sum of the
following three PDFs:

1) 1
C(ΩPL)

pdf_LN(t ) ∀t ∈ (0,ΩPL) and 0 ∀t ∈ [ ΩPL, ∞)

2) 0∀t ∈ (0, ΩPL) and 1
1−C(ΩPL)

pdf_LN(t ) ∀t ∈ [ΩPL, ∞)

3) 0∀t ∈ (0, ΩPL) and pdf_PL(t ) ∀t ∈ [ΩPL, ∞),

with ρFLN, ρBLN, ρPL, respectively, their mixture proportions.
Hence, f (t ) in Eq. A2 is a legitimate PDF, in that f (t ) ≥ 0 and∫ ∞

t=0 f (t ) dt = 1.

Corollaries
1) When ρPL = 0, ρFLN, and ρBLN are equal to C(ΩPL) and

1−C(ΩPL), respectively.

2) When ρPL =
[

1 + C(ΩPL)∗(α−1)
ΩPL∗A(ΩPL)

]−1
, ρFLN, and ρBLN are equal

to 1 − ρPL and 0, respectively.

Matlab® code that implements the cocktail model available for
download at http://homepages.uc.edu/∼holdenjn/.
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