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We investigate human error dynamics in sequential two-alternative choice tasks. When
subjects repeatedly discriminate between two stimuli, their error rates and reaction times
(RTs) systematically depend on prior sequences of stimuli. We analyze these sequential
effects on RTs, separating error and correct responses, and identify a sequential RT trade-
off: a sequence of stimuli which yields a relatively fast RT on error trials will produce a
relatively slow RT on correct trials and vice versa. We reanalyze previous data and acquire
and analyze new data in a choice task with stimulus sequences generated by a first-order
Markov process having unequal probabilities of repetitions and alternations. We then show
that relationships among these stimulus sequences and the corresponding RTs for correct
trials, error trials, and averaged over all trials are significantly influenced by the probability
of alternations; these relationships have not been captured by previous models. Finally, we
show that simple, sequential updates to the initial condition and thresholds of a pure drift
diffusion model can account for the trends in RT for correct and error trials. Our results
suggest that error-based parameter adjustments are critical to modeling sequential effects.

Keywords: drift diffusion model, error rate, perceptual decision making, post-error slowing, reaction time, sequential
effects

1. INTRODUCTION
Efforts to model and predict human behavior are informed by
an understanding of the dynamics of error rates (ERs) and reac-
tion times (RTs) in simple tasks. In particular, in two-alternative
forced-choice (TAFC) tasks (e.g., Laming, 1968; Link, 1975; Link
and Heath, 1975; Ratcliff and Rouder, 1998) human participants
are known to slow down after committing an error, and gener-
ally to exhibit RTs and ERs that systematically depend on prior
stimulus sequences (Bertelson, 1961; Capaldi, 1966; Laming, 1968;
Remington, 1969; Kirby, 1976; Vervaeck and Boer, 1980; Soetens
et al., 1984, 1985). However, while much previous work has con-
sidered post-error slowing and sequential effects separately, we are
not aware of studies that explicitly account for interactions among
these effects.

Patterns in RTs for individual trials are well documented in
the literature. In particular, relative to their mean RTs on correct
trials, subjects are known to respond faster on error trials and
more slowly immediately following errors (Rabbitt, 1966; Laming,
1979a,b). On average it has been shown that participants return
to their mean RT values within two trials after an error (Rab-
bitt, 1968b). Various models of TAFC tasks have accounted for
this post-error slowing (Ratcliff and Rouder, 1998; Dudschig and
Jentzsch, 2009). However, to our knowledge the mean RTs on trials
following specific sequences of stimuli have not been studied inde-
pendently for trials ending in an error, and deliberate post-error

adjustments have not been incorporated into models of sequential
effects.

Moreover, the characteristic patterns in speed and accuracy
following sequences of repetitions and alternations are well doc-
umented only for tasks in which the stimuli are equally likely.
While overall trends in speed and accuracy have received signifi-
cant attention (Carpenter and Williams, 1995; Ratcliff and Smith,
2004; Bogacz et al., 2006; Simen et al., 2009), for tasks in which the
stimuli are not equally likely, such sequential patterns in mean RT
have not been considered.

In a majority of TAFC studies, participants are either rewarded
equally for overall participation or they are rewarded for each
correct response. However, several studies (e.g., Corrado et al.,
2005; Feng et al., 2009) have investigated tasks which reward cor-
rect responses to one stimulus more highly than another and have
shown that reward contingencies influence choice behavior. When
reward probabilities or reward values are unequal, participants are
known to select the stimulus corresponding to the most probable
or most valuable reward more frequently (Corrado et al., 2005;
Feng et al., 2009), and they may do so almost optimally (Gao et al.,
2011).

When stimuli are equally probable and correct responses are
equally rewarded, several effects are known. For small (<500 ms)
response to stimulus intervals (RSIs), the behavior typically illus-
trates automatic facilitation (AF): mean RTs on the current trial are
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faster if the previous trial was a repetition, regardless of whether
the current trial is a repetition or an alternation. For slow RSIs
(≈1000 ms), mean RTs on the current trial after a series of alter-
nations are faster if the current trial is a repetition and slower if
the current trial is an alternation (Bertelson, 1961; Laming, 1968;
Kirby, 1976). This effect is called strategic expectancy (SE), sug-
gesting a relationship between a participant’s expectations and his
or her reaction time. Moreover, a transition occurs from AF to
SE as RSI increases (Soetens et al., 1985; Jentzsch and Sommer,
2002) and can be illustrated graphically (Audley, 1973). Prior to
the present paper, it was unknown whether such a transition from
AF to SE could also occur for a constant RSI with increasing prob-
ability of alternations, or, more generally, how sequential effects
carry over from equally probable to biased stimuli.

In this paper, we study sequential patterns in ERs as well as
in RTs for error and correct responses independently in TAFC
tasks in which stimuli are equally probable or strongly biased
toward repetitions or alternations, focusing on sequences of three
trials. Stimulus sequences can be biased by specifying stimulus
probabilities (state orientation) or by specifying transition prob-
abilities between states (transition orientation), and it is known
that these processes produce distinct response patterns in RT
(Brodersen et al., 2008). Since we are interested in sequential
effects and expectancy, we generate stimuli by a first-order Markov
process with unequal (as well as equal) transition probabilities (see
Figure 1): The unequal case sets the probability of an alternation
(PA) to be unequal to the probability of a repetition (1− PA).
Transition probabilities PA and 1− PA are held fixed over blocks
of trials, and we use relatively long RSIs (800 and 1,000 ms mean),
for which SE is most apparent. We reanalyze behavioral data from
an equal-probability experiment (Cho et al., 2002), and we collect
and analyze a new data set with PA set to 10, 50, and 90%. We
find significant transition probability effects on RTs for error and
correct responses and on ERs.

To further study patterns in RT and ER we extend the pure
drift diffusion model (DDM) to account for sequential patterns.
The pure DDM describes choice between two alternatives by rep-
resenting the noisy accumulation of the difference in evidence

FIGURE 1 | Stimulus order is generated by a transition-oriented
Markov process. Given current stimulus 1, the next stimulus will be
stimulus 2 (an alternation) with probability PA and stimulus 1 (a repetition)
with probability 1−PA.

(logarithmic likelihood) from a given initial condition to one of
two decision thresholds. This process is known to mimic aspects
of neural integration (Carpenter and Williams, 1995; Gold and
Shadlen, 2000; Bogacz et al., 2006; Gold et al., 2008). Adapting
the DDM, we propose two simple update mechanisms to vary
the initial condition and thresholds from trial to trial, depend-
ing on previous stimuli and response correctness. We show how
our adapted DDM can account for the observed trends in RT for
correct and error trials.

Related TAFC models frequently involve a variant of the leaky
competing accumulator (LCA; Usher and McClelland, 2001), fea-
turing two coupled stochastic differential equations which contain
multiple parameters to account for leakage (decay of previous evi-
dence) and for the interaction between neural populations. LCA
models have been shown to capture sequential effects for equally
probable stimuli (Cho et al., 2002; Gao et al., 2009). For certain
parameter ranges, it can be shown that the LCA, along with race,
inhibition, and other models, reduces to a DDM, and the DDM
itself may be extended to account for variability in the model para-
meters (Ratcliff and Smith, 2004; Bogacz et al., 2006). However, we
are aware only of modeling studies that predict both ERs and RTs
for sequential effects (Cho et al., 2002; Gao et al., 2009), and these
studies did not analyze patterns in error RTs, nor did they incorpo-
rate post-error parameter adjustments into the analysis. Bayesian
models of TAFC, which can also be represented by DDMs for cer-
tain parameter ranges (Liu et al., 2009), have also been used to
model sequential effects (Yu and Cohen, 2009; Wilder et al., 2009),
but none of these models yet accounts for patterns in errors.

Physiological evidence suggests sources of systematic changes
in behavior from trial to trial, providing some neurobiological
basis for our proposed update mechanisms. An electroencephalo-
gram (EEG) study has identified a SE pattern in the P300 response
(Sommer et al., 1999), an event related potential signal which
follows 300–600 ms after unexpected, alternating, stimuli. The
prefrontal cortex is also activated following an alternation after
frequent repetitions, with greater activation following a longer
run of repetitions prior to the alternation (Huettel et al., 2005). In
addition, the anterior cingulate cortex (ACC) is known to show
increased activity with increased conflict in representation, or
alternation of stimuli, and ACC activity has been linked to cogni-
tive control and post-error corrections and corresponding increase
in RT (Botvinick et al., 2001). Prior work has incorporated ACC
conflict signals into models of sequential and error effects (Jones
et al., 2002).

An understanding of the relationship between error correction
and sequential biasing mechanisms may allow us to further dif-
ferentiate between corresponding physiological processes. Such an
understanding could have broad implications. Indeed, recent work
suggests that the same mechanisms that account for sequential
effects also account for sequence learning (Soetens et al., 2004):
a general mechanism may therefore lend insight into sequence
learning (Soetens et al., 1985; Pashler and Baylis, 1991a,b; Frensch
and Miner, 1994), including linguistic processes. Further, better
understanding of the mechanisms behind simple discrimination
tasks may also allow for improved prediction and prevention of
errors.

Frontiers in Psychology | Cognitive Science July 2012 | Volume 3 | Article 213 | 2

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Psychology
http://www.frontiersin.org/Cognitive_Science/archive


Goldfarb et al. Post-error dynamics explain sequential effects

This paper is organized as follows. In Section 2, we describe two
experiments: the first originally reported in Cho et al. (2002) and
the second conducted specifically for the present study. We then
describe a diffusion model account of participant behavior in the
tasks. In Section 3, we describe the experimental results and dis-
cuss diffusion model fits to participant behavior. Finally, Section 4
contains further discussion and our conclusions, and it identifies
directions for future experimental and modeling work.

2. MATERIALS AND METHODS
In this section, we describe the protocol followed for the two exper-
iments presented in this paper. We then describe a general model
of decision making, which accounts for choice behavior with two
simple mechanistic adaptations to the pure drift diffusion model
(DDM). Finally, we describe a procedure for fitting the model to
match participant data in our adapted DDM.

2.1. EXPERIMENT 1: ERROR DYNAMICS IN UNBIASED TASKS
The first experiment (reanalyzed from Cho et al., 2002) served as a
control in which stimulus probabilities were equal and transition
probabilities were held constant at 50% throughout the experi-
ment. As the details of the experiment have been described in the
literature previously, we discuss them only briefly here. In Experi-
ment 1, six Princeton University undergraduates participated in a
task over a single session by identifying the upper or lowercase “o”
character on the screen with the appropriate keypress. The index
finger was used to identify the uppercase letter, and the middle
finger to identify the lowercase letter. Each session consisted of 13
blocks of 120 trials each, and a response to stimulus interval (RSI)
of 800 ms was used. Participants received course credit in exchange
for their participation in the study. For additional details see Cho
et al. (2002). No trials were omitted from our reanalysis.

2.2. EXPERIMENT 2: ERROR DYNAMICS IN TRANSITION-BIASED
TASKS

In the second experiment stimulus transition probabilities were
varied from block to block, so that in a given block a partici-
pant would have a constant high, medium, or low probability of
alternations. That is, given the current stimulus 1, a participant
would next see the other stimulus 2 with probability PA and the
same stimulus 1 again with probability 1− PA, and the sequence
of stimuli would be drawn from a transition-oriented Markov
process, as shown in Figure 1.

2.2.1. Participants
Sixteen adults (6 males) participated in exchange for a standard
payment of $12 per session of 9 blocks. Participants were recruited
from the Princeton University community via announcements
posted online and on campus. The experiment was approved by
the Institutional Review Panel for Human Subjects of Princeton
University, and all participants provided their informed consent
prior to participation.

2.2.2. Stimuli
Participants performed an RT version of a motion discrimination
task. The visual stimulus consisted of a black screen showing a
cloud of white moving dots with a red, stationary fixation dot at

its center. The red dot had size 0.30˚ visual angle, and the white
dots had size 0.15˚ each and moved within a circle of diameter 10˚
at a speed of 7˚/s and a density of 20 dots/degree2. On each trial
90% of the white dots would move coherently in a given, “correct”
direction, and the remaining white dots would move randomly.
The high coherence of motion was selected to ensure that some
processing was necessary but that the difficulty of the task would
remain low, consistent with other studies of sequential effects. A
decision could be indicated with a left or right keypress at any
point after dots appeared on the screen. Responses were collected
via the standard Macintosh computer keyboard, with the “Z” key
used to indicate leftward motion and the “M” key used to indicate
rightward motion. The experiment was performed on a Macintosh
computer using the Psychophysics Toolbox extension (Brainard,
1997).

2.2.3. Procedure
The participants were instructed to fixate upon the red dot and
then determine the direction of the moving dots. They were also
instructed to complete the session as quickly and as accurately as
possible. Each participant completed 1 session of approximately
60 min duration.

Each session consisted of 9 blocks of 200 trials each in which the
PA remained fixed at 10, 50, or 90% (3 blocks for each condition).
The order of the blocks was constrained to follow a Latin Square
design. Participants were allowed a short break between blocks.
To minimize anticipatory responding, response to stimulus inter-
vals were drawn from a gamma distribution with a mean of 1 s
for each trial, following the convention set in previous sequential
RT tasks (Rabbitt, 1966; Simen et al., 2006; Brodersen et al., 2008;
Balci et al., 2011). Outlier RTs (less than 100 ms or greater than
900 ms, comprising less than 1.5% of the data) were not included
in the analysis. We note that only the outlier was removed from
the RT and error analysis; it was included in sorting RR, AR, RA
and AA sequences, since it precedes a trial that is included in the
analysis. In addition, one participant failed to follow instructions
and the corresponding data were omitted from the analysis.

During each block in the session, the subjects received the fol-
lowing feedback. Correct responses were denoted with a short
beep sound, and error and premature, anticipatory responses were
denoted with a buzz sound. In addition, on every fifth trial, the
number of correct responses provided in that block so far was
briefly flashed across the screen. This was the only feedback that
was provided. Participants were seated at a viewing distance of
approximately 60 cm from the screen. Our protocol in Experi-
ment 2 is similar to others in the literature (e.g., Newsome and
Pare, 1988; Britten et al., 1992; Ratcliff and McKoon, 2008).

2.3. AN ADAPTED DRIFT DIFFUSION MODEL
To account for sequential effects and error effects, we consider a
simple adaptation of the pure drift diffusion model (DDM) in
which the initial condition and thresholds are updated sequen-
tially following each trial (Ratcliff and Rouder, 1998; Ratcliff and
Smith, 2004; Bogacz et al., 2006). In the pure DDM, information
is accumulated stochastically according to the following equation:

dx = µdt + σdW , x(0) = x0. (1)
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Here x(t ) represents the difference in logarithmic likelihood ratio
for the two choices, the drift rate µ (conventionally taken to be
positive) represents the difference in incoming evidence for the
correct alternative relative to the incorrect alternative, and σdW
is a Wiener (white noise) process with mean 0 and variance σ 2.
The evidence thresholds are set at ±z, and noisy accumulation
continues until x(t ) first crosses either +z (a correct decision)
or −z (an error). If the non-decision time is then given by
T nd such that RT=DT+T nd where DT is the decision time, it
can be shown that the mean DT and ER are (Gardiner, 1985;
Busemeyer and Townsend, 1992):

〈DT〉 = z̃tanh (z̃µ̃)+

{
2z̃
(
1− exp (−2 x̃0 µ̃)

)
exp (2z̃µ̃)− exp (−2z̃µ̃)

− x̃0

}
, (2)

and

〈ER〉 =
1

1+ exp(2z̃µ̃)
−

{
1− exp(−2 x̃0 µ̃)

exp(2z̃µ̃)− exp(−2z̃µ̃)

}
, (3)

in which the parameters have been scaled so that

z̃ =
z

µ
, x̃0 =

x0

µ
, and µ̃ =

(µ
σ

)2
. (4)

Given a non-zero initial condition x̃0, mean DTs are different for
correct and error trials:

〈DTcorrect〉 =
exp((z̃ − x̃0)µ̃)

1− ER

×
[(z̃ − x̃0)cosh((z̃ + x̃0)µ̃) sinh(2z̃µ̃)− 2z̃sinh((z̃ − x̃0)µ̃)]

sinh2 (2z̃µ̃)
,

(5)

〈DTerror〉 =
exp (− (z̃ + x̃0) µ̃)

ER

×
[(z̃ + x̃0)cosh ((z̃ − x̃0)µ̃) sinh(2z̃µ̃)− 2z̃sinh((z̃ + x̃) µ̃)]

sinh2(2z̃µ̃)
.

(6)

See the Appendix for derivations of equations (5 and 6).
The simplicity and analytical tractability of the DDM is a moti-

vating factor in our decision to use it as a basis for our study. We
note that the DDM is much simpler than the leaky competing
accumulator (LCA) Model (Usher and McClelland, 2001), which
has been used in prior models of sequential effects (Cho et al.,
2002; Jones et al., 2002; Gao et al., 2009). LCA processes involve
two or more coupled non-linear and stochastic differential equa-
tions. We compare the adapted DDM with the LCA-based Cho
et al. (2002), Jones et al. (2002), and Gao et al. (2009) models in
Section 3.1, using the data of Experiment 1.

2.3.1. Priming mechanism
As with other sequential effects models (e.g., Cho et al., 2002; Jones
et al., 2002; Gao et al., 2009), parameters are updated by a prim-
ing mechanism to reflect the stimulus history of repetitions and
alternations. In the Cho, Jones, and Gao Models, priming is imple-
mented by small history-based changes to the drift parameter, µ.

In contrast, in our adapted DDM we update the initial conditions
at trial n+ 1 by setting

x̃0 (n + 1) = ±k

(
M (n)−

1

2

)
± x̃offset, (7)

in which n is the previous trial number, k > 0 is a scaling constant,
and M (n) serves as a dynamic memory of repetitions and updates
at the start of each new trial. M (n) is confined to the interval [0,1],
so that M (n)− 1/2 ranges from−1/2 to 1/2. A symmetry between
R and A biases is then enforced: a positive value of M (n)− 1/2
corresponds to bias toward R trials and a negative M (n)− 1/2
corresponds to bias toward A trials. Moreover, updates to M (n)
are defined such that an increase in bias toward R trials will corre-
spond to a decrease in bias toward A trials, and vice versa. Without
loss of generality, we define our model terms such that the positive
direction for x̃offset always corresponds to the correct response.
The normalized drift parameter µ̃ must then always take a pos-
itive value, and the sign of the offset bias x̃offset and the scaling
constant k will vary from trial to trial, with positive coefficients
selected if the current trial is a repetition of the previous stimulus
and negative coefficients if it is an alternation.

The memory function is updated as follows:

M (n) = 1M (n − 1)+

{
1−1, if repetition from n − 1 to n,

0, if alternation from n − 1 to n,

(8)

where 0<1< 1. The1 parameter determines the dependence of
behavior on previous trials, with higher values corresponding to
the level of influence of trials further back in the sequence and
lower values corresponding to dependence on only recent trials.
A 1 value of 0.5 corresponds to a memory length of approxi-
mately four trials (14

= 0.0625), after which history dependence
goes below 5%. A single update parameter1 can then account for
responses to both R and A trials. In contrast, the Cho, Jones, and
Gao models used a memory function M (n) but separately tracked
R and A trials. Our model is always initialized with no bias, so that
M (1)=M (2)= 1/2, after which M (n) updates according to the
above expression. This mechanism allows for large adjustments to
initial conditions to follow the termination of strings of repetitions
or alternations. The updating mechanism is similar to updates to
biasing terms proposed in previous work (Cho et al., 2002; Gao
et al., 2009), where initial conditions and drift rates are updated.

2.3.2. Error-correcting mechanism
We also employ error-correction threshold modulation. Threshold
modulation has been studied in the context of several sequential
choice tasks (Bogacz et al., 2006; Simen et al., 2006). In particular,
models have used variable thresholds in describing optimal behav-
ior, as well as to account for variability in reaction time. Increased
caution is attributed to a higher threshold, which is understood
to follow error commission. However, prior models of sequential
effects have not included threshold modulation.

In the adapted DDM, the thresholds are adjusted after every
trial and constrained to remain symmetric at ±z̃ . After a correct
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trial, z̃ is reduced by z̃down > 0, and after an error trial, increased
by z̃up > 0 :

z̃ (n) = z̃ (n − 1)+

{
−z̃down, if correct at n − 1,

z̃up if error at n − 1.
(9)

The range of z̃(n) is constrained so that the thresholds always have
a magnitude greater than or equal to the magnitude of the ini-
tial conditions, i.e., such that z̃(n) ≥ k

2 + x̃offset; z̃(n) is also
constrained so that z̃(n) ≤ z̃max . The thresholds are initialized
conservatively such that z̃(1) = z̃max . If an update causes z̃(n) to
fall outside its bounds, z̃(n) is then set to the value of the nearest
bound until the next trial.

Sequential, error-correcting variations in the evidence thresh-
olds z̃(n) can produce significant differences between reaction
times for correct and error trials. Trials with lower thresholds have
higher ERs and faster RTs; thus, on average, error trials are faster
and correct trials slower. This effect is modulated by adjustments
to the initial condition x̃0, which result in faster correct or incor-
rect responses by biasing the system asymmetrically toward one
of the choices. The memory function and initial condition and
threshold updates add six parameters to the model: k, x̃offset, 1,
z̃down, z̃up, and z̃max, in addition to µ̃ and T nd, for a total of eight
parameters.

2.4. MODEL SIMULATION AND DATA FITTING PROCEDURE
Fitted model parameters were used to validate the adapted DDM
against data from the two experiments. Separate analysis and fit-
ting was conducted for Experiments 1 and 2. In each case, the
data were sorted by sequence, RT, and ER. Model behavior was
computed for each parameter set and then sorted similarly. The
model was run using the same stimulus sequences that each par-
ticipant had encountered. Parameters were selected by attempting
to minimize the sum of squares error between model prediction
and participant data,

Err =
N∑
i

(
ri,model − ri,data

)2
, (10)

in which the elements ri include unweighted overall mean RTs for
each of the four possible second-order sequences for repeating (R)
and alternating (A) stimuli. We considered RR, AR, RA, and AA
sequences for correct trials, for error trials, and for trials overall,
mean ERs for these sequences, as well as mean RTs before error
trials, on error trials, and after error trials. For Experiment 1, r
had N = 19 elements. For Experiment 2, r had N = 3× 19= 57
elements, because data was included for each of the 3 values of
PA. Time was considered in units of seconds and ERs in decimal
fractions of trials, so that range of parameters for elements of r
were comparable.

The search for parameters was conducted using a Trust-Region-
Reflective Optimization (TRRO) algorithm (Coleman and Li,
1994, 1996). The function lsqnonlin in Matlab was used with
default options to search and select parameters that minimize
equation (10). For each parameter set and experimental condi-
tion, the model ran at least 5 times through the stimulus sequence
that each participant had encountered in a given block of trials.

(Thus, if a participant were to see left, then left, then right stimuli,
the model was presented with those same stimuli in sequence left-
left-right, along with the stimuli preceding and following them,
and these entire sequences would be repeated for the model sub-
ject at least 5 times.) For each trial the probability of error was
computed from equation (3) and from this number the correct-
ness or error of that trial was decided by biased coin flip. The
expected correct or error RT for the trial was then obtained from
equation (5) or equation (6), and parameter updates were imple-
mented according to equations (7–9). The individual trial results
were then sorted and averaged in the same manner as the experi-
mental data, model predictions were inserted into equation (10),
and model parameters were updated by the TRRO algorithm. This
was repeated until the lsqnonlin convergence criterion was met.
To produce the model data plots in Section 3, each model with its
best fit parameters was rerun 10 times and the resulting RTs and
ERs computed by averaging over these runs.

Use of the analytical expressions of equations (3–6) for expected
ERs and RTs substantially speeds up the fitting process, since
direct numerical simulations of equation (1) are avoided. The
final parameter selections are listed in Table 1, and the results
and implications of the fitting process are considered in the results
and discussion sections of this paper.

A study of the differences between the two tasks can lend some
insight into the different fit parameterizations for each of the
experiments. We note that the choice tasks presented in Experi-
ment 2 are more challenging than those of Experiment 1, in which
stimuli were highly discernable. The difference in signal to noise
ratios (µ̃) in the fits to the two experiments is therefore to be
expected. In addition, more difficult tasks generally incur more
conservative or cautious behavior in subjects, even when it is not
in the subjects’ best interests (Bogacz et al., 2006). Increased cau-
tion (and consequently higher thresholds in DDM fits) have been
shown to correspond to more difficult tasks (e.g., Ratcliff et al.,
2000, 2001, 2004). Thus, after correct responses in Experiment 2,
model threshold adjustments (z̃down) are small, whereas in Experi-
ment 1 they are larger, and corrections after errors (z̃up) are smaller
in Experiment 1 than in Experiment 2. Our 1 values are consis-
tent with studies showing stimulus history dependence of up to 4
trials back (e.g., Soetens et al., 1984). The remaining parameters
are relatively closer in magnitude for both experiments.

3. RESULTS
In order to better understand the relationship between sequen-
tial effects and error effects, data from the two experiments were
sorted by stimulus sequence and response correctness and com-
pared with model predictions. We first note several trends from
this analysis in the Experiment 1 data. We then analyze data from
Experiment 2, and we consider how error and sequential effects
are influenced by the relative frequencies of repetition (R) and
alternation (A) trials. At the same time, we validate our model fits
by comparing them with the data from the two experiments.

In our analysis, we refer to RA and AR sequences as unexpected
sequences, and RR and AA sequences as expected sequences. The RT
for an RA sequence is the RT corresponding to the A trial, and for
an AR sequence, the RT corresponding to the R trial. We call an R
line one which connects plotted data for RR and AR, and an A line
one which connects plotted data for RA and AA. We consider only
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the two most recent trials in each sequence in our calculations, as
the effects of errors are known to have a limited duration (Rabbitt,
1966); moreover, for the strongly biased stimuli (PA= 10, 90%)
of Experiment 2, longer sequences of A’s, respectively, R’s, occur
too rarely to yield sufficient data. The degrees of freedom for the
F-tests were Greenhouse-Geisser adjusted for all reported main
effects and interactions in which there were significant violations
of sphericity.

3.1. EXPERIMENT 1: ERROR DYNAMICS IN UNBIASED TASKS
We consider sequential effects and error effects in Experiment
1 data (referred to as Cho Data), in which R and A trials were
equally likely, and as has been customary, we initially average over
all responses, correct and incorrect. We first discuss overall sequen-
tial effects in RT and ER, as shown in Figure 2. As expected, we find
the smallest mean RT and ER for expected trials (RR, AA), and the
largest mean RT and ER for unexpected trials (AR, RA). The effects
of sequence on RT [F(3,15)= 14.81, p< 0.001, η2

= 0.13] and ER
[F(3,15)= 8.80, p< 0.01, η2

= 0.25] were significant in two one-
way, within-groups ANOVAs. We consider also three published,
generative models of the data in Experiment 1, which we refer to
as the Cho et al. (2002), Jones et al. (2002), and Gao et al. (2009)
Models, respectively. These models were designed to account for
these basic sequential effects, and we note that they, as well as the
adapted drift diffusion model (DDM) described in Section 2.3,
account for trends in mean RTs and ERs.

We next consider the data separated into correct and error tri-
als, shown in Figure 3A as solid and dotted lines, respectively.

Splitting the data in this way reveals a separation in mean RT for
correct and error responses that is greatest for unexpected trials
(AR, RA) and least for expected ones (RR, AA). For unexpected
trials, error responses are fast, and correct responses are slow.
A two-way within-groups ANOVA shows the effect of response
correctness is significant [F(1,5)= 113.93, p< 0.001, η2

= 0.35)],
along with the interaction of response correctness and expected-
ness of a stimulus [F(1,5)= 16.51, p< 0.01, η2

= 0.19]. We note a
slight asymmetry in the responses such that RTs for error and cor-
rect trials are closer for the R lines than for the A lines. Figures 3B,C
illustrate the results of the Cho and Jones Models, respectively, and
Figures 3D,E those of the two versions of the Gao Model. While
all four of these models capture the trends in RT for correct tri-
als, none of them predicts the qualitative patterns or quantitative
results for error trials. Since the ERs are generally low, RTs averaged
over both correct and error trials are close to the mean RTs for the
correct trials alone, and this failure of the models becomes appar-
ent only when error trials are considered separately (cf. Figure 2,
which displays fairly good fits, and see Cho et al., 2002; Jones et al.,
2002; Gao et al., 2009). This analysis also reveals that the errors,
while fast on average, are not uniformly so, being significantly
faster for unexpected sequences (AR, RA). Moreover, as shown in
Figure 3F, the adapted DDM accounts for all the RT data.

Strikingly, we note that when plotted against each other as in
Figure 4, RTs for correct and error trials for the sequences RR, AR,
RA, and AA display a monotonic and nearly linear relationship,
which we call the sequential RT tradeoff. As we shall see, such a
tradeoff also holds for Experiment 2. In Figure 4 we show the

Table 1 | DDM parameterization.

µ̃ T nd K x̃0,offset 1 z̃down z̃up z̃max

Experiment 1 38.1747 0.2626 0.0943 0.0051 0.6860 0.0058 0.0348 0.2857

Experiment 2 19.3312 0.3359 0.1181 0.0034 0.6882 0.0034 0.1635 0.2062

A B

FIGURE 2 | Mean (A) RTs and (B) ERs for the data in Experiment 1
(Cho Data), the three published fits to the data (Cho, Jones, Gao), and
the fit presented for this data in the adapted DDM of the present
study. In the diagram, an RR sequence refers to the RT on the second

repetition of a stimulus (e.g., left, left, left ) and an AR sequence refers to
the RT on the first repetition of a stimulus (e.g., left, right, right ), etc. The
adapted DDM provides the best fit to RTs, but underestimates errors,
especially for AA sequences.
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FIGURE 3 | Sequential effects in Experiment 1: (A) data, (B) results of the
Cho Model (Cho et al., 2002), (C) results of the Jones Model (Jones et al.,
2002), (D,E) results of the Gao Models (Gao et al., 2009), and (F) results
of the adapted DDM. The Cho and Jones models predict a dimensionless
reaction time, which we give here in non-dimensional units (B,C). The adapted

DDM captures the slopes of the R and A curves for error and correct trials. In
these figures, the correctness or lack thereof of a given trial corresponds only
to that trial itself, so a left-right-left sequence is tabulated as correct for the
final left stimulus if and only if the final trial were identified correctly as a left
stimulus.

data from Experiment 1 (R2
= 0.995, p< 0.01) and the adapted

DDM, and from a separate study by Jentzsch and Sommer, 2002;
R2
= 0.96, p< 0.05). The area of the circles are proportional to the

ERs for the given sequences. We note that the smallest ERs corre-
spond to sequences with relatively fast correct responses and slow
errors, while the high ERs occur with relatively fast errors and slow
correct responses. While the overall ordering of the sequences (RR,
AR, RA, AA) in the tradeoff differs between the two experimen-
tal studies, in both cases the points corresponding to unexpected
trials (AR, RA) lie at the upper left, and those corresponding to
expected trials (RR, AA) lie at the lower right.

The ordering of the tradeoffs is influenced by the nature of
the task. However, in each task we see that an increase in time to
respond correctly (or a bias toward the correct response) is corre-
lated with a decrease in time to respond in error, and vice versa.
Our proposed biasing mechanism achieves a similar effect.

Finally, we consider the RTs before, during, and after an error
in Experiment 1, as shown in Figure 5. Mean RTs for trials imme-
diately following an error are longer than both those for the error
trial itself and for the trial immediately before the error. A one-way
within-groups ANOVA confirms that this effect on RT is signif-
icant [F(2,10)= 16.37, p< 0.001, η2

= 0.48]. We again compare
the behavior with the adapted DDM and the three previous mod-
els. In the Cho Model, the RT after an error is slower than the
RT on the error trial but faster than the trial immediately prior to

FIGURE 4 | Sequential RT tradeoff for unbiased tasks: a slower RT for
correct trials corresponds to a faster RT for error trials for the
sequences RR, AR, RA, and AA. The RT tradeoff for Experiment 1 is shown
in red. Also shown, in blue: the RT tradeoff from a prior study by Jentzsch
and Sommer (2002). Adapted DDM fits to Experiment 1 data are shown in
black. The areas of the circles are proportional to the ERs.

the error. The Jones Model maintains the trends in the data but
parameter values are skewed so that the range of RTs is larger. In
the two Gao Models, mean RTs for trials immediately preceding
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and following an error are faster than those on the error trial itself:
opposite to the data. The adapted DDM provides the best fit, with
the RTs for error trials and post-error trials closely matching the
data, although it underestimates RTs on the pre-error trial.

We compare the adapted DDM with the other models using
the Akaike Information Criterion (AIC; Akaike, 1974; Stone,
1979), corrected AIC (AICc; Hurvich and Tsai, 1989; Burnham
and Anderson, 2002), and Bayesian Information Criterion (BIC;
Akaike, 1980; Smith and Spiegelhalter, 1980), which provide
model fit comparisons that account for the number of parame-
ters included in each model. Scores for the different model fits
are shown in Table 2. The adapted DDM receives the best overall
and relative scores on all three metrics, confirming the fit qualities
shown in Figures 2–5. AICc values cannot be computed for the
Gao model, because the number of means being compared is too
close to the number of parameters used in the model itself.

3.2. EXPERIMENT 2: INFLUENCE OF STIMULUS ALTERNATION
FREQUENCY

We now consider the role that alternation frequency plays in
sequential and error effects. We first address overall trends in
RT and ER, as shown in Figures 6A,B, respectively, following the

convention in the sequential effects literature (e.g., Soetens et al.,
1985; Jentzsch and Sommer, 2001; Cho et al., 2002). Trends for the
PA= 50% blocks match trends from Experiment 1 with longer
RTs and higher ERs for unexpected trials, and shorter RTs and
lower ERs for expected trials. Trends for the PA= 10% blocks and
PA= 90% blocks are clearly distinguishable from the trends for
PA= 50% blocks, notably in the magnitudes of the slopes of R
and A lines. Further, there is an approximate symmetry between
the PA= 10% case and the PA= 90% case.

Sequential effects in mean RTs are clearly influenced by the
probability of alternations, with respect to both overall mean RTs
and ERs (Figures 6A,B). Mean RTs for unexpected sequences (AR,
RA) remain similar for all PA conditions but there are signifi-
cant differences in mean RTs for expected sequences (RR, AA).
For the highest PA, RT is faster on AA trials than the correspond-
ing sequence RTs for lower PAs, and for the lowest PA, the RT
is faster on RR trials than the corresponding sequence RTs for
higher PAs. As expected, we find that the effects of sequence
[F(3,42)= 50.62, p< 0.001, η2

= 0.26] and its interaction with
PA [F(3.36, 47.04)= 43.09, p< 0.001, η2

= 0.26] on RT are both
significant. Error rates are greatest for AR trials at the highest PA

and RA trials at the lowest PA. The effects of sequence [F(1.95,

FIGURE 5 | Post-error slowing in Experiment 1 data and in the
models of Cho et al. (2002), Jones et al. (2002), Gao (first model;
Gao et al., 2009), and the adapted DDM of the present study. In the
Experiment 1 data, the mean RT for a trial immediately following the
error trial is slower than that for the trial before the error, and the mean

RT for the error trial itself is fast. The Cho and Gao models fail to
account for both trends. The Jones Model accounts for the proper
trends but overestimates the magnitude of the post-error slowing. The
adapted DDM accounts for both trends but underestimates post-error
RTs.

Table 2 | Model performance comparison.

Model Total parameters R2 AIC AICc BIC

Adapted DDM 8 0.996 84.7 115.1 108.2

Cho 13 0.936 138.2 237.0 176.5

Gao 1 18 0.915 140.4 – 193.4

Gao 2 18 0.951 137.0 – 190.0

Jones 16 0.943 146.9 450.9 194.1
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FIGURE 6 | Mean (A) RTs and (B) ERs for the three values of PA in
Experiment 2, averaged over correct and error trials. The influence of PA is
most apparent in the mean RT plot on expected trials (RR, AA) and in the
mean ER on unexpected trials (AR, RA). Model fits for (C) RTs and (D) ERs

re-create behavioral trends in RTs and ERs but overestimate RTs for expected
trials (RR, AA). The error bars in plots (A,B) represent the standard error of the
mean, and in (C,D) the average value of standard error of the mean over 10
simulation runs (see Section 2.4 for details).

27.30)= 20.86, p< 0.001, η2
= 0.31] and its interaction with PA

[F(2.46, 34.44)= 20.19, p< 0.001, η2
= 0.32] on ER are also both

significant. The adapted DDM reproduces the qualitative pat-
terns in the data, but overestimates RTs for expected sequences
when their probabilities are low (RR, with PA= 90%; AA, with
PA= 10%), and underestimates ERs for unexpected sequences
(AR, RA): Figures 6C,D.

We also found that the overall sequential effects are influenced
by the probability of alternations. The relationship between the
time to respond to sequences ending in R versus A on the final
sequence is known to indicate relative preference for R or A tri-
als (Audley, 1973). Prior work has shown that preference for A
trials varies with RSI, but the role of the likelihood of A trials in
determining the relative preference for A has not been studied.

The green lines corresponding to PA= 50% in Figures 7A,C
show no preference for R or A: expected sequences (RR, AA) yield
faster RTs symmetrically in R and A than unexpected sequences
(AR, RA). The red PA= 10% blocks show a strong preference for
R: the mean RT after an R is faster in the case of RR than it is for
AR, whereas the RT after A is similar for both RA and AA. The blue
lines corresponding to PA= 90% show a strong preference for A:

the RT after an A is faster in the case of AA than it is for RA, whereas
the RT after an R is similar for both RR and AR. For PA= 10%, the
model predicts, as in the data, that the repetition RT is faster for
RR than it is for AR, but the model predicts a slower alternation RT
for AA than for RA, and it shows a symmetric trend for PA= 90%.
In summary, both data and model exhibit increases in preference
for A with increased probability of alternations, showing that rel-
ative preferences for R or A trials can be influenced by transition
probabilities in addition to task properties such as RSI.

In Figures 7A–C we replot the mean RT data, separated
into correct and incorrect responses, thus revealing differing
sequential effects for each PA. A two-way within-groups ANOVA
shows that the effects of correctness [F(1,14)= 249.64, p< 0.001,
η2
= 0.80], whether or not the trial was expected [F(1,14)= 54.70,

p< 0.001, η2
= 0.44], and the interaction of these two factors

[F(1,14)= 88.38, p< 0.001, η2
= 0.62] are all significant. For

unbiased sequences (PA= 50%), sequential effects are again simi-
lar to those for correct and error trials in Experiment 1 (Figure 7B,
cf. Figure 3A). For both low and high PA blocks, the orientations
of the R and A lines are maintained, with correct R lines sloping
upwards from RR to AR and correct A lines sloping down from RA
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FIGURE 7 | (A–C) RT data for error and correct trials in Experiment 2
compared with the adapted DDM (D–F). The slopes of the R and A
lines are reversed for correct and incorrect responses. Error trials
incur faster responses on unexpected trials (RA, AR) than on
expected trials (RR, AA); this trend is reversed for correct responses.
For low PA, the R lines overlap, and for high PA, the A lines overlap,

resulting in an approximate reflectional symmetry between data for
the high and low PA blocks, so that sometimes the mean time for an
error trial is slower than for a correct trial. The error bars in plots (A–C)
represent the standard error of the mean, and in (D–F) the average
value of standard error of the mean over 10 simulation runs (see
Section 2.4 for details).

to AA. For PA= 50%, the slopes of the R and A lines for incorrect
responses are nearly opposite the slopes of the R and A lines for
correct responses. For PA= 10% blocks, the R lines cross and the A
lines are further apart than in the PA= 50% blocks. For PA= 90%
blocks, we see a mirrored trend, in which the A lines cross and the
R lines are further apart than in the PA= 50% block. We also note
a striking asymmetry for the biased stimuli: for PA= 10% R lines
are, on average, closer together than A lines, and for PA= 90%
this relationship is mirrored, so that A lines are closer than R lines.
However, the mirroring is not perfect: the degree of overlap in R
lines is greater for PA= 10% than the corresponding overlap in A
lines for PA= 90%.

The trends in correct and error trial RTs, including the crossover
of the R and A lines, are generally captured by the adapted DDM,
as shown in Figures 7D–F. However, the steepness of slope of the
R (respectively, A) lines are underestimated for correct trials for
PA= 90% (10%), due to overestimation of the RR (AA) RTs.

Next, we note that the sequential RT tradeoff between correct
and error responses is also observed in Experiment 2, as shown
in Figure 8A. As in Figure 4, the areas of the circles are propor-
tional to the corresponding ERs. The relationship between RTs
for correct and error trials for each of the sequences RR, AR, RA,
and AA is monotone (and nearly linear) for all points shown in

the figure (R2
= 0.75, p< 0.001), and this correlation is also cap-

tured by our model (R2
= 0.74, p< 0.001). The sequences with

the largest ER have relatively fast RTs for errors and relatively
slow RTs for correct trials. Note, however, that data for individ-
ual PA

’s of 10, 50, and 90% is not quite as strongly correlated.
Differences in order can be expected because the sequential effects
for each probability of alternation are influenced by the probability
of alternation.

Finally, we note that post-error slowing occurs for all PA blocks
with the same trend: the error trial itself incurs a slightly faster RT
than the trial which precedes it, and the post-error trial incurs an
RT significantly slower than RTs for the preceding two trials, as
shown in Figure 9. A two-way within-groups ANOVA indicates
that the effects of time before, upon, and after an error com-
mission [F(1.36, 19.04)= 68.25, p< 0.001, η2

= 0.57] and on PA

[F(2,28)= 5.83, p< 0.01, η2
= 0.07] are both significant, but the

effect of their interaction is not significant. Thus, in Experiment 2,
pre- and post-error RTs share the pattern of RTs in Experiment 1,
and this pattern is preserved over all three values of PA. The bottom
panel shows that our model both qualitatively and quantitatively
captures the post-error slowing in Experiment 2. However, as in
Experiment 1 (Figure 5), the model fails to produce the observed
speed-up on the error trial itself.
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FIGURE 8 | Sequential RT tradeoff for Experiment 2. Mean RTs for correct trials are strongly correlated with mean RTs for error trials for each of the
sequences RR, AR, RA, AA, for each value of PA for both (A) data and (B) adapted DDM.

FIGURE 9 | (A) Post-error slowing in Experiment 2 data is
independent of PA. (B) The model fit also predicts post-error slowing
but does not fully account for pre-error speeding. The error bars in

plot (A) represent the standard error of the mean, and in (B) the
average value of standard error of the mean over 10 simulation runs
(see Section 2.4 for details).

4. DISCUSSION
In this paper, we propose priming and error-correcting mecha-
nisms to account for sequential effects and post-error slowing,
respectively. Each mechanism, on its own, is commonplace in
models of decision making. Indeed, various priming mechanisms
have been previously proposed to account for sequential effects
(Cho et al., 2002; Jones et al., 2002; Gao et al., 2009). Post-error
slowing is also known to occur and exert a significant influence
on RT patterns (Rabbitt, 1966, 1968a; Laming, 1979b). The imple-
mentation of post-error slowing is understood to be a simple one:
in an accumulator model, the response thresholds can be raised
following an error to increase the necessary processing time before
a decision is reached (Rabbitt and Rodgers, 1977; Rabbitt and Vyas,
1981; Brewer and Smith, 1984; Jentzsch and Dudschig, 2009). To
the best of our knowledge, no prior model of sequential effects
has explicitly incorporated such an error-correcting mechanism to
also account for post-error slowing. We consider sequential effects
for both high and low probabilities of alternations, a consideration
unique to this paper: previously, sequential effects for sequences of

alternating and repeating stimuli had been studied only for stim-
uli in which the probabilities of alternations and repetitions were
equal.

Our model is informed by previous work: the initial conditions
are varied according to a priming function similar to those in other
models (Cho et al., 2002; Jones et al., 2002; Gao et al., 2009), and the
thresholds are raised after incorrect responses and lowered after
correct ones (Simen et al., 2006). Variability in thresholds of drift
diffusion processes during a trial can result in fast errors (Ratcliff
and Rouder, 1998). Our implementation, however, is unique: we
use both priming and error-correcting mechanisms in the same
model. In doing so, we can account for many of the observed
trends in behavior.

Our adaptation of the pure drift diffusion model has multi-
ple advantages. The pure DDM is analytically simple, and explicit
expressions exist for both RT distributions and accuracy, and sep-
arate and closed-form expressions for mean RTs can be derived
for correct and error responses, as shown in the Appendix. With
non-zero initial conditions, the pure DDM can also account for

www.frontiersin.org July 2012 | Volume 3 | Article 213 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Goldfarb et al. Post-error dynamics explain sequential effects

RT distributions for correct and error trials. Moreover, the prim-
ing and error-correction mechanisms that we have proposed are
conceptually straightforward. With the error-correction mecha-
nism, our model accounts for post-error slowing: the RT for the
trial which immediately follows an error trial is not only signif-
icantly slower than the error trial but also slower than the RT
for the trial immediately preceding the error. We show that when
thresholds are systematically adjusted to account for error and cor-
rect responses and priming is implemented, sequential patterns in
error and correct response trial RTs emerge and are consistent with
participant behavior, as shown in Figures 5 and 9.

Indeed, our adapted DDM predicts the characteristic trends in
mean RTs for sequences ending in correct or incorrect responses
whereas several other models do not. We show experimentally and
for the first time that unexpected trials (AR or RA) result in rel-
atively slow correct responses and fast errors, whereas expected
trials (RR or AA) result in relatively fast correct responses and
slow errors as shown again in Figures 3 and 7. Our model cap-
tures aspects of this behavior with the incorporation of post-error
adjustments to the model thresholds: priming accounts for the
sequential patterns in RT for correct trials, and error-correction
accounts for the patterns in RT for the error trials.

The relationship between RTs for correct and error trials
is central to our model: biasing the initial conditions toward
expected sequences automatically biases them against unexpected
sequences. Subjects biased against an unexpected stimulus will
then respond to it slowly if they are to respond correctly, and
rapidly if they are to respond in error. In contrast, in pre-
vious work (Cho et al., 2002; Jones et al., 2002; Gao et al.,
2009), the biasing was instead applied to sensitivity to stimu-
lus, so that the relationship between RT for error and correct
trials was less direct. Moreover, when biasing is coupled with
explicit post-error adjustments, further nuances in the relation-
ship between mean time to respond correctly versus in error may
be realized.

Significantly, we also identify a sequential RT tradeoff, in which
the correlation between the mean RTs for error and correct trials
for each of the sequences (RR, AR, RA, AA) is quite strong: a faster
RT on an error response corresponds to a slower RT on a correct
response. The correlation between mean RTs for correct and error
trials is captured by our model, as shown in Figures 4 and 8.

We then show that sequential effects in mean RTs overall, as
well as in mean RTs for correct and error trials, are significantly
influenced by the probability of alternations. Our data reveals
remarkable near-mirror-symmetry between RT patterns for alter-
nations when the probability of alternations is low and repetitions
when the probability of alternations is high: incorrect responses
are fast and correct responses are significantly slower. Sequential
effects in ER also vary with the probability of alternations. Our
model captures this near-symmetry in Figures 6 and 7.

Moreover, we have shown, both in our data and in our model,
that an increase in the likelihood of alternations corresponds to
an increase in relative preference for alternations. This can be
inferred from the RT versus sequence plots in Figure 6A. The
change in alternation preference with changing likelihood of alter-
nations suggests that choice behavior can be informed and even
manipulated by the probabilistic structure of the environment.

The sequential effects in RT and ER for various probabilities
of alternation are of particular interest due to their relevance
to prior physiological studies. In particular, previous work has
shown that the anterior cingulate cortex (ACC) is sensitive to
alternations in a sequence of stimuli and identified correspond-
ing neural signals (e.g., Botvinick et al., 2001). Prior models
of sequential effects, such as those of Jones et al. (2002) and
Gao et al. (2009) have included a “conflict” signal informed by
activity in the ACC, and the signal increases in strength with fre-
quent alternations. However, the near-symmetry of behavior at
high and low probabilities of alternations in our data suggests
a comparable sensitivity to repetitions and alternations, rather
than to alternations alone. Indeed, prior work has suggested that
the role of the conflict signal in trials with long RSI, such as
those considered in this paper, is a minor one (Jones et al., 2002;
Jentzsch and Leuthold, 2005) and secondary to that of explicit
error correction. Jones et al. (2002) found that the incorpora-
tion of a conflict signal in their model resulted in a small but
significant improvement in model fit. For short RSI, however,
the role of response conflict is more significant (Jentzsch et al.,
2007; Jentzsch and Dudschig, 2009). Future work could further
clarify the respective roles of response caution (thresholds) and
response conflict (ACC) co-varying RSIs and probabilities of
alternation.

Additional directions for future work include a considera-
tion of alternative error-correction and priming mechanisms. For
example, the magnitude of adjustments made due to our prim-
ing mechanism varies from trial to trial, while adjustments from
the error-correction mechanism are consistent. Alternate models
in which different update schemes are employed are worthy of
consideration. Such a study could allow for further model simpli-
fication and provide a stronger account of behavior in choice tasks.
Moreover, sufficient data should be gathered so that sequential and
error effects can be studied and described for individual partici-
pants, by fitting RT distributions for different stimulus sequences
and individual participants. Finally, a consideration of human
behavior in more difficult tasks, such as those with low or vari-
able stimulus discriminability, or tasks in which the probability
of alternations varies during blocks of trials, can build upon our
work.

In this paper, we have presented a neurally plausible and con-
ceptually straightforward account of sequential effects and post-
error slowing by developing a simple repetition-based priming
mechanism, coupled with an error-correction mechanism. We
implemented these mechanisms within the context of a pure
DDM, so the behavior can be described analytically and in closed
form. Despite its simplicity, our implementation of the DDM
accounts for nuances in behavior which are not found in pre-
vious models. In particular, we identified in our data, and our
model accounted for, sequential effects for correct and error trials,
as well as for trials during blocks with high and low probabili-
ties of alternations. This suggests that an error-correction process,
such as a simple adjustment of response thresholds after each
trial, plays an instrumental role in sequential patterns in RT.
Future work may further clarify the implementation of the error-
correction process and its implications for perceptual decision
making tasks.
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APPENDIX
In this section, we derive the mean reaction time for the drift diffusion model (DDM) conditioned on hitting either the upper zu or
lower−z l boundaries, and for a general initial condition x0 ∈ (−z l, zu).

Suppose that x(t ) is the position of a Brownian particle at time t. The dynamics of the movement of this particle are governed by
the drift diffusion equation:

dx = µdt + σdW (A1)

x (0) = x0, (A2)

in which µ is the deterministic drift of the particle, x0 is the starting position, and σdW are independent white noise (Weiner) incre-
ments of r.m.s strength σ . We assume that the particle is allowed to move until it hits either an upper boundary x(T )= zu or a lower
boundary x(T )=−z l where T is the hitting time. In this case, the joint densities of the hitting time for boundaries at zu and −z l are
given by

g (t , x (T ) = zu) =
πσ 2

(zu + z l)
2 e

µ

σ 2 (zu−x0)
∞∑

n=1

ne−αn t sin

(
nπ (zu − x0)

zu + z l

)
, t ≥ 0, (A3)

g (t , x (T ) = −z l) =
πσ 2

(zu + z l)
2 e
−
µ

σ 2 (z l+x0)
∞∑

n=1

ne−αn t sin

(
nπ (z l + x0)

zu + z l

)
, t ≥ 0, (A4)

where αn =
1
2

[
µ2

σ 2 +

(
nπσ

zu+z l

)2
]

(cf. Feller, 1968; Ratcliff, 1978; Ratcliff and Smith, 2004).

To obtain the conditional densities, one must divide the above equations by the probability of hitting that particular boundary, i.e.,
g (t |x(T ) = zu) = g (t , x(T ) = zu)/P[x(T ) = zu]. These probabilities are (Feller, 1968)

P [x (T ) = zu] =
e
−2

µx0
σ 2 − e

2
µz l
σ 2

e
−2

µzu
σ 2 − e

2
µz l
σ 2

, (A5)

P [x (T ) = −z l] =
e
−2

µzu
σ 2 − e

−2
µx0
σ 2

e
−2

µzu
σ 2 − e

2
µz l
σ 2

. (A6)

Thus, the mean reaction time conditioned on hitting the upper boundary is given by

〈T 〉|zu
=

∫
∞

0
tg (t |x (T ) = zu) dt

=
1

P [x (T ) = zu]

πσ 2

(zu + z l)
2 e

µ

σ 2 (zu−x0)
∞∑

n=1

nsin
(

nπ(zu−x0)
zu+z l

)
α2

n
.

(A7)

Fortunately, a closed-form expression exists for the sum of the infinite series (Prudnikov et al., 1986; Tuerlinckx, 2004):

∞∑
n=1

nsin
(
ny
)(

C2 + D2n2
)2 =

1

D2

[
πy

4 C
D

cosh
((
π − y

) C
D

)
sinh

(
π C

D

) −
π2

4 C
D

sinh
(
y C

D

)
sinh2 (π C

D

)] . (A8)

We set C2
= µ2/2σ 2, D2

= (πσ)2/2(zu + z l)
2, and y = (zu− x0). After some algebra, we arrive at a closed form for the mean decision

time conditioned on hitting the upper boundary:

〈T 〉|zu
=

1

P [x (T ) = zu]

1

µ
e
µ(zu−x0)

σ 2

 (zu − x0) cosh
(
µ(z l+x0)

σ 2

)
sinh

(
µ(zu+z l)

σ 2

)
− (zu + z l) sinh

(
µ(zu−x0)

σ 2

)
sinh2

(
µ(zu+z l)

σ 2

)
 . (A9)
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In a similar fashion we obtain the mean decision time conditioned on hitting the lower boundary:

〈T 〉|−z l
=

1

P [x (T ) = −z l]

1

µ
e
−µ(z l+x0)

σ 2

 (z l + x0) cosh
(
µ(zu−x0)

σ 2

)
sinh

(
µ(zu+z l)

σ 2

)
− (zu + z l) sinh

(
µ(z l+x0)

σ 2

)
sinh2

(
µ(zu+z l)

σ 2

)
 . (A10)
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