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The pairwise dissimilarities of a set of items can be intuitively visualized by a 2D arrange-
ment of the items, in which the distances reflect the dissimilarities. Such an arrangement
can be obtained by multidimensional scaling (MDS). We propose a method for the inverse
process: inferring the pairwise dissimilarities from multiple 2D arrangements of items.
Perceptual dissimilarities are classically measured using pairwise dissimilarity judgments.
However, alternative methods including free sorting and 2D arrangements have previously
been proposed. The present proposal is novel (a) in that the dissimilarity matrix is esti-
mated by “inverse MDS” based on multiple arrangements of item subsets, and (b) in that
the subsets are designed by an adaptive algorithm that aims to provide optimal evidence
for the dissimilarity estimates. The subject arranges the items (represented as icons on a
computer screen) by means of mouse drag-and-drop operations. The multi-arrangement
method can be construed as a generalization of simpler methods: It reduces to pair-
wise dissimilarity judgments if each arrangement contains only two items, and to free
sorting if the items are categorically arranged into discrete piles. Multi-arrangement com-
bines the advantages of these methods. It is efficient (because the subject communicates
many dissimilarity judgments with each mouse drag), psychologically attractive (because
dissimilarities are judged in context), and can characterize continuous high-dimensional dis-
similarity structures. We present two procedures for estimating the dissimilarity matrix: a
simple weighted-aligned-average of the partial dissimilarity matrices and a computationally
intensive algorithm, which estimates the dissimilarity matrix by iteratively minimizing the
error of MDS-predictions of the subject’s arrangements. The Matlab code for interactive
arrangement and dissimilarity estimation is available from the authors upon request.
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INTRODUCTION
Mental representations can be conceptualized as representations
of the similarities between the perceived objects (Edelman, 1998).
Judgments of the similarities among a set of objects provide impor-
tant evidence about a subject’s mental representation of the objects
and their relationships. A natural way of explaining dissimilar-
ity judgments is by assuming a geometric model of the mental
representation (e.g., Carnap, 1928; Coombs, 1954; Shepard, 1958;
Torgerson, 1958, 1965). In a geometric model, dissimilarities are
interpreted as distances in a multidimensional space (and similari-
ties as proximities). The dimensions of the space could be objective
or subjective properties.

This suggests that we could ask subjects to judge item proper-
ties instead of dissimilarities. We could then assume the geometric
model and compute the dissimilarities as distances in the space
spanned by the properties. However, this would require prespeci-
fication of the properties and their relative weights. In dissimilarity
judgments, by contrast, the subject must choose and weight any
underlying properties – consciously or unconsciously. Dissimilar-
ity judgments therefore promise to provide evidence of the sub-
ject’s mental representation that is not biased by item properties

prespecified by the researcher. (The disadvantage is that the prop-
erties underlying the judgments are not explicitly known, although
they may be inferred.)

Geometric models of similarity have been criticized (e.g.,
Goodman, 1972; Tversky, 1977; Goldstone et al., 1997) in the
light of empirical demonstrations that dissimilarity judgments can
be context dependent (e.g., a cat and a dog might appear more
similar when a bird is added to the set), intransitive [e.g., dissimi-
larity(X,A) < dissimilarity(X,B) < dissimilarity(X,C), but dissim-
ilarity(X,C) < dissimilarity(X,A)], and asymmetric (e.g., Korea
may be judged as more similar to China, than China to Korea).
However, more sophisticated versions of the geometric model
(for an overall framework, see Gärdenfors, 2004) can account for
these anomalies (Decock and Douven, 2011). The anomalies are
accounted for by allowing flexible selection and weighting of the
dimensions of the space. Different tasks may be associated with
different weightings of the dimensions (e.g., looking for food may
render a different set of attributes salient than looking for shelter).
Dimension weighting may also be affected by item set context and
by the order of presentation of the items, accounting for the effect
of these variables on dissimilarity judgments.
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The geometric model is attractive (1) for its natural treatment
of the continuous variation of multiple properties (in contrast
to binary feature set accounts, e.g., Tversky, 1977), (2) for its
derivation of dissimilarity predictions from property represen-
tations, and (3) for its relationship to distributed representations
of objects in computational models (e.g., McClelland and Rogers,
2003) and in the brain (e.g., Edelman et al., 1998; Haxby et al.,
2001; Kriegeskorte et al., 2008b). Here we assume a geometric
model and address a practical research problem: How to effi-
ciently acquire dissimilarity judgments. We propose having the
subject perform multiple arrangements of item subsets adaptively
designed for optimal measurement efficiency and to estimate the
representational dissimilarity matrix (RDM) by combining the
evidence from the subset arrangements.

METHODS FOR ACQUIRING DISSIMILARITY DATA FROM
SUBJECTS
To motivate the multi-arrangement method, we now briefly review
different ways of acquiring dissimilarity data from subjects. Table 1
also summarizes the pros and cons of these methods.

PAIRWISE DISSIMILARITY JUDGMENTS
In pairwise dissimilarity judgments (e.g., Cortese and Dyre, 1996),
the subject is presented with one pair of items at a time and rates
the dissimilarity (or similarity) of the two items. Such a rating
is performed for each pair of items. This straightforward tech-
nique requires (n2

− n)/2 trials (one per pair), where n is the
number of items. For 10 items, thus, we require 45 trials, for 50
items 1225 trials, and for 100 items 4950 trials. Because of the
quadratic growth of the time requirement, this method is not fea-
sible for large sets of items. Independent pair judgment places no
constraints on the relationships between the judgments. Under a
geometric model, this allows us to capture dissimilarity structures
of arbitrary dimensionality. In addition, it allows us to capture
judgment data inconsistent with a geometric model. A potential
disadvantage of separate judgment of each pair is that the sub-
ject’s interpretation of the different degrees of dissimilarity might
be unstable across a long session of judgments, because previous
judgments are not visible for comparison.

FREE SORTING
In free sorting (e.g., Coxon, 1999), the subject sorts the items into
a freely chosen number of piles (i.e., categories). Note that this
is distinct from sorting the items into a sequence, where their
place in the sequence corresponds to their rank on some prop-
erty dimension. Free sorting enforces categorization, although
the categories can be freely defined. The result of a single sort-
ing is a binary dissimilarity matrix indicating for each pair of
items, whether the two items were in the same pile or in differ-
ent piles. The major advantage of this method is that it requires
only n placements for n items, and thus has essentially linear time
complexity if we neglect the time taken to decide the categories.
This renders free sorting feasible for large item sets. The major
disadvantage is that the method gives only binary dissimilarities
(same pile, different pile) for a given sorting. If the subject chooses
to use few piles, then more subtly dissimilar items are lumped
together as though they were identical. If the subject chooses
to use many piles, then subtly dissimilar items are represented

in the same way as extremely dissimilar items. Another caveat is
that the category definition might be strongly influenced by the
first items if the subject defines the categories ad hoc as the sort-
ing progresses. Moreover, the category definition might drift, if
the subject perceives each pile to be represented by the item on
top.

SINGLE ARRANGEMENT
Similarities and dissimilarities can be intuitively captured by a
physical arrangement of the items. Under a geometric model,
we would assume such an arrangement to approximate the dis-
tances in the internal representational space. This suggests having
the subject arrange the items in 2D, placing similar items close
together and dissimilar items far apart, such that the distances
can be interpreted as dissimilarities. (Note that the power of an
arrangement to intuitively convey dissimilarities also motivates
the dissimilarity visualization technique of multidimensional scal-
ing (MDS, Torgerson, 1958; Shepard, 1962; Borg and Groenen,
2005.) The arrangement method for acquiring dissimilarity judg-
ments has been described by Risvik et al. (1994) and Goldstone
(1994). It is sometimes referred to as “projective mapping.” For
early precursors, see Oppenheim (1966).

This method is quicker than pairwise judgment because each
placement of an item communicates multiple dissimilarity judg-
ments. An additional potentially attractive feature is that the rela-
tionships of multiple pairs are considered in context, as all items
are always in view. Arrangement is superior to free sorting in that it
enables the subject to convey continuously varying dissimilarities.
This advantage will usually come at a cost: If the subject carefully
considers the continuous pairwise dissimilarities in arranging the
items, the process will take longer than free sorting. We expect
a time complexity that is larger than that of free sorting, but
smaller than that of pairwise judgment (superlinear, but subqua-
dratic in the number of items). The major disadvantage of the
single arrangement method is the restriction to 2D, which prevents
communication of higher-dimensional dissimilarity structures.

MULTI-ARRANGEMENT
The single arrangement method can be extended to multi-
ple arrangements. For example, Goldstone (1994) had subjects
arrange multiple random subsets of 20 out of 64 items. Here
we refer to this approach as “multi-arrangement” and describe
methods for adaptive design of the item subsets (so as to opti-
mize measurement efficiency) and for combining the multiple
arrangements into a single dissimilarity estimate (inverse MDS).

In the multi-arrangement method, the subject arranges multi-
ple item subsets in a low-dimensional (e.g., 2D) space and the
dissimilarity structure is inferred from the redundant distance
information. This approach can be viewed as a generalization
of methods (1), (2), and (3): It reduces to pairwise dissimilar-
ity judgments if each arrangement contains only two items, and
the arrangement consists merely in choosing a single distance. It
reduces to free sorting if the items are arranged into discrete piles
and the distances binarized into small distances (within pile) and
large distances (between piles). It reduces to a single arrangement
of all items if subset arrangements are omitted. For a given appli-
cation, we have no reason to expect that the optimal method will
be one of the special cases [methods (1)–(3)]. Multi-arrangement
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Table 1 | Different behavioral methods for acquiring dissimilarities.

Description Pros Cons

(1) Pairwise similarity

judgment

Each pair of items is presented in

isolation and the subject rates the

dissimilarity on a scale

• Each pair is independently rated (this is

a pro, if set context is thought to distort

judgments or a con, if set context is

thought to anchor and inform

judgments)

• Slow: (n2
−n)/2 separate

judgments* required, thus only

feasible for small item sets
• Interpretation of the dissimilarity

scale may drift as previous

judgments are not visible for

comparison

(2) Free sorting The subject sorts the items into a

freely chosen number of piles (i.e.,

categories)

• Quick: requires only n placements*,

thus has essentially linear time

complexity (neglecting the time taken

to decide the categories), thus feasible

for large item sets

• Gives only binary dissimilarities

(same pile, different pile) for a

single-subject
• Category definition might be

dominated by the first items and

might drift if piles are perceived to

be represented by the item on top

(3) Single

arrangement

The subject arranges the items in 2D

with the distances taken to reflect the

dissimilarities

• Relatively quick: each placement of an

item communicates multiple

dissimilarity judgments (superlinear, but

subquadratic time complexity)

• Restriction to 2D prevents

communication of

higher-dimensional dissimilarity

structures

•The relationships of multiple pairs are

considered in context

(4) Multi-arrangement

(proposed method)

A generalization of (1), (2), and (3), in

which multiple item subsets are

arranged in a low-dimensional (e.g.,

2D) space and the dissimilarity

structure is inferred from the

redundant distance information

• Includes methods (1)–(3) as special

cases, so cannot do worse

• Enables us to quickly acquire judgments

reflecting higher-dimensional

dissimilarity structures

• Requires a method for

constructing subsets (which may

involve assumptions that affect

the results)
• Requires a method for estimating

the dissimilarity structure from

multiple item-subset

arrangements (which may involve

assumptions that affect the

results)

• Anytime behavior: process can be

terminated anytime after a first trial

containing all items (=single

arrangement)

• Addresses the cons of methods (1), (2),

and (3)

(5) Arrangement of

pairs by dissimilarity

(proposed here for

comparison purposes)

Each item pair is represented by a

visual icon, and the subject arranges

the icons along a 1D dissimilarity scale

• Dissimilarities are judged in the context

of all other pairwise dissimilarities

•Time-intensive: (n2
−n)/2 separate

judgments* required
• Each pair is independently rated • Space-intensive: (n2

−n)/2 pair

icons need to fit along the scale

• Only feasible for small item sets

for the above reasons

(6) Implicit measures:

confusions and

discrimination times

(not discussed here in

detail)

Subject performs a task requiring

discrimination among the items. If two

items are more frequently confused or

take longer to discriminate, they are

considered more similar

• Reflects perceptual representations that

might not be reflected in explicit

judgments

• Slow: (n2
−n)/2 separate trials

required, thus only feasible for

small item sets
• Not informative about explicit

judgments

*Where n is the number of items.

promises to combine the advantages of other methods to some
extent.

Compared to pairwise judgments, multi-arrangement can be
more efficient (because the subject communicates many dissim-
ilarity judgments with each mouse drag) and psychologically
attractive (because dissimilarities are judged in the context of a

larger set). Compared to free sorting, multi-arrangement is suited
for acquiring continuously varying dissimilarities (as opposed
to binary dissimilarities corresponding to categorical structures).
Compared to a single arrangement, multi-arrangement can
recover dissimilarity structures whose dimensionality is greater
than 2.

www.frontiersin.org July 2012 | Volume 3 | Article 245 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Kriegeskorte and Mur Multi-arrangement inverse MDS

ARRANGEMENT OF PAIRS BY DISSIMILARITY
We propose an additional method here, mainly for validation pur-
poses. In this method, each item pair is represented by a visual
icon. The subject arranges the pair icons along a 1D dissimilarity
scale. Note that this is not a special case of multi-arrangement,
but it is closely related to pairwise judgment in that an indepen-
dent dissimilarity judgment is communicated for each item pair.
In contrast to pairwise judgment, however, the dissimilarities are
judged in the context of all other pairwise dissimilarities. This
promises a more precise judgment of the dissimilarities. Like pair-
wise judgment, the method is time-intensive because (n2

− n)/2
pair-icon placements are required. In addition, it is space-intensive
as the (n2

− n)/2 pair icons need to fit along the scale. As a result,
this method is only feasible for small item sets.

IMPLICIT DISSIMILARITY MEASURES: CONFUSION FREQUENCY AND
DISCRIMINATION TIME
Perceptual dissimilarities can also be inferred from confusions (as
more similar items are likely to be confused more frequently) or
from reaction times in discrimination tasks (as more similar items
are likely to take longer to discriminate). Like explicit pairwise
judgments, these implicit techniques require a number of trials
that grows quadratically with the number of items. Here we focus
on explicit judgments, specifically method (4) and, for validation,
methods (1) and (5).

THE MULTI-ARRANGEMENT METHOD
BEHAVIORAL METHOD: 2D DRAG-AND-DROP OBJECT ARRANGEMENTS
Item arrangements could be performed on a table top using either
the items themselves if they were small and movable (e.g., glasses
of beer; Abdi and Valentin, 2007; Lelièvre et al., 2008) or phys-
ical symbols of the items (e.g., photos). The distances would
then have to be measured for data analysis. In order to avoid the
complications of physical arrangements, we use virtual arrange-
ments performed on a computer screen by mouse drag-and-drop
operations (Goldstone, 1994).

The icons are to be arranged in a designated screen area, which
we call the “arena.” Initially, the items are displayed outside the
arena, in an area we call the “seating.” In one implementation, the
arena is circular and the seating surrounds the arena (Figure 1A).
In another implementation, the arena and the seating are rectan-
gular and placed side by side or one above the other. Within the
seating, the items can initially be presented in either a predefined
or a random arrangement.

The subject can move any item by “dragging” it (i.e., clicking on
it with the left mouse button and moving the mouse while keep-
ing the button pressed). In this way, the subject initially arranges
all items. To indicate that the arrangement is final, the subject
clicks on a button marked “Done.” The distance matrix of the
initial arrangement of all items provides an initial estimate of
the RDM. After the initial arrangement, the subject proceeds to
arrange subsets of items. We refer to each arrangement as a “trial.”
The process can be terminated after any trial (e.g., when the time
the subject can spend on the task has elapsed). All pairwise dis-
similarities are then estimated from the available arrangements of
item subsets.

ADAPTIVE DESIGN OF THE ITEM-SUBSET FOR EACH ARRANGEMENT
TRIAL
For each trial, we need to decide what item-subset to present
to the subject. One approach is to have the subject arrange a
random item-subset of a prespecified size on each trial (Gold-
stone, 1994). However, random subsets have several drawbacks.
First, we cannot be sure that each item is sampled at all and that
each item pair appears together in a subset at some point for its
dissimilarity to be directly judged by the subject. This can be
mended by adding appropriate constraints in defining the sub-
sets. Second, and more importantly, random subsets will tend
to be globally distributed throughout the item set. As a result,
the context of each arrangement will be essentially that of the
entire set for larger item sets. (Larger item subsets are preferable,
because they provide more dissimilarity measurements per placed
item.)

Consider the case of a set of object images spanning a wide
range of categories, including animates and inanimates and, within
the animates, faces, and bodies (Kriegeskorte et al., 2008b). The
faces might form a subcluster in the subject’s mental representa-
tion, suggesting a presentation of a trial including only faces. This
would allow the subject to use the entire arena for the faces, giving
us good evidence of their relative dissimilarities. Using random
subsets, however, the faces are unlikely to appear together in a
trial in the absence of very different (e.g., inanimate) objects. As
a result, whatever faces are present will end up in a corner of the
arena and so close together that their relative distances cannot be
reliably distinguished from placement error.

The proposed method, by contrast, starts with an arrangement
of the entire set, and presents clusters of similar items together
on subsequent trials. Item-subset design is adaptive in the sense
that it depends, for each trial, on the current estimate of the RDM.
We instruct the subject to use the entire arena to arrange the sub-
set presented on a given trial. Because the subject is instructed to
“zoom in” on the current subset, there is no fixed relationship of
screen distance and dissimilarity that holds across trials. Instead,
we assume only that the relative screen distances reflect the rela-
tive dissimilarities on each trial (i.e., the on-screen distance ratios
reflect the dissimilarity ratios).

We start with a trial that includes all items. This initial arrange-
ment provides a rapid estimate of the entire RDM. However, this
estimate has two deficiencies. First, it is restricted to 2D. This moti-
vates subsequent trials with item subsets. Second, assuming that
each on-screen placement of an item is affected by placement error
(drawn from the same distribution, e.g., a 2D Gaussian), the dis-
similarity signal-to-noise ratio will be lower for two items judged as
similar and thus placed close together (small dissimilarity signal)
than for two items judged as dissimilar and thus placed far apart
on the screen (large dissimilarity signal). This motivates selec-
tive re-sampling of item pairs placed close together on the first
trial.

The method by which trial efficiency is optimized is precisely
defined in Section “Multi-Arrangement by Lift-the-Weakest Algo-
rithm for Adaptive Design of Item Subsets” in Appendix. Briefly,
the goal of our method is to gather roughly equal amounts of
evidence for each dissimilarity. This is achieved by maintaining
a record of the amount of evidence already gathered for each
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FIGURE 1 | Multi-arrangement method for acquiring a subject’s
dissimilarity judgments. (A) In the multi-arrangement method, the
subject arranges the items (represented as icons on a computer screen)
by means of mouse drag-and-drop operations. Perceived similarity is
communicated by adjusting the distances between the objects: objects
perceived as similar are placed together; objects perceived as dissimilar
are placed apart. Multiple arrangements (trials) are performed for the
entire set and for subsets of the items, so as to allow the subject to
convey a higher-dimensional dissimilarity structure. Subsets are
constructed by an adaptive algorithm (Multi-Arrangement by
Lift-the-Weakest Algorithm for Adaptive Design of Item Subsets in

Appendix), which is designed to efficiently sample the evidence for
estimation of the representational dissimilarities. (B) The evidence from
the multiple 2D arrangements is statistically combined to obtain the
estimate of the representational dissimilarity matrix (RDM). See Figure 3
and Estimating the High-Dimensional Dissimilarity Matrix from Multiple
Item-Subset Arrangements in Appendix for algorithms. The RDM
contains a dissimilarity estimate for each pair of items and is symmetric
about a diagonal of zeros. Two example item pairs are shown in red and
blue. Their single-trial dissimilarity estimates (red and blue double arrows
in (A)) are combined into a single dissimilarity estimate.
Mirror-symmetric entries are indicated by transparent colors.

dissimilarity and designing subsequent item subsets such that
they provide evidence for those dissimilarities, for which we have
the weakest evidence. The continual focus on the dissimilarities,
for which we have the weakest evidence, lends our method its
name, “lift-the-weakest” algorithm. The algorithm rapidly pro-
vides a rough estimate of the RDM and then gathers the most
urgently needed evidence on each trial. As a result, the algorithm
has “anytime behavior,” in the sense that it can be terminated after

any trial (although the quality of the estimate will increase as more
data is gathered).

ESTIMATING DISSIMILARITIES FROM MULTIPLE ARRANGEMENTS:
AVERAGE OF SCALED-TO-MATCH ARRANGEMENTS AND INVERSE MDS
Each trial provides a partial RDM. This raises the question how
the multiple partial matrices should be combined to give a single
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estimate of the entire RDM. In Section “Estimating the High-
Dimensional Dissimilarity Matrix from Multiple Item-Subset
Arrangements” in Appendix, we define two methods for obtaining
such an estimate. The first method estimates each dissimilarity
as a weighted average of the distances in the arrangements in
which the item pair was included. Each arrangement is first scaled
to adjust for the fact that the subject zooms in on the item-
subset presented on each trial. The weighted average is computed
with iterative rescaling as described in Section “Weighted Average
of Iteratively Scaled-to-Match Subset Dissimilarity Matrices” in
Appendix.

The second, more sophisticated method estimates the RDM
by inverse MDS. Recall that MDS takes a distance matrix for
n items as its input and gives an arrangement of the items in
a low-dimensional space (e.g., 2D, for visualization), such that
the new distances optimally approximate the original distances.
Inverse MDS, then, should proceed in the opposite direction: from
a low-dimensional arrangement to the original high-dimensional
distance matrix. We can get one solution by simply measuring the
distances between the points in the low-dimensional arrangement.
(Whereas approximating the distances from a higher-dimensional
arrangement in a low-dimensional arrangement, i.e., MDS, is diffi-
cult, the opposite direction is trivial.) However, there will typically
by many solutions, i.e., many high-dimensional arrangements
optimally represented by a given low-dimensional arrangement.
We could ask of inverse MDS to return the set of all distance matri-
ces, whose MDS solution is the low-dimensional arrangement
given as input (De Leeuw and Groenen, 1997).

Motivated by the practical problem of inferring a distance
matrix from multi-arrangement data, we use a more general con-
ceptualization here: Inverse MDS is given a set of low-dimensional
arrangements of item subsets as input and the goal is to infer
the underlying high-dimensional distance matrix. Each arrange-
ment adds constraints to the solution, but there might still not
be a unique solution. Moreover the arrangement data is some-
what affected by error. We describe an algorithm that can be
used improve an initial estimate of the RDM by predicting the
arrangements expected for each item-subset (using MDS with
metric stress as the criterion) and then iteratively adjusting the
estimate of the RDM, so as to drive down the error of the pre-
dicted arrangements. The algorithm is illustrated in Figure 3
and properly defined in Section “Inverse Multidimensional Scal-
ing by Iterative Reduction of Arrangement Prediction Error” in
Appendix.

VALIDATION BY COMPARISON TO CONVENTIONAL
BEHAVIORAL METHODS
We have validated our implementation of the multi-arrangement
method for a set of 12 shapes by comparison to pairwise dis-
similarity judgments and arrangement of pairs by dissimilarity
(Figures 1 and 2). We also computed the test-retest reliability of
the multi-arrangement method and the conventional methods.

SUBJECTS
Four healthy human volunteers (female; mean age: 29 years, age
range: 27–34 years) participated in the validation experiment.
Before participating, the subjects received information about the

experimental procedure and gave their written informed consent
for participating. The experiment was conducted in accordance
with the guidelines of the Ethics Committee of the Faculty of
Psychology and Neuroscience, Maastricht University.

EXPERIMENTAL PROCEDURE
The experiment consisted of two 45-min sessions on separate days
(2–4 days between the two sessions). During each session, sub-
jects performed dissimilarity judgments on the 12 shapes using
the following three methods: (1) multi-arrangement, (2) pair-
wise dissimilarity judgments, and (3) arrangement of pairs by
dissimilarity. All three methods were implemented in Matlab. The
order of the methods was counterbalanced across subjects and ses-
sions. In each method, subjects communicated their judgments by
arranging shapes or shape pairs on a computer screen by mouse
drag-and-drop.

(1) The multi-arrangement method used a circular arena as
shown in Figure 1A (white disk). On each trial, the shapes
were initially presented in a circular arrangement around the
arena, placed at regular angular intervals in random order.
Subjects were instructed to arrange the shapes according to
their similarity (similar shapes together, dissimilar shapes
apart). Acquisition was terminated after all pairwise dissimi-
larities were lifted above a certain evidence weight threshold.
We used an evidence weight threshold of 0.5 (and an evidence-
utility exponent of 10). The RDMs were estimated by the
average of scaled-to-match partial RDMs.

(2) The pairwise dissimilarity judgment method used a rectangu-
lar arena (white horizontal bar). On each trial, two shapes were
shown: one in the left corner of the bar and one below the mid-
point of the bar. Subjects were instructed to place the bottom
shape inside the white bar, such that its distance to the ref-
erence shape along the horizontal axis reflected the perceived
dissimilarity between the two shapes (similar shapes together,
dissimilar shapes apart). Shape pairs were presented in ran-
dom order. For each pair, the reference shape was assigned
randomly. Acquisition was terminated when each possible
shape pair had been judged once.

(3) The arrangement of pairs by dissimilarity method used a rec-
tangular arena (white vertical bar) covering the left side of
the computer screen. The right side of the screen displayed all
possible shape pairs, presented in random order from top to
bottom. Subjects were instructed to move the shape pairs to
the arena and arrange them along the vertical axis according
to their dissimilarity (pairs of similar shapes at the top, pairs
of dissimilar shapes at the bottom). The arrangement was ter-
minated when the subject had arranged all shape pairs and
clicked on the “Done” button.

RESULTS
Each of the three similarity judgment methods yielded an RDM
(Figure 1B) containing a dissimilarity estimate for each possible
pair of shapes. Test-retest reliability was assessed by correlating the
RDMs across the two sessions (different days). Across-methods
consistency (as a measure of validity) was assessed by correlating
the RDMs across-methods. Statistical inference on the Spearman
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FIGURE 2 | Validation of multi-arrangement method. We validated the
multi-arrangement method by comparison to pairwise similarity judgments
and arrangement of pairs by similarity, for a set of 12 shapes (Figure 1). We
also computed the test-retest reliability for each method. Shown are
group-average RDMs containing pairwise dissimilarity estimates acquired for
each method and session. The RDMs were separately histogram-equalized for
easier comparison. Across-methods consistency and test-retest reliability
were computed by correlating the RDMs across methods and sessions,
respectively. We performed two variants of this analysis that differed in the

way the data were combined across subjects: we either averaged the
single-subject data at the level of the RDMs (black double arrows) or at the
level of the correlation coefficients (gray double arrows). Each arrow’s line
thickness is proportional to the Spearman correlation coefficient it represents.
Condition-label randomization tests on the black-arrow correlation coefficients
showed that they are all significantly positive (p < 0.0001 for each
comparison). These findings indicate that the test-retest reliability of all three
methods is high, and suggest that multi-arrangement is a valid method for
measuring perceived similarity.

correlation coefficients was performed using a condition-label
randomization test (Kriegeskorte et al., 2008a). Figure 2 shows that
the multi-arrangement method has a high test-retest reliability
(r = 0.93, p < 0.0001). The other two methods had similarly high
test-retest reliabilities (0.92 < r < 0.93, p < 0.0001). In addition,
the RDMs acquired with the multi-arrangement method corre-
late well with those acquired using the other similarity judgment
methods (0.85 < r < 0.89, p < 0.0001). The other two methods
also correlate highly with each other (0.96, p < 0.0001). Overall,
these analyses suggest that all three methods work well and give
consistent results.

DISCUSSION
The contribution of this paper is twofold. First, practically, we
offer a working method for efficient acquisition of dissimilar-
ity judgments. This is important because it places larger sets of
items (e.g., >100 items, >(1002

− 100)/2= 4950 pairs) within
realistic reach of behavioral studies. The Matlab code for the
interactive arrangement and analysis is available from the authors
upon request. Second, theoretically, we explore the concept of

inverse MDS as inference of dissimilarities from multiple par-
tial arrangements and describe an iterative algorithm for finding
solutions.

AN EFFICIENT WAY OF ACQUIRING DISSIMILARITY JUDGMENTS
The pairwise dissimilarities of a set of items are commonly
acquired using pairwise dissimilarity judgments or free sort-
ing. Neither of these methods is well suited for acquiring con-
tinuous dissimilarity judgments for large numbers of items.
The multi-arrangement method can handle this scenario. This
approach is more efficient than pairwise dissimilarity judgments
because each placement communicates multiple dissimilarities.
The efficiency is further increased by adaptive design of the
item-subset presented on each trial. Unlike free sorting, multi-
arrangement provides continuous dissimilarity estimates. Multi-
arrangement is intuitive and more strongly emphasizes the con-
text of the items than either pairwise judgment or free sort-
ing. Through multiple subset arrangements subjects can convey
dissimilarity structures exceeding the 2D available for a single
arrangement.
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FIGURE 3 | Inverse MDS by iterative algorithm. Inverse MDS estimates
a higher-dimensional RDM from multiple low-dimensional arrangements.
(A) In this toy example, we have four items and the dissimilarities are
equal for all six pairs (all dissimilarities are 1), forming a tetrahedron in 3D
(top left, RDM underneath in middle row). Arrangements are in 2D. We use
MDS (optimizing metric stress) to simulate a subject’s arrangements.
Arrangement 1 (second from left in top row) contains all four items. As the
four items are optimally arranged in 2D, distances are squeezed and
stretched (red and blue connections and RDM cells, respectively).
Arrangement 2 (third from left in top row) contains only three of the four
items. The three items’ RDM is perfectly represented by the 2D
arrangement. A simple way to estimate the underlying RDM is to average
the distance matrices of the 2D arrangements (second from right in top).
Missing dissimilarity entries are ignored in the averaging and the matrices
are first separately normalized by scaling the dissimilarities’ root mean

square for the defined entries to the same value. (B) Results of iterative
inverse MDS for the toy problem. The aligned-average RDM (gray line in
left panel) is a better estimate of the true dissimilarities (blue line) than the
distance matrix of arrangement 1 (green dots), but distortions remain.
Inverse MDS can be performed by starting from the aligned-average
matrix and iteratively improving the estimate. On each iteration, the
current estimate is used to predict the subject’s arrangements by MDS.
The disparities between the predicted and the actual arrangements are
then used to adjust the estimate of the underlying RDM. The resulting
iterative reduction of the error of the MDS-predicted arrangements (black
line in right panel) reduces the disparity between the true and the
estimated dissimilarity matrices (blue line in right panel; disparity
measured as root mean square of differences after normalization of both
matrices). In this toy example, the two arrangements shown suffice to
perfectly recover the tetrahedral true RDM (black line in left panel).

INTERPRETATION OF THE DISSIMILARITY JUDGMENTS
Multi-arrangement involves arrangement of multiple item sub-
sets. The context, in which dissimilarities are judged, thus varies
across trials. We should therefore consider the potential effect
of context dependency (Tversky, 1977) when interpreting the
dissimilarity judgments. The changes of context (“zooming in”
on subclusters) can be construed as either an advantage or a
disadvantage. On the one hand, having the subject consider
a different subset on each trial promises to yield a deeper
and higher-dimensional reflection of the mental representation.
The fact that dissimilarities for a subcluster will be scaled
(i.e., zooming in) is a desirable effect of context, which is

accounted for by our scaling-to-match of the partial arrange-
ments. On the other hand, more complex context effects, such
as those producing intransitivity of dissimilarities [e.g., dissimi-
larity(X,A) < dissimilarity(X,B) < dissimilarity(X,C), but dissim-
ilarity(X,C) < dissimilarity(X,A)] cannot be accommodated by
estimating a single RDM as we do here. Rather the RDM would
have to be modeled as context dependent. If such context effects
are present for a given stimulus set, our approach will yield a com-
promise between the RDMs associated with the different contexts.

These considerations reflect the fundamental complexity of dis-
similarity judgments and their dependency on the task (including
the item set context, the nature of the judgments, time constraints,
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and other factors). Instead of looking for a single “right” way of
obtaining dissimilarity judgments, we need to acknowledge task
dependency. It is reassuring that we find high across-method reli-
ability in the validation experiment. Although the three methods
differ in terms of item set context (pairs, whole set, subsets) and
in the way the judgments are communicated, the results are very
similar here. This suggests a degree of task-independence of shape
dissimilarity judgments. In general, however, we need to consider
the particular task when interpreting and comparing dissimilarity
judgment results.

INVERSE MDS FROM MULTIPLE PARTIAL ARRANGEMENTS
The concept of inverse MDS could be interpreted in a number of
ways. First, trivially, it could be interpreted as measuring the dis-
tances of a low-dimensional, e.g., 2D, MDS arrangement. Second,
it could be interpreted as finding the set of all dissimilarity matrices
consistent with a given low-dimensional arrangement (De Leeuw
and Groenen, 1997). Third, it could be interpreted as finding a dis-
similarity matrix (or set of such matrices) that is simultaneously
consistent with multiple low-dimensional arrangements of item
subsets. This latter interpretation might be novel. It arises natu-
rally from our practical problem here of inferring the underlying
dissimilarity matrix from multiple partial arrangements.

A subject’s arrangements are always affected by placement error
to some degree. Inferring the underlying RDM can be cast as an
estimation problem. We described a procedure for improving an
initial RDM estimate by iteratively driving down the error of the
MDS-prediction of the subject’s arrangements. Although the algo-
rithm works perfectly on the toy problem presented in Figure 3,
it is not guaranteed to converge in general. Future studies might
develop better methods for inverse MDS. For large numbers of
items, however, inverse MDS poses a difficult optimization prob-
lem. The problem may also be ill-posed as the available arrange-
ments may not provide sufficient constraints on the solution space.
Nevertheless, an iterative reduction of the error of MDS-predicted
arrangements will render the estimate more consistent with the
arrangements that are available. The weighted-averaging approach
provides a simple alternative that can be rapidly computed and
may provide useful results in practice.

FUTURE DIRECTIONS
Our method appears to work well in practice even when the
RDM is estimated simply by averaging the scaled-to-match partial
RDMs. Our validation experiments here showed that the results
are consistent with pairwise dissimilarity judgments and arrange-
ment of pairs by similarity for an item set small enough for the lat-
ter two methods to be feasible. In another study (Mur et al., under
review), we used the multi-arrangement method on a set of 96
object images, where the alternative methods would not have been
feasible, because there are 4560 dissimilarities to estimate. The
method worked well in this scenario, too, and the RDM from the
judgments showed a substantial correlation with the RDM derived
from brain representations of the object images. While the general
approach of multi-arrangement appears promising, further vali-
dation is desirable and many aspects of our implementation here
could be improved in the future.

Validity, reliability, and efficiency tests
For large item sets, free sorting and multi-arrangement are the only
feasible methods for estimating a full RDM. We have discussed the-
oretical advantages of multi-arrangement, but it would be good to
test empirically, which method has greater test-retest reliability
and which method is more consistent with pairwise judgments
(for smaller item sets for which the latter method is feasible). For
small item sets, all methods are feasible. We have shown that the
three methods used here yield reliable and consistent results. How-
ever, it is unclear which method should be preferred for a given
number of items. It would be useful, thus, to empirically com-
pare the efficiency with which different methods acquire RDM
estimates. To this end, we could plot the test-retest RDM corre-
lation for each method (vertical axis) against the time taken by
the subject to do the task (horizontal axis). Such a comparison
could be performed for various numbers of items. Pairwise judg-
ments and arrangement of pairs by similarity would give points
in the plot (one for each subject or averaged across subjects). For
the multi-arrangement method, we could compute the test-retest
RDM correlation (across sessions performed on different days)
for multiple time periods using the RDM estimate obtained for all
trials the subject completed in that period (e.g., after 10, 20, 30. . .

min). The reliability of the RDM estimate could thus be plot-
ted as a function of time. This approach would be useful also to
test whether our adaptive trial-design heuristic provides a benefit
over random subsets (Goldstone, 1994) or alternative trial-design
methods.

Adaptive trial-design
Our “lift-the-weakest” adaptive item-subset design aims to opti-
mize trial efficiency by constructing subsets that sample dissimi-
larities, for which we have the weakest evidence, and placing them
in a small enough context of other items to enable the subject to
“zoom in.”The focus on subclusters arises as a consequence of esti-
mating the benefit and cost of presenting a given item-subset. The
estimate of the trial benefit could be improved by using MDS to
simulate the expected arrangement for the trial (using the current
RDM estimate). Moreover, inverse MDS could form an integral
component of item-subset design: We could determine the set of
RDMs consistent with the arrangements thus far, and then design
the next trial so as to optimally reduce the remaining uncertainty.
This would take the distortions in the expected arrangements into
account. In addition, the estimate of the trial cost (time taken)
could be refined based on empirical evidence. Finally, an alterna-
tive approach to item-subset design would be to use explicit cluster
analysis.

Inverse MDS
Inverse MDS poses a difficult and interesting challenge. Three
directions of future development suggest themselves. (1) Opti-
mization algorithm: Our iterative algorithm here represents only
a first step. This local optimization approach could be run from
multiple points to find global optima. Moreover, alternative global
optimization techniques could be brought to bear on this prob-
lem. (2) Non-metric inverse MDS: In the present implemen-
tation, we interpret the distances in the subject’s arrangement
as proportional to the internal representational dissimilarities.
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However, the subject might not achieve a proportional reflec-
tion of the distances in the internal representational space when
arranging the objects. For example, if a subject attended pref-
erentially to local relationships, her placements might not lin-
early reflect the internal representational space. Most funda-
mentally, the internal representational space might be inherently
non-metric. These considerations motivate non-metric inverse
MDS, in which we would use only the order of the distances in
a given arrangement to estimate the RDM. (3) Explicit mod-
els of placement error: An explicit model of the arrangement
errors could be integrated into the inverse MDS algorithm.
This would enable us to take peculiarities of placement behav-
ior into account. For example, subjects might avoid overlap-
ping placement of two icons, even if the “true” dissimilarity
demanded it. In general, placement error might not be Gauss-
ian. An explicit model of placement error, motivated by empir-
ical findings on placement behavior, might improve the RDM
estimates.

CONCLUSION
Practically, multi-arrangement provides an efficient solution to
the problem of acquiring dissimilarity judgments. Theoretically,
multi-arrangement poses the interesting problem of inverse MDS,
constrained by multiple partial arrangements. Multi-arrangement
is a generalization of pairwise judgments and free sorting. It
reduces to pairwise judgments when only two items are pre-
sented on each trial. It reduces to free sorting when the subject
is instructed to arrange the items into discrete piles. Pairwise
judgment has the advantage of enabling independent continuous
dissimilarity judgments and the disadvantages of taking a long
time (quadratic in the number of items) and of deemphasizing
the context of the item set. Free sorting has the advantage of being
fast (linear in the number of items) and the disadvantage of pro-
viding only discrete same-different judgments for a given sorting.
The optimal solution for a given application might fall in-between
the special cases, suggesting that the space of multi-arrangement
methods deserves to be explored.
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APPENDIX
MULTI-ARRANGEMENT BY LIFT-THE-WEAKEST ALGORITHM FOR
ADAPTIVE DESIGN OF ITEM SUBSETS
We present a particular implementation of the multi-arrangement
method, which proceeds by the following algorithm:

1. trial 1: let subject arrange all items
2. estimate the RDM from the current set of item arrangements

(see Estimating the High-Dimensional Dissimilarity Matrix
from Multiple Item-Subset Arrangements for details)

3. if subject’s time is up or dissimilarity-evidence criterion
reached, terminate

4. design item-subset for the next trial (optimizing trial efficiency)
5. next trial: let subject arrange the item-subset
6. goto 2

Steps 1 and 5 are carried out by an algorithm that presents the
items on a computer screen and enables the subject to arrange
them by mouse drag-and-drop operations. Step 2, the estima-
tion of the RDM from a set of arrangements of subsets of
the items (or “inverse MDS”), is detailed in Section “Estimat-
ing the High-Dimensional Dissimilarity Matrix from Multiple
Item-Subset Arrangements.” Steps 3 and 4 are explained in this
section.

The design of the item-subset to be presented on the next trial
(step 4) is carried out by the “lift-the-weakest” algorithm. The
motivation for the lift-the-weakest algorithm is to prioritize acqui-
sition of evidence for those dissimilarities, for which we currently
have the weakest evidence (thus the name “lift-the-weakest”). This
prioritization lends the algorithm its “anytime” behavior (after the
initial trial including all items has been completed).

More precisely, the lift-the-weakest algorithm heuristically
optimizes the estimated trial efficiency for the subsequent trial,
based on a few assumptions. Before we state the algorithm for
item-subset design, we explain the assumptions and define the
quantitative concepts involved:

• Relative dissimilarities: each item-subset arrangement is
assumed to reflect the relative, not the absolute, dissimilarities
between the items. A distance of 0 always represents identity.
However, the scaling of the set of distances for a given arrange-
ment is to be ignored. The subject is instructed to use the entire
arena to arrange each subset. The same dissimilarity will there-
fore tend to correspond to a larger on-screen distance if the two
items appear as part of a smaller subset.
• On-screen placement error : we assume that the location of each

item in an arrangement is affected by placement error, which
is isotropic and has a constant variance in on-screen distance
units across trials. We further assume that the placement error
is small relative to the distances.
• Dissimilarity signal-to-noise ratio: the dissimilarity signal is

reflected in the on-screen distance. Since the placement error
is constant in on-screen distance units, the dissimilarity signal-
to-noise ratio is proportional to the on-screen distance. An item
pair’s distance will therefore tend to reflect the dissimilarity (rel-
ative to the subset) with a higher signal-to-noise ratio if the two
items are placed farther apart on a given trial (e.g., because there

were fewer items in the trial allowing the subject to “zoom in”
on a subcluster).
• Dissimilarity-evidence weight= signal-to-noise ratio2: the weight

of the dissimilarity-evidence contributed by a given arrange-
ment is the square of the signal-to-noise ratio. The dissimi-
larity for a given item pair can be estimated as an optimally
weighted average of the scale-adjusted dissimilarity estimates
from individual arrangements. According to the optimal-filter
theorem, weighting each scale-adjusted dissimilarity estimate
by the evidence weight gives the minimum-variance esti-
mate of the dissimilarity (assuming independence of the evi-
dence from different trials and neglecting distortions due to
dimensionality reduction). An algorithm for such an esti-
mate is described in Section “Inverse Multidimensional Scal-
ing by Iterative Reduction of Arrangement Prediction Error,”
below.
• Dissimilarity-evidence matrix : we can estimate the combined

current evidence for the dissimilarity of each item pair by
summing the evidence weights across trials. This yields a
dissimilarity-evidence matrix (n by n, symmetric about an
ignored diagonal), which is updated after each trial.
• Termination when time is up or dissimilarity-evidence criterion is

reached : after each trial, we assess whether another trial should
be performed. The process will be terminated when either the
available time (e.g., 1 h) is up or a dissimilarity-evidence crite-
rion is reached. The dissimilarity-evidence criterion is that the
minimum current dissimilarity-evidence across all item pairs
exceeds some threshold.
• Lift-the-weakest : the rationale of the algorithm is to seek more

evidence for those item pairs, for which the current evidence is
weakest. This is motivated by the idea that we want a minimum
level of evidence for each item pair. Gathering evidence first for
pairs for which we most lack it, ensures that the subject’s time
is well spent. After the initial arrangement of all items, each
additional trial improves the estimates, but the process can be
terminated at any point. We call this “anytime” behavior. To for-
malize the goal to “lift-the-weakest,” we define the concept of
“evidence-utility.”
• Evidence-utility : we would like a given amount of evidence to be

considered more useful for an item pair, for which we have little
dissimilarity-evidence so far, than for an item pair, for which we
already have a lot of dissimilarity-evidence. We therefore define
the evidence-utility u (i.e., the usefulness or value of the cur-
rent evidence) as a saturating function of the current evidence
weight w for an item pair:

u(w) = 1− e−w·d ,

where d is the evidence-utility exponent, which controls how
soon the utility saturates as a function of the evidence weight.
The function u(w) starts at the origin with a positive slope
and approaches an asymptote of u= 1. It models the notion
that additional evidence for a given dissimilarity is less useful
when we already have enough evidence for that dissimilarity.
(In the current paper we used d= 10. The utility then sat-
urates at an evidence weight of about 0.5. This focuses the
item-subset design on lifting dissimilarities with an evidence
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weight below 0.5. The process was terminated when all dissim-
ilarities had an evidence weight exceeding 0.5.) We compute an
evidence-utility matrix (n by n, symmetric about an ignored
diagonal), which assembles the evidence utilities for all item
pairs.
• Trial benefit= evidence-utility gain: we define the benefit of hav-

ing the subject arrange a particular item-subset as the evidence-
utility gain, i.e., the change in total evidence-utility (summed
across all item pairs) expected to occur if that trial were pre-
sented. To estimate this, we first consider the largest dissimilarity
among the item set (based on the current dissimilarity esti-
mate). We assume that the two items in this pair would end
up at opposite ends of the arena, defining the scaling factor
for the arrangement. The scaling factor enables us to estimate
the on-screen distances and the expected signal-to-noise ratios,
i.e., the expected dissimilarity-evidence the trial would con-
tribute for each pair. This, in turn, enables us to estimate the
current dissimilarity-evidence after the trial, and the associated
evidence-utility matrix. The evidence-utility gain is the total
evidence-utility after the trial minus the total evidence-utility
before the trial.
• Trial cost= time taken to arrange the subset : we define the cost of

the trial as the time it will take the subject to arrange the item-
subset. We estimate this as a simple function of the number n of
items in the trial: time= n1.5. The choice of 1.5 is motivated by
the idea that an arrangement’s time complexity is superlinear,
but subquadratic. The arrangement would take linear time if
each item placement took constant time with no need to con-
sider relationships. The arrangement would take quadratic time
if each pairwise comparison were given an equal amount of time
to adjust it. (The exponent or the form of the equation could be
adjusted in the future on the basis of empirical measurements
of the relationship between arrangement times and item set
sizes.)
• Trial efficiency= benefit/cost : we define the trial efficiency, which

we aim to optimize in designing each trial, as the trial benefit
divided by the trial cost. The t rial efficiency TE for an item-
subset ISS is denoted TE(ISS) below. Note that TE(ISS) depends
on the arrangements already performed, but this dependency
is omitted from the notation for brevity [TE(ISS)=TE(ISS,
arrangements already performed)].

Heuristic optimization of the estimated efficiency of the next trial
Based on the concepts introduced above, there is an item-
subset that maximizes the estimated efficiency of the subse-
quent trial, given the current dissimilarity-evidence (i.e., the
item-subset arrangements acquired so far). Because the num-
ber of item subsets to be considered is vast for larger item
sets (2n; e.g., 240

≈ 1012 for 40 items), we do not search the
entire set of subsets so as to find the global maximum of
estimated trial efficiency. Instead we take a heuristic greedy
approach. We start with the two items for whose dissimilar-
ity we have the weakest evidence. We then consider adding
each other item, and include the item (if any) that yields the
highest positive gain in trial efficiency. This process is repeated
until the point where adding any item will decrease the trial
efficiency.

Here is the precise definition of the lift-the-weakest algorithm:

1. compute the current dissimilarity-evidence matrix (n by n)
2. find the item pair {j, k} with the weakest current dissimilarity-

evidence
3. initialize the item-subset for the next trial with those two items:

nextISS= {j, k}
4. initialize the current-t rial efficiency: curTE= 0
5. find the opt imal item to add: optItem= argmaxi (TE(nextISS ∪

{i})), where i ∈ total item set \nextISS (if all items are in nextISS
already, optItem= {}) and TE(item set) is the t rial efficiency of
an item set

6. if TE(nextISS ∪ {optItem})≤ curTE, then terminate, returning
item-subset nextISS

7. add optItem to the next trial’s item-subset: nextISS= nextISS ∪
{optItem}

8. curTE =TE(nextISS ∪ {optItem})
9. goto 5

Because curTE is set to 0 initially, the item-subset will have at
least three items. This is necessary in the context of the current
implementation of the multi-arrangement, because the scaling of
the distance matrix is to be ignored, rendering a two-item trial
uninformative.

In this algorithm, the consideration of adding a particular
item takes into account a number of consequences affecting the
efficiency of the trial:

• If the item is added, the trial will produce evidence for the dis-
similarities of the added item to all the other items already in
the set. This increases the trial benefit.
• If the item is added, the trial will take longer to complete. This

increases the trial cost.
• If the item is added, the on-screen distances of the arrangement

might be scaled down, as the entire arrangement needs to fit into
the arena. This would reduce the signal-to-noise ratios (i.e., the
evidence) for the dissimilarities, thus reducing trial benefit.

The algorithm estimates these effects and chooses a trial with a
good benefit-to-cost ratio, i.e., a highly efficient trial.

ESTIMATING THE HIGH-DIMENSIONAL DISSIMILARITY MATRIX FROM
MULTIPLE ITEM-SUBSET ARRANGEMENTS
In this section we define the two particular algorithms for esti-
mating the high-dimensional RDM from multiple item-subset
arrangements (Figure 3).

Weighted average of iteratively scaled-to-match subset
dissimilarity matrices
This algorithm is motivated by the assumption that each arrange-
ment containing a given item pair provides an independent mea-
surement of the dissimilarity for that item pair. The signal-to-noise
ratio varies across the arrangements, because a given dissimilar-
ity will not stand out from placement noise when it corresponds
to a small on-screen distance in the context of a given arrange-
ment. The dissimilarity for a given item pair can be estimated as a
weighted average of the scale-adjusted dissimilarity estimates from
individual arrangements.
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We assume that placement error additively affects the dissim-
ilarities, positively or negatively. (This holds if the placement
error is small relative to the on-screen distance, in which case
we can neglect the fact that placement noise cannot render dis-
tances negative.) According to the optimal-filter theorem, an aver-
age of the scale-adjusted dissimilarity estimates weighted by the
evidence weights (squared signal-to-noise ratios) then gives the
minimum-variance estimate of the dissimilarity for each item pair.

Because subjects are instructed to “zoom in” on subclusters
in separate trials, we need to ignore the on-screen scale of each
arrangement. We therefore determine a scaling factor for each
subset RDM that matches the dissimilarities to an initial RDM
estimate before weighted-averaging. The weighted average RDM
estimate depends on the scaling factors. Conversely, the scaling
factors are determined by the match to an initial RDM estimate.
We therefore proceed iteratively, alternately adjusting the scaling
factors and recomputing the weighted average RDM estimate until
convergence. This is achieved by the following algorithm:

1. for each arrangement and each item pair included in it,
determine the dissimilarity-evidence weight (as the squared
on-screen distance)

2. determine the initial seed for the current RDM estimate
a. if a full arrangement (e.g., from the first trial) is included,

use this as the current RDM estimate
b. otherwise, use the evidence-weighted average across

arrangements of the on-screen distances as the current RDM
estimate

3. scale the current RDM estimate to have a root mean square
(RMS) of 1

4. scale the distance matrix of each arrangement, such that the
RMS of its distances match the RMS of the same item pair
entries of the current RDM estimate

5. replace the current RDM estimate with an evidence-weighted
average of the scaled distance matrices. In other words, for each
item pair: dissimilarity estimate = sumti(scaled distanceti

∗

unscaled distance2
ti)/sumti(unscaled distance2

ti), where ti is the
t rial index running through all trials that included the item
pair

6. if the RMS of the deviations between the current and the pre-
vious RDM estimate is close to 0, return the current RDM
estimate

7. otherwise, goto 3

Inverse multidimensional scaling by iterative reduction of
arrangement prediction error
The weighted-averaging algorithm explained above (Inverse Mul-
tidimensional Scaling by Iterative Reduction of Arrangement Pre-
diction Error) neglects distortions due to the projection into the
2D arena. We use the term “inverse MDS” for more ambitious
methods that take the distortions due to dimensionality reduction

into account. We can estimate a (high-dimensional) RDM
from multiple (low-dimensional) arrangements by predicting the
arrangements from an initial estimate of the RDM, and itera-
tively reducing the prediction errors. The following algorithm
implements this approach:

1. compute an initial estimate of the RDM using weighted-
averaging of subset RDMs (as described in Weighted Average
of Iteratively Scaled-to-Match Subset Dissimilarity Matrices)

2. scale the current RDM estimate to an RMS of 1
3. for each arrangement with trial index ti

a. reduce the current RDM estimate to the subset of items
arranged in trial ti

b. use MDS (with metric stress criterion) to predict the
subject’s arrangement

c. compute the distance matrix from the MDS-predicted
arrangement

d. scale the distance matrix for the predicted arrangement
to match its RMS to the RMS of the corresponding
dissimilarities in the current RDM estimate

e. scale the distance matrix for the actual arrangement to
match its RMS to the RMS of the corresponding dissimi-
larities in the current RDM estimate

f. compute the dissimilarity disparities Dti by subtracting the
scaled distance matrix for the actual arrangement from the
scaled distance matrix for the predicted arrangement

4. compute the RMS of the disparities Dti across item pairs and
trial indices

5. if the RMS of the disparities is below a threshold, return the
current RDM estimate

6. for each item pair ip, compute the dissimilarity adjustment Aip

as the average of the dissimilarity disparities Dti

7. adjust the current RDM estimate by subtracting the dissimi-
larity adjustments c∗Aip, where c is a constant scaling factor
(c= 0.3 in our code)

8. set any dissimilarities that are negative after adjustment to 0 in
the current RDM estimate

9. goto 2

This method perfectly recovers the true underlying dissimi-
larities for the toy example shown in Figure 3. It significantly
improves RDM estimates for more complex scenarios. However, if
the item set is large (e.g., n= 100 items), the inversion is a difficult
problem because of the large number of parameters of the RDM
[(n2
− n)/2= (1002

− 100)/2= 4950 dissimilarities]. In that case,
compared to the weighted-averaging approach, this method will
still improve the RDM estimate in the sense that the result will
be more consistent with the arrangements. However, convergence
to an accurate estimate of the actual underlying dissimilarities is
not guaranteed, as it will depend on the quantity and quality of
the arrangement data. Although multiple arrangements help to
constrain the space of solutions, a unique solution may not exist.
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