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Even comparatively simple, reactive systems are able to control complex motor tasks, such
as hexapod walking on unpredictable substrate. The capability of such a controller can be
improved by introducing internal models of the body and of parts of the environment. Such
internal models can be applied as inverse models, as forward models or to solve the prob-
lem of sensor fusion. Usually, separate models are used for these functions. Furthermore,
separate models are used to solve different tasks. Here we concentrate on internal mod-
els of the body as the brain considers its own body the most important part of the world.
The model proposed is formed by a recurrent neural network with the property of pattern
completion.The model shows a hierarchical structure but nonetheless comprises a holistic
system. One and the same model can be used as a forward model, as an inverse model,
for sensor fusion, and, with a simple expansion, as a model to internally simulate (new)
behaviors to be used for prediction. The model embraces the geometrical constraints of a
complex body with many redundant degrees of freedom, and allows finding geometrically
possible solutions. To control behavior such as walking, climbing, or reaching, this body
model is complemented by a number of simple reactive procedures together forming a
procedural memory. In this article, we illustrate the functioning of this network.To this end
we present examples for solutions of the forward function and the inverse function, and
explain how the complete network might be used for predictive purposes. The model is
assumed to be “innate,” so learning the parameters of the model is not (yet) considered.

Keywords: prediction, anticipation, recurrent neural network, internal body model, internal simulation, minimal
cognitive system, robotic architecture

INTRODUCTION
The capability of not only reacting to actual stimuli, but also pre-
dicting future stimuli, was for a long time attributed to “higher
animals” and therefore tightly connected to properties of (some)
vertebrate brains. Now, however, not even “simple” animals like
insects are considered merely reactive; it is now known that they
are able to anticipate future situations. Anticipation, i.e., the use
of information about what will be next, is used to guide actions.
Examples include the prediction of the future position of a moving
object, which can be used to visually pursue or reach for it, and the
estimation of the mass of an object to be lifted. To allow for such
prediction, internal models of the environment are required. Seen
from the brain’s point of view (Cruse, 1999), an essential part and
a starting point is a model of the body. Therefore, internal models
not only refer to objects in the external environment, but also have
to include a simulation of – at least parts of – the body.

Usually, two types of models are distinguished (Kawato, 1999,
p. 718):

“Internal models are neural mechanisms that can mimic the
input/output characteristics, or their inverses, of the motor
apparatus. Forward internal models can predict sensory con-
sequences from efference copies of issued motor commands.
Inverse internal models, on the other hand, can calculate

necessary feedforward motor commands from desired tra-
jectory information.” Here, we add a third function, namely
sensor fusion and want to explain these function in more
detail.

INVERSE MODELS
Classical paradigms for inverse models are targeted and goal-
directed movements that fundamentally rely on an internal model.
The simple ability to grasp an object seems to be carried out with-
out any explicit planning of the movement but by application of
controllers using sensory feedback. But the action is not merely
controlled through visual feedback. Targeted movements can be
accomplished without sight and so fast that a feedback control
loop, which inevitably would include certain delays, would be too
slow to account for the behavior (Miall et al., 1993; Desmurget
and Grafton, 2000). As a possible solution to this problem, it has
been assumed that the controller implements a transformation
of the target description onto the actuator dynamics. The target
position – given through visual input – may be defined in an ego-
centric Cartesian space. To reach the target, the position, and the
reaching movement must, however, be described in terms of joint
or muscle activations in some form. A transformation between
these two reference systems represents a mapping from Cartesian
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space to joint space. This is called an inverse model (Wolpert and
Kawato, 1998).

Solving this inverse kinematic problem is difficult because, as is
the case in most if not all biological control problems, the con-
trolled system, in our case the limb, contains extra degrees of
freedom (DoF), i.e., more joints than necessary for the solution to
the task (Bernstein, 1967). This “ill-posedness” means that there is
not only one but many solutions. Therefore, the controller has to
select one out of these many possible solutions.

Visually guided reaching movements have been the subject of
many studies in humans (Castiello, 2005; Shadmehr and Wise,
2005), as well as in other animals. But targeted limb movements
can be found also in insects. An example is the optomotor response
in crickets. The antennae of crickets can follow moving targets that
are visually recognized (Honegger, 1981). Another example is the
targeted leg movement in locusts that can be elicited by a tactile
stimulus. When stimulating a locust by touching its forewing with
a paintbrush, the animal will react with aimed scratching move-
ments, usually of the ipsilateral leg (Matheson and Dürr, 2003;
Page et al., 2008). In walking stick insects the swing movement of a
leg aims at the current foothold position of the anterior leg (Cruse,
1979). All these aimed movements rely on a connection between
sensory information and muscle activation. This mapping solves
the inverse kinematic problem and therefore establishes an inverse
model.

FORWARD MODELS
As mentioned, motor control in general requires feedback infor-
mation to guide a movement. The whole cycle of motor control,
for example the movement to a target, is affected by disturbances,
such as misperception of the target position or the target distance
and noise in the signal conductance from sensors or toward the
actuators. To counteract all these disturbances, sensory feedback
is required to supervise the movement, detect deviations from
the intended movements, and adjust the control signal. However,
in fast movements the controller cannot rely solely on sensory
feedback to guide the movement because of delay inherent to
the sensory and motor pathways. The question arises: how it is
possible that humans as well as other animals actually are capa-
ble of such fast movements? A possible solution is that humans
predict sensory consequences instead of waiting for their real
values. Therefore, control of movements, in particular fast move-
ments, relies crucially on the ability to predict sensory and motor
consequences.

A solution for a fast prediction of the real feedback could be
provided by a forward model (Miall et al., 1993; Desmurget and
Grafton, 2000) as forward models can be used to determine spatial
location when joint angles are given. Combined with an inverse
model of the body, a forward model can detect a possible error
more quickly than one that relies only on proprioceptive feedback.
When participating in dynamical tasks, such as catching a ball, an
actor must be able to predict the movement of target objects, and
therefore must have a forward model of parts of the world that
forecasts future states from the current state.

Today, there are many lines of evidence supporting the existence
of such models in the brain. Especially for manual or bimanual
tasks in humans, much work has been devoted to the influence

of prediction on control tasks (Wolpert and Ghahramani, 2000;
Wolpert and Flanagan, 2001). An experiment by Strauss and Pich-
ler (1998) suggests that the fruit fly Drosophila is able to construct
a dynamic representation of a steadily moving optical pattern that
disappears behind an occluder. As a consequence, the pattern is
expected to appear again on the other side of that occluder. Li
and Strausfeld (1999) have found evidence suggesting that the
mushroom bodies in crickets differentiate between stimulation as
a consequence of intended motor actions and stimulation as an
external imposed stimulation. Webb (2004) reviews further exam-
ples that involve predictive models and could be termed forward
models, such as those that stabilize the visual field in flying insects.

SENSOR FUSION
A distinctive feature of animals and humans is the large number
of sensors for each modality. This multitude of sensory channels
is in sharp contrast to technical systems, which usually use only a
handful of different sensors measuring disjunct qualities. In ani-
mals, many sensors measure the same or closely related features of
the environment, but in different ways.

Each sensory channel may employ its own way of “representing”
information. For example, a position of an arm may be described
by the visual system in a Cartesian and body-centered coordi-
nate system, while proprioceptive sensors use some kind of muscle
length or joint angle-like representation.

A recent review Makin et al. (2008) concluded that a represen-
tation of the hand’s position relies on sensory information coming
from skin, joints, muscles, eyes, and even ears (Ernst and Banks,
2002). An advantage of redundant systems is that errors due to
inconsistencies or to loss of sensors can be canceled out and vari-
ances can be compensated for. This presupposes an integration of
the sensory information. The integration seems to be realized as
a weighted summation of the different information (Makin et al.,
2008).

Quite similar results can be found for targeted limb movements
in insects. Niven et al. (2010) have shown that desert locusts use
vision as well as tactile information from the antennae to guide
where they put their limbs when walking on a horizontal ladder. In
this situation, the animals are required to make accurate targeted
leg placements on rungs to find a foothold, especially when the
distance between rungs is variable. On the one hand, the animals
directly find footholds for the front legs even when they have not
touched the rung with their antennae. The visual information is
in this case sufficient. On the other hand, leg placement in insects
is strongly influenced by tactile information from the antennae,
which is used in searching movements to find footholds for the
legs (Dürr and Schütz, 2011). Locusts with occluded eyes are still
able to walk over the ladder. Importantly, a deterioration in either
modality has a corresponding deterioration in ladder-walking
performance.

As mentioned, multiple redundant modalities in a system com-
pensates for errors and disturbances. This, however, presupposes
some kind of integration mechanism of the sensory informa-
tion (see, e.g., Wolpert et al., 1995; van Beers et al., 2002). Such
an integration of visual and proprioceptive/tactile information
(Botvinick and Cohen, 1998; Muller et al., 2009) requires an
internal model of parts of the body, which may be termed a
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sensor-fusion model and can apparently be found even in animals
like insects (Wessnitzer and Webb, 2006).

POSSIBLE NEURONAL ARCHITECTURES
How might such models be coded neuronally? Recent studies have
shown that neuronal systems controlling behavior are constructed
in a modular fashion. Flash and Hochner (2005) have reviewed
results that lead to the interpretation that “many different move-
ments can be derived from a limited number of stored primitives.”
Davidson and Wolpert (2004) demonstrate that internal models
underlying grasp can be additively combined. Results of Cothros
et al. (2006) suggest that there are distinct neural representa-
tions of objects and limb dynamics. Briggman and Kristan (2008)
review the arguments for modular architectures, concentrating
on the question concerning functional vs. morphological mod-
ules. Anderson (2010) reviews a huge body of results supporting
the idea of “neural reuse,” i.e., the hypothesis that new modules
have been evolved by “massive redeployment” of earlier existing
modules.

Specifically, Wolpert and Kawato (1998) proposed a modular
architecture, where an individual model is required for each task
and each behavioral element. In this approach, not only are pre-
dictive and control functions separated, but dedicated modules
are used in the context of single behaviors (Wolpert and Kawato,
1998). Such an approach requires a large number of specialized
and redundant modules, and excludes the possibility of trans-
ferring knowledge between different contexts, e.g., adapting only
once to changes of the body geometry or the inclusion of tools
into a bodily representation (Maravita and Iriki, 2004).

In contrast, we argue that this type of specialization is not nec-
essary and propose another approach. As each behavior has to
be performed with the body, why should separate body models
be applied for each of these many procedures? We propose one
holistic model that, on the one hand, addresses both control and
predictive function, and, on the other hand, which is one core rep-
resentation that can be recruited by different behaviors and has not
to be remodeled in each and every behavior anew. First, we will
explain the structure of our model, which is realized as a recurrent
neural network (RNN) allowing for pattern completion (Schilling,
2011a). Therefore one and the same model can be applied as an
inverse model, for sensor fusion as well as a forward model, i.e.,
for prediction. An important characteristic of this model is that it
can deal with redundant structures, in our case a complex body
with 22 DoF arranged in series or in parallel. Complex redundant
manipulators are a challenge for many modeling approaches as
redundancy allows for multiple solutions and requires some form
of decision which solution to choose. For example, the human
arm consists at least of seven DoF. Many points close to a per-
son can be reached by many different arm configurations. Instead
of introducing an explicit criterion for selecting one solution, in
our approach the redundancy is exploited. The complexity of the
body is divided into trivial relationships and the Mean of Multiple
Computation principle is a mechanism to integrate these multi-
ple relationships. We will not refer to biological structures that
possibly reflect this network. Rather, we will use it as a simple
example providing a proof of concept for an integrative model
that does not need a huge number of dedicated modules. We will

also not discuss how the internal body model as such could be
learned.

Second, we will explain and discuss how this internal model can
be combined with a decentralized architecture consisting of sen-
sorimotor procedures, i.e., be embodied in a biologically inspired
control framework for the control of a walking robot (Schilling and
Cruse, 2008, submitted). On the one hand, the body model serves
reactive control, i.e., the network is applied as an inverse model for
the control of the leg movements and as a filter to improve erro-
neous sensory data. On the other hand, we want to explain how the
predictive capabilities of the network can be exploited to anticipate
consequences of the application of novel or existing behaviors in –
possibly harmful or dangerous – situations. This faculty allows
the system to mentally simulate an action before carrying out a
possibly unsuitable action in reality. In this way, predictive capa-
bilities of a model can make cognition as planning ahead possible
(following the definition of McFarland and Bösser (1993). How
the complete model might be used for planning will be discussed
in Section “Conclusion and Future Work.” In the Section “Discus-
sion,” we will contrast this approach with approaches in robotics
and movement science that rely on a multitude of very specific
internal models.

MATERIAL AND METHODS: THE MEAN OF MULTIPLE
COMPUTATION MODEL
In the following, we present a holistic model that can be used in
different contexts. This model solves all three problems discussed
above. The model is based on an integration principle – the mean
of multiple computation (MMC) principle (Cruse and Steinküh-
ler, 1993). The general idea is that the model describes relation-
ships between body parts and that these kinematic descriptions are
encoded into a RNN. Although the underlying principle of calcu-
lating a mean value between different influences is supported by
biological findings on sensory integration (Makin et al., 2008), this
network is not meant as a model of one specific part of the brain,
nor do we propose that there is one single dedicated body modeling
area. Rather, we only want to show the feasibility of such a model
as a proof of concept. It is important that the principle proposed
for the integration offers to merge multiple sites of information in
a coherent way while addressing the three tasks mentioned.

The core of the network describes the structure of the body to be
represented – the network can be directly set up from the kinematic
equations. Even a simple manipulator structure (like a human
arm) can be quite complex, making a direct mathematical solution
impossible. This complexity is a problem for control approaches
and is usually circumvented by introducing restrictions. In our
model, by contrast, the redundancy of the manipulator is not
seen as a problem, but is exploited. When setting up the kine-
matic descriptions we do not encode a complete solution for
the whole structure of the body, but we divide the complexity
into smaller structures, which can easily be handled mathemat-
ically. This leads to more equations than the minimum number
required, but they can be solved and solutions can be found easily.
Specifically, the structure is split into relationships between three
variables each. A variable is either one that describes a moveable
joint and the connected segment, or a newly introduced variable
capturing relationships between two other variables. The variables
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describe local relationships (e.g., the upper arm and the lower arm
are two variables that construct a local relationship and form a
diagonal vector/variable which connects these two, see Figure 1,
D2). Finding a solution for any of these three variables is straight-
forward and always leads to a solution. Each variable takes part
in several such local relationships (see Figure 1) and in the end
we can derive a whole set of such local and simple equations (for
the example of the arm, the derived equations are presented in
the Appendix). Solving each of the equations for each variable,
we get multiple ways of describing each variable through its local
relationships: there are Multiple Computations for each variable.
Following the MMC principle, the multiple solutions for one vari-
able can be integrated by calculating a (weighted) mean. This leads
to an iterative way of calculating new values for each variable. At
the same time the set of equations can be understood as constitut-
ing a neural network. The introduction of recurrent connections
dampens and stabilizes the system as it introduces low-pass prop-
erties (the equations describing the resulting network are given in
the Appendix, for more details see Schilling, 2011a).

While the multiple computations appear to introduce addi-
tional but unnecessary computations, this is true only while the
network is in a harmonic state, meaning all the multiple compu-
tations for one variable lead to the same result. But when, due to
a disturbance, the different computations lead to different values
the network basically performs a form of pattern completion. It
acts as an attractor network forming an autoassociator and inte-
grates the different solutions in a coherent way constrained by the
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FIGURE 1 | Arm consisting of three segments (L1, L2, and L3) that are
connected by three hinge joints. The end-effector position is described by
the vector R. D1 and D2 describe the diagonals. The arm can move in a
two-dimensional plane, but has three DoF (joints), one more than
necessary.

encoded relationships. This means that the network overall settles
into a state consistent with the encoded relationships that basically
span the activation space of the network. In this way the network
can fill in missing information or correct wrong information. By
that means, it can produce solutions for the inverse, forward, or
any mixed task.

THE MMC BODY MODEL
In the following we want to explain how such a network can be
setup as a body model for a simple animal such as a six-legged
stick insect. We will start with the description of the kinematics
of a single leg, which is comparable to the example of an arm. In
the next step we will extend this network toward a model of the
whole body, showing how different levels of representations can
be integrated and how the model mediates between the different
partial models. To this end, we show how this complete model can
be applied in motor control and how a leg model can be utilized
for the inverse model function in this task. Later, we will discuss
how this model can be used for planning ahead.

The complete model has a two-layered structure (see Figure 2).
The lower level contains six models, one for each leg (Figure 2B,
right). The upper layer represents the thorax and the six legs, the
latter, however, in an abstracted form (Figure 2B, left). We will
begin with describing the model of the individual leg.

The leg model
Figure 3 shows the structure of a stick insect’s leg that has been
modeled. It only contains three DoF. We can set up a simple MMC
network using redundant trigonometric relationships. Because of
the kinematic structure, we can derive a specific solution for this
type of manipulator. As the second and third joint act on a plane
(Figure 3C) and their rotation axes are parallel, we can use basic
trigonometric function to come up with a solution for these joint
angles that hold true in this plane. The first joint angle can be
derived from the projections of all leg segments on to the ground
plane. Even though for this kind of structure a closed mathematical
solution is possible, we restrict our solution to simple trigono-
metric relationships. This leads to multiple computations of the
variables that can then be integrated into the model (more details
on the derived equations are given in the Appendix).

As the model directly encodes the kinematic equations describ-
ing the structure of the leg, the local relationships basically
represent the forward kinematics and in this way provide a
means to translate movements of joints into displacements in
three-dimensional space. The partial solutions are then combined
through the shared connecting variables. When a set of joint values
is given, the model adapts its internal values in a complemen-
tary way. The result is a leg configuration that is geometrically
valid as the network activations are restricted by the encoded geo-
metric constraints (e.g., fixed segment length, joint angle limits).
This property is independent of the input given to the net being
underdetermined or overdetermined.

While for a single leg the number of DoF is quite limited, the
model as such is not limited in this respect and the MMC principle
can and has been applied to model manipulators with many more
DoF. It had been applied to three-segmented manipulators in gen-
eral and it has been shown that it can be used in such scenarios
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FIGURE 2 |The hierarchical body model. In (A) the vectors constituting the
higher (body) level of the model are shown. Each leg is only represented by
vectors to the end point of the leg. The detailed geometry is not reflected on
this level. In (B) it is shown how the two levels are connected. Each leg is
represented through a single leg network as shown in Figure 3. Each leg

network shares the end point vectors with the higher body level network.
During processing both levels mutually inform each other. In the inverse
kinematic case the body level produces new leg vectors as target vectors that
are forced onto the leg network, which comes up with corresponding joint
angles for the target vectors.

with universal joints and nine DoF in total (Schilling, 2011a). The
model can as well cope with additional constraints applied to it,
for example, when modeling a human arm with seven DoF for the
whole arm and an elbow joint that is restricted to movements in
one dimension (Schilling et al., 2012).

The thorax model
When we want to look at the more complex case of a whole
body, which for the insect corresponds to three body segments
and six legs, we can divide the complexity of the problem into
meaningful levels (Figure 2). To this end, the model is con-
stituted of detailed models of the individual legs, as described
above, while for the complete model of the whole body in the
upper layer, the thorax model (Figure 2B, left), the legs are only
abstracted to the vectors representing the end points of each indi-
vidual leg (for more details on the representation on the body
level see Schilling et al., in press). Such an approach has two
immediate advantages. First, it divides the complexity into dif-
ferent levels and therefore reduces on each level the number of
involved variables and as a consequence the number of redun-
dant derived equations to a manageable set. Second, it introduces
a form of explicit abstraction that is reflected in the structure of
the model.

The different levels of the body model are connected as they
share variables, in the case of the insect the vectors pointing to
the tip of the leg. The computation of the different levels is tightly
interwoven through these shared variables. This allows the model
to be flexibly used in different scenarios. For example, we can
use the body model to control the coordinated movement of the
legs during the stance movement in forward and curved walking
(Schilling et al., in press). In the upper level (Figure 4A), we ini-
tiate the movement of the body by pulling at the front segment
(see Figure 4B, vector delta0), while the other segments as well as
the legs pick up the movement. Through the shared variables, the
movement of the leg in the thorax model is given as an input to

the leg networks and the leg networks provide the complementing
joint movements for motor control.

PROCEDURAL MEMORY ELEMENTS AND MOTIVATION UNITS
The body model as such is not able to create specific behaviors. Its
main function is to filter input data in such a way that the result-
ing output corresponds to the geometrical (and, in the extended
version Schilling, 2009, dynamic) side conditions given by the
body. To drive specific behaviors, a bank of procedural memo-
ries is required (see Figure 10 for an overview of the decentralized
control system for a single leg). Examples are given by a network
called Walknet (Dürr et al., 2004) which, being based on behavioral
studies on stick insects, produces descriptions of many complex
behaviors (such as climbing over a gap that is wider than twice
the step length of the animal Bläsing, 2006). The most important
procedures with respect to walking concern the Swing-net and the
Stance-net, controlling swing movement and stance movement,
respectively. Both procedures exploit sensory feedback, joint angle
position, or velocity to provide angular changes to be performed
in the next moment of time. In the case of the Stance-net, the
contribution of the individual joints is determined by the body
model.

To control the temporal sequence underlying any behavior, for
example the more or less regular sequence of swing and stance
movements involved in walking, an additional neuronal structure
is required. Inspired by Maes (1991), who was herself inspired by
Konrad Lorenz, we equip each procedural element with a moti-
vation unit that gates the output of the corresponding procedural
element. These motivation units form a separate network as they
may be coupled with mutual excitatory or inhibitory connections.
This network can adopt a number of stable (attractor) states that
provide the context for a specific procedure to be selected. In the
examples, to allow for a simple explanation of the principle, we use
only the Swing-net and a second procedure, Reach-net, explained
below, together with their motivation units.
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FIGURE 3 | Schematic figure of the left front leg of a stick insect. The leg
consists of three hinge joints. (A) Shows a view of the complete leg attached
to the body. (B) Top view of the leg. The α-joint moves the leg forward and
backward. In (C) the leg is seen from the front. β- and γ-joint operate on a
plane, meaning their axes are parallel to each other and are perpendicular to
the leg plane. Lifting the leg equals a positive movement in the β-joint, and an
outward going movement produced by the γ-joint is defined as a positive
movement. The origins of the joint coordinate systems are set corresponding
to leg positions in a standing walker (α is in a middle position, while β- and
γ-joints are in a position in which the femur is approximately parallel to the
ground and the tibia is nearly orthogonal to the femur).

RESULTS: SIMULATION OF THE MMC NETWORK
We will show two sets of simulations. The first one (application
as a forward model) demonstrates the predictive capabilities of
the MMC network. The second simulation demonstrates how the
same network can be used in motor control to make targeted
movements (application as an inverse model).

APPLICATION AS A FORWARD MODEL
To illustrate the basic function of the model, we will consider the
scenario of a walker climbing in an environment on footholds that
are sparsely distributed. Specifically, we assume that the walker is
standing in front of a gap where a vertically oriented beam is posi-
tioned in the sagittal plane of the body and near enough so that
the beam could be reached by a front leg (see Figure 5). We assume
that the animal (or robot) does not exploit visual input nor does
it use tactile input from the antennae. When the walker continues
walking, it uses a procedural memory element called Swing-net.
This network provides signals for how to move the joints during
a swing movement. The latter is characterized by a trajectory that
describes a movement forward that involves a lifting movement

in the first part followed by a downward movement in the sec-
ond part of the trajectory. In normal walking over flat terrain the
swing movement ends as soon as the leg touches ground. In some
versions of the Swing-net (Dürr, 2001; Bläsing, 2006), a somewhat
regular searching movement is performed if no ground contact
is given. During a swing of an insect standing in front of a gap,
where only the vertical beam can provide ground contact, the leg
may be moved until it finds a possible support at the vertical beam.
Note that the body model does not contribute to control this swing
movement. Nonetheless, during the swing movement, the actual
values of the joint angles are given to the RNN forming the leg
model, thus disturbing its actual state. As described above, this leg
network starts to distribute the externally introduced disturbance
onto all variables that are part of the network. As a consequence,
all variables adopt values that complement the ones forced onto
the leg network. As the network acts as an autoassociator, and as
all the values are restricted by the encoded geometrical and kine-
matic structure of the modeled body, the network also contains
the vector describing the end position of the leg. This information
will be exploited in the second example explained below. Figure 6
shows a simulation run in which the front left leg is making a swing
movement driven by Swing-net. Shown is the real configuration of
the leg as given through the joint angles (solid lines in the figure)
as well as the vector pointing to the tip of the leg (dashed lines).
As the figures show, the leg position estimated by the body model
is quite close to the real position. Thereby the network solves the
direct kinematic task.

In the example given in Figure 6, we showed how the body
model is able to determine the end position of the leg during a
swing movement. To give an impression concerning the behavior
of our model, we test how well the vector pointing to the tip of
the leg corresponds to the actual position determined by the joint
angles. Therefore, we tested our model on a number of movements
between 36 pre-defined postures (see Figure 7). These result from
four different joint angles used for the alpha joint (87, 37, −13,
−63˚), three variations for the beta (15, 40, and 65˚), and the
gamma joint (36, 86, and 136˚).

In 1260 simulation runs in all, we now produced movements
from each posture to every other posture. Initially, in each run the
network is provided with the joint angles of the start posture as an
input and iterated for 100 iteration steps, so that the network is in
a settled state and represents the start posture adequately. Then the
actual test begins. For 25 time steps, each joint is moved from its
start angle to the target angle. The joint angles change linearly over
time and these joint values are used as input to the leg level of the
body model, which is iterated as input is provided. The body model
predicts the end position of the leg. Figure 8 shows the Euclidean
distance between the predicted end point and the target point over
time. This distance is normalized with respect to the overall dis-
tance between the starting point and the target point. As can be
seen from the figure, the body model follows nicely the imposed
movement. There is an expected time lag as the used model does
not anticipate the continuation of the movement, but merely inte-
grates the current sensory data into the old estimated position and
therefore underestimates the overall movement. (In an extension
of the MMC network, we introduced dynamic influences and inte-
grated equations representing velocities and accelerations in the
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FIGURE 4 | Vectors constituting the thorax model (view from above). In
(A) the vectors describing the foot point with respect to the segments are
shown. (B) Shows how these vectors are changed when the model is pulled

at the front (delta vector) and the foot points are kept in place. (C) Shows an
example configuration during walking, with only three legs on the ground
(front left, middle right, hind left).

network. As an effect, such a network can also successfully predict
the ongoing movement and the lag is reduced correspondingly;
Schilling, 2009. Including dynamic influences also counteracts the
exponential slowing down at the end of the movement.) After 25
additional iteration steps the body model has settled close to the
target position. The mean distance between target position as given
through the joint angles and the estimated end position of the leg
provided by the body model is 0.1598 (SD± 0.112) at iteration
step 25 (when the movement of the input is finished) and 0.0084
(SD± 0.026) at iteration step 50. This is a normalized distance
with respect to the overall distance between start and target posi-
tion. A side effect of this normalization is that some movements
that actually are quite close in three-dimensional space nonethe-
less require substantial movements in the joints. In such cases
the normalized distance over time gets inflated by the normal-
ization process. Looking at individual results we found that small
positional differences between starting and target posture had sub-
stantially higher normalized distances, which increased the error
measurement and the SD.

APPLICATION AS AN INVERSE MODEL
In the next simulation, our goal is to demonstrate how the internal
body model can be used as an inverse model. We show that after
the left front leg has found foot contact on the beam (see Appli-
cation as a Forward Model), the contralateral, right front leg can
make a targeted movement to the same spot at which the left front
leg found a foothold. The left leg was driven by a simple behav-
ioral module, Swing-net (see first simulation in Application as a
Forward Model), and we used the body model to estimate its posi-
tion. In the next step, the contralateral, right, leg should aim for
this position. The information transfer between these two legs is
mediated via the upper level of the complete body model (see The
Thorax Model). Parts of the body model are vectors describing the
relative position of the tips of all legs (see Figure 4C). For exam-
ple, in Figure 4C, vector foot3–0 connects the foot of the left front
leg (#0) with that of the right middle leg (#3). Correspondingly,

FIGURE 5 | Insect in front of a gap. Left front leg will perform a searching
movement that is controlled by the Swing-net. The leg network can be used
in this case to estimate the end position of the leg (forward function).

vector foot1–0 (not shown in Figure 4C) connects the left front leg
with the right front leg (#1). Therefore, to control a direct, targeted
movement of the right front leg toward the current position of the
left front leg, we need another procedure, termed Reach-net, that
simply sets vector foot1–0 to zero and thereby enforces the body
network to adopt a foot1–0 vector of length zero. In this way, the
body network will generate a new target vector for the right front
leg which is then given to the lower-level leg network. As the net-
work has to satisfy this constraint, the right front leg of the model
will approach the position of the left front leg, thus solving the
inverse kinematic task.

Figure 9 shows a simulation run. The position of the left leg
touching the beam is given by solid gray lines. At t > 0 Reach-net
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FIGURE 6 | Different views of the movement of the leg during
the search movement. The dark solid line always shows the
current leg configuration as described through the joint angles. The
red dashed line shows the position of the tarsus as estimated by

the MMC leg network. The horizontal dashed lines in (B,C) indicate
the ground level. View from above is shown in (A), side view is
shown in (B) and view from the front is shown in (C). Right: number
of iterations.

is activated, which changes the target position for the right leg to
the current position of the left leg. This change in target position
is mediated by the upper level of the body model and depicted

by the dashed line. As a consequence, the right leg (dark solid
lines) is reaching for the target position and is therefore moved
into the direction of the target position. The leg is moved to the
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A   View from above: Variation
    of alpha-joint

   View from front: Variation of gamma-joint is shown for the different beta-joint angles
1. beta in a lifted position                          2. beta-joint in middle position                  3. beta-joint in lowered position

B

FIGURE 7 | Different leg postures – produced through
variation of joint angles. In (A) the four different alpha joint
angles used for the definition of the postures are shown. In (B)

the three different figures show the different postures stemming
from the variation of the beta joint, each showing the three
gamma joint values applied.

FIGURE 8 | Distance of the estimated leg end position to the position
of the target posture in three-dimensional space over time. The mean
normalized distance is calculated for all 1260 movements for each iteration
step. The distances are normalized with respect to the distance between
start and end posture in three-dimensional space (dashed lines show the
SD around the mean value). The light gray line indicates a linear
interpolation between the start and the target position (Importantly, the
interpolation is done in joint space with a constant velocity. As a result, the
interpolation of a single movement is better described by a curve (a
geodesic), but over all movements we use a straight line as a simplification
to indicate the general expected movement characteristics).

front through a movement of the first (the alpha) joint and then
reaches out to the target position by moving both the second and
third joint. In a couple of iteration steps the leg closes in on the
target position and touches the beam meeting the left leg. The leg
network is able to provide matching joint angles for a given target
position and in this way solves the inverse kinematic problem.

DISCUSSION
The MMC network can be recruited as a body model in diverse
tasks as it serves different function. The body model can address
the three functions of forward modeling, inverse modeling, and
sensor fusion. We have used similar models in the past to solve

the inverse kinematic (Schilling, 2011a; Schilling et al., 2012)
and inverse dynamic (Schilling, 2009) problems. In this arti-
cle we showed how the model can serve as a forward model
and predict from motor commands given as joint angles (or
movements) goal positions of legs in Euclidean space. In the
following, we first discuss how our approach compares to other
approaches employing internal models and approaches to solving
the inverse and forward kinematic problem. Second, we address
how the model will be embedded in our control framework
reaCog (Schilling and Cruse, submitted). There, due to its flex-
ibility, the model can serve all functions of an internal model.
In particular, the predictive capabilities allow recruitment of the
model in planning ahead and use of the model as a grounded
internal representation to anticipate action consequences. We
will discuss connections to other motor control approaches uti-
lizing internal models for prediction in the sense of planning
ahead.

INTERNAL BODY MODELS
An important notion in the context of motor control is the internal
body model, a representation of an organism’s own body and its
environment. Even though the work on embodiment has pointed
out that complex behavior is possible without an explicit repre-
sentation and can rely on the “body itself as its own best model”
(Brooks, 1991), the intention was not to abandon internal rep-
resentations, but to focus on grounded internal representation
(Steels, 2003). Following this line of research, internal models have
to be in service for some lower-level function or behavior before
they can be used in a different context. One important part of
such a model is a model of the body (Cruse, 1999) as it provides
a starting point for models of the environment, i.e., the way the
environment relates to an organism’s body. The MMC model is an
example of such a model that, at first, can serve behavior (targeted
movements), but then is flexible enough to allow for prediction
and sensor fusion and in this way may be employed for planning
ahead (see Internal Models Used for Planning Ahead Through
Internal Trial-and-Error).

Until now, we have focused in this paper on the forward func-
tion of the model and how this allows predictions of consequences
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FIGURE 9 | Different views of the movement of the right front leg
(dark solid lines) during the targeted movement toward the front.
[Views as shown in Figure 6. Note that as we are looking at the right
leg in (B) we are looking from the other (the right) side.] Shown is the
movement over time. The configuration of the left leg is shown as a

solid light green line. The red dashed line shows the target position
provided by the body model as a target vector for the leg network of
the right front leg. View from above is shown in (A), side view is
shown in (B) and view from the front is shown in (C). Right: number of
iterations.
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of actions. In the following, we briefly discuss the properties of
the proposed model with respect to aspects of internal models as
raised by Haggard and Wolpert (2005). According to them, the
term “body schema” stands for the unaware spatial coding of body
parts (Paillard, 1999) and is comparable to our notion of an inter-
nal body model. (In contrast, the term “body image” is a visual and
conscious representation of the body seen from the outside.) In the
following, the different aspects (we leave out those related to phe-
nomenological experience) are listed together with an explanation
of how they refer to our MMC model:

• Spatially coded : The internal model represents the body and
the configuration of the body. In our MMC network, the con-
figuration of the whole body can be described by the joint
configuration. The positions and relations in space result from
the forward kinematic function.

• Modular : The brain is assumed to represent the body in a mod-
ular manner and in different neural modules (Imamizu and
Kawato, 2008). The different modules must be able to interact.
Hierarchical MMC networks allow a representation to be mod-
ularized easily. The complexity can be distributed on different
levels of the hierarchy. The different layers of the network can
cooperate by using shared variables describing their geometric
relations.

• Updated with movement : Haggard and Wolpert (2005) demand
that a body model used for the production of action has to con-
tinuously track positions and states of the body segments. It is
essential for our approach to use the body model as a central
part of the whole architecture. The MMC principle is basically
an integration principle that allows a value for a variable to be
derived from multiple values and influences. In the same way the
system can be extended and used to integrate more influences
and directly integrate sensory data. For a detailed discussion
about how the body model can be used for sensor fusion see
Schilling (2011a) or Schilling and Cruse (2008).

• Adaptable: Until now, the presented body model does not
account for changes of the body geometry or learn even the
loss of a leg. The body model is assumed to be innate and may
later be modified by experiences and adapted to bodily changes
(Funk et al., 2005).

• Supramodal and interpersonal : There are distinct areas in the
brain that are responsible for processing sensory data from a
single modality. The information from the different modality-
specific regions is integrated by association areas (Gallese and
Lakoff, 2005). The body schema is referred to as such an asso-
ciation area, where the integration of sensor data from different
sources is an essential aspect. The MMC principle provides a
basic mechanism through which multiple inputs and influences
can be integrated and which could be applied there.

• Haggard and Wolpert (2005) further propose that the body
scheme is not only used to represent one’s own body, but also
to represent the bodies of others. In a scenario with two agents
we applied the body model for perception and control of action
(Schilling, 2011b). One agent was making targeted arm move-
ments using the body model to provide motor commands. The
second agent observed the movements from a fixed point of
view. The movements resulted in postures lying in the viewing

plane of the observing agent. Lower-order visual moments were
used to represent the visual input. It was the task of the observ-
ing agent to predict these visual descriptors from the current
stream of sensory data. We used a RNN for this prediction con-
sisting of one hidden layer. The structure of the hidden layer
was fixed and the hidden layer was identical to the body model
used for production of the movements. The observing agent
was able to learn the input and output mappings in an unsuper-
vised fashion. The dynamics of the hidden layer were exploited
to reproduce the dynamics of the observed movement and to
predict the movement correctly. This is a first step toward a
multimodal representation. A mapping of the visual impres-
sion of another body onto one’s own body model is established
(Schilling, 2011b). As the body model is utilized in action and
perception it provides a connection between action representa-
tion and perceptual effects as proposed by the common coding
theory (Prinz, 1997).

In contrast to our approach, various authors have tried to
address kinematic problems through individual models. In an
early and interesting approach, Morasso and Sanguineti (1994)
connected the individual models for the inverse and forward kine-
matic function. The output of the inverse model was routed to
the forward model and vice versa. In this way, a RNN is con-
stituted which is able to perform pattern completion similar to
our approach. But it presupposes forward and inverse kinematic
models, which may be hard to learn for complex structures. The
advantage of the MMC approach is that it is based only on simple
local relationships.

Other approaches to implementing forward and inverse func-
tions usually separate both functions and employ independent
models for each function. A classic example of such models is
the MOSAIC model, which proposes pairs of inverse and forward
models to represent individual motor programs. A single motor
primitive (a procedural motor program representing the controller
of a behavior; overall the motor primitives constitute the motor
memory) is defined through the inverse model, which captures
the dynamic relation between a goal state and the correspond-
ing motor commands (Thoroughman and Shadmehr, 2000). In
the case of targeted movements a goal position is described in
Euclidean space and the inverse model would provide movements
of the individual joints as motor commands. A motor primitive
following the MOSAIC approach consists of a collection of such
inverse models, each one paired with a forward model. While both
models can be learned at the same time, the main function of
the forward model is to offer a prediction of the currently issued
motor commands. This prediction can be, first, used as a predic-
tion of the slower sensory feedback. Second, the prediction can be
later compared to the actual feedback the system receives. When
the predicted value and the actual feedback are in good agree-
ment, the respective model is modeling the current behavior well.
Because in the MOSAIC framework these pairs of models are used
in parallel and predictions are derived for all forward models, the
comparison can be used to choose the current behavior. There-
fore, the advantage of such pairs of forward and inverse models
as well as learning them in combination is that the switching of
motor primitives can be directly linked to the motor primitives
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themselves. Each motor primitive provides a measurement of how
good that behavior fits the current context.

This is in contrast to the architecture we use, in which all
motor primitives compete in a winner-take-all fashion (on the
level of motivation units) about which primitives should be active,
although merging of procedures is not precluded. The activation
of a motor primitive is given through the situational context that
depends on current sensory states and the current internal state
of the system. One important problem for control frameworks in
general is adding new behaviors. In the case of the MOSAIC con-
troller, it is hard to decide when a behavior should be regarded as a
new behavior or when it should just be understood as a variation of
an existing behavior (e.g., reaching in a different direction). While
this problem holds true in the same way for our approach, in the
abstraction we introduced through the higher level of motivation
units, quite complex and adaptive motor primitives may be built
on top of the lower level, which can simply be separated by sensory
signals.

In the DAC series of robots, Verschure et al. (2003) introduced
a hierarchy of abstraction levels similar to ours. In his approach,
the lower-level motor primitives were learned together with a
more high-level and abstract representation that basically defines
in which context a behavior should become active. Learning a
motor primitive would be possible in the same way for our sys-
tem, but currently our system consists of a pre-defined set of motor
primitives that are biologically inspired from experiments on the
walking of stick insects.

A serious disadvantage of the MOSAIC control framework
compared to our approach is the enormous redundancy of the
information. For each behavior a new pair of forward and inverse
models has to be learned. Each of these models has to incorporate
all the aspects required by Haggard and Wolpert (2005) as listed
above, i.e., each model has to capture the basic geometric con-
straints and relationships and basic assumptions concerning the
dynamics of movement. Not only would such a redundant sys-
tem be unnecessary as it represents all these relationships multiple
(and presumably a large number of) times, but it also would be
difficult to adapt changes of body geometry as these would have
to be changed in all the dependent models. In our model, changes
in body geometry have to be applied only once to the system and
not to each and every individual motor primitive. In addition,
as argued above, it has been found that internal models are also
recruited in perception (Loula et al., 2005) and therefore must be
quite flexible and may not be restricted to specific body sizes.

The essential aspect of the MMC model is not constituted by
the body dimensions as such, but is formed by the generic geo-
metric relationships between body parts that hold true for other
people’s bodies as well. In this sense, the MMC model may only
provide a core representation of the kinematic constraints that can
be used by different motor primitives.

Such a core representation of the body is supported by
experimental findings. A distinction between an internal model
of the body’s kinematics or dynamics and task- or behavior-
specific models has been found by Cothros et al. (2006). In
their experiments, subjects learned targeted goal-directed reaching
movements while at the same time holding a robotic-device that
applied novel force fields to the arm during the movement. The

representation of the dynamics of the behavior appear to be
separated from the representation of the body dynamics and kine-
matics. After adaptation to the force field subjects performed the
same movements either in free space or in a null field holding
the robot. Aftereffects during movements in free space were sig-
nificantly smaller compared to those in a null field. Furthermore,
no reduction in retention was observed when subjects returned
to the force field after moving in free space. The representation
of the object-related dynamics appear to be separated from the
representation of the body dynamics and kinematics.

Another approach related to ours is the work of Bongard et al.
(2006). These authors have used an internal model of the body
in a starfish-like four-legged robot. In their system, the internal
model was used in internal simulation loops to evolve locomo-
tion controllers. The internal model was used to predict sensory
consequences of the generated motor primitives and to access the
quality of the resulting behaviors. After learning a suitable new
locomotion motor primitive this controller was then applied to
the robot itself. From the difference between the predicted out-
come of the motor primitive and the result when carried out on
the real robot, the system was able to bootstrap over time changes
of its own structure and to adapt its internal model of the body.
It was, for example, able to recognize the shortening of a leg and
to change its internal body model, as well as to adapt the loco-
motion motor primitive. Such an updating routine of the internal
model could be similarly introduced into the way we are applying
our model as our model is also predictive. In Bongard’s approach
the internal model is predictive and the forward function of the
internal model is exploited in internal simulation. In addition, the
model is refined over time, but lacks the flexibility of the MMC
model as it is only a predictive model that cannot be used for other
tasks. In addition, it is not biologically inspired or related to cog-
nitive function as such, but only computes the forward function.
Furthermore, the robot structure used consists only of eight DoF
and it is difficult to imagine how this approach could easily be
applied to a system able to control complex behaviors, as is the
case for the insect-inspired hexapod robot.

A different approach has been proposed by Butz et al.
(2007); Herbort et al. (2010) based on the SURE_REACH model.
SURE_REACH is a posture-based theory (Rosenbaum et al., 1993,
2001) in which a set of postures is stored in neural population
codes. Crucial for motor control are two mappings. First, for a
given goal state (a hand position) an appropriate posture or com-
bination of postures has to be selected. This requires an inverse
model of the goal space to the posture space. The activation stem-
ming from the goal state drives the activity in the posture space.
Second, the changes in activity of the posture space can be pro-
jected to motor commands. The motor commands invoke the
movement and therefore a change in posture which is fed back into
the system into the posture space. The SURE_REACH model has
been tested for an arm with three DoF acting in a two-dimensional
plane. This manipulator is redundant and one of the strengths
of this approach is that it can deal with the redundancy. The
SURE_REACH model is able to learn the bidirectional mapping
between joint and Euclidean space in an unsupervised fashion. It
provides a population coding of the sensorimotor mappings that is
in good agreement with neuroscientific findings (Doya et al., 2007)
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and allows for goal-directed movements while avoiding obstacles.
Unfortunately, the redundant coding of the complete arm comes
with high computational costs as the number of DoF increases.
Therefore, in a recent paper Butz and colleagues conclude that
model does not scale up to the complexity of nine DoF like in
a human arm (Ehrenfeld and Butz, submitted). In consequence,
they developed the Modular Modality Frame (MMF) approach
in which the overall complexity of the manipulator is distributed
onto local relationships between neighboring segments. This is
quite similar to the MMC approach as it is based on redundant
local relationships. This model is used for the representation and
integration of sensory data of an arm. A central idea is that there
are redundant representations and that position and orientation
of a limb are represented at the same time with respect to multiple
frames of reference. Similar to the MMC approach, the model is
modular and relies on local relationships between adjacent limbs
of the arm. Relative forward and inverse kinematic transforma-
tions are computed between adjacent limbs in the model. In
addition, representations with respect to a global frame of ref-
erence are continuously updated. Each frame of reference can be
connected to multiple sensory inputs. The sensory inputs are inte-
grated and as a consequence the network is able to compensate for
noise. In addition, the computation of a plausibility value allows
the network to account for (systematical) errors of sensors. The
MMF model has been introduced to account for sensor fusion and
it has been shown how the model can integrate different sensory
channels as well as how it can deal with systematic failure. At the
same time the MMF model is based on local computation of for-
ward and inverse kinematic computation in a similar way as the
MMC network. In the future, we want to extend our MMC model
toward multiple sensory inputs and might use similar ideas to
realize the sensor fusion in our model (weighting of inputs, plau-
sibility measurement). While Kalman filters (Wolpert et al., 1995)
have been widely used for sensor fusion and integrating these val-
ues into a current state, a crucial problem of the Kalman filter
approach is that it relies on a minimization procedure required by
the inverse modeling step for complex manipulator structures. As
a consequence, not all states possible for redundant systems can be
realized by the system. Only specific solutions are found (Grush,
2004). Again, approaches based on local relationships circumvent
this problem.

While both the MMC model and the MMF model are based
on kinematic descriptions that are used to set up the model, there
are some approaches in which body models are learned as map-
pings from visually observed movements to motor commands.
Most of these models deal with quite simple robotic structures
and are applied to robot arms with a small number of DoF (for
a thorough review see Hoffmann et al., 2010). One nice example
is the work by Sturm et al. (2009), in which a Bayesian network
is used. The network identifies the kinematics of the robot arm
just through self-observation over time. The model successfully
learns kinematic relationships between neighboring segments of
the arm depending on the relating joint variables. Therefore, the
model is – similar to the MMC model – based on local relation-
ships that can then be combined to construct the kinematics of
the whole robot arm. The local models are learned through a non-
parametric regression. It is searched for a best arrangement of

these models in order to represent the full system. The forward
model has then been applied to predict movement consequences
and derivations between prediction and observation have been
used to adapt the model. In this way the model was able to adapt
to changes of the robot dimensions. This shows the feasibility of
learning such mappings and has been used even for a manipu-
lator with six DoF. Nonetheless, it appears difficult to scale such
an approach to more complex structures like robots that not only
consist of a series of limb, but also have parallel limbs, such as
a hexapod walker, as the basic considerations provided by Sturm
et al. (2009) on the complexity of learning point out. For such a
case at least some basic information on the structure of the robot
seems necessary.

INTERNAL MODELS USED FOR PLANNING AHEAD THROUGH INTERNAL
TRIAL-AND-ERROR
We have shown how a specific type of body model, forming a
holistic system, can be used as a forward model and as an inverse
model. Because it represents a pattern completion system that is
restricted to geometrically consistent output vectors (i.e., body
configurations), the MMC model can likewise be used for sensor
fusion. Forming a redundant representation, the model is able to
distribute large errors over the whole system, thus decreasing the
effect of the errors. This faculty will not be discussed here further,
however.

Instead, we will point to the fact that the property of this body
model to act as a forward model can also be exploited for predic-
tion. Whereas the term “prediction” usually describes the ability
to provide expected sensory signals that can then be compared
with actual sensor values (allowing, e.g., for correction of errors
in the model), here we address another property. Internal simula-
tion can also be used for prediction of “higher-level” expectations,
for example, whether in a specific situation walking can be suc-
cessfully continued. Together with the ability to exploit various
elements of the motor memory, new kinds of procedures could
be tested through internal simulation on being successful or not,
thus allowing for the faculty of “internal trial-and-error.” In this
sense, Schilling and Cruse (2008) have proposed a way of using the
body model in cooperation with a procedural memory. Perform-
ing internal simulation is possible within this architecture when
the output of the complete motor controller is not given to the
body, i.e., the muscles (or in the case of a robot, the motors), but
is instead directly projected back to the input of the body model.
How this could be done is schematically illustrated in Figure 10.
Only two procedural elements of one leg, the Swing-net and the
Stance-net (for details see Dürr et al., 2004) of the right front
leg, are depicted. The function of Swing-net has been explained
earlier. The Stance-net is very simple as it contains only three Inte-
gral controllers, one for each joint. The reference values for these
controllers are provided by the joint angles determined by the leg
network (see The Leg Model). During normal walking, the output
of these networks drives the leg muscles, as shown by switch 1 being
in position 1. Proprioceptive feedback from the legs is given to the
body model (switch 2 in position 1) which in turn provides infor-
mation on joint angles to the procedures (Swing-net, Stance-net)
thus closing the loop through the world. To allow the system to
internally simulate a behavior, in our example simulate various
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FIGURE 10 |The first step from the reactive architecture for the
six-legged walker to a cognitive architecture: the controller includes an
internal body model which is used for sensor fusion (and can be used to
produce the trajectories for movements such as those during the stance
phase – this is not shown in the figure). Only a part of the controller is
shown (only some of the existing behaviors and only for the right front leg).
During normal behavior, the internal body model (upper left) serves
perception. Switch 2 being in pos 1 provides proprioceptive input (e.g., joint
angles from the legs). The body model may also receive external sensory

input (e.g., from the antennae or visual input, arrow from above). If the
system runs into a problem, the body model is, together with the procedural
networks (Swing-net, Stance-net), used for trying out variations of behaviors.
In this case both switches are flipped from position 1 to position 2 and the
motor control (double-lined arrows entering switch 1 on the right) is routed,
not to the body anymore, but to the body model (dashed double line). This
circuit is used for internal simulation and predicts the sensory consequences
of the action. The whole process is repeated until a suitable behavior has
been found. For further explanations see text.

ways of walking, both switches have to be moved to position 2.
This causes the movement of the real body to stop. Instead the
loop contains and drives only the body model and not the body.
The more accurately the body model represents the properties of
the real body (as well as selected properties of the environment,
e.g., an obstacle), the better the simulated behavior corresponds to
the behavior that would have been performed by the real body.

In our simulation approach, such an imagined behavior is
elicited if during normal behavior a problem has been detected. A
problem is characterized by a situation that cannot be handled by
the currently performed behavior.

The network will, however, be able to find a solution to the
problem only if the system can show some creativity. This means
that new behaviors can be performed that are normally not elicited
in the actual context. We assume that creativity is given by the fac-
ulty of the complete system to select new motivation units, i.e.,
procedural memory elements that are not activated in the actual
context. We are currently working with a simple expansion of the
motivation unit network to allow for creativity as characterized
here (for more information see Schilling and Cruse, submitted).

If this approach turns out to be successful, we can distinguish
between three levels of decision making (Cruse, 2009). The lowest

level is characterized by a sensory-driven winner-take-all network,
as for example is given in simple Braitenberg (1986) vehicles. The
strongest sensory input determines which behavior will be per-
formed (e.g., moving to stimulus A or to stimulus B). Noise plays
merely a marginal effect as it will influence the decision only if
both sensory inputs are very similar. A more complex “decision”
structure would base its decision also on the current state of the
system. In the case of our system the current state is represented
by the motivation units as for example applied in the winner-
take-all network controlling the swing-stance transitions. Both
levels of decision making can be attributed to so-called reactive
systems. The third level is characterized by the above mentioned
system endowed with the property of internal simulation, i.e., with
the ability to predict, in combination with the ability to test new
behavioral solutions. As the search for new behavioral solutions,
i.e., new procedures not used in the current context, is equipped
with some stochasticity, an external observer cannot predict the
new behavior invented by this system. This property, following
the definition of Cleeremans (2005), may be characterized as com-
prising a volitional decision. In this way, the system is able to act
in unknown and problematic situations. It is able to vary exist-
ing behaviors and, importantly, anticipates consequences of new
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behavioral plans before actually executing them. This allows the
system to try different possible adaptations and select the one that
predicts a desired outcome. The system uses the predictive capa-
bilities of the internal model and becomes an anticipatory system
following the definition of Pezzulo et al., (2008, p. 23) who pro-
vide a broad overview on anticipation and anticipatory artificial
systems.

Möller and Schenck (2008) proposed another example of inter-
nal simulation to test if a specific behavior can be performed
successfully. In their system, an inverse model is learned and
required to suggest actions for a robot exploring a corridor with
open and blocked doorways. Here, the robot acquired a forward
model through active exploration. A sensorimotor representation
has been constructed that is able to predict sensory consequences
of a movement depending on the current state. Recruiting this
forward model, the robot was able to internally simulate possible
actions without actually performing them. An inverse model for
selection of a suitable action was learned through ongoing internal
simulations. Essentially, this model takes into account projected
sensory consequences and only suggests actions that appear suit-
able in the long-run. Möller and Schenck (2008) relate this sensory
representation to Gibson’s theory of affordances, which states that
an object is not represented simply by what can be sensed, but
in the way the object relates to the robot (Gibson, 1979). The
approach of Möller and Schenck (2008) learns an inverse model
for the selection of appropriate action commands. Importantly,
the possible commands are quite simple and elegant, but, due to
its simple body structure, do not need to involve sophisticated
control of a complex robot consisting of multiple parallel and
serial joints. For the case of a hexapod walker with many (22)
DoF this will become much more complicated as the computa-
tion of inverse models itself has shown to be problematic in such
cases. This is especially true because this computation is closely
intertwined with the sensory representation and the prediction
of the sensory values. We assume that only a larger structure like
the MMC model proposed here, which tightly integrates inverse
and forward models, allows exploiting the flexibility of the inter-
nal model to play around with variations of existing behaviors,
and to come up with new behaviors that can be tested in internal
simulation.

A number of articles address the question of planning ahead
on an even more abstract level. For a typical and interesting exam-
ple we will briefly refer to the work of Toussaint (2006). Starting
from Hesslow’s (2002) notion of internal simulation as an activa-
tion of motor structures while suppressing execution, the core
idea is that perceptions can be predicted as a simulation that
directly leads to perceptual consequences. Central to their sys-
tem is a sensorimotor map that couples sensor and motor signals
in a joint representational layer. This layer is modeled as laterally
connected neural layers (there are specific layers for the sensory
representation and the motor commands as well as an interme-
diate layer coupling the two). In the same way as in the MMC
network, a current state is represented through the activation of
the network. The network can be driven by activations. In this
way, anticipation is realized as the shifting of activity in the net-
work triggered by external modulations provided by the motor
commands. Toussaint (2006) used this network to demonstrate

planning capabilities. The task was to navigate a maze. Initially,
a sensorimotor map is learned through random explorations that
represent the maze environment. Afterward, in the planning phase
a goal stimulus is applied to the network that represents the goal
position. This activation spreads through the network constrained
by the topography of the maze as represented in the different
networks. Here, the back and forth between sensory and motor
network basically correspond to predicting sensory consequences
of motor actions. For possible movements (the way is not blocked)
the motor activation is maintained and can further spread. When
in contrast a movement is predicted as not possible the motor acti-
vation is inhibited and here the spreading stops. In this way the
networks explore the different possibilities. Although the work of
Toussaint (2006) deals with even simpler motor commands than
the approach of Möller and Schenck (2008), their work shows
nicely how the idea of internal simulation can be understood in
terms of neural computation and can be based on the spreading
of activation. At the same time it demonstrates how this relies
on the close coupling of sensory and motor representation and
especially that this approach requires transformation mediating
in both directions.

CONCLUSION AND FUTURE WORK
Anticipation of effects of action is crucial to motor control, but
it is also a prerequisite for planning (Clark, in press). We have
described an approach using an artificial RNN that constitutes an
internal model of the body. The model is flexible and can address
diverse tasks: We have shown how it can be used in motor con-
trol for targeted movements. But the model is also predictive in
its nature. It is able to anticipate the effects of action and we have
demonstrated how the model can estimate the resulting posture
when a movement is executed. While we focused on joint position
information, an extension of the model can be used to integrate
dynamic influences and control signals like velocities. Follow-
ing such an approach leads to natural and biological movement
characteristics (Schilling, 2011a).

The model is a holistic model and as such it can be flexibly
applied in other contexts serving other functions as well. We have
used the model in perception in past work and used it during the
observation of movements to reconstruct the observed movement
(Schilling, 2011b).

Finally, we have explained how the internal model can be intro-
duced in a robotic control structure for a hexapod robot and have
briefly illustrated how the predictive capabilities can be exploited
by the system in order to anticipate the effects of action before
actually carrying out an action. This allows the controller to eval-
uate the consequences of an action and decide against performing
it when it turns out to be dangerous.

Currently, we are realizing this control structure for a hexa-
pod walker. As of now, the body model is applied in the stance
controller. It is used in a similar way as described in Section“Appli-
cation as an Inverse Model” (see also Schilling et al., in press). As
the body model is already part of the control loop, we are going
to extend the model and introduce additional redundant sensory
information that is available on the real robot. As the model real-
izes an integration principle it can be used to fuse the sensory
information of different modalities.
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The control structure will be extended as explained above to
account for new problematic situations to which none of the
present motor primitive can react. Due to the predictive capabil-
ities of the body model, the body model, it can be used for inter-
nal simulation. The controller can differentiate between different
alternatives and variations of behaviors using their outcomes. In
this way, the system can plan its action and becomes cognitive.
The system takes the outcome of action into account to decide
about future action. Even though the internal model is not what
has changed in the system when becoming cognitive, the internal
model of the body is the central part of the cognitive system. The
predictive capabilities are crucial and it is the flexibility of the pro-
posed internal body model that allows the model to be recruited
in planning ahead (Anderson, 2010).

In the future, the control structure shall learn these new suc-
cessful behaviors and integrate them into the overall controller
structure which means that the new behaviors will also take part
in the process of action selection. The model of the body is a central

representation, but it is only a starting point. Even the simple body
model relates to some parts of the environment where the tarsi are
touching the ground. For example, the spatial arrangement of the
foot points of the body model provide a simplistic representation
of the environment in a way that is relevant to the animal and
it’s action. Our bottom-up approach allows introduction of such
higher-level representations as grounded internal models as they
are not detached from the lower levels of motor control. Instead,
the higher levels of representation can be tightly interconnected
and directly anchored in the lower levels of body representation.
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APPENDIX
CLASSICAL MMC NETWORK DESCRIBING A THREE-SEGMENTED ARM
WORKING IN A TWO-DIMENSIONAL PLANE
Figure 1 shows the manipulator that consists of three segments,
upper arm L1, lower arm L2, and hand L3, controlled by three
joints: shoulder, elbow, and wrist joint. The shoulder is situated
at the origin of the x–y coordinate system. In addition, we intro-
duce diagonal vectors D1 and D2 and an end-effector vector R that
points to the tip of the arm. In the following we explain how this
vector graph (as shown in Figure 1) can be used to derive equa-
tions. The resulting set of equations constitutes a weight matrix for
a RNN. First, we determine all equations formed by all possible
combinations of vectors forming vector triangles: The complete
graph consists of several such triangles. Each triangle is a closed
polygon chain which means that the three vectors complement
each other to zero.

L1 + D2 − R = 0 (A1)

L1 + L2 − D1 = 0

D1 + L3 − R = 0

L2 + L3 − D2 = 0

Any of these equations can be solved for each of the contained
variables. Next, all equations determining a given variable are used
to form a set of equations. In this simple example, each variable
can be found in two equations. In (2) this is shown for L1 as an
example.

L1 = R − D2 (A2)

L1 = D1 − L2

In this way, we obtain six systems of two equations each. This
procedure is called Multiple Computation of the same variable.

As we are considering a dynamic system that is expressed with
respect to time, all variables depend on the time. The MMC prin-
ciple is an iterative procedure to calculate new values for the next
time step depending on the current state. For each variable the two
equations are simply integrated through calculation of the Mean
value (therefore the name – MMC).

L1 (t + 1) =
1

2
(R (t )− D2 (t ))+

1

2
((D1 (t )− L2 (t )) (A3)

The result is one equation describing the new value for a variable
depending on a weighted sum of the current values of the other
variables. These equations can be directly understood as a weight
matrix for a neural network. To establish the weight matrix, the
vectors have to be decomposed into their x- and y-components.
This leads to a set of corresponding linear equations. In the 2D
example, we get two identical nets (one for each component) and
for an extension to three dimensions we only have to introduce
a third network representing the z-component. The network is
shown in Figure A1.

The introduction of recurrent connections, i.e., feeding back
the current value of the variable weighted by a damping fac-
tor, leads to smoother transitions in the network. The network
becomes more stable and oscillations are prevented.

L1 (t + 1) =
d

d + 2
L1 (t )+

1

d + 2
(R (t )− D2 (t ))

+
1

d + 2
((D1 (t )− L2 (t )) (A4)

Until now, we described the simple linear version of the classi-
cal MMC approach. All variables are allowed to freely change.
For the rigid segments of the arm (the upper and lower arm
as well the hand) we usually want to constrain the changes of
variables, e.g., the segments shall not change length or the joint
movements shall be restricted. This can be easily done through
introducing constraints and applying the constraints after each
calculation (Steinkühler and Cruse, 1998). To evade the introduc-
tion of non-linear constraints one can also use other kinds of
representation. When using joint angle representation, it is not
necessary to normalize the segments length after each time step.
We have shown such a solution for general movements of a nine
DoF arm in three dimensions using dual quaternion represen-
tations (Schilling, 2011a). In the following, we want to derive a
simpler network for the special case of the insect leg.

ANGULAR MMC NETWORK REPRESENTING AN INSECT LEG
The leg of a stick insect only consists of three DoF (see Figure 3).
Therefore, it is possible to derive a simple MMC network
using redundant trigonometric relationships. The leg model can
compute inverse and forward kinematics of the manipulator.

Due to the kinematic structure we can derive a specific solu-
tion for the insect leg. As the second and third joint act in a plane
and their rotation axes are parallel, we can use basic trigonometric
function to come up with a solution for these joint angles (see in
Figure 3C) which hold true in this plane. We can compute the for-
ward kinematics for the leg. The height value directly corresponds
to the z value given in the leg coordinate system:

z = s1 sin β+ s2 sin (β+ γ) (A5)

The width (as a numeric value) is given as the projection of the leg
onto the leg plane.:

l = so + s1 cos β+ s2 cos (β+ γ) (A6)

Both values are computed as a summation of the single segment
portions. From this we can derive multiple computations related
to the joint angles of the second and third joint. We end up with
sine and cosine expression for the angles.

sin β =
z − s2 sin (β+ γ)

s1
(A7)

cos β =
l − s0 − s2 cos (β+ γ)

s1
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FIGURE A1 |The recurrent neural network consisting of 2 × 6 units. The
network is composed of two identical networks (The one for the
x -components is shown with black lines and the other for the
y -components of the vectors is shown with the dashed lines). The units
represent the components of the six vectors L1, L2, L3, D1, D2, and R of the
manipulator. When an input is given, the corresponding recurrent channel is
suppressed (symbolized by the open arrow heads).

As sine and cosine functions are only surjective, the inverse
is ambiguous and cannot directly be used to calculate the actual
angles. But we can combine these and at the same time integrate
the two equations by using the arc tangent function which is the
quotient of the two. Again, the variables are time dependent and
as we use the arc tangent to integrate the multiple computations
the result is the new value for a variable:

β (t + 1) = arctan
z (t )− s2 sin (β (t )+ γ (t ))

l (t )− s0 − s2 cos (β (t )+ γ (t ))
(A8)

We can derive an equation for representing gamma in the same
way.

The first joint is perpendicular to the other two joints. The axis
of rotation lies in the leg plane and coincides with the z-axis of the
leg coordinate system. Therefore, the rotation can be directly com-
puted from the x- and y-values of the leg vector (see Figure 3B),
showing a view directly from above).

tan α =
y

x
(A9)

We can also setup an additional equation for the projection of the
leg onto the leg plane.

sin α =
y

l
(A10)

The multiple computations can now be used to calculate the
different variables which are then integrated. On the one hand,
as described above, we integrate several of the trigonometric
relations into one equation through application of the arc tan-
gent function. On the other hand, we integrate multiple com-
putations for one variable as the computation of the mean
value of the – possibly – different solutions. Here, we also
include the preceding value of the variable weighted by a damp-
ing factor in order to avoid oscillations. Again, the resulting
set of equations can be directly interpreted as a RNN weight
matrix.

This network has several advantages compared to an explicit
computation. First, the network is able to solve forward, inverse,
and any mixed kinematic problems in a few iteration steps. Second,
as explicit computations involve the application of the inverse of
sine and cosine functions, these require case distinctions. Third,
for cases where no solution is possible (e.g., the target point is
too far away), the net still converges to a stable and geometric
valid solution which is minimizing the error (in the example
this would be the leg pointing into the direction of a far away
target).
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