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Dual-process approaches of decision-making examine the interaction between affec-
tive/intuitive and deliberative processes underlying value judgment. From this perspective,
decisions are supported by a combination of relatively explicit capabilities for abstract
reasoning and relatively implicit evolved domain-general as well as learned domain-
specific affective responses. One such approach, the somatic markers hypothesis (SMH),
expresses these implicit processes as a system of evolved primary emotions supple-
mented by associations between affect and experience that accrue over lifetime, or somatic
markers. In this view, somatic markers are useful only if their local capability to predict the
value of an action is above a baseline equal to the predictive capability of the combined
rational and primary emotional subsystems.We argue that decision-making has often been
conceived of as a linear process: the effect of decision sequences is additive, local utility is
cumulative, and there is no strong environmental feedback. This widespread assumption
can have consequences for answering questions regarding the relative weight between the
systems and their interaction within a cognitive architecture. We introduce a mathematical
formalization of the SMH and study it in situations of dynamic, non-linear decision chains
using a discrete-time stochastic model. We find, contrary to expectations, that decision-
making events can interact non-additively with the environment in apparently paradoxical
ways. We find that in non-lethal situations, primary emotions are represented globally over
and above their local weight, showing a tendency for overcautiousness in situated deci-
sion chains. We also show that because they tend to counteract this trend, poorly attuned
somatic markers that by themselves do not locally enhance decision-making, can still pro-
duce an overall positive effect.This result has developmental and evolutionary implications
since, by promoting exploratory behavior, somatic markers would seem to be beneficial
even at early stages when experiential attunement is poor. Although the model is formu-
lated in terms of the SMH, the implications apply to dual systems theories in general since
it makes minimal assumptions about the nature of the processes involved.

Keywords: dual system decision-making, affect, decision chains, dynamic decision-making, somatic marker
hypothesis, discrete-time Markov chains

1. INTRODUCTION
Psychological and neurobiological evidence accumulated over the
last two decades has supported a dual system account of decision-
making (Damasio, 1994; Epstein, 1994; Sloman, 1996; Bechara
et al., 1997; Lieberman, 2000; Evans, 2003, 2008; Bechara and
Damasio, 2005; Ferreira et al., 2006; Weber and Johnson, 2009;
Morewedge and Kahneman, 2010). Under a wide range of cir-
cumstances the quality of decisions is enhanced by intuitive and
affective processes that regulate and advantageously bias fast and
automatic judgments. At the same time, investing effort on ratio-
nal cost-benefit analysis beyond a certain limit does not accrue
quality increments to the outcome of a decision either objectively
or subjectively (e.g., Wilson and Schooler, 1991). On the contrary,
distraction from thinking too much about pros and cons often
has positive benefits for judgment quality (Betsch et al., 2001;
Dijksterhuis et al., 2006; Usher et al., 2011).

In this paper we address the question of what determines the
functional balance of between these processes and whether it is
sufficient for answering this question to adopt a localist perspec-
tive on decision events or whether, on the contrary, a dynami-
cal approach is required involving potentially non-linear inter-
actions between cognitive and affective processes, and decision
sequences.

Dual system theories postulate the existence of two distinct cog-
nitive systems at play during decision-making (Evans, 2003, 2008):
System 1, which is implicit, intuitive, affectively loaded, function-
ally faster, automatic, more concrete and situation-dependent,
harder to report, and evolutionarily older although not neces-
sarily independent of experience and System 2, which is delib-
erative, functionally slower, mostly sequential, involving con-
scious, conceptual, rule-based and/or linguistic processes, more
domain-general, experience-dependent, easier to articulate, and
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evolutionarily more recent (most clearly evidenced in human
reasoning capabilities).

The implicit processes in System 1 can in turn be fur-
ther unpacked into relatively autonomous subsystems (Gore and
Sadler-Smith, 2011). Some of these subsystems are supposed to be
evolutionarily older, mostly experience-independent, associated
with basic biological and reproductive needs and social constraints
that often require rapid response. They tend to be relatively con-
servative, being rapidly deployed in situations perceived as risky
and involving values such as self- and kin-protection and survival.
Other subsystems rely more strongly on domain-specific learn-
ing and the degree of accumulated expertise. They often work by
associating situations and affects and by incorporating the results
of past decision-making events into embodied know-how. This
know-how may at one point have been assisted by rational delib-
eration and rule-following but has now been incorporated into
readily available habits and intuitions (Dreyfus, 2002). For this
reason, experience-dependent affective processes can be better
attuned to the actual risks of a situation and tend to produce
less conservative, more fine-grained responses.

The somatic markers hypothesis (SMH; Damasio, 1994;
Bechara and Damasio, 2005) offers a systems-level, neuro-
anatomical account of the affective processes involved in this
distinction. The SMH distinguishes between primary emotions
corresponding to the first subsystem and secondary emotions
corresponding to the second. The latter are based on experience-
dependent patterns of bio-regulatory and visceral signals that act
as bodily “markers” to produce a rapid indication of the valence
and intensity of a situation based on past experiences.

Although a significant amount of theorizing has been dedicated
to clarifying the functional relations between these systems, certain
key issues have remained under-studied. For instance, how should
we understand the relation between these systems at a functional
level, especially in the context of a history of decision events or
in the context of development? It seems that an optimal cogni-
tive architecture would involve just the right context-dependent
balance of primary emotions to conserve basic aspects of sur-
vival together with domain-specific, know-how related secondary
emotions to act efficiently and avoid excessive cognitive load, all
in combination with System 2’s deliberative, conceptual processes
to deal with complex or novel problem-solving. But how is this
balance to be determined? In this paper we claim and show by
means of a non-linear Markov chain model that this question is
highly dependent on whether we take a static vs. a dynamic view
of decision-making, leading to radically different answers.

Everyday decision-making sometimes involves chains of deci-
sions necessitating different local judgments and actions aimed
at a global desired outcome. Real-world scenarios can be uncer-
tain about the relation between local and global utility. Often an
optimal route to a goal can be ridden with unforeseen problems or
novel options that might be locally neutral or even detrimental but
still lead faster to a good global solution. Moreover, the quality and
value of options at the local level can interact non-trivially with
decision-making processes themselves. This is the case, for instance
in situations involving competition between different agents, or
resource allocation or exploitation in time-varying circumstances,
or interventions over time (like the case of a doctor prescribing a

long-term treatment to bring a patient back to heath), or in cases of
decisions that bias trajectories toward certain regions of the prob-
lem space that reinforce the use of the same decision strategies
preventing further progression.

In a static, linear view, the question of the functional balance
between the different processes would be answered by assuming
that the optimal conditions for a single decision event (given its
context) are applicable to groups of interlinked decision events.
This is then resolved as the question of the appropriate adaptation
of context-sensitivity of all the mechanisms as they are evaluated
within a point situation. Such locally optimal decision-making has
been described using various formal models (e.g., Bogacz et al.,
2006; Bogacz, 2007). Extending this analysis to decision sequences
is equivalent to treating decision events as semi-independent, thus
assuming an additive, linear approach. At each point, a judgment
will be influenced by previous decisions at most in that the current
state depends on them or as a result of learning about the prob-
lem space. For instance, a series of negative outcomes might be
followed by an increase in the exercise of caution as part of a gen-
eral sampling and attunement to the statistics of the situation. But
once this learning is achieved, a stationary situation is assumed to
ensue: decisions are informed by the learned statistics and the qual-
ity of the problem space remains de-coupled from decision events.
This introduces a de-coupling between the decision-making agent
and the problem space as decision-making processes function
based on perceptual inputs assumed independent of the very same
processes.

However, it is possible for complex interactions to take place
between events in a decision chain in ecologically relevant situa-
tions. It is also possible for the global utility not to be reflected nec-
essarily in the maximization of local utility, but that several locally
neutral (or locally negative) paths can lead to the desired end state.
The combination of these two possibilities (non-additive interac-
tions between decision events and ecological embeddedness) calls
for a dynamical examination of decision chains.

A dynamical perspective brings new considerations besides
local optimality to the question of the balance between the dif-
ferent systems. For instance, conservative System 1 processes may
interact non-linearly with sequences of decision events resulting
in less overall exploratory behavior, thus influencing negatively the
timely development of well-attuned somatic markers. Conversely,
even mal-adjusted secondary emotions may have a positive effect
by breaking deadlocks caused by the amplification of cautionary
decisions once we consider them in the context of several deci-
sion events. This in turn has consequences for understanding the
evolution of secondary subsystems such as somatic markers. Pre-
sumably their initial mal-adjustment due to lack of experience
would imply negative early effects from a static point of view:
they would place the agent under unnecessary risk before it has
a chance to improve its context-sensitivity with experience. Hav-
ing to overcome such a potentially lethal developmental “valley”
begs the question of how could somatic markers be favored during
evolution in the first place.

We investigate these questions (the balance between processes
and their positive or negative effects in a dynamical context) by
proposing a non-linear model of decision-making using discrete-
time Markov chains and expressed in terms of the Somatic Markers
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Hypothesis (SMH). The model, however, is applicable to dual sys-
tems theories in general. Its main components are the interactions
between deliberative (rational, general, and hypothesis-driven)
mechanisms, and two types of emotional mechanisms, one pri-
mary, linked to readily available, conservative emotional responses
(originating in evolved adaptations) and one secondary involv-
ing domain-specific associations learned by experience. These are
modeled using minimal assumptions in terms of their probabilis-
tic effects, so that the main results are independent of the specific
implementation of these systems, e.g., at the neuro-visceral level.

Contrary to what would be expected by the assumptions of lin-
earity and de-coupling, our model shows that decision-making
processes and environmental dynamics interact in apparently
paradoxical ways. In particular, poorly attuned secondary emo-
tions that by themselves would not locally enhance decision-
making, can still produce an overall positive effect, dissolving in
this way the evolutionary worries about the developmental val-
ley. Somatic markers turn out to be beneficial even at early stages
where experiential attunement is poor. Other findings confirm the
amplification of cautionary effects of primary emotions and the
decreasing marginal gain of investing in improving deliberative
processes.

2. MODELING DECISION-MAKING PROCESSES
The modeling of decision-making processes is divided between the
normative approach that seeks to establish how decisions should
be made through the maximization of some utility (e.g., von Neu-
mann and Morgenstern, 1947; Savage, 1954) and the descriptive
approach that analyzes how decisions are actually made (Tver-
sky, 1972; Kahneman and Tversky, 2000). The latter studies when
and why decision-makers systematically violate principles of opti-
mal decision-making (Rieskamp et al., 2006). This approach often
relies on the following assumptions (Ratcliff and Smith, 2004):
(i) a decision is expressed as a choice between two alternatives,
so that the evidence in favor of one counts against the other, and
(ii) the process involves “random sequential sampling” (Ashby,
1983; Ratcliff and Smith, 2004), i.e., the decision-maker receives
stochastic successive samples in a sequential manner until a cri-
terion of evidence is met. The optimal strategy for solving these
data-accumulating models is inspired by “drift-diffusion” models
in physics (Milosavljevic et al., 2010) where: (1) a “drift” process
is caused by available evidence and (2) a “diffusion” process is
caused by noise, so that (3) decisions are made when the rela-
tive evidence for one of the alternatives exceeds a pre-specified
threshold (see Bogacz et al., 2006 for a review). In general, all
the models of cumulative processes with stochastic properties
are expressed using Markov chains (Smith, 2000), i.e., systems in
which the current state is completely defined by the preceding one.
A decision-maker calculates the expected utility of a possible deci-
sion for the state t + 1 as the sum of the probability of each possible
outcome multiplied by the utility of each outcome at the state t.

For example, in a“single system”case, an agent is presented with
two choices {A, B} with two possible outcomes each {a1, a2 ∈A},
{b1, b2 ∈B}, that occur with probabilities {pa1, pa2} and with {pb1,
pb2} respectively.

In practice, the agent’s perception of these probabilities can be
overweighted or underweighted. In certain situations, the agent

could even be entirely insensitive to them. To model this, we
define a function w that represents the “subjective probability
weight” that assigns the agent to each outcome. When the agent is
able to perceive probabilities without distortion, then w(pxi)= pxi,
but, in general, it will not be the general case. Apart from it, the
agent values the choices in terms of its utility function U assign-
ing numerical values (“utilities”) to the outcomes {U (a1), U (a2),
U (b1), U (b2)}, in such a way that outcomes with higher utilities
are always preferred.

The agent will make a decision, A or B, computing an over-
all score associated to each decision and defined, in the case of
decision A, as

σ (A) = w
(
pa1

)
· U (a1)+ w

(
pa2

)
· U (a2)

and similarly for B,

σ (B) = w
(
pb1

)
· U1 (b1)+ w

(
pb2

)
· U2 (b2)

σ (A) and σ (B) estimate the “expected value” of each of the
option. The agent selects the option with the highest value. Only
in rare situations will the utility function U (xi) for every out-
come and the values of the probabilities {pa1, pa2, pb1, pb2} be
fully known in advance. In general, there are several methods to
estimate these probabilities and to model utility functions (e.g.,
Ravichandran and Baker, 1989).

For the case of dual systems, the expected value associated to
each possible decision is a combination of the values assigned to
it independently by the System 1 and System 2 (Mukherjee, 2010).
In the previous example, where a decision has to be made between
two choices G= {A, B}, the agent’s decision is the result of a ratio-
nal σR(G) and an emotional σ E(G) subsystem that are combined
to produce a global measure σ (G).

Each subsystem assigns an independent value on the basis of its
own method of evaluation (Hsee and Rottenstreich, 2004): each
one will have a different probability weighting function whose
value will depend on the affective nature of the outcomes and the
sensibility to them.

One way of combining both subsystems is as a weighted sum:

σ (G) =α·σR (G)+(1− α)·σE (G) , where G={A, B} and α ≤ 1

In general, the weight α will be affected by different factors:
history, dispositions, nature of the outcomes, nature of the task,
temporal proximity between decisions, etc., and σR(G) and σ E(G)
will be calculated according to previous equations for the values
G= {A, B}.

In these models, the final output is a combination of the eval-
uations of the each system. This formulation does not necessarily
imply that the agent uses both systems in each given situation. It
provides a statistical description over a large enough sample of
decision events that is also valid if we assume that only one of the
two systems will drive the decision-making at each moment.

In all these cases, the value of an option is based only on the local
expected utility of the outcome. However, the existence of non-
linearities and feedback loops can often undermine this assump-
tion. For such situations, for instance, for the consideration of
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multiple attributes in the options that require different attention,
we must consider non-additive interactions in decision processes
and analyze the resulting models from a dynamical systems per-
spective. Such is the case of, for instance (Regenwetter et al., 1999)
or models within the Dynamical Field Theory (DFT; Busemeyer
and Townsend, 1993; Roe et al., 2001; Busemeyer and Johnson,
2004). Although the DFT was designed to account for findings
from risky decision-making (Busemeyer and Townsend, 1993),
a multi-attribute decision-making version (Diederich, 1997) and
most recently, a multi-alternative choice behavior model (Roe
et al., 2001) have also been developed. In DFT the utility of the
options is not evaluated independently of each other but rather
they are compared along their attributes. The probability of mak-
ing a specific choice varies according to which attributes receive
the agent’s attention during decision-making. Preferences over the
options continue to evolve over time until the agent’s inclina-
tion for one of the options becomes strong enough to exceed a
threshold. The corresponding alternative is then chosen.

DFT provides a formal description of the“dynamic evolution of
preferences” during deliberation. Psychologically, the fluctuations
in the decision-maker’s attention to attributes and states over time
represent “doubts,” changes in the agent’s opinion before making
a decision, etc. Formally, DFT is modeled by a Markovian process
based on a quantitative preference state. Choice probabilities are
calculated by means of the diagonalization of the system and this
determines the stationary probability over the stochastic process
(Busemeyer et al., 2006) and subsequently the states toward which
the system evolves.

DFT accounts for the evolution of preferences during a single
decision event. Once a decision is made, the agent encounters a
similar situation to the previous one, i.e., another independent
dynamical process starts for the next decision. DFT, therefore,
also considers global decision chains as a sequence of separate
events whose outcomes are obtained dynamically and in which
the only dynamical interactions taken into account are internal to
the agent, rather than being interactions between internal and eco-
logically embedded processes, as for example, the case of a medical
treatment over an extended time-course.

The model presented in the next sections applies Markov chains
to a dynamical dual system situation. It differs from how these are
generally applied (Scheibehenne et al., 2009) in that it accounts
for interactions between different decision events (going beyond
DFT, but using some of its formal methods). We study the effects
of such non-linear, time-extended interactions on the function of
the dual system architecture. It is to be expected that in this case
the diagonalization process will change their effective cognitive
structure and relative weight between the emotional and rational
components (the value of α). In fact, we find that the combina-
tion of the two systems cannot be expressed in linear terms any
longer, thus leading to non-trivial effects that provide answers to
the questions we have raised in the introduction.

3. SOMATIC MARKERS HYPOTHESIS: A MATHEMATICAL
DESCRIPTION

Before presenting our model we need to introduce a formaliza-
tion of the SMH that uses minimal assumptions (see Cognitive
Ability and Predictive Capability of an Agent in Appendix for

technical details and definitions). The dual systems distinction
between reasoning and emotions assumes a two-tiered model
of decision-making processes (Sloman, 1996; Evans, 2003, 2008;
Weber and Johnson, 2009). The SMH asserts that the function
of the somatic markers (SMs) is to create domain-specific asso-
ciations between a situation and primary emotional states, thus
providing a link (secondary emotions) between past experiences
and the current situation (which may be novel but still resemble
previous experiences in some aspects).

The SMH divides decision-making processes into two groups:
reasoning and emotions, primary and secondary (for details, see
Table A1 of Cognitive Ability and Predictive Capability of an Agent
in Appendix). We want to find parameters to characterize the
ability of an agent engaged in decision-making to act correctly
depending on whether it is guided by its own emotions or by a
deliberative process or a combination of both.

To this aim, let us define first the notion of “predictive ability”
of an agent. This can be used to characterize reasoning, primary,
and secondary emotions.

• We define the reasoning ability R of an agent (and similarly the
primary emotional and secondary emotional abilities) in a state s
of the world�, as the capacity to correctly propose a particular
action µ in a given situation s∈� using deliberative processes.
• We define the “deliberative predictive ability” of an agent as the

probability of the action taken, µ, in a given situation s∈�
being correct. By correct we mean that the action satisfies some
viability constraint or maximizes some utility of interest to the
agent. We denote this as PR(s,µ) and, likewise, we define PE1 (s,
µ), and PE2 (s, µ) for the primary and secondary emotional
abilities respectively.

In general, the SMH is interpreted as a linear process. We discuss
this in an example: an agent must move along the shortest path
from initial position s0 to final position sf in a grid (Figure 1). At
each step, the agent can: (i) follow the shortest path, (ii) make a
wrong decision (not following the shortest path), or (iii) consider
the current state as risky (potentially a mistake, whether it actually
is one or not) and therefore go back to the previous position.

Let us suppose that along its way, the agent makes some mis-
takes (sometimes believing it is correct, other times stepping back
after considering the new situation as dangerous). To quantify the
optimality of the agent, we measure the adequacy of its behavior
in terms of a confusion matrix (Kohavi and Provost, 1998).

This matrix consists of a two-class table that contains infor-
mation about real situations (rows) and states predicted by the
system (columns). Thus, the diagonal elements in a confusion
matrix represent the correctly classified predictions according to
the actual outcome while the cross-diagonal elements represent
misclassified ones.

Our aim is to express, in terms of the confusion matrix, the pre-
dictive abilities introduced above. The matrix provides informa-
tion about the performance, giving the number of situations from
one class (positive/negative) classified into another (or same)class
and represented by four coefficients with the following meaning: a
is the number of correct predictions of a situation being positive,
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FIGURE 1 | Representation of an agent in a grid that must move from s0 to sf. The shortest path is shown (left). At every step, there exist one correct and
one wrong choice and the option to move back to the previous state (right).

b is the number of incorrect predictions of a situation being neg-
ative, c is the number of incorrect predictions of a situation being
positive, and finally, d is the number of correct predictions of a
situation being negative.

Let us consider an agent that goes from s0 to sf, in n steps. Let us
suppose that the agent uses reasoning abilities when it is possible
to act with absolute certainty but becomes completely cautious in
the presence of uncertainty. In other words, the performance in
this case is a mixture of the capabilities R and E1. Let us suppose
that the path of the agent on its way to sf is the one shown in
Figure 2. We can then derive from this which decisions have been
positive and which ones have been negative. We can express this
result in terms of the agent’s predictive abilities. In general, the
probability of an event happening is identified with its frequency
given a large enough sample.

We denote by (a∗, b∗, c∗, d∗) the ratio between absolute
coefficients (a, b, c, d) divided by the total number of cases
n= (a+ b+ c + d), then:

• The accuracy of the agent can be expressed as the proportion of
the total number of predictions (positive, a∗, and negative, d∗)
that are correctly classified.
• Similarly, the inaccuracy of the agent can be expressed as the

proportion of the total number of predictions that are incor-
rectly identified (b∗, c∗) and it includes two type of errors: b∗

identifies the error of avoiding situations when they are suitable,
while c∗ indicates a situation deemed adequate when in fact it
is not.

In this way, we can identify in a confusion matrix (Table 1) the
ability of the agent X to infer right decisions considered for all,
s ∈�, that it is denoted by PX, as the average of the right choices
(a∗+ d∗).

PX =
(
a∗ + d∗

)
PX is a measure of the predictive capability of agent X (and

similarly, 1− PX= (c∗+ b∗) is a measure of the incorrectness of
the agent).

FIGURE 2 | Representation of a decision-making agent with reasoning
and primary emotional abilities on a grid that must move from s0 to sf.

Table 1 |Two-class confusion matrix.

Prediction

Positive Negative

Actual Positive a b

Negative c d

Although the SMH does not specify the interactions between
the deliberative and emotional mechanisms at the moment of tak-
ing a concrete decision, what is often suggested is that depending
on the situation, one system is dominant at a given time. This
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permits the identification of the frequency with which each mech-
anism is used (according to the definitions provided in Cognitive
Ability and Predictive Capability of an Agent in Appendix) and
in this way the quantification of the predictive abilities of each of
the mechanisms on its own (PR, PE1 , PE2 ). This means that when
a system uses more than one mechanism we can model this by
considering PX to be the weighted sum of the predictive abilities
of each mechanism involved (reasoning, primary, and secondary
emotions). In the case of an agent without secondary emotions,
the predictive ability (measured over many trials) will be,

PX = αPR + (1− α) PE1 , (α ≤ 1)

This can be interpreted as meaning that in an average “single
decision-making” situation the agent applies its reasoning abilities
or is guided by primary emotions according to the weight factor
α. This factor is not a property solely of the agent, but of the agent
in a given environment, since it depends on the information that
the environment provides.

What is the effect of adding somatic markers to this picture?
A “somatic marker” agent would make deliberative considerations
(R) and would make use of primary emotions (E1) to respond
to certain situations. In addition, it would also incorporate sec-
ondary emotions (E2) linking specific aspects of the situation and
somatic states that provide a relevant response. As before, we main-
tain the assumption that one given mechanism is dominant at a
specific situation. Therefore, averaging over many independent
decision-making events, we obtain:

PX = βPE2 + (1− β)
[
αPR + (1− α) PE1

]
, (β ≤ 1)

It is easy to, see that, if we treat decision events as independent,
the effect of PE2 on the overall system is positive only if it is greater
than the predictive ability of the other two mechanisms combined.
In other words, there is a positive overall effect of incorporating
somatic markers only if

PE2 > αPR + (1− α) PE1

The condition on PE2 seems intuitively correct and is compat-
ible with the interpretation that somatic markers serve to com-
plement reasoning and primary emotions in decision-making. It
would appear that the only way in which somatic markers make
sense is if their predictive ability surpasses the combined predictive
ability of reasoning and primary emotions. Although this seems
a logical consequence of the SMH, we will show it not to be cor-
rect in general: it is based on the linearity of the framework in
which the assumptions have been stated, in particular the assumed
independence of decision events used in the averaging process.

In the SMH formulation, Damasio assumes an oversimplified
framework in which the effects of incorrect predictions based
on wrong emotional markers are evaluated without taking into
account the complex world of opportunities and the unexpected
situations that typically characterize our daily life. As a contrast to
this typical interpretation of the SMH we will show that a dynam-
ical model is able to better capture the non-linear aspects of real
life decision-making leading to non-intuitive results.

4. A NON-LINEAR MODEL OF THE SMH
The above interpretation of the SMH assumes that, when mak-
ing a choice, the value of an option is based only on the locally
expected utility of its outcome. In this section, we maintain the
assumption of local mechanism dominance (one subsystem dom-
inates a local decision event), and model the predictive abilities for
each mechanism exactly as before. However, we apply these def-
initions to a non-linear framework where decisions may interact
non-additively.

We examine the effects of modeling decision-making as a
Markov chain using our grid example. We first study a one-
dimensional situation (Figure 3). To help interpret this scenario,
consider a man who is returning home at night walking along a
country road. The road leads directly to his house and there are no
bifurcations (Figure 4). The goal is to reach the house. However,
the road has not been well maintained and there is the danger of
stumbling on debris or stepping into a pothole on the ground.
There are lampposts on the road, but not many, so that there are
segments where there is no light to help the man see where the
next step should fall. Every now and then a car passes by and with
its headlights illuminates the spot of the road where the man is
walking.

We imagine that the man proceeds by a series of local decisions
on whether to move ahead or step back to make sure that the next
step will not result in a fall. If there is enough light, the man makes
a rational decision to move forward (avoiding any possible danger
that the can see). If it is dark, the man will most likely take a step
to a spot with more light and wait for a car to pass by and shine
a light on the area ahead. We consider that being able to see the
ground where the next step should fall triggers a decision that is
mostly dominated by the deliberative capacity, while the cautious
attitude taken in dark conditions is mostly the result of primary
emotions.

These decisions are probabilistic. For instance, in the dark, pri-
mary emotions normally recommend caution and stepping back
into the light, but occasionally they result in taking a step forward
anyway. Conversely, when the road is illuminated, the delibera-
tive capacity sometimes does not reach the rational conclusion to
move ahead, in spite of the information available (i.e., deliberative
capacities are not perfect). This signifies that PR will be a number
close to 1 but not 1 (a high probability of making a choice that
advances toward the goal) and PE1 will be a number closer to 0
but not 0 (a low probably of advancing when primary emotions
dominate).

We consider first a case without secondary emotions. In a one-
dimensional setting, mistakes due to fear or caution either caused
by primary emotions, or by a faulty deliberative mechanism are
both represented as a step backward in the chain (see Figure 3).
What is important about this example is that we are not dealing
with a single instance of decision-making but with a chain of many
decisions extended over time. The resulting formal structure will
be applicable to more general situations. In order to explore the
example quantitatively we analyze a particular case that clearly
illustrates what we mean by non-linear, non-additive interactions
between decision events.

Let us suppose in the first instance that the road leading the
man to his home is made up by a series of discrete cells (as shown
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FIGURE 3 | Discrete-time Markov chain representing the decision process of an agent.

FIGURE 4 | Illustration of the example of the man going on the road to his home.

in Figure 4) and that whether the man will make a decision domi-
nated by his rationality or by his primary emotions depends solely
on whether the cell is illuminated or dark. When there is light the
man is likely to evaluate the situation clearly and decide to advance
(avoiding dangers if there were any). This is equivalent to deciding
to advance with probability equal to his rational predictive capac-
ity PR. The situation is different when the cell is dark. The man
relies on primary emotions and exercises caution. In this case, the
probability of advancing is PE1 (which is much lower).

These assumptions mean that the effective distribution of exer-
cises of rational or emotional decision-making depends solely on
the distribution of light and dark cells. Calculating, as before the
combined probability of advancing as

PX = αPR + (1− α) PE1

as if decisions were independent of each other would be equiva-
lent to saying that α simply represents the proportion of cells with
light. For reasons of simplicity, let us assume a regular distribu-
tion of two cells with light followed by one dark cell (Figure 4 the
non-additive interactions that are central for our results remain
present for any distribution of dark cells).

Let us also assume that the road is sufficiently long, so that as
we describe the transitions between states using a discrete Markov
chain, the distribution of probabilities will settle into a stationary
state (see A Formal Framework to Model Dynamical Dual Systems
in Appendix). Assuming that, on average 2/3 of the time, the agent

will make a decision using subsystem R, and 1/3 of time subsys-
tem E1, we can reduce the analysis of the dynamics of a three-step
transitions process that repeats itself (Figure 5), We now ask: what
is the “effective” decision-making architecture in the stationary
condition? What are the relative weights of the two systems? Are
they still given by the proportion of cells α? While the environ-
ment remains a strong factor, the answer cannot simply be that the
relative weight between the subsystems is given by the distribution
of dark and light cells (α) since we must also take into account
the frequency with which the man visits each kind of cell and this
frequency in turn depends on the effective probabilities of tran-
sitions between cells, making this a recursive problem. Dark cells
are harder to go through and tend to produce a “trapping effect”
until eventually, the man risks moving forward with a probability
equal to PE1 . The light cells just before a dark one will then tend
to be visited more often than one third of the times and so will the
dark cells.

To put a numerical example (see A Formal Framework to Model
Dynamical Dual Systems in Appendix for details) if PE1 = 0.1 and
PR= 0.8, instead of a flat distribution of 1/3 of visits each, dark
cells are visited 40% of the time, the light cell just before a dark
one receives 47% of the visits and the light cell just after a dark one
receives 13% of the visits. Notice the trapping effect that makes the
man spend more time crossing the boundary between the light cell
and the adjacent dark one (see arrows in Figure 5). This means
that the man uses rational decision-making 60% of the time and
not 66.66% as would be expected from the normal assumption of
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linear interactions between decisions. Similarly, primary emotions
are used 40% and not 33.33% of the times.

While the numerical values may differ with non-regular cell
distributions, we suggest that the effects are likely to be even more
pronounced in such cases since a regular distribution puts as much
space as possible between the dark cells – the ones that produce the
trapping effect. Having regions of dark cells with less or no sepa-
ration is likely to make the trapping effect even stronger. Similarly,
we suggest that the non-linear effects would also be present if the
factors determining whether the agent exercises rational or emo-
tional decision-making are not fully given externally, but depend
on internal conditions as well.

Our first result indicates that in non-linear decision chains pri-
mary emotions weigh more than expected. This result directly affects
the system’s predictive capability PX. Expressed in terms of the ini-
tial architecture of the agent, the intuitive linear interpretation can
lead us to wrongly consider the summation performed should be
arithmetic,

PX =

2∑
i=1

1

3
· PR +

1

3
· PE1

however, we must calculate PX in terms of the probability in the
stationary state, once the visiting frequencies to each situation have
settled. Substituting the values PR= 0.8 and PE1 = 0.1, and using
the stationary probability distribution, the predictive ability of the
agent will be PX= 0.52 and not PX = (

2
3 · PR +

1
3 · PE1) = 0.56.

In order to examine the effect of secondary emotions in a sim-
ilar vein, we consider that SMs work by sometimes overriding
deliberative capabilities and primary emotions. In the example,
when the man is in a dark spot, for instance, the action of SMs
could make him advance toward his goal even when primary
emotions recommend staying put. This may be due to previous
experience with the overall situation (which does not necessarily
relate with relevant information for the task, e.g., a gust of fresh
air may encourage the man behave more bravely).

Similarly, even under the light of a lamppost when all the infor-
mation available should trigger a rational decision to step forward,
an aspect of the situation (again not necessarily connected to
the task) may trigger secondary emotions that recommend cau-
tion (e.g., the play of shadows ahead evokes an unpleasant, but

P R

. . . . . . . .

P R P E 1

1-P R 1-P R 1-P E 1

FIGURE 5 | Discrete-time Markov chain corresponding to a three-step
sequence. In the white cells, the agent uses the deliberative subsystem
and primary emotions in the dark gray ones.

irrelevant, memory). In the first case the effect of secondary emo-
tions would be positive (the man advances toward the goal) and
in the second case negative. This is equivalent to saying that SMs
can make the man advance toward his goal with probability PE2 ,
which will be a number between PE1 and PR.

As before, we assume that the illumination in a cell determines
whether the man will advance with probability PR or with proba-
bility PE1 . In addition, we assume as a particular case that in both
kinds of cells SMs will override the local decision-making mech-
anism half of the times. Graphically this is depicted in Figure 6.
The light gray color in each cell indicates that the man will use
secondary emotions 50% of the time (this is equivalent to choos-
ing parameter β = 1/2). As before, the stationary distribution of
transition probabilities between cells depends on the frequency
with which these are visited. This involves a recursive problem
and the solution is guaranteed to exist if the system fulfills the
Markov property (see A Formal Framework to Model Dynamical
Dual Systems in Appendix).

Damasio takes it as obvious that “defective” SMs (inaccu-
rate linkages between emotional experiences and situations) are
unlikely to be adaptive (Damasio, 1996). As far as we know, this
statement has never been subsequently put into question, although
no attempt has been made at producing a quantifiable operational
version that could be put to the test. Using the formalism intro-
duced in the previous section, locally“defective”SMs are those that
result in a predictive capacity that is lower than the combined pre-
dictive capacity of reasoning and primary emotions. The effect of
these secondary emotions in an isolated decision event will tend to
be negative on average. The question is whether the global effect
remains also negative. To calculate this we need to consider the
possible interactions between decision events.

The general view is that uncertainties and mistakes always play
a negative role. However, when decision events are not indepen-
dent, making a mistake locally could remedy a previous mistake.
Should we in this case compute two mistakes or one right decision
instead?

We can now ask at what point secondary emotions start to have
a positive overall effect. As we mentioned, we have established

P RE 2

. . . . . . . .

P RE 2 P E 1E 2

1-P RE 2 1-P RE 2 1-P E 1E 2

FIGURE 6 | Somatic marker system. The use of somatic markers (50% of
the time in average) is represented by light gray areas that take up the half
of the cells.
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in the previous section that in the case of independent decision
events, secondary emotions only have a positive effect if

PE2 > αPR + (1− α) PE1

Does the same condition apply in situation of non-additive
interactions? In our example, it seems clear that any decision sys-
tem acting in isolation will have a positive effect if it gives the agent
a probability larger than 1/2 of advancing toward the goal. This
is valid in the general case. A baseline decision-making system is
one where the number of correct and incorrect predictions is the
same: a∗+ d∗= c∗+ b∗ (see Table 1).

The predictive ability of such a system is therefore 1/2. We are
interested in the case in which the agent’s predictive abilities are
defective, i.e., PX< 1/2 (in terms of a confusion matrix, we would
have c∗+ b∗> a∗+ d∗, that is, agents that are wrong most of the
time).

Let us consider the SM agent (see Figure 6) using in equal pro-
portion (50%) predictive abilities PRE1 and PE2 . The benefits of
including correct SMs can be also shown in relation to the base-
line but they strongly depend on whether we adopt the non-linear
analysis or not. For example, if PRE1 < 1/2 (for instance, with
PR= 0.55 and PE1 = 0.05, so PRE1 = 0.34), and somatic mark-
ers resulting in PE2 = 0.6 are added, we obtain following a linear
approach that the total combined predictability is PRE1E2 = 0.48,
while if we take a non-linear approach PRE1E2 = 0.51; in other
words, going from below to above the baseline (see A Formal
Framework to Model Dynamical Dual Systems in Appendix).

We are interested in exploring whether assembling defec-
tive components (PE2 < 1/2) to build the emotional-cognitive
architecture of an agent that already performs below the base-
line (PRE1 < 1/2) can produce a reliably favorable effect
(PRE1E2 > 1/2). Moreover, we will also ask (PE2 < PRE1). Under
such circumstances, as we have seen based on the linear analysis, it
should not be possible for SMs to have any overall positive effect.
Decisions made by SMs should at the local level lead to even more
mistakes than decisions made with the combined rational/primary
emotional system. However, we find in the non-linear analysis
(see A Formal Framework to Model Dynamical Dual Systems in
Appendix) that in spite of the negative conditions on PE2 and PRE1 ,
the combined system can result in PX> 1/2.

Figure 7 shows the regions of parameter space within which
the resulting combined system behaves above the baseline for
different values of “defective” SMs. We present analytical results
and numerical simulations of the conditions under which this
counterintuitive effect occurs for the particular set of parameters
used in our example (α= 2/3 and β = 1/2 selected for analytic
convenience).

We now study the robustness of this phenomenon. If we plot
the dependency of PRE1E2 with respect to PE2 (Figure 8-left), it
can be shown that the function is not a straight line but is slightly
curved. This effect can be analyzed if we calculate the derivative
function of PRE1E2 with respect to PE2 . This is also represented (see
Figure 8-right); three observations can be made:

• In the first stage, for values of PE2 ∈ (0, 0.3), PRE1E2 is less than
0.5.

• In the second stage, for increasing PE2 values, PRE1E2 also
increases.
• In the third stage, for values of PE2 & 0.8, the effect on PRE1E2

starts to plateau.

If we focus on the second stage, we can conclude that the
improvement for the whole system is not a linear function of
secondary emotions. From this we could infer that an improve-
ment in PE2 would be better for the global system’s behavior than
an improvement in the deliberative ability of the system, PR. We
can deduce that when the deliberative capacity is sufficiently high
(PR & 0.8), incrementing the value of PR generates only a small
increase in the predictive ability of the somatic marker agent. In
other words, for similar conditions, increasing the deliberative
capacity of an agent RE1 is less efficient than increasing PE2 in
a somatic marker agent (RE1E2).

4.1. EXTENDING THE RESULT TO TWO DIMENSIONS
The results obtained for one-dimensional Markov chains can be
generalized for grids of higher dimensions. We examine the two-
dimensional case using numerical methods. Figure 9-left shows
the probability PRE1E2 of an agent in a two-dimensional grid
(assuming PE1 = 0.1 and PR= 0.8).

The effect is slightly more marked than the one for the one-
dimensional problem (Figure 9-right) because positive couplings
emerges at lower values in the process. In order to further study
the relation between the deliberative system and the secondary
emotional system, we fix PE1 = 0.1, and find the pairs of values
(PR, PE2 ) for which and agent with secondary emotions starts to
do better than without them.

Figure 10 shows pairs of values (PR, PE2 ) at which a positive
coupling occurs in one (solid line) and two dimensions (dashed
line). It can be seen that for high values of PR (i.e., PR & 0.6):

• The size of positive coupling regions with PE2 < 1/2 is larger
than in the one-dimensional case.
• The effect of the positive coupling arises at lower values than in

the case of PE2 .

Again we conclude that for high PR values, no considerable
improvements for the somatic marker agent are derived from the
enhancement of its deliberative capacity. Rather, its performance
depends more strongly on PE2 . According to these results, increas-
ing the dimensions of the problem from one to two, favors the
positive coupling effect of “wrong” secondary emotions, allowing
the agent a larger margin for inaccurate somatic markers that lead
to an overall positive effect.

5. DISCUSSION
Our non-linear model has uncovered two empirically relevant
implications of the SMH when applied to decision chains. These
implications are unintuitive within the picture of decision-making
as an isolated event. Without making any strong assumptions
about the corresponding mechanisms other than their predictive
ability, we first notice that the local frequency with which each of
the three mechanisms takes the lead role (parameters α and β in
our model) does not correspond to the effective weight of each
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FIGURE 7 | Different regions in the parameter space (PR , PE1
)for which

wrong somatic markers cooperate with a “bad” reasoning/primary
emotional system to form a decision-making system with better than

baseline behavior. Values for the regions illustrated are: (upper left)
PE2 = 0.4; (upper right) PE2 = 0.425; (bottom left) PE2 = 0.45; (bottom right)
PE2 = 0.475. The size of the regions increases as PE2 −→ 1/2.

mechanism on the overall decision chain. This is clear evidence of
non-additive interactions between decision events.

The analysis has been performed for decision chains in the
absence of very costly (e.g., potentially lethal) outcomes. In these
cases, the cautionary effect of primary emotions tends to be over-
represented and reduces the effectiveness of the deliberative pre-
dictive ability. This result in agents that can be overcautious along
a decision chain, over and above the degree prescribed by their
primary emotions in an isolated decision event.

The second result shows the apparent paradox that the combi-
nation of “bad” mechanisms can lead to good (better than base-
line) decision-making. How is this possible? It is easy to notice that
although PE2 is worse than PRE1 , when mixed, subsystem E2 can
break up the emotional blocking effect generated by system RE1.
In other words, the combination breaks the over-cautionary effect
of primary emotions. In short, somatic markers act as unblocking
mechanisms that force agents to leave those states in which they
are stuck by the over-representation of primary emotions.

The phenomenon is only apparently paradoxical. Non-linear
stochastic systems are known to behave in unexpected and coun-
terintuitive ways (as, for instance, in discrete-time Brownian
rachets or Parrondo’s games, Parrondo et al., 2000). In many cases,
stochasticity can play a role in stabilizing the combination of unsta-
ble systems (Reimann, 2002), resulting in effects documented in
biochemical enzyme transport (Westerhoff et al., 1986), finan-
cial processes (Maslov and Zhang, 1988), and population genetics
(McClintock, 1999). More directly relevant to our results, similar
effects have been found in gambling games where the right com-
bination of losing strategies results in a positive expectation of
winning (Parrondo and Dinis, 2004).

Explanations of this phenomenon in information-theoretic
terms (Harmer et al., 2000) or in terms of signal-to-noise
ratio (Fuh and Yeh, 2001), indicate that the paradox “los-
ing + losing =winning ” is simply a version of the well-known
effect “chaos+ chaos= order” in non-linear dynamical systems
(Harmer et al., 2002; Parrondo and Dinis, 2004).
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FIGURE 8 | Robustness of the phenomenon in which coupling is
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FIGURE 9 | One-dimensional (left column) and two-dimensional
(right column) phenomena of positive coupling. (Left side): in the
first plot, the predictive ability PRE1E2 is represented (PE1 = 0.1,
PR = 0.8). The linear case in dotted line, the non-linear case in solid line.

(Right side): it can be noticed that the two-dimensional example
requires lower values of PE2 to obtain similar outcomes than in the
one-dimensional one. All values have been obtained after 50,000
simulation runs.

The results indicate the presence of a similar phenomenon in
the interaction between a combined reason/primary emotion sys-
tem with a tendency to get stuck in the advance toward the goal
and a somatic marker system with lower than baseline predic-
tive ability. The synergistic overall effect is positive and above
baseline, indicating that mutual (partial) cancelation of the two
negative subsystems. In contrast to Damasio’s interpretation of
SMs, the factor determining the overall advantage of secondary
emotions in decision chains is not their predictive ability, but the
structure of non-linear relations between the three mechanisms:
reasoning, primary, and secondary emotions, which of course, are
all environment-dependent.

6. CONCLUSION
We have questioned some of the basic assumptions that under-
lie conceptual and empirical work on dual system approaches to
decision-making and we have expressed an alternative in a for-
malization and model of the SMH. It is clear that common sense
intuitions such as assuming that SMs must have a positive pre-
dictive ability to make sense are found wanting when applied to
scenarios involving stochastic, non-independent decision chains.
This is even the case if we keep the Markovian assumption and
consider decision-making and actions as discrete events. We can
expect the effects to be possibly more marked if there is a deeper
dependence on history or if decisions and actions combine in more
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two-dimensional case (dashed line), the positive coupling emerge with
values of PE2 lower than the ones in the one-dimensional case. All values
have been obtained after 10,000 simulation runs.

complex ways across continuous timescales since the possibilities
for synergistic couplings would be enlarged.

Our result is restricted to the analysis of the model for one set
of parameters (α and β chosen to facilitate the analysis) in one
dimension and the numerical confirmation of a larger effect in
two dimensions. As we are interested in providing an existence
proof showing that SMs need not have a local positive effect to
be useful, it is not central to the aims of this paper to explore the
behavior of our model for the full range of α and β, although
it would be straightforward to examine this numerically. Simi-
larly, it is possible that the effect is even more pronounced in
higher dimensions corresponding to situations with more local
options on average. While these extensions would complete the
picture, the very existence of cases that contradict the assump-
tions about the benefits of SMs is the central message of this
study.

We have tested the role of SMs in decision chains for sit-
uations that do not involve very costly negative outcomes. It
is to be expected that primary emotions will nevertheless tend
to recommend caution if environmental circumstances resemble
risky situations. This is contemplated in our model by assuming

low values for PE1 . What is unexpected is that this cautionary effect
can be amplified by the interactions with other decision events,
resulting in decision-makers “getting stuck” along their path and
decreasing the impact of their deliberative predictive ability.

The fact that an experience-dependent affective subsystem may
have evolved to enhance decision-making is given a new meaning
in the light of our results. It is not necessary to put too strict
a condition on the predictability of secondary emotions for their
presence to start benefiting the agent. At any given point, decisions
taken based on secondary emotions may lead to bad outcomes (less
than baseline predictability) and yet the overall effect on the chain
still remain positive. This gives the system a chance to adjust and
improve with experience, resolving the problem of how SMs get
their local positive functionality (PE2 > 1/2) during development
in the first place. The coupled system that includes even defec-
tive or not properly adjusted SMs can still make the agent reap
the benefits of using secondary emotions. In turn, it allows the
agent to keep accumulating novel experiences necessary to refine
its SMs. The initial functionality of secondary emotions would
seem to be the encouragement of exploratory behavior. Moreover,
we also have found that in agents with high predictive capabil-
ity, increasing the efficacy of the deliberative capacity produces a
decreasing marginal gain in comparison with the effect of better
attuned SMs. This result suggests that for many environments, as
an evolutionary strategy involving developmental plasticity, SMs
may out-compete the evolution of sophisticated deliberative capa-
bilities. This is due, on the one hand, to their weak dependence on
their initial adjustment (they accrue positive effects even for local
predictability below the baseline) and, on the other, to the fact
that the benefits of increasing their adjustment during lifetime
can be higher than developing more reasoning power. In view
of these implications, the evolutionary plausibility of the dual-
process accounts is strengthened by considering decision chains as
a non-linear process.
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APPENDIX
COGNITIVE ABILITY AND PREDICTIVE CAPABILITY OF AN AGENT
Here we express in formal terms some of the notions used to
formalize dual system decision-making.

Cognitive ability
Let X be a decision-making agent, let A= {µ1, µ2, . . ., µn} a set
of possible actions, and �= {s1, s2, . . ., sm} a set of states of the
world. We define the cognitive ability C of the agent, in a state s
of the world �, as a mapping that drives the agent to propose an
action µ in the given situation s∈�.

C : � −→ A
s −→ C(s) = µ

For more details (reasoning and emotional abilities), see
Table A1.

Predictive capability
Let X be a decision-making agent with cognitive ability denoted by
C, let A= {µ1,µ2, . . .,µn} a set of possible actions, and�= {s1, s2,
. . ., sm} a set of states of the world. We define the predictive capa-
bility of a cognitive agent as the probability of the action taken,
µ, in a given situation s ∈� being correct (denoted by µ∗). By
correct we mean that the action satisfies some viability constraint
or maximizes some utility of interest to the agent. We denote this
as PX(s,µ) or, in general, PX.

In mathematical terms, it can be expressed as (see Table A2 for
more details),

PX : �× C −→ [0, 1]
(s, C (s) = µ) −→ PX (s,µ)

where PX(s, µ) represents the agent’s estimation of having a cor-
rect outcome from performing µ on s (i.e., it is the probability of
the action taken, C(s)=µ being the correct one,µ=µ∗).

Let X be an agent, in a situation s ∈� where the correct action
is µ∗. The agent is able to take two actions (µ1, µ2) but only the
first one is correct (µ1=µ

∗) and the second one is not.
If the agent were omniscient (i.e., it had the ability to know

everything that can be known and the consequences of every deci-
sion made before choosing), then the probability of the action
taken being correct would be PX(s, µ1)= 1, and by the same rea-
soning, the probability that the action taken is incorrect would be
zero (PX(s,µ2)= 0).

However, in real life, in general, PX(s,µ1)< 1,and PX(s,µ2)> 0,
when predicting the adequacy of the state achieved after perform-
ing a certain action (in some cases it can even happen that the agent
estimates PX(s,µ1)< PX(s,µ2), i.e., considers the wrong option as
the correct one). In real situations, therefore, only when the agent
is certain that choosing the action “µ = µ∗” is good, then PX(s,
µ)= 1. Nevertheless, the “predictive ability” of an agent is lower.

For simplicity, it will be assumed that (i) there is no uncer-
tainty about what the adequate actions are but that the uncertainty
is restricted to the limitations of the agent’s cognitive abilities,
and that (ii) convergence in probability is fulfilled, so the sample
average converges almost surely to the expected value, i.e., PX(s,

µ)=<PX(s, µ)> (note that this can be seen as a special case of
the law of large numbers).

Consider a numerical example to clarify these notions:

• A reasoning mechanism that leaves the agent still unsure, say
20% of the time, is described as PR(s,µ=µ∗)= 0.8.
• We assume that if the agent knows nothing about the current

state (i.e., the situation is totally new), primary emotions act as
an alarm mechanism by quickly deploying a protective response
(i.e., conservatively making the agent perceive the situation as
bad when uncertainty appears). In these conditions, the pri-
mary emotion’s ability to predict the correct action will be low
(for instance, PE1 (s,µ=µ∗)= 0.2).
• If the agent knows nothing about the current situation but a

correct somatic marker makes the agent interpret that a partic-
ular action could be correct, we can assume that the respective
predictive ability will be good but, in general, not as high as the
ability to predict by deliberation (e.g., PE2 (s,µ=µ∗)= 0.6).

A FORMAL FRAMEWORK TO MODEL DYNAMICAL DUAL SYSTEMS
Decision-making in everyday life can be understood as a non-
linear stochastic process: the effect of our actions and the risks
involved in the world states are not always perfectly predictable. In
general, it is considered that stochasticity derives from the short-
comings of the agent’s ability to predict the adequacy of the state
achieved after performing a certain action. Furthermore, we also
assume that actions and decisions can be modeled as discrete
events in time. Taking these assumptions into consideration, a
stochastic dynamical system is used to model the evolution of the
set of states s ∈� that a decision-making agent undergoes, as

st+1 = f (st , ξt+1) , with a random variable ξ (t ) and ∀t ∈ N

Stochastic processes are characterized by a probability distribu-
tion8(st+1, t+ 1) describing the probability with which a possible
state of the system, st+1 ∈�, can occur at time t+ 1, given the
previous sequence of states st, st−1, st−2, . . .. Since we assume Mar-
kovian processes, the probability with which st+1 ∈� can occur
at time t+ 1, depends only on the state st at the previous time t,

P (st+1, t + 1|st , t ) , ∀t ∈ N

A formal framework for the study of decision-making will be
therefore described, in the most general way, in terms of the prob-
ability of a particular state si ∈�, in which the agent would be at
time t+ 1, as a function of where it was at the previous moment:

8(si , t + 1) =
∑
j 6=i

P
(
si , t + 1|sj , t

)
·8

(
sj , t

)
,∀si , sj ∈ �,∀t ∈ N

Note that we have defined the predictive capability of an agent,
PX, as the result of a mechanism that enables it to make estimations
of having a good/bad outcome following a particular action (see
Cognitive Ability and Predictive Capability of an Agent in Appen-
dix). In terms of this definition, the probability of transition in
the Markovian process that describes the agent’s decision-making
behavior, P(si, t+ 1 | sj, t ) can be understood as equivalently to
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Table A1 | Mathematical definitions for the main elements in the somatic marker theory.

REASONING ABILITIES

In decision-making, reasoning abilities “imply that the decider

has knowledge about the situation which calls for a decision,

about different options of action (responses), and about con-

sequences of each of those options (outcomes); [they] also

usually imply that the decider possesses some logical strat-

egy for producing valid inferences” (p. 166). This conception

of rationality relies on hypothetical optimal conditions of time

availability, i.e., deciding well also means “deciding in a time

frame deemed appropriate for the problem at hand” (p. 169),

and counting on enough working memory

Let X be a decision-making agent, let A= {µ1, µ2, . . . , µn} a set of possible actions,

and � = {s1, s2, . . . , sm} a set of states of the world.

Definition:The reasoning ability is a mapping R,

R :� −→ A

s −→ R(s) = µ

only for a certain set of states, s ∈SR⊂�. SR represents cases which neither involve

an immediate action nor a survival response. We consider situations where the agent

has enough time to deliberate and assign subjective values to his preferences

PRIMARY EMOTIONS

Primary emotions are preorganized mechanisms that activate

links between stimulus and responses in a fast automatic

way, without explicit knowledge or a reasoning strategy. In

Damasio’s own words: “Not all biological processes which

culminate in a response selection belong in the scope of rea-

soning and deciding” (p.166); “[. . . ]we are wired to respond

with an emotion, in preorganized fashion, when certain fea-

tures of the world in our bodies are perceived, alone, or in

combination” (p. 131)

Definition: Let us call the primary emotions ability, denoted by E1:

E1 :� −→ A

s −→ E1(s) = µ

defined only for a set of states of the world s ∈ SE1 = {s1, . . . , sm} ⊂ �. SE1 refers

to states that demand immediate actions for survival. The aim of E1 is to map each

element with to a protective response. This will act as an alarm bell mechanism

SECONDARY EMOTIONS

Secondary emotions are built gradually on the foundations of

the feeling of primary emotions in connection to the object

that excited it. They somehow link object and emotional

body state. Damasio explains the meaning of the secondary

emotions’ mechanisms as follows: “[They] occur once we

begin experiencing feelings and forming systematic connec-

tions between categories of objects and situations, on the

one hand, and primary emotions, on the other” (p. 134).

He later speculates: “[. . . ]One of the advantages of “feel-

ing” your emotional reactions is that you can generalize your

knowledge, and decide, for example, to be cautious with

anything that looks like [an object or situation that demands

caution]”(p. 133)

Definition:We define “emotional memory M” as a link between a couple state-action

(s, µ) and v ∈ [0, 1], i.e., the value of that action in that state.

M :�× A −→ [0, 1]

(s,µ) −→M(s,µ) = v

Let us call ability of secondary emotions E2:

E2 :�×M −→ A

(s, (s′,µ′, v ′)) −→ E2(s, s′,µ′, v ′) = µ

which establishes an equivalence between an state s ∈�, and a list of parameters

(s′, µ′, v ′) according to previous emotional experiences of the agent. This allows to

choose an action µ in the state s ∈� based on the relationship between (s′, µ′, v ′)

Verbal definitions on the left column, quotes from Damasio (1994) and mathematical formalization of the associated cognitive abilities on the right one.

the “predictive ability of the agent” P(st, µ), if the action µ: (i)
is correct (µ=µ∗) and (ii) allows the agent to move from si to
sj. If the probabilities of transition in the Markovian process are
represented in matrix notation, then we have,

8(t + 1) = 5ij ·8(t )

where 5ij= P(si, t+ 1 | sj, t ) does not depend on � but on the
predictive ability of the agent (see the assumptions introduced
in Cognitive Ability and Predictive Capability of an Agent in
Appendix).

We can define a Markov chain by means of a linear and homo-
geneous system of differential equations. In general, any system
that can be described by a set of p-state variables, V= (v1, . . ., vp),
at t= 0 denoted as V 0, that recursively generates a succession of
other sets, V 1, V 2, . . ., Vn, obtained by Vn=A·V n−1, where A is

a square matrix of order p, describing a linear and homogeneous
system of differential equations.

It is said that a linear and homogeneous system of differential
equations represents a Markov process, if the matrix coefficients
of A are non-negative,

aij ≥ 0,∀i, j = 1, 2, . . . , p

and its columns add up to 1,

n∑
i= 1

aij = 1,∀j = 1, 2, . . . , p

In general, we can state that: (ii) knowing the behavior of a
Markov process essentially means solving its associated differential
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Table A2 | Mathematical definitions of predictive (deliberative, primary, and secondary) capabilities measuring the probability of the action

taken being correct.

By using the mappings R, E1, and E2, as have been defined inTable 1, we introduce the following definitions.

Definition: In mathematical terms, the deliberative predictive ability can be defined as,

PR :�× R −→ [0, 1]

(s, R(s) = µ) −→ PR (s,µ)

PR(s, µ) represents the agent’s estimation of having a correct outcome from performing µ on s by using its reasoning abilities (i.e., it is the probability

of the action taken, R(s)=µ, being correct µ=µ*).

Definition:The primary emotional predictive ability, denoted by PE1 , is defined as:

PE1 :�× E1 −→ [0, 1]

(s, E1(s) = µ) −→ PE1(s,µ)

It is supposed that primary emotions act as a protective response, i.e., as a safer mechanism that attempts to minimize risks by avoiding unknown

situations (so, the probability of the action taken E1(s)=µ being correct, i.e., µ=µ*, will be low).

Definition:The secondary emotional predictive ability, denoted by PE2, is represented as:

PE2 :�× E2 −→ [0, 1]

(s, E2(s) = µ) −→ PE2(s,µ)

PE2 (s, µ) is the ability of taking right decisions based on acquired somatic markers. In most situations, the inferences on good choices are correct (i.e.,

the probability of the action taken, E2(s)=µ, being correct µ=µ*, is high) but, in other cases, wrong decisions occur as a consequence of rejecting

suitable choices as well as failing to reject unsafe scenarios (i.e., the probability of the action taken, PE2(s)=µ, being correct, µ=µ*, is lower)

Depending on the situation, only one of the mechanism is considered to be dominant at a given time.

equations systems, and (ii) every Markov process reaches a station-
ary regime (Rouché-Frobenius Theorem). We highlight that the
last property will be essential to solve our model.

In dynamical terms, the mutual coupling between an agent
and its environment modulates the agent’s behavior that results
not only from internal processes but also from interaction. If we
assume that a stationary state is reached, then the behavior of the
agent can be described with respects to its internal processes as
if it had an effective architecture (into which interactions with
the environment and between processes have already been fac-
tored in). From this point of view, knowing the dynamics of
the coupled system, describing the agent’s behavior properly or
obtaining its“effective”architecture in the interaction is essentially
the same.

Let us consider a simple example to clarify the method. We later
discuss the results in general terms. We consider a case where the
decision-making agent presents a dual architecture expressed by,(

2

3
R ⊕

1

3
E1

)
where we model the behavior of the agent with reasoning abilities
and primary emotions and suppose, that – on average – a third
of the decisions of the system are driven by E1 and the remaining
two-thirds by R (see Figure A1).

From the moment in which the agent starts making decisions
in a sequential manner, we can analyze the dynamics of its actions
as a Markovian process. We start from a dual initial architecture

P R

. . . . . . . .

P R P E 1

1-P R 1-P R 1-P E 1

FIGURE A1 | A coupled (dual) agent-environment modeled through a
Markov chain.

(or equivalently, from the initial probability distribution of the
Markov process) that can be expressed in a basis {R, R, E1} as,

V0 =
(
vR , vR , vE1

)
=

(
1

3
,

1

3
,

1

3

)
In order to obtain the probability at time t= 1, denoted by

V 1, we can simply multiply the starting distribution by the
matrix A,

V1 = A ·V0
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Since the system is Markovian, from a certain value n, it reaches
a stationary regime,

Vn+1 = A · Vn

so the following will hold,

Vn+1 = Vn

Therefore we can state that, after a transient period, the proba-
bility distribution of the Markovian process (or the effective archi-
tecture of the agent) will have reached a stable pattern, denoted by
Vst, in the coupling with the world. In our example, the Markovian
matrix A that describes the systems is a three-square matrix,

PRE1 =

 0 (1− PR) PR

PE1 0 (1− PR)(
1− PE1

)
PR 0


Solving the coupled system will consists in calculating the pat-

tern that persists, i.e., the dynamic system equilibrium state. Then
we look to obtain Vst, the equilibrium distribution that becomes
invariant under the action of PRE1 ,

V st
= PRE1 · V

st

Obtaining the Vst consists in solving a typical eigenvalue
problem with eigenvalue equal to 1,(
PRE1 − I

)
· V st

= 0

that, in terms of our basis {R, R, E1}, it is expressed as,

V st
=

 v st
R

v st
R

v st
E1

 = 1

η

 1− PR + PR · PE1

1− PE1 + PR · PE1

1− PR + P2
R


where η = 3 − PR − 2PE1 + 2PR · PE1 + P2

E1
is a normalization

constant so as to get 63
i=1 v st

i = 1.
In a simple numerical example where we take, for instance, for

the prediction capability of the subsystems R and E1, the values
PE1 = 0.1 and PR= 0.8 respectively, we obtain Vst

= {0.13, 0.47,
0.4} which reveals that the probability distribution in the equi-
librium is not homogenous as the initial one, V0= {0.33, 0.33,
0.33}.

In other words, couplings between the emotional and the ratio-
nal contribution to the cognitive architecture of the agent, forces
the rational ability to decrease (in the example, from “weighing”
0.66 to 0.60) whereas the primary emotional part has a greater
effect than its weight on the effective structure (the effect of pri-
mary emotions is greater than a 1/3). The components of this
eigenvector can be understood as the new proportions between
the subsystems 1 and 2 in the effective dual architecture of the
agent.

Let us now consider that somatic markers are added to the ini-
tial system. We assume that there is, on average, a balance between

the previous system and the new component (β = 1
2 ), so the

global architecture of the agent can be represented by,(
1

2
RE1 ⊕

1

2
E2

)
We keep the notation for the previous case,

PRE1 =

 0 1− PR PR

PE1 0 1− PR

1− PE1 PR 0


and use a similar notation for the Markov matrix that characterizes
a pure somatic-marker process, such that

PE2 =

 0 1− PE2 PE2

PE2 0 1− PE2

1− PE2 PE2 0


the stable probability distribution in the combined Markov process
is expressed as,

U st
= PRE1E2 · U

st

where the new matrix will be,

PRE1E2 = 0 1− 1
2

(
PR + PE2

) 1
2

(
PR + PE2

)
1
2

(
PE1 + PE2

)
0 1− 1

2

(
PR + PE2

)
1− 1

2

(
PE1 + PE2

) 1
2

(
PR + PE2

)
0


and the stationary solution,

U st
=

 ust
R

ust
R

ust
E1

 =
1

ν

 1− 1
2

(
PR + PE2

)
+

1
4

(
PR + PE2

)
·
(
PE1 + PE2

)
1− 1

2

(
PE1 + PE2

)
+

1
4

(
PR + PE2

)
·
(
PE1 + PE2

)
1− 1

2

(
PR + PE2

)
+

1
4

(
PR + PE2

)2


where v = 3− 1

2 (PR + PE2)− (PR + PE2)+
1
2 (PR + PE2) · (PE1 +

PE2)+
1
4 (PR + PE2)

2 is a normalization constant. We consider, as
before, the agent’s initial architecture {0.33, 0.33, 0.33} in the basis
{R, R, E1}.

If somatic-markers E2 are added with β = 1
2 and we take, for

example, PE1 = 0.1, PE2 = 0.6, and PR = 0.8, we obtain that the
effective architecture of the coupled somatic marker agent is given
by (ust

R , ust
R , ust

E1
) = (0.25, 0.40, 0.35). Again, we can, see how the

effect of emotions (in this case, secondary emotions) changes the
structural contribution made for each subsystem in the effective
architecture).

Let us now consider the previous RE1 agent in the one-
dimensional situation referred in Figure 3. Although we represent
the set of possible states for the agent as {. . ., sk−1, sk, sk+1, . . .}
assuming that, on average 2/3 of the time, the agent will make a
decision using the subsystem R, and 1/3 of time, the subsystem E1,
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we can reduce the analysis of the dynamics of a simpler process (a
three-step transitions process),

. . . s0
P01
−→s1

P12
−→s2

P20
−→ . . . .

In order to obtain the probability of the agent making 3 transi-
tions after 3 iterations we sum over all states in proportion to the
probability of movement in the forward direction. If we express
it in terms of the initial architecture of the agent, an intuitive
interpretation can lead us to wrongly consider the summation
performed should be arithmetic,

8
({

s0
P01
−→s1

P12
−→s2

P20
−→

}
, t = 3

)
= vR · PR + vR · PR + vE1 · PE1

however, we must calculate,

8
({

s0
P01
−→s1

P12
−→s2

P20
−→

}
, t = 3

)
= v st

R · PR + v st
R · PR + v st

E1
· PE1

where each component’s contribution is summed over the steady
state probability vector V st

= (υst
R , υst

R , υst
E1
). If we suppose that

choosing the right path implies going through states from left to
right, then the expected value is also the definition of the predictive
ability (see Table A2). Therefore, the result of calculating the prob-

ability of the agent going across the sequence {s0
P01
−→s1

P12
−→s2

P20
−→},

assuming that this sequence is correct, is a measure of the pre-
dictive capability PX of the decision-making agent. The previous
expression can be reformulated into,

PX

(
2

3
· PR ⊕

1

3
· PE1

)
6=

2

3
· PX (PR)+

1

3
· PX (PE1)

where, by definition, PX(PR)= PR and PX (PE1) = PE1 (see Cog-
nitive Ability and Predictive Capability of an Agent in Appendix).
For instance, substituting the values PR= 0.8 and PE1 = 0.1, and
using the stationary distribution of probability, it is easy to con-
clude that the predictive ability of the agent will be PX= 0.52 and
not PX = (0.66 · PR + 0.33 · PE1) = 0.56.

Consequently, we have shown the effect of how the predictabil-
ity PX is affected by the interaction with the environment. The
non-linear framework therefore shows that the global predictive
ability of the agent is not a linear combination of the performance
of each component (Harmer et al., 2002; Parrondo and Dinis,
2004). This can be explained intuitively: the negative effect of the
emotional part traps the system and does not let the rational part
spread over time as much as we could guess from looking at its rep-
resentation (two thirds) in the system’s structure. Not being able
to “move away” easily from states that demand an emotional cau-
tionary response implies that the agent finds itself in those states
and their immediately previous neighbors with greater frequency
than expected from a uniform, independent sampling (what we
describe as non-additive effects). Warning mechanisms can reduce
the probability of using the predictive machinery more than we
could establish by its proportional representation.

Thus, we could mistakenly think that, when considering a
“somatic marker agent” (with α= 2/3 and β = 1/2, see Section 4
for details), the expected asymptotic value of the predictive ability

is a linear combination of the predictive abilities from each com-
ponent, however as the previous example, if we take PE1 = 0.1 and
PR= 0.8 (it has been shown that for these values, PRE1 = 0.52) and
add PE2 = 0.6, the linear approach tells us that PX= 0.58, whereas
in a non-linear framework, we obtain PX= 0.68.

From the effective architecture perspective linearity conditions
are not verified as in the case of the isolated agent structure. In
general, in coupled agents,

f (a · A + b · B) 6= a · f (A)+ b · f (B)

In particular, we focus on the case in which the agent’s predic-
tive abilities are defective, i.e., PX< 1/2 (i.e., the agent makes bad
decisions most of the time).

Let us consider the somatic marker agent introduced previously,
with predictive abilities PRE1 and PE2 . We are interested in explor-
ing whether: (i) assembling defective components (PE2 < 1/2),
(ii) to build the emotional-cognitive architecture of an agent
(PRE2 < 1/2), (iii) can produce a reliable favorable behavior. We
require additionally that (PE2 < PRE1), (where PE2 < 1/2 means
that we register experiences wrongly and PE2 < PRE1 means
that decisions made using secondary emotions lead us to make
more mistakes than we do without somatic markers). This can
be viewed as the mathematical version of Damasio’s main con-
clusion from empirical research with frontally damaged patients
(Damasio, 1994, p. 221).

We prove that when then agent is coupled to the environment,
in certain cases, wrong somatic markers can improve decision-
making processes through the non-linear coupling of less than
beneficial systems (Harmer et al., 2005). We present analytical
results of the conditions under which this counterintuitive effect
occurs for the particular set of parameters used in this paper
(α= 2/3 and β = 1/2) that we are using for analytic convenience.
Thus, for this effect to happen, the following inequalities need to
be satisfied simultaneously:

• The first inequality represents a (reasoning+ primary emo-
tional) agent with low predictive capability

V st
= PRE1 · V

st
⇒ PR ·

[
v st

R + v st
R

]
+ PE1 ·

[
v st

E1

]
< 1/2

• The second inequality indicates that as wrong somatic mark-
ers are incorporated, the predictive ability is also worse than
baseline

W st
= PE2 ·W

st
⇒ PE2 ·

[
w st

R + w st
R + w st

E1

]
< 1/2

• The third inequality represents how the previous systems are
combined to define the architecture of an agent with somatic
markers. The inequality is reversed resulting in a better average
performance

U st
= PRE1E2 · U

st
⇒

1

2

(
PR + PE2

)
·
[
ust

1 + ust
2

]
+

1

2

(
PE1 + PE2

)
·
[
ust

3

]
> 1/2

Obtaining a solution requires finding probabilities that satisfy
the three inequalities.
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In order to easily solve the system of equations, it can be simpli-
fied as follows (a similar analysis can be consulted in Harmer et al.,
2002; Parrondo and Dinis, 2004). Let us consider the stationary
predictive ability of the dual deliberative-emotional agent, that is
required that PRE1 < 1/2, or alternatively

PRE1 <
(
1− PRE1

)
In order for the second condition to be satisfied we would need

PE2 < 1/2, and therefore,

PE2 <
(
1− PE2

)
Finally, it would be needed to satisfy the third inequality that,

PRE1E2 >
(
1− PRE1E2

)

Substituting the stationary distributions in these expressions,
we have

PE1 · P
2
R <

(
1− PE1

)
· (1− PR)

2

PE2 <
(
1− PE2

)
1
2

(
PE1 + PE2

)
·[ 1

2

(
PR + PE2

)]2 >

[
1− 1

2

(
PE1 + PE2

)]
·[

1− 1
2

(
PR + PE2

)]2

Taking, for instance, PR= 0.9, PE= 0.01, and PE2 = 0.45, it
can be easily demonstrated that the previous three inequalities
fulfill simultaneously. That is to say the incorporation of wrong
secondary emotions (with predictive capability smaller than 1/2)
can improve the predictability of the global system.

www.frontiersin.org October 2012 | Volume 3 | Article 384 | 19

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive

	Unreliable gut feelings can lead to correct decisions: the somatic marker hypothesis in non-linear decision chains
	1. Introduction
	2. Modeling Decision-Making Processes
	3. Somatic Markers Hypothesis: A Mathematical Description
	4. A Non-Linear Model of the SMH
	4.1. Extending the result to two dimensions

	5. Discussion
	6. Conclusion
	Acknowledgments
	References
	Appendix
	Cognitive ability and predictive capability of an agent
	Cognitive ability
	Predictive capability

	A formal framework to model dynamical dual systems



