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We introduce a computational model of the negative priming (NP) effect that includes
perception, memory, attention, decision making, and action. The model is designed to
provide a coherent picture across competing theories of NP. The model is formulated in
terms of abstract dynamics for the activations of features, their binding into object entities,
their semantic categorization as well as related memories and appropriate reactions. The
dynamic variables interact in a connectionist network which is shown to be adaptable to
a variety of experimental paradigms. We find that selective attention can be modeled by
means of inhibitory processes and by a threshold dynamics. From the necessity of quan-
tifying the experimental paradigms, we conclude that the specificity of the experimental
paradigm must be taken into account when predicting the nature of the NP effect.
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1. INTRODUCTION
Selective attention enables goal-directed behavior despite the large
amount of ongoing input to the sensory system. This ability is
strongly linked to the problem of how information is ignored.
Contradicting an earlier understanding that active attention to
some objects requires passively ignoring others, an experiment by
Dalrymple-Alford and Budayr (1966) revealed, in a series of Stroop
tasks an active nature of the suppression of irrelevant stimuli.
While the original Stroop (or Jaensch) test did not use a systematic
repetition of color and color words, here the stimulus cards were
designed such that the ignored meaning of a color word became
the color of the next word shown. This led to slower responses
as compared to unrelated stimulus colors. Even if the semantic
meaning of the words had been ignored, it must have entered the
cognitive system to produce the characteristic interference.

Since then, several standard negative priming (NP) paradigms
have emerged featuring various dimensions in which priming can
occur, e.g., the identity of stimulus objects (Fox, 1995) or their
location on the display (Milliken et al., 1994). The stimulus set has
also been varied, e.g., pictures (Tipper and Cranston, 1985), shapes
(DeSchepper and Treisman, 1996), words (Grison and Strayer,
2001), letters (Frings and Wühr, 2007), sounds (Mayr and Buch-
ner, 2007), or colored dots (Neill, 1977). All paradigms have in
common, stimuli containing targets that are to be attended and
distractors that are to be ignored. Experimental conditions depend
on Stimulus repetitions, particularly the role of a repeated object as
target or distractor in two successive trials. Variations of this basic
setting include the manipulation of experimental parameters like
the time between two related trials, the number of distractors, and

the saliency of the distractor. The sometimes contradictory results
of such variations will be considered in more detail in Section 2.3.
Because of the controversial nature of the NP effect, a variety of
interpretations have been developed, but so far none of the theo-
ries is able to explain all aspects of the effect. Various underlying
mechanisms have been proposed to act at different stages of the
processing of the stimuli each justified by a certain experimental
result. The theories also diverge with respect to the basis of the
effect, i.e., whether it is a memory phenomenon or an effect of
attention. They all agree, however, on the critical role of temporal
processing for an understanding of NP.

We are particularly interested in the neurophysiological mech-
anisms behind attention and ignoring of perceptual information.
Attention is, in principle, a form of guidance of neural activ-
ity toward relevant resources. If ignoring of stimuli or stimulus
features is an active process, then those resources are subject to
suppressive effects of some kind. In principle, these could be
maintained by various processes, e.g., elevated thresholds, synaptic
depression, or competition involving homeostatic plasticity. How-
ever, considering that attention is essentially guided by processes in
the prefrontal cortex and the fact that prefrontal feedback is typi-
cally given by inhibitory signals (Knight et al., 1999), it seems likely
that inhibition plays a key role in the effects of selective attention.

In the model presented here, inhibition serves multiple func-
tions: it not only underlies attention by suppressing irrelevant
stimulus components, but is essential in the formation of bound
states that represent objects as synchronized set of feature-related
activity and is assumed to underlie the selection of action. Corre-
sponding to the multiple uses, inhibition occurs in several forms.
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At the sensory level, inhibition is merely a relative advantage of one
of the perceived features that is initiated by top-down input. In this
case, the model is ignorant to the particular form of suppression,
which can be implemented in different but mathematically equiv-
alent forms, e.g., as an adaptive threshold. This indifference is due
to the generality of our approach and allows us to express several
conflicting theories from the psychological literature by the same
formal model component.

In the feature binding component of our model inhibition
occurs in a uniquely defined form: object-encoding activations in
the binding layer are stabilized by lateral inhibition. Although here
also alternatives are mathematically possible, there is no psycho-
logical or neurophysiological evidence for a fine-tuned mechanism
as proposed by Schrobsdorff et al. (2007a). Finally, inhibition is
realized in a more schematic form in action selection which we
have included in the model in a form analogous to the perceptual
or frontal modules rather than as a realistic representation of the
motor system.

A further main contribution of the present study is a single
and comprehensive computational model, combining the differ-
ent theories such that it is able to express the behavior predicted
by each of the NP theories1. To deal with apparent inconsistencies
and incompatibilities across the theories, we employ two strate-
gies. First, we choose a dynamical formulation, whose natural
mathematical form, allows us to identify similarities that are not
obvious from the theoretical conclusions of specific experiments,
and whose structure can be directly related to physiological evi-
dence of cognition. Second, we will use a set of configuration
parameters that function as weights or semaphores and can scale-
down or switch-off a component that is not postulated in a certain
theoretical context. In other words, all the model components
can work together but often such preselected subsets of com-
ponents are sufficient to describe a given empirically developed
theory. It is crucial to remark that the different roles of inhi-
bition are always present in the variants of the model that are
implied by the literature, except for the retrieval module which
is not discussed in some accounts. Also generally, the choice of
the configuration is unambiguously specified by the psychological
account in all major theories of NP. In the present formulation of
the general model for negative priming (GMNP) there are seven
optional components, but extensions are easily possible, should
newer experimental evidence imply additional contributions to
the NP effect.

We will describe in detail how a computational model can be
constructed along these lines that comprises all potentially rele-
vant processing stages for an NP task. The result is not only a
comprehensive model of the theories of NP, but more generally,
a framework for perception-based action in natural or artificial
cognitive systems. The system is explicit in the sense that the
components are mathematically defined. The system is also con-
nectionist, i.e., the interaction between the components represent
the task (see Figure 3) which is realized either by design or in
the wider context by a learning process. Finally, the system is

1The source code containing several paradigm examples is available through the
project web site http://www.bccn-goettingen.de/projects/gmnp

dynamic, i.e., the activity levels of all components change in time
and excite, inhibit or modulate each other. This reflects the impor-
tance of the time course in NP as well as in general behavioral
contexts.

The paper is organized in the following way. We will first clarify
terminology, deepen the discussion on how to concretize psy-
chological theories, present the NP effect, give an overview on
the biological background of the model units and finally explain
how these enter into the proposed GMNP. The second section
thoroughly reviews existing theories of NP. Specifically, we give
a historical overview of the development of theories and what
additional conclusions were drawn in experimental papers. The
quantification of theories and how they are integrated in the
framework of the GMNP is followed by a technical chapter that
describes the implementation of the model in a way allowing
researchers to reproduce the simulations. Finally the behavior of
the GMNP in various NP paradigms is shown. The concluding
discussion summarizes these results and considers the potential of
the model beyond the described target application in NP.

2. MATERIALS AND METHODS
We present an integrative connectionist model of NP. For a thor-
ough description of the model and the necessity of its parts, this
section is organized as follows. After defining basic experimental
nomenclature we very briefly present a generic NP experiment to
introduce the viewpoint of NP research. Next, we summarize the
various and diverse modulations of NP when faced with a wide
range of experimental variations, thereby showing the sensitivity
of the phenomenon and thus the requirement of a rather complex
model. Then, we review a number of theoretical accounts that were
postulated to explain a certain aspect of NP. Those theories will
be incorporated in our model. After an overview of the GMNP,
we describe the role of the individual model components in detail,
and finally, the rigorous mathematical formulation of the GMNP
is presented.

2.1. DEFINITIONS
In the present study we will use the following definition: NP is
a slowdown in reaction time in a repetition condition where a
former distractor has become target. Because we define the term
NP by reaction time differences, we shall not use it to denote the
ignored repetition condition. Instead we will label the condition
by two (or four) letters that indicate the configuration of stimuli in
a trial consisting of a prime and a probe display (see Christie and
Klein, 2001). Generally, the first letter contains information about
which part of the prime display is repeated in the probe display:
the letter D represents the distractor, while T represents the target.
The second letter indicates the role the particular object has in the
probe display. For example, the string DT refers to the condition in
which the prime distractor (first letter D) is repeated in the probe
trial as a target (second letter T), which denotes the traditional
NP condition. If no stimulus is repeated, the condition is denoted
by CO. In case both objects are repeated there is a second pair of
letters appended for the second object. Because a target and a dis-
tractor are each shown in the prime and the probe display, seven
relevant combinations of target-distractor relations are possible,
see Table 1.
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2.2. A NEGATIVE PRIMING EXPERIMENT
We will now very briefly discuss a prototype NP experiment that we
will refer to in the following discussion. The experiment has been
adapted from the classic study by Tipper (1985) and is presented
in detail in Schrobsdorff et al. (2007b). Subjects are instructed
to name the green pictogram as quickly and accurately as possi-
ble (see Figure 1). Stimuli are six different objects, represented
by hand-drawn pictograms that are either shown in green or in
red. We use voice recording together with a sound level threshold
to determine the reaction time for every trial. As the experi-
ment is run in German, possible responses are German names
of simple objects that begin with a plosive and consist of a sin-
gle syllable: Baum (tree), Bus (bus), Ball (ball), Buch (book), Bett
(bed), and Bank (bench), for a sharp, and thus easily detectable
onset of the sound signal. For efficiency reasons, we present the
trials continuously, such that every trial primes the subject for
the following trial (see Ihrke and Behrendt, 2011, for a discus-
sion of the implications of this procedure). Object presentation
is balanced in the different priming conditions as well as in
their appearance as target and distractor. Implemented priming

conditions include CO, DT, TT, DDTT, and DTTD, see Table 1
and Figure 1.

A stimulus display consists of two overlapping line drawings, a
green target, and a red distractor object. The subject is instructed
to name the target objects aloud and ignore the superimposed red
objects. They were told to answer as quickly and as accurately as
possible. Then, after a blank screen period and the presentation
of a fixation cross, the next display is presented. Mean reaction
times of the different priming conditions, the standard deviations,
and the effect strengths, i.e., the difference to CO trials, are shown
in Table 2. For details, see Schrobsdorff (2009). DTTD trials pro-
duce the slowest responses, followed by DT and CO trials, whereas
the responses to TT trials are faster than control and DDTT trials
produce the fastest responses.

The experiment shows how the repetition of stimuli can influ-
ence reaction times in a NP paradigm. A repetition of relevant
stimuli leads to prominent speedups (TT, DDTT conditions),
whereas a presentation of formerly irrelevant stimuli as the current
target results in slowed reaction times (DT and DTTD conditions)
as compared to the control condition.

Table 1 |The priming conditions of a paradigm with one target and one distractor in each of the prime and probe display.

Prime display Probe display

Target Distractor Target Distractor

TT A B A C Target(n+1)= target(n)

DT A B B C Target(n+1)=distractor(n)

TD A B C A Distractor(n+1)= target(n)

DD A B C B Distractor(n+1)=distractor(n)

DDTT A B A B Target and distractor are repeated

DTTD A B B A Target and distractor are swapped

CO A B C D Two new stimuli

DT

time

time

DTTD

CO

reaction time
reaction

response stimulus interval

DDTTTT

CO

stimulus onset

CO

FIGURE 1 | Example of a sequence of stimuli. Consecutive screens are shown. Either stimuli or a blank screen followed by a fixation cross is displayed.
Acronyms are explained inTable 1.
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2.3. CHARACTERISTICS OF THE NEGATIVE PRIMING EFFECT
Negative priming has been found in a wide variety of exper-
imental contexts (for reviews, see Fox, 1995; May et al., 1995;
Tipper, 2001; Mayr and Buchner, 2007). For example, NP has been
elicited using different stimuli such as line drawings (Tipper and
Cranston, 1985), letters (Neill and Valdes, 1992; Neill et al., 1992),
words (Grison and Strayer, 2001), auditory stimuli (Banks et al.,
1995; Buchner and Steffens, 2001; Mayr and Buchner, 2006), and
nonsense shapes (DeSchepper and Treisman, 1996). NP has been
found in various tasks including naming (Tipper, 1985), same-
different matching (DeSchepper and Treisman, 1996), Stroop-like
tasks (Neill, 1977), and spatial localization (Milliken et al., 1994;
Park and Kanwisher, 1994; May et al., 1995; Kabisch, 2003), see
Figure 2 for four example paradigms.

The NP effect is sensitive to a large number of parameters.
Most paradigms show a particular aspect of NP, but no global
pattern of results exists (Fox, 1995). It has been shown that NP
can depend on the length of the response stimulus interval (RSI)
between prime and probe (Neill et al., 1992; Kabisch, 2003; Frings
and Eder, 2009). However, there are also studies reporting a con-
stant NP effect for varied RSIs (Hasher et al., 1991, 1996; Tipper
et al., 1991). Surprisingly, for very short RSIs, a DT condition can
produce a facilitatory (Lowe, 1985), or hampering effect (Frings
and Wühr, 2007). At the other extreme, an experiment revealed
NP after a month using nonsense shapes which are very unlikely to
be seen in other circumstances (DeSchepper and Treisman, 1996).
For continuous presentation of trials, the proportion of preprime
RSI and current RSI influences NP (Neill and Valdes, 1992; Mayr
and Buchner, 2006), but not reliably (Hasher et al., 1996; Conway,

Table 2 | Reaction times, standard deviation, and priming effects, i.e.,

the differences of control (CO) reaction time and reaction time of the

according condition (DT, DTTD,TT,TDDT).

〈RT〉 (ms) (SD) Effect (ms)

CO 660.22 (62.85) –

DT 681.57 (69.65) −21.36

DTTD 685.92 (78.04) −25.70

TT 625.02 (65.29) 35.20

DDTT 600.69 (70.56) 59.53

1999). In the absence of distractors in the probe trial during a
DT condition, NP vanishes or even reverses to facilitation (Allport
et al., 1985; Lowe, 1985; Tipper and Cranston, 1985; Moore, 1994).
A more salient prime distractor increases the magnitude of the NP
effect in DT conditions (Grison and Strayer, 2001; Tipper, 2001).
NP is reduced or even reversed to facilitation when the emphasis
is put on speed rather than accuracy (Neumann and Deschepper,
1992). Increasing the perceptual load, e.g., by raising the number
of distractors presented in a single trial, leads to less NP (Lavie
et al., 2004). In other settings a higher number of prime distrac-
tors causes an increase of NP (Neumann and Deschepper, 1992;
Fox, 1995). The inclusion of TT trials or single target trials in the
presentation sequence enhances NP (Neill and Westberry, 1987;
Titz et al., 2008). A short presentation time of prime and probe
stimuli attenuates NP (Gibbons and Rammsayer, 2004). NP van-
ishes if the target is presented a bit earlier than the distractor in the
prime trial. On the other hand, if the prime distractor is shown
simultaneously with the prime target but blanked after a short
time, NP is observed (Moore, 1994). If the prime display contains
a single stimulus that is masked, subjects reporting awareness of
the prime object show positive priming, while subjects not aware
of the object show a NP effect (Wentura and Frings, 2005). In
subliminally primed trials the presence of a distractor in the probe
leads to negative priming,whereas the absence of a probe distractor
leads to a positive priming effect (Neill and Kahan, 1999).

2.4. THEORIES OF NEGATIVE PRIMING
Because of the sensitivity of the NP effect to numerous factors,
a variety of theories have been proposed to explain the disparate
experimental facts. None of the present theoretical descriptions,
however, explains all observation related to the NP effect, cf.
Section 2.3. In the present section we will give an overview on
the most relevant approaches.

2.4.1. Distractor inhibition theory
In the first attempt to explain NP, the inhibition hypothesis (Neill,
1977; Neill et al., 1990) inhibition plays a central role. Later, this
hypothesis branched into distractor inhibition theory (Tipper,
1985, 2001; Tipper and Baylis, 1987; Tipper et al., 1988, 1991,
2002; Tipper and McLaren, 1990; Houghton and Tipper, 1994,
1996), and episodic-retrieval theory (Neill and Valdes, 1992, see
Section 2.4.2).

A B

DDC

A D

B C

C

"Ball"

D

match mismatch

BALL

FIGURE 2 | Four different paradigms for NP. (A) The location priming
paradigm reveals NP in the encoding of space. (B)The flanker task implements
a stimulus response mapping. (C) Responses are given as vocalization in the

voicekey paradigm. (D) The word-picture comparison paradigm has the
advantage of a disentanglement of target identity and response. The examples
have been adapted such that green always defines the target.
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Binding Layer

Perceptual

Input

target: green
task: compare

Central Executive

Episodic Memory

shapecolor word

Semantic Layer

NO Response

Action Layer

FIGURE 3 | Interaction scheme of the different components of the
GMNP. Perceived stimuli are decomposed into single features, each of
which is represented in a single variable in the corresponding layer. Object
identity is maintained by activations in the binding layer, associating the
different features of a stimulus object. Most paradigms require a semantic
evaluation of the stimuli in order to generate a response. Therefore, the
semantic layer gates information flow from the relevant features to the
action layer which decides on the action to perform. Parallel to the

information flow from perception to action a so-called central executive
steers the model behavior with regard to the current task, i.e., providing
information about the target and the mapping of semantic variables to
actions. According to the similarity of the percept and a memorized
stimulus configuration, the memory layer feeds back information of the
former trial. The similarity signal also affects the effectiveness of
transmission between features, semantic layer and actions as well as
between memory itself and actions, the latter inversely to the first.

In the distractor inhibition theory, inhibition is complemented
by an attentional selection process, i.e., the direct feed-forward
excitation induced by the (visually) perceived stimuli. The slow-
down of the reaction in the probe trial can be understood as
a direct indicator of the amount of distractor activation in the
prime display. Persisting inhibition is assumed to drive the dis-
tractor representation below a baseline activation after stimulus
offset. Selection is said to operate on a semantic or postcategorial

level (Houghton and Tipper, 1994). It therefore also explains find-
ings that report NP in semantic priming tasks (Tipper and Driver,
1988).

The NP effect increases with growing saliency of the distrac-
tor (Lavie and Fox, 2000; Grison and Strayer, 2001; Tipper et al.,
2002). This effect can be very well explained in terms of the
inhibition model, since a stronger distractor would require more
inhibition, causing a stronger inhibitory rebound, and thus leading
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to a more prolonged reaction time. Distractor inhibition theory
can explain the larger NP effect by a stronger activation and thus
more inhibition for distractors (Craik and Lockhart, 1972; Craik,
2002). Therefore, more deeply processed stimuli produce larger
NP effects.

Opposingly, distractor inhibition theory fails to explain the
experimentally observed dependency of NP on the RSI: if the
representation of a distractor object is inhibited, the impact of
inhibition should be strongest immediately after the selection,
because the inhibition is assumed to decay with time. Although
there is a general trend of NP to decay with increasing time between
prime and probe (Neill and Valdes, 1992), no NP is observed in
several studies when the RSI is very short or non-existent (Lowe,
1985; Houghton et al., 1996).

2.4.2. Episodic-retrieval theory
Proposed by Neill andValdes (1992), episodic-retrieval theory sup-
poses that if a task is executed over and over again, memories of
past trials are more and more used in the current trial. NP is
then assumed to be the result of automatic retrieval of the prime
episode during probe processing causing a hampering interfer-
ence. It is argued that the retrieval is triggered by the similarity of
prime and probe episodes. As the information from the retrieved
episode in a DT trial is inconsistent with the current role of the
repeated object as a target, retrieved and perceived information are
in conflict. Resolving the conflict is time consuming and results in
the slowdown of the reaction time.

According to later extensions by Neill (1997), the main deter-
minants of the strength of retrieval are the recency of the memory
trace and the strength of the memory representation of the former
trial. Recency as a relevant factor receives empirical support from
studies that show a negative correlation between RSI and NP effect
(Neill and Valdes, 1992).

A facilitated response at very short RSIs (Lowe, 1985) is dif-
ficult to explain in terms of the episodic-retrieval framework.
Another weakness of this approach is the empirically found effect
of semantic NP (e.g.,Waszak et al., 2005): the absence of perceptual
similarity should prevent any retrieval to occur thus predicting the
absence of any priming effects.

2.4.3. Response-retrieval theory
A relatively recent version of the episodic-retrieval theory focuses
on the encoding and retrieval of processing operations that
have been carried out during trial processing – in particular the
response (Rothermund et al., 2005). The theory builds on results
from the research on event-files (Hommel, 1998, 2004, 2005),
which investigates the encoding and retrieval of perception-action
bindings. Since the retrieved response conflicts with the response
required by the task in DT trials when a naming task is imple-
mented, NP is explained as an interference between the retrieved
and the currently required response. One particular merit of this
response-retrieval theory is therefore that it points to the inherent
confounding of the priming condition and the response relation
in most NP paradigms: usually DT trials are accompanied by a
response switch, whereas TT trials require the same response. The
response-retrieval approach postulates that every reaction time
difference in priming paradigms is explained by the retrieval of

a past response depending on the perceptual similarity between
the two displays. In their initial study, a letter-matching task ini-
tially developed by Neill et al. (1990) was adapted in order to
orthogonally vary repetition or non-repetition of the response
and priming conditions (Rothermund et al., 2005). Since the
proposition of response-retrieval theory, many studies have found
empirical support for it (e.g., Mayr and Buchner, 2006; Ihrke et al.,
2011).

2.4.4. Temporal discrimination theory
Temporal discrimination assumes a classification of stimuli as old,
where a response can be retrieved from memory, or new, where a
response has to be generated from scratch (Milliken et al., 1998).
The classification consumes time depending non-monotonically
on the similarity between the current stimulus and a memory trace:
the classification as new is fast when prime and probe stimuli are
very dissimilar. The classification as old is fast when the displays are
identical. Intermediate similarities, however, such as in DT trials
where the prime distractor is repeated but not in the same color,
the decision whether the display is old or new takes longer (see also
Neill and Kahan, 1999; Healy and Burt, 2003). Hence, both NP and
positive priming effects can be explained with this mechanism.

Temporal discrimination and episodic-retrieval theories are
quite similar in structure. Most criticism toward temporal dis-
crimination relies on the equivalence of processing time after the
old/new-classification. Temporal discrimination tacitly assumes
that the direct computation of a response is completely different
from a retrieval of the answer from memory. Thus no statement
exists that these processes take an equal amount of time. Another
weak point of temporal discrimination theory is the assumption
that classification and retrieval or direct generation of a response
is processed serially. Most processes in the brain work in parallel,
and therefore a simultaneous computation (at least partly) of the
old/new signal together with a directly computed answer and the
retrieval of past episodes is more plausible.

2.4.5. Dual mechanism theory
Since there is evidence in support of both inhibitory and episodic-
retrieval processes, several authors have proposed that both mech-
anisms should be active. This notion has been termed dual mecha-
nism theory. Originally, May et al. (1995) proposed that inhibition
as well as memory retrieval can be the source of NP and the exper-
imental context specifies which of the two mechanisms is expected
to operate. Tipper (2001) argued that it is important to note that
distractor inhibition and episodic-retrieval theories are not mutu-
ally exclusive, and both inhibitory and retrieval processes could
be involved in the emergence of NP. Although retrieval processes
can be responsible for producing NP effects, inhibitory processes
are still required in selecting information for goal-directed behav-
ior. In most tasks, NP will supposedly be caused by a mixture of
contributions from persisting inhibition and interference from
retrieval. Because these processes may sometimes oppose each
other, it is difficult to distinguish them by means of behavioral
measures like reaction times and error rates (Gibbons, 2006).
However, depending on the context and other experimental fac-
tors, the contributions of inhibitory and retrieval processes might
vary considerably (Kane et al., 1997; Tipper, 2001). Nevertheless,
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Gamboz et al. (2002) revealed in a meta-analysis that there is no
significant evidence for a paradigm to produce patterns of results
favoring either inhibition or retrieval theories, pointing to simul-
taneous presence of inhibition and retrieval. Such a conclusion
supports the general framework adopted in the GMNP, presented
in this paper.

2.4.6. Global threshold theory
Kabisch (2003) developed the imago-semantic action model
(ISAM) with the hypothesis of a threshold variable whose value
decides to which items the system will respond from perceptual
input. The threshold adapts according to the current average acti-
vation of representations of objects. Additionally, a forced decay
of activation is assumed in the model if residual activity is partly
overwritten by perceptual input of a new stimulus. The ISAM
can account for positive as well as NP as shown by computer
simulations (Schrobsdorff et al., 2007b). It differs from distractor
inhibition theory (Section 2.4.1) by postulating only facilitative
input and passive decay in the absence of input.

The ISAM gives a comprehensive account of action selection.
The presented objects are assumed to undergo pre-attentive pro-
cessing and a perception stage, resulting in an abstract cognitive
representation of the objects. Formally, the decision between target
and distractor is determined by the task instruction, which is made
accessible to the model via a semantic feedback loop. In contrast to
the early visual processes, the decision is guided by attention and a
conscious application of the task instruction. The semantic object
representations are assumed to be initially processed automatically
according to a relevance rating based on low-level features such as
motion or color. If more than one or no option for suprathreshold
actions exist, the threshold adapts until only one option remains.
The relative relevance of stimuli can be affected in a posterior rat-
ing. According to the dual-code hypothesis of Krause et al. (1997),
assigning modified relevance values to the object representation
happens in a semantic space. The activation corresponding to a
target is further amplified by a top-down feedback loop informed
of the task, such that even if low-level perceptual features result in a
higher input to the distractor, the target representation eventually
becomes significantly stronger than that of the distractor.

2.5. A GENERAL MODEL FOR NEGATIVE PRIMING
The existing theories of NP have pointed to several mechanisms
that are likely to play a role in producing NP. However, it is very
important to keep in mind that fundamental research in psychol-
ogy uses statistical properties of experimental data in order to
interpret human behavior. On the one hand, behavioral experi-
ments tend to produce largely varying results which reflect the
complexity of the involved systems and the sensitivity of the effect.
On the other hand, the interpretation of results is usually not
unambiguous. Both aspects provide a base for the arduous and
controversial discourse that is necessary for a clarification of the
psychological phenomenon.

2.5.1. Computational modeling of negative priming
Theories explaining NP can be categorized roughly into memory-
based and activation-based approaches. The first group assumes
the memorization of a trial and eventually a retrieval of the infor-
mation in the next trial. The latter group assumes NP to be caused

by interference of trial processing with persistent activation from
former trials. Within both groups a number of variants were pro-
duced, many of which were created to explain a specific pattern of
results. Comparability is nevertheless an issue that calls for a more
comprehensive approach.

It seems reasonable to focus on the interaction of underlying
processes rather than on ad hoc definition of data features. How-
ever, a substantial reduction of complexity is already achieved
by the careful design of experiments and all theoretical expla-
nations are based on the assumption that the complexity of
experimental data can be further reduced by identifying repeat-
ing patterns in the data. A crucial point in the specification of
mechanisms producing NP seems to be the exact time course of
processing in a trial where a previously ignored stimulus has to
be attended in comparison with the processing of an unprimed
stimulus.

In order to tackle the diverse paradigms and the incompara-
bility of the theories, we designed a computational framework for
perception-based action selection in the NP paradigm by means
of physiologically justified building blocks, each showing biolog-
ically plausible dynamics. The general architecture is a dynami-
cal implementation and generalization of the model studied in
Hommel (2004). The simple thresholding mechanism responsi-
ble for the creation of perception-action bindings in Hommel’s
model is generalized using dynamic and weighted bindings. The
obtained implementation inherits freedom of interpretation from
the underlying theory. Additionally, the implementation adds fur-
ther degrees of freedom by the introduction of a number of
technically implied parameters. The benefits of an implementa-
tion are, nevertheless, obvious. The computational model reduces
the risk of misinterpretation if the source code is available to
other research groups for an independent reproduction of the
results.

In order to reproduce observed results, most models have to
undergo a precise fitting of model parameters, which is often a
very subjective process. Therefore, great care has to be taken of the
distinction between results due to parameter fits and predictions
generated by the internal dynamics of the model without further
fitting. A different way to benefit from a computational model is
to analyze the structural result after fitting, which carries a formal-
ized version of the fitted data. We build a computational model
comprising most of the mechanisms suspected to play a role in
the neural processing in NP. The outcome is not only a meta-
model for NP, termed GMNP, but in itself a simplified model of
the brain as a framework for action selection based on percep-
tion. We addressed the tradeoff between biological realism and
understandability by implementing all mechanisms as separate
blocks keeping the internal dynamics simple by implementing the
exponential dynamics previously developed in Schrobsdorff et al.
(2007b).

2.5.2. Different paradigms
A common explanation for the divergent results of NP studies is
the difference of the conducted experiments. Each paradigm has
special aspects concerning trial processing beginning from percep-
tual pathways up to the response modalities. Differences in the task
are assumed to affect the involvement of memory and inhibitory
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modulations. Thus it is important to build a GMNP that is flex-
ible enough to evaluate a variety of paradigms, i.e., not only to
computationally reproduce interesting priming experiments, but
also to quantify the difference of paradigms. Such a formulation
contributes directly to the clarification of the debate about the
influences of experimental design on NP. Most importantly, the
model has to accept different stimuli and to produce distinct forms
of responses. In addition, a mechanism formalizing the actual task
for a paradigm is necessary.

A computational implementation (Houghton and Tipper,
1994) of an artificial neural network qualitatively explains NP
by an inhibitory rebound naturally emerging from the network
connections between excitatory and inhibitory cells homeostati-
cally balancing the state of a so-called property unit. Perception is
assumed to be split into the detection of single features which are
bound into object representations by hardwired connections. The
model has a very general connection scheme to be able to describe
selective attention in a variety of situations.

This connectionist implementation of distractor inhibition
theory is designed to deal with diverse perceptual inputs. Stim-
uli are decomposed into their features and recognized by spe-
cialized feature units. Then the object identity is realized by a
flexible feature binding mechanism (Treisman, 1996). The GMNP
implements a binding mechanism for feature representations by
means of persistent spiking activity (Schrobsdorff et al., 2007a)
that is similar to the abstraction of population activity in a neural
network leading to the exponential dynamics (Section 2.7.1). Dif-
ferent response modalities are included in two separate layers for
semantic representations and response actions. Between the two
layers, a central executive implements a mapping to account for
different tasks (e.g., comparison). The central executive also pro-
vides information about which feature instance codes for the target
and distractor, and which feature dimension is relevant for the
response (see Section 2.6.5). Before presenting a formal version of
the GMNP (Section 2.7) we will specify the model components
based on the discussion above.

2.6. MODEL COMPONENTS
The GMNP is formulated in a distributed way in which several spe-
cialized layers interact according to the flow of information in the
brain during perception-based action selection tasks. An overview
of the model structure is shown in Figure 3. Information is mostly
fed from top (perceptual input) to bottom (action execution),
except modulating layers like the binding layer, episodic mem-
ory, and the central executive. Perceptual input is fed into various
feature layers, each representing a certain aspect of the presented
stimuli. The object entity is represented in a feature binding layer
which forms a link between all features of one object. Depending
on the task, the model implements a mapping of relevant features
into a semantic layer,which is equipped with a decision mechanism
to sort out the semantic representation relevant for an accurate
response to the task. The winning information is passed to the
action layer, which chooses between different possible responses
on the basis of the available information. Aside from the above
pathway, is a memory layer which stores the network state from
former episodes and feeds this information back when helpful for
a quick response.

2.6.1. Feature layers and feature binding
In the visual pathway the information from the retina is decom-
posed into low-level features which are represented by different
subsets of neurons (Van Essen et al., 1992). Later, the low-level
representations are recombined to form higher-order features of
objects from visual input (Prinzmetal, 1995). Feature decompo-
sition entails the disadvantage that the distributed information
about an object needs to be bound together for the recognition of
objects as entities, a concept known as feature binding (Treisman,
1996). The neural implementation of such bindings is still under
discussion (Hommel, 2004) but synchronization is likely to play
a role (Singer, 1995). In the GMNP, we implement this mecha-
nism in terms of a feature binding model on the basis of localized
excitations in a spiking neural network (Schrobsdorff et al., 2007a).

In order to cover the paradigms featuring visual stimuli, we
equip the current implementation of the GMNP with feature lay-
ers to detect color, shape, location, and word(-shape). A visual
stimulus is recognized by particular activation in each of the cor-
responding feature layers and a binding between them. Binding
of the features of a certain object is realized as a set of features,
and a binding strength which specifies both the importance of the
object to working memory and also the effectiveness of activation
exchange between the features of the corresponding object. The
GMNP is able to keep a small number of such bindings active at a
time.

In the formation of binding, attention seems to form a crucial
role, as neuromodulators associated with attention are essential
for the formation but not for the maintenance of bindings (Botly
and De Rosa, 2007). In terms of the GMNP this means that objects
from currently perceived stimuli are bound, and the binding can
survive the vanishing of the perceptual input. Bindings are sta-
ble against stimulus changes up to the point where the limited
resources are in use, i.e., the maximum number of bindings is
reached.

2.6.2. Semantic representations
Some NP paradigms require stimulus evaluation on a seman-
tic level, e.g., the word-picture comparison task: the specialized
Stroop cards which are the origin of NP research (Dalrymple-
Alford and Budayr, 1966); or the naming of pictograms in the
experimental paradigm introduced in Section 2.3. Semantic rep-
resentations are closely related to language processing (Demb
et al., 1995), which is distributed over the entire cortex. Despite
the distributed nature of semantic processing (Bookheimer, 2002;
Devlin et al., 2002), the GMNP includes only one layer holding the
strengths of the semantic representation of a given stimulus (sim-
ilar to the description in Schrobsdorff et al., 2007b). The GMNP
also inherits the attention mechanism, i.e., an adaptive threshold
relying on activations in the semantic layer. The threshold controls
information propagation to the response layer.

2.6.3. Episodic memory
Episodic-retrieval theory, assumes that previously processed stim-
uli are stored in episodic memory. In most NP paradigms, the
memorized sequence of trials is assumed not to extend beyond the
directly preceding trial. The interference of memory with behav-
ior is assumed to depend only on the time elapsed and the stimuli
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encountered in the meantime. We prefer naming the memory
processes relevant in NP as episodic memory.

Physiologically, memory encoding is related to activity in the
left prefrontal cortex, whereas retrieval is more associated with
right prefrontal cortex (Tulving et al., 1994; Fletcher et al., 1997).
This is conjectured to be due to different control mechanisms on
the two tasks (Craik, 2002). We solve the stability-plasticity prob-
lem that memories have to be formed reliably and instantly but
have to persist for some time even in the presence of interfer-
ing input (Norman et al., 2005; Suzuki, 2006), by implementing a
limited number of memory slots that hold the entire state of the
system at a certain point in time. Such a memory is assigned a
strength which decays with time. Individual instances are the only
forms of experience that are represented neurologically, as (Logan,
1988) postulates.

2.6.4. Memory retrieval
Memory research distinguishes between involuntary retrieval and
voluntary recollection (Yonelinas, 2002). The so-called familiarity
signal is physiologically measurable, and becomes visible in the
EEG 300 ms after stimulus onset. Familiarity is assumed to trigger
further retrieval, as a spontaneous recognition can lead to recollec-
tion (Zimmer et al., 2006; Ecker et al., 2007). Context monitoring
means the evaluation of the appropriateness of a retrieved episode
(Egner and Hirsch, 2005). Topography, latency, and polarity of the
familiarity signal in EEG-data bears resemblance to the old/new
effect related to episodic memory retrieval (Rugg and Nagy, 1989).

The two approaches, episodic retrieval and temporal dis-
crimination theory, predict differing mechanisms controlling the
strength of memory retrieval. The first theory assumes that invol-
untary retrieval is positively correlated with perceptual similarity
of the two trials. The latter postulates another perception-based
classification of the encountered episode as old or new. When sig-
nificant evidence for an old stimulus display is accumulated, full
retrieval is triggered, while simultaneously suppressing the direct
response generation.

The GMNP performs the computation of a familiarity signal by
comparing the current percept with the memorized one. Depend-
ing on model parameters emphasizing either episodic-retrieval
theory or temporal discrimination, this familiarity can influence
further processing in two ways. First, the strength of retrieval
can be determined directly, i.e., familiar stimuli cause stronger
retrieval-related activity, while unfamiliar stimuli still produce a
positive activity. Secondly, the system holds a template time course
of a familiarity signal separating the time courses of the familiarity
signal while encountering a perfect match of stimulus displays and
a pair of subsequent displays that vary in a single feature. Greater
familiarity indicates an identical stimulus configuration, while
lower familiarity is considered as being produced by a new display.
The uncertainty of the signal early in the trial is implemented by
the GMNP by a shrinking margin around a template familiarity
curve for a nearly identical stimulus, in which the evidence of the
display being old or new is not yet significant.

2.6.5. Central executive
The GMNP aims at a compromise of evidence-based complexity
and computational simplicity. Instead of providing mechanisms

for the adaptation to different paradigms, we rather map the
paradigms to appropriate parameter configurations. The corre-
sponding component of the GMNP is called the central executive
(Cowan, 1988) and is understood as an emergent property of inter-
acting subsystems (Barnard, 1985; Teasdale and Barnard, 1993;
Bressler and Kelso, 2001). Even if there is no consensus on the
necessity of a central executive in memory functions (Baddeley,
1998; Johnson, 2007), we will use the term in order to describe the
sudden change in system behavior if it is presented a new task. In
this way the GMNP receives information about the task demands,
i.e., about a specific paradigm, including the top-down input mod-
ulating target or distractor activation and mappings describing the
determination of the input to the action layer.

2.6.6. Representing theories of negative priming
The comparison of the different theoretical approaches is one of
the major reasons for the design of the GMNP. In order to be able
to directly compare the respective impact of each mechanism, the
main components of each theory need to be precisely formulated
within a common language. In the following, we outline how each
of the theoretical approaches is realized in the GMNP.

Distractor inhibition theory is expressed in a straightforward
way. The distractor object, i.e., the feature that specifies the distrac-
tor, is subject to inhibition. Simultaneously, dynamic activations
below baseline are included to model the inhibitory rebound (this
constitutes a deviation from the model developed in Schrobsdorff
et al., 2007b). Correspondingly, inhibition in the semantic layer is
indirectly achieved via the binding between feature and semantic
layers.

Episodic-retrieval theory requires explicit modeling of memory
and retrieval processes. Therefore, we included short-term mem-
ory by adding a dedicated layer that is able to store a snapshot
of the state of the dynamic system and that is subject to decay
over time. This memory layer is also capable of computing the
strength of retrieval determined by the similarity of the current
percept and the memory content. Retrieval is modeled by par-
tially restoring former system variables. Memory is updated at the
most prominent point in a trial, i.e., when the decision takes place.
Response retrieval manifests itself in the GMNP as a simplifica-
tion of episodic retrieval. Only the system variables of the action
layer are restored during retrieval. The retrieval strength is still
determined by the similarity of current and stored percept.

Temporal discrimination theory acts on the same episodic
memory layer as episodic retrieval. The probability that a stimulus
display was just presented can be computed by looking at the simi-
larity between current and memorized percept as described above.
This value is highest when both configurations match exactly. The
similarity slowly rises from zero to its final value. The current
similarity is compared to a prototype similarity signal in order to
determine whether the current percept is old or new. In order to
be robust against initial fluctuations in the similarity stemming
from residual activation of the last trial, the computed difference
has to surpass a threshold that is large at trial onset but shrinks
with time. If a display is rather similar to the memorized one,
the similarity value will stay within the uncertainty interval the
longest, preventing an old–new-classification. When the classifi-
cation is accomplished, temporal discrimination theory assumes
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the information flow to be affected: in the presence of new stim-
uli, retrieval is blocked, and direct computation is facilitated. For
old stimuli the direct computation is dropped and retrieval will
be performed. This is included in the GMNP in terms of a mod-
ulation of the transmission strengths between the corresponding
layers: from semantic to action for direct computation and from
episodic memory to action layer for retrieval.

The spirit of the dual mechanism hypothesis is inherent to the
GMNP, because it accounts for all theories at once. By tuning the
model parameters, the behavior predicted by each theory can be
generated. According to the above discussion it is evident that the
mechanisms postulated by inhibition and threshold theory are
located in the more sensory part of the system whereas retrieval,
even though affecting the entire system, only becomes apparent in
later parts, i.e., in the semantic and action layer. As the two mecha-
nisms are implemented at distinct parts of the GMNP, coexistence
of the mechanisms is achieved trivially.

2.7. MODEL DYNAMICS
After the examination of the processes involved in an NP task in the
previous section, we will now mathematically describe the model.
The level of description results from a compromise between the
explicitness of the formulas and the complexity of the full system.
The basic architecture of the model is simple. Perceptual input
enters the system in the feature layers, which passes information
to the semantic and action layer. Finally, we describe the behavior
of the memory variables.

Activations of feature and object representations follow an
exponential fixed-point dynamics (Schrobsdorff et al., 2007b), i.e.,
the difference of a state variable and a given fixed-point determines
the change of that variable while the rate of change is governed
by a time constant. This dynamics can be derived from firing rate
considerations of a network of spiking neurons, as we show in the
following section.

The model has a number of meta-parameters that act as weights
or “setscrews” (see Section 3.1). In this way the model represents
the particular assumptions in each of the theories in Section 2.4.
We will not consider a graded likelihood of the assumptions and
therefore choose the weights to be either 1 or 0. In this way the
GMNP yields quantitative comparisons between the theoretical
accounts while continuous weights would result in new theories.

2.7.1. Determining a simple intrinsic dynamics
For the GMNP, we will subsume the mental representation of each
cognitive object, e.g., a perceived feature or a semantic category,
under a single variable which corresponds neurophysiologically to
the activation level in an assembly of neurons. The firing behavior
of this assembly is driven by external excitatory input which, for
simplicity, is assumed to be constant while the sensory object is
present.

We consider a cluster of all-to-all coupled integrate and fire
neurons. We average the firing rate of the network over many
input presentations and analyze the shape of rise and decay of the
overall firing rate. In each time step, the membrane potential hi of
neuron i= 1, . . ., N receives additive external input Ii(t ) and exci-
tation via recurrent connections with synaptic strength wi,j every

time neuron j spikes, i.e., n
j
sp, see equation (1).

hi,n+1 = hi,n + Ii,n +

N∑
j=1

wi,jδ
(

n − n
j
sp

)
(1)

where δ(x)= 0 for x 6= 0 and δ(0)= 1. For continuous-time sys-
tems the time step becomes infinitesimally small and changes are
expressed by a derivative dhi/dt. The dynamics can be described
by a differential equation (2).

dhi

dt
= Ii (t )+

N∑
j=1

wi,jδ
(

t − t
j
sp

)
(2)

If hi reaches the firing threshold θ = 1, it delivers a spike
to its postsynaptic neurons and is reset by the threshold value

h
post-spike
i = h

pre-spike
i − θ . The external input Ii(t ) is drawn inde-

pendently in each time step from a Gaussian distribution with a
mean chosen such that a single neuron receives on average input
equal to the difference of threshold and resting potential θ − h0.
Without the recurrent coupling, a neuron would thus on average
fire once during stimulus presentation.

We simulated a network of N = 1000 neurons. A stimulus was
shown for 1s, and the inter-stimulus interval was 1s (we are using
50 time steps per second). The total output of a neuron, i.e., the
sum of all outgoing weights, was fixed toα =

∑N
i=1 wi,j = 0.87 ∀j .

The stochasticity of the input and the sensitivity of the network for
fluctuations result in rather random single trial firing. However,
on average a coherent behavior emerges. For the results shown in
Figure 4, we averaged 10,000 trials to obtain a good estimation of
the firing rate over time.

In order to derive a computationally simple dynamics for the
representation variables of the GMNP, we are interested in the
shape of the time course of rise and decay of the firing rate. A
good candidate to describe the observed dynamics seems to be a
set of coupled non-linear Langevin equations (Risken, 1996) of
the basic form equation (3).

dx

dt
= h (x , t )+ g (x , t ) 0 (t ) (3)

The state of the system is x, t is time, h is a function that
describes drift forces that depend on the actual state and time and
0(t ) is a Gaussian diffusion term with zero mean 〈0(t )〉t= 0 and
no correlation 〈0(t )0(t ′)〉t= 2δ(t − t ′).

Since theories of NP do not make any statements about noise
influences, our strategy of aiming at a minimal model also sug-
gests that we exclude noise effects in the model. The result is an
exponential fixed-point dynamics with time constant τ .

xn+1 = xn + τ · (I − xn) (4)

dx

dt
= τ · (I − x) (5)

In Figure 4 we show the averaged firing rate f and plot the rel-
ative change (fn+1− fn)/fn between two time steps in reference to
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FIGURE 4 | Normalized average firing rate of the network as a response
to input (applied from time step 0 to 50 indicated by the gray shaded
region) and no input (blue). The firing rate is determined by binning the
spikes in each time step. Normalization is performed by division by the
average maximum firing rate at time 50. The fraction of two subsequent firing

rates, which corresponds to the time constant in an exponential fixed-point
dynamics, is shown in red. Black lines show the means of the respective red
lines. The deviation of the blue curve from a purely exponential dynamics is
apparent, but quite small, justifying the simplified dynamics as described in
the text.

the actual fixed-point, i.e., maximum firing rate 1 in case of input
or 0 in the absence of input. The observed time constants are suffi-
ciently constant to justify the simplified dynamics of equation (4)
we used for the implementation of the GMNP.

The small periodicity of the rise time constant, even after aver-
aging over a large number of runs, can be explained by the model
structure. Figure 5 shows the distribution of membrane poten-
tials averaged over 10,000 trials as shown in Figure 4. During
input, all neurons are shifted in their membrane potential such that
small potentials become improbable, to the benefit of superthresh-

old potentials. Most potential bins have a relative frequency of
0.0098 and 0.0115, which is near a uniform distribution. How-
ever, there is some structure that survives the averaging process.
In the beginning, all units receive only external input. They are
shifted upwards, leaving a gap which propagates through the
entire range of potentials. Neurons that spiked are not reset to
zero but lowered in their normalized potential by 1. Since they
additionally receive recurrent as well as external input, virtually

no neurons have membrane potentials between 0 and 0.15. As
recurrent input tends toward a fixed-point, there is a trend of
jumping into the band between 0.18 and 0.28 after spiking. This
band is now shifted upwards by the same amount of activation.
In every time step, a neuron jumps from one band to the next
one. After the offset of input only decaying recurrent excitation is
present.

2.7.2. Feature variables
In the GMNP, all objects from input space are represented by tuples
of feature activations. The number of relevant features can vary
according to the paradigm. Information about a perceived object
� is decomposed into its constituent features and then passed
to the appropriate layers of the GMNP. Perceptual features drive
feature detection variables of the system, whereas the informa-
tion about the combination of all features to one object entity is
governed by the binding layer. This defines the dynamic synaptic
interaction between the feature variables of the object.

Feature variables f
j

i represent whether a feature i, e.g., color,
shape, or word shape, has the value j, e.g., green, etc. True infor-

mation enters the system by the corresponding external input F
j
i .

The dynamics of a feature variable is determined by several dri-
ving forces that act simultaneously, see equation (6). The first one

is an exponential drift toward F
j
i . The time constant τ f of the drift

equals either ρf if the feature variable is lower than the input and
rises by an active drive, or δf if the input variable is lower than

the current activation and the feature variable passively decays. F
j
i

is defined by constant unit input F̂ in the presence of the respec-
tive feature in the display configuration. If the particular feature
instance defines the object to be target or distractor, an additional
input, excitatory or inhibitory, respectively, is applied to the cor-

responding feature variable. In case of feature perception, F
j
i is

set to a generic input strength F̂ plus the current value of the
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FIGURE 5 | Distribution of membrane potentials averaged over 10,000
trials. Note that the potentials are mostly uniformly distributed, as the color
map only covers values from 0.0098 to 0.0115. Nevertheless, the fine grained
plot reveals the processes generating the firing rates analyzed in Figure 4:
initially all neurons are pushed toward higher membrane potential by the

input, leaving a relative gap that is propagated upwards. Then, assemblies of
neurons that are characterized by increased membrane potentials form when
the recurrent input builds up. Finally, the system relaxes and the less regular
spikes rebuild a more equally distributed picture until no further spikes are
generated.

variable accounting for the reception of input by only a subset
of neurons in one assembly, similar to residual activations intro-
duced in Schrobsdorff et al. (2007b). The residual overshoot of
the input decays to the maximum input in the same way that
would feature activation. In the case of feature absence, the input
is set to the activation baseline value of F̌ , which is not necessarily
zero.

F
j
i =


F̂ + f

j
i at display onset, if instance j of feature i is present

δf

(
F̂ − F

j
i

)
during stimulus perception, as long as F

j
i > F̂

F̌ at display offset

(6)

Both target selection mechanisms, target amplification and

distractor inhibition add to the corresponding feature input F
j
i

resulting in the overall input F
j
i , see equation (7). Target amplifi-

cation A is linearly increasing until a response is given and set to
zero afterward, see equation (8). Distractor inhibition I is said to
persist for some time, as it has to be retrenched after a response
was given. Therefore, inhibition I increases linearly with slope k
during perception and fades linearly after the decision was made,
see equation (9).

F
j
i =


F

j
i + A if

{
i, j
}

defines the target

F
j
i + I if

{
i, j
}

defines the distractor

F
j
i otherwise

(7)

dA

dt
= α during stimulus presentation (8)

A = 0 no stimulus present

dI

dt
=

{
k during external input
−k after the offset of input until I = 0

(9)

The second term governing the dynamics of features is the
loss of feature specificity in the absence of input defined by a
broadening of activation with time constant β, within one fea-

ture toward the feature mean 〈f
j

i 〉i , without lowering the total
activation of the respective feature layer. Additionally, feature acti-
vation is passed via existing bindings to the other feature instances
belonging to the same object. If, e.g., the feature tuple {color,
green}{shape, ball}{location, bottom} defining a green ball shown
at the bottom of the visual scene is held by the binding variable
b{color, green}{shape, ball}{location, bottom}, its value defines the amount

of activation interchange between the variables f
green

color , f ball
shape, and

f bottom
location such that they all approach the object mean. There exists

only one feature variable for green. Therefore multiple green
objects experience a natural connection, as they share this variable.
The last term that drives feature variables is the back projection
of memorized episodes into the feature layer. Weighted by the
matching value rk of the actual percept and the kth last memo-
rized episode and the strength ek of the respective memory trace,
the value of the feature variable at the respective response moment

e
f

j
i

k is fed back to the variable.

In total, the change of feature activation f
j

i is the sum of four
exponential drifts, given in equation (10). First, an adaptation

toward input strength F
j
i with time constant τ f. Second, an adap-

tation toward the mean of all activations in the particular feature

layer 〈f
j

i 〉i with time constant β. Third, an adaptation toward the
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mean of the other features of each object � the current feature
belongs to with time constant b�, i.e., the current binding strength
of that object. And finally, fourth, an adaptation toward the mem-

orized value of the current variable e
f

j
i

k with time constant rkek,
i.e., the product of the retrieval strength, the match between the
percept and the kth memorized episode, and the current memory
strength.

df
j

i

dt
= τf

(
F

j
i − f

j
i

)
+ β

(
〈f

j
i 〉i − f

j
i

)
+

∑
� ∈f

j
i

b�

(
〈f m

l 〉f m
l ∈�\f

j
i
−f

j
i

)
+

∑
k

rk ek

(
e

f
j

i
k −f

j
i

)
(10)

where

τf =

{
ρf if F

j
i > f

j
i

δf if F
j
i < f

j
i

2.7.3. Feature binding mechanism
The bindings are dynamic variables themselves that encode feature
combinations within an object. Because the underlying structure
(Schrobsdorff et al., 2007a) is a flexible but resource-constrained
layer, the number of such binding variables is limited. When an
object appears in stimulus space the feedback activation from the
binding layer indicates whether the current object is already rep-
resented. This would correspond to an immediate recognition of
the identity of the object. If the object is not yet represented, the
weakest binding variable that is not subject to current input is
overwritten, deleting the respective object from working memory.
If an object is shown, the respective binding variable is driven with

time constant ρb toward a maximum strength b̂. If the percept of
an object is gone, the respective binding variable passively decays
with time constant δb to zero, see equation (11).

db{ik ,jk}k

dt
=


ρb

(
b̂ − b{ik ,jk}k

)
if an object with the respective

feature combination is perceived
−δbb{ik ,jk}k if the percept is switched off

(11)

If the binding slot is overwritten,we have b{ik, jk}k= 0, i.e.,object
{ik, jk}k is not shown and is held by the weakest binding when a
new display is uncovered containing a non-bound object {il, jl}l.

2.7.4. Short-term modulation of connectivity
The GMNP directs the information flow such that it achieves a
decision whether a response will be computed anew from the
perceptual input or will be retrieved from episodic memory. For
this purpose, synaptic connections between the layers are either
blocked or facilitated, depending on the old-new signal ok that is
generated by comparing the kth last episode to the current percept.
A blocking variable σ block approaches ok with time constant τ block,
see equation (13). The limiting value is set to 1, 1/2, or 0 depending
on whether the signal is old, unclassified or new, respectively. This
is applied if the model behavior is tuned to represent the temporal

discrimination theory. The synaptic strength is scaled according to
σ block between a minimum synaptic strength σ̌f→s and an entirely
open channel of σ f→s= 1, see equation (12).

σf→s =
(
1− σ̌ f→s

)
+ σ̌ f→sσblock (12)

with

dσblock

dt
= τblock (ok − σblock) (13)

2.7.5. Semantic variables
The role of the variables in the semantic layer is assigned by
the central executive, depending on task demands. Therefore, a
fixed description of the dynamics of semantic variables is not
possible. We assume that after a hypothetical training phase that
introduces a new task, the central executive has produced a rea-
sonable gating function S(f ) of feature activations to the semantic
layer. In the case of a naming paradigm this mapping can be
as simple as the identity map from object shapes to semantic
object category. The function S(f ) determines the fixed-point,
which the semantic activation approaches at a rate ρs or δs, for
an actively driven rise or a passive decay, respectively, see equa-
tion (15). Again the variables are subject to retrieval of former
episodes analogous to feature variables. Additionally, the infor-
mation flow is modulated by the connection factor σ f→s, see
equation (14).

ds j

dt
= σf→sτs

(
Sj (f )− s j

)
+

∑
k

rk ek

(
es j

k − s j
)

(14)

where

τs =

{
ρs if Sj > s j

δs if Sj < s j (15)

Actions of the GMNP are based on the most prominent acti-
vation of the semantic layer. We chose an adaptive-threshold
mechanism to single out the highest activation. Only activations
surpassing the threshold sθ are eligible to be passed on to the action
layer.

2.7.6. The adaptive-threshold in the semantic layer
As a decision mechanism for comparison tasks, the semantic layer
is equipped with an adaptive-threshold sθ . The threshold variable
itself obeys an exponential fixed-point dynamics on the basis of
a scaled average of activation in the semantic layer. This is done
similarly to the threshold behavior in Schrobsdorff et al. (2007b).
The scaling of the average νsθ is dependent on the paradigm and
should be set such that the fixed-point of the threshold is between
the highest two semantic activations. As a consequence, the base-
line activation F̌ which is considered a virtual zero in the process
has to be accounted for by only considering the difference to F̌ ,
see equation (16).

1

τsθ

dsθ

dt
= νsθ

∑
j

(
s j
− F̌

)
−

(
sθ − F̌

)
(16)

www.frontiersin.org November 2012 | Volume 3 | Article 491 | 13

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Schrobsdorff et al. An integrative model for negative priming

2.7.7. Action representations
The action layer behaves similarly as the semantic layer, see equa-
tion (17). Action activation variables are driven toward an external
input A(s, f ) that is computed from semantic and feature repre-
sentations according to the task, i.e., given by a mapping function
from the central executive. Depending on whether the adapta-
tion is an actively driven rise or a passive decay, two respective
time constants ρa, δa apply. An aspect that is easily overseen is
the option not to respond, for example in cases where no target
object is shown. This is represented by the formal action a0. Aj(s,
f,σ f,s→a) is designed such that whenever there is no target stimulus
shown, e.g., between two trials, A0(s, f, σ f,s→a) equals 1. In case of
stimuli triggering a response A0(s, f, σ f,s→a) equals 0. The variable
σ f,s→a is the current synaptic strength between both feature and
semantic layer toward the action layer.

daj

dt
= τa

(
Aj (s, f , σf ,s→a

)
− aj

)
+ ra

∑
k

rk ek

(
eaj

k − aj
)

(17)

where

τa =

{
ρa if Aj

(
s, f
)
> aj

δa if Aj
(
s, f
)
< aj

The relative retrieval of action representations ra is modulated
contrary to the synaptic transmission to the action layer σ f,s→a

reflecting the facilitation of action retrieval by an old-c an old
episode which can be answered by retrieving a former response.
Also, the modulation of information flow can decrease the retrieval
of a response if a new episode is classified, see equation (18).

ra =
(
1+max

(
σ̌ f ,s→a , σ̌ f→s

))
−2max

(
σ̌ f ,s→a , σ̌ f→s

)
σblock

(18)

where

σf ,s→a =
(
1− σ̌f ,s→a

)
+ σ̌f ,s→aσblock

In order to model the decision making process in the action
layer where a single action has to be chosen for execution, we intro-
duce a threshold level analogous to the semantic layer described in
Section 2.7.6, see equation (19). As input to the action layer ranges
from 0 to 1, we do not have to care about baseline activation here.

1

τaθ

daθ

dt
= νaθ

∑
j

aj
− aθ (19)

Suprathreshold activations aj> aθ define the space of possi-
ble actions the system can take. If there is only one action that is
suprathreshold, the corresponding action is executed. In case of
a0> aθ , the system does not do anything.

2.7.8. Memory processes
Memory processes are modeled in a simple way. At points in time
that mark the closure of an episode, in the present paradigm when
an action has been performed, the entire state of the model is

written down as one episode. The stored values are used to com-
pute similarities between past episodes and a current percept, the
retrieval strength rk. This similarity signal triggers an automatic
retrieval of the former episodes. The greater the similarity, the
stronger the memorized values drive the respective variables. Addi-
tionally, to account for memory decay with time, the presence of
memorized episodes is set to a certain initial value ê when the
episode is written down, and then freely decays to zero with time
constant δe, see equation (20).

ek = ê if episode k is memorized
dek
dt = −δe ek otherwise

(20)

If a new episode is memorized, the kth last episode becomes
the (k + 1)th last one, see equation (21).

ev
k+1 = ev

k

ev
1 = v ∈ { f

j
i , b{ jk ,ik } k

, s j , aj }

}
when an action is taken (21)

To account for the classification, postulated, e.g., in temporal
discrimination theory, we need a reliable old-new signal which is
rather hard to get from only internal values, i.e., information that
is accessible by the system itself. The current percept can only be
assessed through the extracted feature. The intention is to have
a value that is higher for a higher degree of similarity between
the current percept and a memorized one. In other words, the
difference of a current feature or binding value and the corre-

sponding memory trace should be minimal, e.g. (f
j

i − e
f

j
i

k ). This
is best achieved by the inverse of the sum of all differences. Still,
there is a normalization problem, due to the varying stimulus dis-
plays. As the system is trained for the present task, it has some
knowledge about the expected number of objects n in the display.
However, the current objects can only be guessed by looking at the
n strongest bindings. Therefore, we apply a normalization by the
significance of a percept given by the sum over all currently per-
ceived feature variables, divided by the number of features relevant
to the task, see equation (22).

rk =

∑
i,j

f
j

i

#f

∑
{il ,jl } l

(∣∣∣∣f j
i − e

f
j

i
k

∣∣∣∣+ 1

b̂

∣∣∣∣b{il ,jl } l
− e

b{il ,jl } l
k

∣∣∣∣)
−1

(22)

where {ij, jl}l denotes a subjective percept, i.e., one of the objects
being held by the n strongest bindings, n being the number of
objects in one display.

2.7.9. Connectivity modulation
Information gating is modeled by the dynamic opening or closing
of synaptic transmissions between the different layers as well as the
retrieval channel to the action layer. This modulation is governed
by an old-new signal ok comparing the kth last episode to the cur-
rent percept. The comparison process is modeled by locating the
kth retrieval signal rk below, in between, or above a deviation u
from a prototype time course for an intermediate resemblance of

displays given by an exponential adaptation from an initial value ď

with time constant τ d toward a retrieval level ď dividing old from

Frontiers in Psychology | Cognitive Science November 2012 | Volume 3 | Article 491 | 14

http://www.frontiersin.org/Cognitive_Science
http://www.frontiersin.org/Cognitive_Science/archive


Schrobsdorff et al. An integrative model for negative priming

new displays, see equation (23). In order to account for a greater
uncertainty after the beginning of a trial, u shrinks exponentially
with time constant τ u, see equation (24).

ok =


0 if rk > d + u
1 if rk < d − u
1
2 otherwise

(23)

du

dt
= −τuu (24)

where d = ď and u = ǔ at display onset, d = 0 and u= 0 at dis-
play offset, while the stimulus is present the following dynamics is
observed, see equation (25).

dd

dt
= τd

(
d̂ − d

)
(25)

3. RESULTS
Even though the most important aspect of the GMNP is the pos-
sibility to quantitatively compare different priming theories, the
current contribution is not intended to establish the conditions
and perform a thorough comparison, but the main result we are
presenting is a framework which is general enough to quantify
all theories of NP in a common language. Therefore, the current
section is meant as a proof of concept to demonstrate the way the
GMNP works.

3.1. DEFINING MODEL PARAMETERS
In order to analyze the consequences of a theory, we define weights
4 that switch on or off the effect of particular assumptions in a the-
ory. These weights are meta-parameters insofar as they introduce
constraints on the low-level parameters of the model that reflect
the impact of a specific theoretical mechanism at a behavioral level.
We label these variables according to the corresponding theory, see
Table 3:4er, episodic retrieval;4rr, response retrieval;4ib, inhibi-
tion vs. boost;4gt, global threshold;4fsb, feature-semantic block;
4sab, semantic action block;4td, temporal discrimination.

Retrieval is controlled by adjusting the initial strength of a
memory trace as it linearly determines the impact of retrieval. The

Table 3 | Weights controlling the strength of the implementation of a

theoretical account into the GMNP.

Model behavior

for 4 = 0

Model behavior

for 4 = 1

4er No retrieval at all Maximum retrieval

4rr Only retrieval of response Total retrieval

4ib Distractor inhibition Target boost

4gt No activation interference Forced decay and activation

broadening

4fsb Full propagation Retrieval blocks features semantic

synapses

4sab Full propagation Retrieval blocks semantic action

synapses

4td Classical episodic retrieval Old/new evaluation

Their range is continuously between 0 and 1.

modulation factor4er scales the maximum memory strength ê. If
4er is 0, no memory is written down, and therefore retrieval has
no effect on the system behavior. If 4er= 1, memories are stored
initially with the maximum strength ê and retrieval provides the
input to the system described in Section 2.7.8.

The question whether the entire system state is retrieved or only
the prime response, separates episodic retrieval from response-
retrieval theory. These two assumptions are mutually exclusive.
Therefore the weight 4rr gradually shuts down the retrieval of
activations in layers other than the action layer. If 4rr= 1 the
entire episode is retrieved, whereas, if 4rr= 0, only the action
layer receives memory input.

Distractor inhibition theory and the global threshold theory
conflict with each other by either assuming inhibition of the dis-
tractor or a target boost, respectively. The weight 4ib modulates
input to the feature instance that identifies target and distractor.
If 4ib= 0, only the distractor receives inhibiting input, i.e., α= 0.
If 4ib= 1 only the target feature receives excitation, i.e., k = 0.
4ib additionally adjusts the baseline activation level from 1/2 in
the distractor inhibition case to 0 with target boost, where no
sub-baseline activation is assumed.

At this point, a major gap in the retrieval accounts becomes
obvious. They do not make any statements on what the direct
computation of a trial may look like. The GMNP thus needs some
decision making mechanism. In order to have the least effect of the
decision making mechanism on priming effects in the case where
we consider retrieval based mechanisms, we chose to have a pure
target boost in the feature layers. Forced decay as well as activation
broadening as inherent features of the global threshold theory will
thus be controlled independently.4gt Linearly controls the broad-
ening of activation β and the strength of the forced decay if two
concepts compete for a feature instance.

Both temporal discrimination and episodic-retrieval theory
postulate a decision of the system as to whether the current
response should be generated directly from the input, or retrieved
from memory. The corresponding modulation in the general
model is done via the weight 4fsb. If 4fsb= 0, there is a com-
petition between direct computation and retrieval in the system.
If 4fsb= 1, the strength of retrieval, i.e., the similarity signal,
triggers a shutdown of the synapses between features and seman-
tic layer, modeling a decision of the system to only retrieve
the response and drop the direct determination of the right
answer.

In an excursion into episodic retrieval (Tipper and Cranston,
1985) argued in favor of blocking of the information flow in the
episodic retrieval context right before the action selection state.
This manifests in the general model as a blocking similar to 4fsb

described in the last paragraph. However, the block acts between
the semantic and the action layer. The corresponding weight is
4sab.

A final weight is given by 4td which controls the evaluation
of a stimulus being old or new before retrieval is initiated. In
the case 4td= 0, the similarity signal determines the retrieval
strength from the beginning of a trial, whereas if 4td= 1 there
is no retrieval unless the similarity signal surmounts the uncer-
tainty region around the prototype similarity signal, as explained
in Section 2.7.8.
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Table 4 summarizes the values of the weights if the impact of a
single theoretical account is to be evaluated. Note that some mech-
anisms are inherent to the GMNP such as activation propagation

Table 4 | Weight settings required by various theories.

4er 4rr 4ib 4gt 4fsb 4sab 4td

Distractor inhibition 0 0 0 0 0 0 0

Global threshold 0 0 1 1 0 0 0

Episodic retrieval 1 1 1 0 0 0 0

Response retrieval 1 0 1 0 0 0 0

Temporal discrimination 1 1 1 0 1 1 1

via the feature bindings. Therefore, these settings do not give a
minimal computational model of the respective theory. Rather, we
keep the unspecified mechanisms constant across all simulations.

3.2. VOICEKEY PARADIGM
The following section will show an example of the GMNP in a
voicekey paradigm, see Section 2.2. To show the internal dynam-
ics of the GMNP, all relevant variables are plotted over nine trials
including all five conditions in Figure 6. The weights are tuned
to episodic retrieval, i.e., there are no activation interferences in
the feature layers. In response to the perceptual input, the target
color green is boosted and activation exchanged via the bindings.
In addition, activation is retrieved from memory.

Color L ayer

20 22 24 26 28 30

0

0.5

1

1.5
TT DT CO TD DD

ac
ti
v
at
io
n

time [s]

Shape Layer

20 22 24 26 28 30

0

0.5

1

1.5
TT DT CO TD DD

ac
ti
v
at
io
n

time [s]

Feature B inding Layer

20 22 24 26 28 30

0

0.01

0.02

0.03

0.04

0.05

ac
ti
v
at
io
n

time [s]

Semantic L ayer

20 22 24 26 28 30

0

0.2

0.4

0.6

0.8

1

1.2

1.4
TT DT CO TD DD

ac
ti
v
at
io
n

time [s]

Episodic Memory Layer

20 22 24 26 28 30

0

0.5

1

1.5

2

10
3

TT DT CO TD DD

ac
ti
v
at
io
n

time [s]

Action Decision Layer

20 22 24 26 28 30

0

0.2

0.4

0.6

0.8

1 TT DT CO TD DD

ac
ti
v
at
io
n

time [s]

FIGURE 6 | Activation traces over time in the different layers of the
GMNP in the voicekey paradigm described in Section 2.2. Different colors
correspond to different variables in the respective layer. A few traces are to be
highlighted: solid blue lines in both the semantic and the action layer
correspond to the respective threshold variable, black in the episodic memory

layer denotes the strength of the memory trace, yellow is the uncertainty
region for the old-new signal which is drawn in orange. The model is in
classical episodic-retrieval mode, see Section 3.1. Targets are boosted and the
entire episode retrieved. Retrieval is apparent in the plots by the re-rise of
formerly active variables.
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The presentation of a red and a green pictogram drives the two
color and the two shape representations in the respective layers.
The central executive delivers additional input to green which aug-
ments the activity of the target object’s shape via the bindings. The
semantic representations are fed by a one-to-one mapping from
the shape layer, i.e., S( f ) = I. The plot of the episodic memory
layer shows the memory strength in black which decays with time
from a fixed value at memory initialization which takes place at the
point a response is given. In orange, the plot shows the similarity
signal which linearly modulates the retrieval of a former trial. The
signal is highest for the TT trial, intermediate for DT, TD, and DD
in ascending order. In the action layer, the black dotted trace is
for the no-action response, see Section 2.7.7. The selection of the
target in the semantic layer, i.e., the object surpassing the semantic
threshold, is fed forward to the action layer.

The present simulation was run with the following values
of the relevant parameters: 4er= 1, 4rr= 1, 4ib= 1, 4gt= 0,

4fsb= 0, 4sab= 0, 4td= 0, α= 0.0005, F̌ = 1, t recognition= 50,

t afterimage= 30, t motor= 80,ρf= 0.01, δf= 0.003, b̂ = 0.05, #b= 7,
ρb= 0.008, δb= 0.005, τsθ = 0.002, νsθ = 0.51, ρa= 0.004,
δa= 0.002, τaθ = 0.002, νaθ = 0.5, ê = 0.002, δe= 0.003.

Negative priming in DT trials and positive priming in TT trials
are with 24 and 53 ms at rather realistic scales (see Table 5). The
present example together with three other realizations is part of
the GMNP-software bundle.

3.3. ANALYSIS OF THE WORD-PICTURE PARADIGM
As a showcase example of how to exploit the capabilities of the
GMNP to gain more insight in the interaction of the different
processes that are involved in NP, we now present a detailed analy-
sis of the GMNP when faced with a word-picture comparison task
as it is described in Ihrke et al. (2011). This particular paradigm has
a second factor besides priming condition, which is response repe-
tition. Therefore, the labels of the experimental conditions receive
an additional suffix, i.e., s for response switch and r for response
repetition. By a parallel implementation, we are able to perform
a gradient descent on the parameter set, while keeping the theory
semaphores adjusted to each of the settings described in Table 4.
Thereby, we obtain information about which of the theoretical
assumptions implemented in the GMNP is able to reproduce the
experimental results to which degree. Although we optimized the
model for the DT and TT conditions, we provide the results for the
other conditions that were present in the corresponding experi-
ment as well, which can be regarded as parameter-free predictions.

Table 5 | Mean reaction time and effect strength for the priming

conditions CO, DT,TT produced by the GMNP in episodic-retrieval

mode as described in Section 3.2.

〈RT〉 [ms] (SD) Effect [ms]

CO 976 (7) –

DT 1000 (10) −24

TT 923 (22) 53

TD 1134 (11) −73

DD 1049 (9) −158

These predictions are there to provide the reader with an idea of
how the model can inform further experimental work.

After convergence, the root mean squared error between
experimental and simulated effects and control reaction time
of the GMNP instance set to distractor inhibition behav-
ior is the lowest (see Table 6). The obtained parameters
in that case are: 4er=4rr=4ib=4gt=4fsb=4sab=4td= 0,

iota= 0.000001, β = 0.00155, φ= 0.00011, α= 0.0005, F̌ = 1,
t recognition= 50, t afterimage= 30, t motor= 80,ρf= 0.009,δf= 0.003,

b̂ = 0.05, #b= 7, ρb= 0.0096, δb= 0.005, τsθ = 0.002, νsθ =

0.4131, σ shape→s = 0.1, σword→s = 0.12, σ s→a= 1, ρa= 0.0036,
δa= 0.002, τaθ = 0.002, νaθ = 0.6, ê = 0.002, δe= 0.003.

The corresponding reaction times, given in Table 7, show a very
good reproduction. The interaction between response relation and
priming condition gave rise to response-retrieval theory, as dis-
tractor inhibition theory per se is not able to explain it, although

Table 6 | Root mean squared error (RMSE) after a converged gradient

descent fit to the absolute reaction time of a control trial (COs and

COr) and the priming effects of DTs, DTr, andTTs andTTr while

keeping the theory weights fixed.

RMSE

Distractor inhibition 14.0

Temporal discrimination 22.5

Episodic retrieval 34.6

Response retrieval 38.1

Global threshold 39.1

Table 7 | Simulated reaction times and effects by the GMNP in

distractor inhibition mode compared to experimental results from

Ihrke et al. (2011), after fitting model parameters to minimize the

RMSE in control RT and the effect sizes forTT and DT conditions.

GMNP RT [ms] Experimental RT [ms]

COs 825.5 821.2

DTs 829.8 842.0

TTs 840.4 835.8

TDs 830.5 814.9

TTs 819.8 817.6

COr 835.5 838.4

DTr 826.3 829.5

TTr 814.3 816.7

TDr 815.4 840.7

DDr 836.2 824.4

EFFECTS

DTs −4.2 −20.8

TTs −14.8 −14.6

TDs −5.0 6.3

DDs 5.7 3.6

DTr 9.1 8.9

TTr 21.2 21.7

TDr 20.1 −2.3

DDr −0.7 14.0
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it is remarkable that distractor inhibition, as it is implemented in
the GMNP, seems to best explain the experimental data. There are
several aspects to discuss in that context. First, the GMNP does
not reduce to the original implementation of distractor inhibition
theory with one on- and one off-cell, controlling recognition of
objects. The framework of the GMNP, i.e., its layer structure, the
feature decomposition, and the dedicated action layer offer a flexi-
bility that the original theory did not have. Second, the inability of
the GMNP in distractor inhibition mode to perfectly fit both DTs
and DTr simultaneously may point to the limitations of a pure
inhibitory account and toward the necessity of retrieval mecha-
nisms to fully explain the interaction as postulated in Rothermund
et al. (2005), for a graphical comparison of DTs and DTr trials see
Figure 7.

When encountering apparent contradictions to the original for-
mulation of a theory, another great advantage of computational
modeling becomes important: it is very easy to extract detailed
information about the conditions that are responsible for unat-
tended behavior, thus providing quick and definite explanations
for it. In the described example it seems like distractor inhibition
theory is not well implemented in the GMNP as the correspond-
ing setting produces the best fit for an interaction of response
relation and priming condition, one of the known weak points
of distractor inhibition as it cannot explain these results. But
when examining the behavior of the GMNP in detail, the effect
is solely present in the action layer, which has not been taken into
account by the original distractor inhibition theory. The RMSE

between DTs and DTr is less than a tenth of the difference in the
action layer when averaged over one trial. Further, this numeri-
cal experiment shows that the postulate that response repetition
interaction with priming is incompatible with distractor inhibi-
tion seems too strict. Obviously, adding a response mechanism
with slowly decaying response activation is sufficient to enable a
distractor inhibition model to show such an interaction, even if it
is admittedly imperfect.

4. DISCUSSION
Combining experimental evidence from behavioral experiments
with basic system neuroscientific mechanisms, we present a
GMNP that incorporates all presently relevant theories of the phe-
nomenon. The model clearly identifies differences of experimental
conditions and is thus able to resolve existing inconsistencies
among the important theories. The model is tested in a num-
ber of standard scenarios and is shown to be easily extendable to
non-standard versions of priming experiments.

The GMNP gives a unified framework to quantify each of
the theories for NP, allowing, for the first time, a quantitative
comparison of the impact of the proposed mechanisms. The iden-
tification of weights for the different accounts makes it convenient
to compare the different predictions in a particular setting.

Negative priming presents itself as a complex phenomenon
which has been accounted for by different theoretical descriptions
focusing on specific experimental paradigms. A computational
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FIGURE 7 | Activation traces over time in the relevant layers of the GMNP
in the comparison paradigm. For coloring see Figure 6. The model is tuned
to distractor inhibition mode, see Section 3.1. Two different conditions are
shown: DTs, the former target becomes the current target and the reaction
switches (from no to yes in this case); and DTr, again the former distractor
becomes the current target but now the reaction does not switch (yes in both

prime and probe trial). This plot illustrates the difficulty of comparing theories
that are developed in a different context. Distractor inhibition theory itself is
not able to explain a reaction time difference between the two conditions, as
it is only formulated on a semantic level. Indeed GMNP does not show a
difference in the traces except in the action layer, where persistent activation
and relative inhibition causes the observed effects.
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theory can provide a comprehensive framework under these con-
ditions if it is both sufficiently abstract and flexible to reveal
similarity and to describe the differences between the aspects of the
phenomenon under consideration. Interestingly, the adaptation of
the computational model by means of weights (see Table 4) gives
a straightforward recipe for generating predictions. In principle
there are 27

= 128 possible configurations for the values of the
weights, only five of which related to experimental and theoretical
studies investigated so far in the current literature. Obviously not
all configurations are interesting or even meaningful, but a few
more studies can be easily suggested that would provide insight
into the necessity of the model’s components while so far we can
only judge whether they are sufficient.

The simulated reaction times in Section 3.2 and the other exam-
ples featured in the provided code, show that the behavior of the
GMNP is far from being robust against even small parameter
changes. Even though a stable model is much more convenient
from a theoretical point of view, we consider this instability nec-
essary in order to account for the multitude of different findings
in connection with NP. However, we have to face the question
of whether the model is able to fit any pattern of experimentally
recorded data with just the right parameter settings. Due to the
high dimensionality of the parameter space and the sensitivity of
the GMNP, this question cannot be answered conclusively by the
means of parameter scanning techniques. In fact, an important
next step for the GMNP is parameter reduction by determining as
many values as possible by comparisons with trusted experimen-
tal results, e.g., for the availability of afterimages, decay times of
feature bindings, etc. The detail of the GMNP is also easily capa-
ble of showing partial reaction times as described in Ihrke et al.
(2012) and Schrobsdorff et al. (2012). Therefore, a good way to
limit the range of the parameter space would be to have a series of
time-marker experiments specially designed to reveal processing
stages that are measurable in the GMNP. Till that time the GMNP
can only be a basis on which a concrete discussion on the nature
of NP theories and paradigms can be made.

Besides the direct computation of reaction times, the structure
of GMNP allows for numerical fitting via a multitude of algo-
rithms. As an example we showed a gradient descent search for an
optimal parameter set, keeping the theory weights fixed in order to
compare the different theories in terms of flexibility to fit a given
set of experimental results. Although a pure gradient descent may
not be suitable for such a complex and huge parameter space, the
numerical experiments in Section 3.3 already showed a surpris-
ing result: expanding the distractor inhibition model by only a
reaction mechanism with a threshold and persistent activation as
well as relative inhibition, provides a context which is able to pro-
duce the interaction of response relation and priming condition,
which is otherwise considered to be the weakest point of distractor
inhibition theory.

Another promising extension follows from the abstract formu-
lation of relations among mechanisms that are involved in NP.
Just as NP theories are formulated using concepts such as memory
or central executive which are borrowed from other areas in psy-
chology, the computational implementation of relations among
these concepts also has a wider applicability than NP. The main
components of the GMNP qualify it already as a cognitive archi-
tecture similar, e.g., to ACT-R (Anderson et al., 1997) or SOAR
(Laird et al., 1987). Beyond this, it would be interesting to discuss
the ensuing perspectives for design of artificial cognitive systems,
such as for the control of an autonomous robot.
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