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Temporal discounting denotes the fact that individuals prefer smaller rewards delivered
sooner over larger rewards delivered later, often to a higher extent than suggested by
normative economical theories. In this article, we identify three lines of research study-
ing this phenomenon which aim (i) to describe temporal discounting mathematically, (ii)
to explain observed choice behavior psychologically, and (iii) to predict the influence of
specific factors on intertemporal decisions. We then opt for an approach integrating postu-
lated mechanisms and empirical findings from these three lines of research. Our approach
focuses on the dynamical properties of decision processes and is based on computational
modeling. We present a dynamic connectionist model of intertemporal choice focusing on
the role of self-control and time framing as two central factors determining choice behavior.
Results of our simulations indicate that the two influences interact with each other, and
we present experimental data supporting this prediction. We conclude that computational
modeling of the decision process dynamics can advance the integration of different strands
of research in intertemporal choice.

Keywords: decision making, temporal discounting, intertemporal choice, date-delay effect, impulsivity, time
perception, dynamic systems, connectionist modeling

INTRODUCTION
Humans’ self-image of being a “higher” species is justified in large
part by reference to our extended mental abilities. In particular,
our ability to anticipate the future enables us to defy momen-
tary temptations or impulses and to make decisions based on
foresight and long-term goals (Suddendorf et al., 2009; Goschke,
2012). Conversely, we are alerted when humans appear to ignore
the future consequences of their behavior. Thus, researchers have
been especially interested in understanding why sometimes human
choices deviate from rationality standards as defined, for instance,
by the economical rule of utility maximization (Fishburn, 1968). A
prominent example of such a deviation can be found in intertem-
poral decision making, when humans have to choose between
sooner and later delivered rewards. For such decisions, the original
discounted utility model prescribes that the subjective value of a
delayed option should decrease as an exponential function of the
time until delivery (Samuelson, 1937). In contrast to this model,
empirical studies found that individuals often discount rewards
more steeply, especially for small time intervals (see Frederick
et al., 2002 for a review). These and other observations suggest-
ing that human choice behavior often deviates from normative
rationality standards instigated an extensive research program on
intertemporal choice behavior.

Within this broad field, different lines of research can be distin-
guished depending on whether their primary focus is on descrip-
tion, explanation, or prediction. In the following, we will shortly
summarize core features of these three approaches and argue for an
integrative approach that combines computational modeling with

experimental studies of the process dynamics of choice behavior.
As an initial step, we propose dynamic connectionist modeling as
a tool supporting this integration and provide a first example of
its potential benefits.

The descriptive approach originated from the original dis-
counting model (Samuelson, 1937) and has led to the development
of a range of formal models proposing various mathematical func-
tions to fit the observed temporal discounting behavior (for an
overview see Doyle, 2010). Comparisons of different discount-
ing functions including exponential, hyperbolic, and hyperbola-
like functions revealed that temporal discounting is often better
described by hyperbola-like functions with more than one para-
meter (e.g., Green et al., 1994; McKerchar et al., 2009). However,
although such models carry the promise of providing precise
descriptions of the outcome of intertemporal decisions, they leave
open the question which information-processing mechanisms
underlie the observed deviations from normative rational choice
standards.

The explanatory approach aims to fill this gap and has pro-
duced a wide range of different theories which attempt to explain
the general pattern of hyperbolic temporal discounting in terms of
underlying cognitive mechanisms that operate at different stages
of the decision process (e.g., Stewart et al., 2006; Ebert and Prelec,
2007; Killeen, 2009; Zauberman et al., 2009; Scholten and Read,
2010; Trope and Liberman, 2010). Commonly the decision process
is viewed as a transformation of a sensory input into a motor
output through several consecutive stages, including the stage of
option representation, the stage of value representation, and the
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Scherbaum et al. Dynamic modeling of intertemporal choice

stage of the final choice (cf. Sugrue et al., 2005; Rangel et al.,
2008). At the stage of option representation, hyperbolic temporal
discounting has been explained by an insensitive subjective percep-
tion of prospective durations leading to a logarithmic instead of a
linear perception of temporal delays (Zauberman et al., 2009). At
the stage of value representation, it has been proposed that the sub-
jective value of an option is inferred by adding the utility of a good
to the disutility of a delay thus leading to hyperbolic discount-
ing (Killeen, 2009). At the stage of the final choice, Stewart et al.
(2006) proposed a continuous accumulation of a frequency count
of favorable binary comparisons between the offered options and
value samples retrieved from memory, with hyperbolic discount-
ing resulting from the real-world distribution of attribute values of
gains, losses, and delays. Even this exemplary set of theories shows
that a multitude of plausible explanations for the hyperbolic shape
of the discounting function have been proposed. This raises the
question, which of the proposed mechanisms (or which combina-
tion of mechanisms) is at work in a specific decision context and
which variables determine to which degree a specific decision.

The predictive approach aims to provide answers to this ques-
tion and is focused on the search for specific factors influencing the
result of intertemporal decisions. Amongst the multitude of possi-
ble influences, two factors gained particular attention: self-control
and contextual framing (cf. Berns et al., 2007). The ability to exert
self-control is assumed to reduce the extent to which behavior
is determined by automatic impulses triggered by an immediately
available reward (Laibson, 1997; Hofmann et al., 2009; Heatherton
and Wagner, 2011). This hypothesis is supported by clinical studies
showing stronger discounting in patients with disorders presum-
ably associated with higher impulsivity such as addiction and
attention deficit hyperactivity disorder (e.g., Bickel and Marsch,
2001; Wittmann and Paulus, 2008). The role of contextual framing
is emphasized by findings indicating that systematic biases strongly
influence the degree of discounting (e.g., Loewenstein and Prelec,
1992). For example changing the framing of the time informa-
tion from delays (e.g., “in 7 days”) to calendar dates (e.g., “on the
13th of November”) reduces temporal discounting, resulting in the
so-called date-delay effect (Read et al., 2005; LeBoeuf, 2006). Alto-
gether, the empirical studies have revealed numerous contextual
factors modulating and moderating intertemporal choices.

While all three strands of research reviewed so far have yielded
valuable insights into intertemporal choice behavior, they have
to date often been pursued relatively segregated from each other
with little cross-fertilization. To further advance the understand-
ing of mechanisms and determinants of intertemporal choice,
an integration of the different empirical findings and theoreti-
cal mechanisms is needed. We therefore propose an approach,
based on computational modeling and a focus on the dynami-
cal properties of decision processes, as an approach which could
offer the required integrative and explanatory power. While a
dynamic, process-oriented approach is common in research on
perceptual decision making (Bogacz et al., 2007; Wang, 2008),
it has only recently begun to find its way into research on eco-
nomic decision making where a focus on stepwise mechanisms
and decision results still dominates (e.g., Summerfield and Tsetsos,
2012). However, recent empirical work demonstrates the fruit-
fulness of a dynamic approach. For instance, in our own recent

research we investigated specific influences on temporal discount-
ing by tracking the decision process continuously over time using a
mouse tracking procedure (cf. Spivey et al., 2005; Scherbaum et al.,
2011). Results indicated an interaction of the influences of self-
control and contextual framing (Dshemuchadse et al., 2012): less
direct choice trajectories for later/larger options indicated more
reflection (i.e., enhanced self-control) in contrast to choices of
the sooner/smaller options. However, this difference was reduced
when time was framed in calendar dates in contrast to delays.

In the following, we aim to combine this dynamic, process-
oriented approach with connectionist models, that have already
demonstrated their predictive power for multiattributive choice
(Roe et al., 2001; Usher and McClelland, 2001; Glöckner and
Betsch, 2008; Otter et al., 2008; for a comparison of the former
two models see Tsetsos et al., 2010). We will explore the poten-
tial benefit of modeling intertemporal choice within a dynamic
connectionist framework in two steps. First, we develop a neural
network model that integrates several of the mechanisms and
influencing factors described above. This model combines a loga-
rithmic perception of time (cf. Zauberman et al., 2009), an additive
valuation process (cf. Killeen, 2009), and an accumulation process
based on the statistics of our environment (cf. Stewart et al., 2006).
Additionally, the model accounts for the effects of the two central
factors self-control and time framing and their interaction (e.g.,
Wittmann and Paulus, 2008; Dshemuchadse et al., 2012). Second,
we validate the proposed computational model through an empir-
ical study exploring the interaction of the two factors self-control
and time framing. In this experiment, we varied time pressure to
manipulate the amount of self-control and used different fram-
ings of the time information. This way, we aimed to dissociate the
influence of the two factors and test the model predictions against
empirical data.

A COMPUTATIONAL MODEL OF TEMPORAL DISCOUNTING
To model intertemporal choice behavior, we implemented the
process of option evaluation (e.g.,Busemeyer and Townsend,1993;
Johnson and Busemeyer, 2010) in a connectionist model (see also
Roe et al., 2001). In a parallel distributed network model (Rumel-
hart and McClelland, 1986) options are represented as different
activation patterns competing with each other (e.g., Usher and
McClelland, 2001; Busemeyer and Johnson, 2004). The option
represented by the pattern reaching the response threshold first
wins the competition and determines the final choice behav-
ior1 (cf. Wang, 2008). The model incorporates the following five
assumptions.

First, the activation of the option patterns accumulates grad-
ually over time, following a non-linear activation function (cf.
Usher and McClelland, 2001; Bogacz et al., 2007; Wang, 2008).
The accumulation is terminated when one of the pattern reaches
a threshold (cf. Busemeyer and Townsend, 1993; Wang, 2008).

1 Although the representations of the magnitudes of the value and the time interval
were not specified in the network architecture, one could implement a distributed
representation within a specific network layer and the value of this representation
could even be learned. However, the simplistic assumption of activation strength
representing the magnitude of input variables is common in modeling decision
processes (e.g., Roe et al., 2001; Usher and McClelland, 2001) and should not affect
critical aspects of the dynamics of the accumulation process.
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Scherbaum et al. Dynamic modeling of intertemporal choice

Second, an option receives activation by network units repre-
senting the option attributes time interval and value (cf. Roe et al.,
2001) reflecting an additive valuation process (cf. Killeen, 2009).
These option attribute units represent the properties of the two
options through rate coding (cf. Shadlen and Newsome, 1998; van
Rullen and Thorpe, 2001). Longer time intervals are represented
by less activation (and hence less support for the option), following
a non-linear function as has been proposed by previous empirical
work (cf. Zauberman et al., 2009). Higher values are represented
by increased activation (and hence more support). Taken together,
this varying activation mirrors the preference for sooner and larger
options.

Third, the speed of accumulation depends on the kind of infor-
mation. Specifically, we assume that time information accumulates
faster than value information, leading to a general dominance of
time information and hence increased temporal discounting (cf.
Dshemuchadse et al., 2012). Such an increased accumulation could
be the result of differences in the connection weights resulting from
the statistics of our environment (cf. Stewart et al., 2006).

Fourth, the degree of self-control influences the response
threshold: less self-control will lower the response threshold,
thereby leading to faster responses (cf. Busemeyer et al., 2006;
Wittmann and Paulus, 2008; Kim and Lee, 2011).

Five, the contextual framing of information influences the accu-
mulation rate of information: time information presented in terms
of delays accumulates faster than time information presented in
terms of dates (cf. Read et al., 2005). We assume that the more
complex format of calendar dates requires increased processing
and therefore longer decision times in comparison to delays. This
assumption is in line with similar assumptions in models of per-
ceptual decision making,which also postulate increased processing
times for more difficult stimulus material (cf. Ratcliff and Smith,
2004; Palmer et al., 2005).

To validate our model, we will analyze its discounting behavior
for effects described in the literature, namely the effects of self-
control and the date-delay effect. We will then report the results of a
behavioral experiment based on the simulated setup and compare
the empirical data to the model predictions.

SIMULATION
MODEL AND HYPOTHESES
In the following, we will outline the model used in our simulation
(for details on the architecture and parameters see the Appendix).

Layers and connectivity
The model architecture represents a feed forward leaky compet-
ing accumulator model containing two input layers, one for time
information and one for value information, and a response layer,
which integrates accumulating information and indicates the ten-
dency to choose one of the two presented options (see Figure 1,
for details, please see the Appendix).

The two units within each layer inhibit each other laterally
(Usher and McClelland, 2001) while activating themselves, thus
supporting non-linear dynamics (Wang, 2008). Each unit within
an input layer is connected to and activates the respective response
unit. Hence, unit 1 in the time layer and unit 1 in the value layer
both activate unit 1 in the response layer, representing option 1 (the

sooner/smaller option); unit 2 in the time layer and unit 2 in the
value layer both activate unit 2 in the response layer, representing
option 2 (the later/larger option).

Activation dynamics
While layers and connections define the static architecture of the
model, the unit’s activation dynamics define its reaction to an
input, which is determined by the activation function. In line
with previous connectionist/dynamic models, a non-linear sig-
moid activation function was chosen (Cohen et al., 1992; Erlhagen
and Schöner, 2002; Scherbaum et al., 2012). This ensures that each
unit participates in the interaction between units only to the extent
that its activation exceeds a soft threshold modeled by the sig-
moid function (Erlhagen and Schöner, 2002). Hence, activation
of attributes and responses and their interaction show non-linear
properties. The non-linear dynamics is further enhanced by the
recurrent excitatory connections, which lead to a competitive
attractor dynamics (cf. Usher and McClelland, 2001; Bogacz et al.,
2007; Wang, 2008).

SIMULATED PARADIGM
We implemented an intertemporal choice task in which simulated
participants had to decide which of two options they preferred:
the sooner but smaller or the later but larger option.

For each participant, we orthogonally varied the interval
between the options (1, 3, 5, 8, 11, and 14 days) and the value
of the sooner option in percentages of the value of the later option
(20, 50, 70, 85, 95, and 99%). Additionally, we orthogonally varied
the time of the sooner option (0 and 7 days).

Two variables were manipulated orthogonally between simu-
lated participants (also see the Appendix): the response thresh-
old, simulating an impulsive (low threshold) or a self-controlled
(high threshold) choice, and the timescale of accumulation for the
time information, simulating the framing of the time information
as dates (slower accumulation) or delays (faster accumulation).
Overall, we simulated 52 participants, leading to 13 participants
per condition.

At the start of each trial, two options were presented to the
simulated participants. A choice was made when one of the two
response units reached the response threshold.

DATA PROCESSING
To examine the amount of discounting, we determined individual
discounting functions for every simulated participant in two steps.
First, we identified for each block separately the indifference point,
i.e., the value difference for a particular time interval where a given
simulated participant chose indifferently between the two options.
As an estimate of the indifference point, we determined the point
of inflection of a logistic function fitted to the individual choices
(sooner/smaller vs. later/larger) as a function of increasing value
differences (expressed in the ration sooner/later, cf. Ballard and
Knutson, 2009). In the second step, we fitted for each participant a
hyperbolic function2 to the estimated indifference points over the

2 The fitting of the hyperbolic function was performed by applying Matlab’s mul-
tidimensional unconstrained nonlinear minimization function to the hyperbolic
function 1/(1+k∗x) = y, with x denoting time interval, y denoting subjective value,
and k denoting the discounting parameter.
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Scherbaum et al. Dynamic modeling of intertemporal choice

FIGURE 1 | Model architecture. Two input layers represent times and values
of the two options. A response layer represents the choice preference of the
network. Each unit in the input layers excites its respective response unit.

Response is elicited by reaching a response threshold. All units follow a
sigmoid activation function, show recurrent excitation, and inhibit each other
within each layer.

different intervals and extracted the k-parameter of this function
(Green et al., 1994).

RESULTS
As expected, simulated participants showed temporal discount-
ing varying in steepness between the four different conditions
(Figure 2) and varying in strength as measured by the k-parameter
of hyperbolic functions fitted to the subjective values. Participants
in the fast accumulation – low threshold condition exhibited the
strongest discounting [M (k)= 0.077, SD(k)= 0.006], followed by
participants in the fast accumulation – high threshold condition
[M (k)= 0.047, SD(k)= 0.004]. The slow accumulation condition
showed the weakest effects of discounting. Importantly, in this
condition, there was no difference between the low [M (k)= 0.026,
SD(k)= 0.003] and the high threshold condition [M (k)= 0.027,
SD(k)= 0.004].

This indicates that the response threshold manipulation (sim-
ulating the degree of self-control) influenced the amount of dis-
counting only when time information accumulated quickly (which
by assumption is the case when time information is framed in
terms of delays). The influence of the threshold vanishes when
time information is accumulated slowly. However, the accumula-
tion speed itself also influences discounting. This model behavior
fits well previous empirical findings showing an interaction of the
two factors self-control and contextual framing (Dshemuchadse
et al., 2012).

Looking at the activation dynamics in the response layer sug-
gests an explanation for these results (Figure 3). If time infor-
mation accumulates faster, the activation of the sooner/smaller
option dominates in the first part of a trial. If the threshold is
sufficiently low, this option is actually chosen. However, with a

higher threshold the activation of the later/larger option catches
up due to the stronger, but delayed, activation elicited by its larger
value, thereby leading to a reversal of the preferred option within
the trial. This difference between thresholds vanishes when time
accumulates slowly, since the activation of the later/larger option
dominates during the entire trial.

To corroborate this analysis, we determined the number of
activation reversals within the response layer for the different con-
ditions. For each simulated participant, we counted the number of
trials in which both options were dominant at least for some time
within the trial. The number of such reversal trials mirrored the
observed discounting pattern, with participants in the fast accu-
mulation – high threshold condition showing the highest num-
ber of reversals of response activation within a trial (M = 26.31,
SD= 1.49), followed by the fast accumulation – low threshold
condition (M = 22, SD= 1), and the two very similar slow accu-
mulation conditions (low threshold: M = 4.62, SD= 1.55; high
threshold: M = 2.92, SD= 1.5).

Hence, the higher likelihood of within-trial preference reversals
in the fast accumulation – high threshold condition was associ-
ated with less discounting, as this condition offered enough time
for the later but larger choice tendency to overcome a premature
choice of the sooner but smaller option. In contrast to this, the
low likelihood of preference reversals in the two slow accumula-
tion conditions and the low degree of discounting were due to a
dominance of the later but larger option during the entire trial.

DISCUSSION
As expected, we found stronger discounting in the condition sim-
ulating time framing in terms of delays (which was assumed to
lead to faster accumulation of time information) compared to the
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Scherbaum et al. Dynamic modeling of intertemporal choice

FIGURE 2 | Indifference points and hyperbolic functions depicting
the decrease in subjective value as a function of intervals for the
four conditions fast time accumulation – low threshold, fast time
accumulation – high threshold, slow time accumulation – low

threshold, slow time accumulation – high threshold. Error bars
indicate standard errors. The inset shows the k -values of hyperbolic
functions fit to the respective data. Error bars show standard
deviations.

FIGURE 3 | Activation dynamics of the units in the response layer in
a representative trial of one simulated participant in the different
simulated conditions. In the fast time accumulation condition (left), the
activation of the sooner/smaller response dominates in beginning of a

trial. Hence, lowering the threshold changes the final choices (responses
indicated by vertical lines). In the slow time accumulation condition
(right), there is no difference in choice between the high and the low
threshold.

condition simulating time framing in terms of dates (assumed to
lead to slower accumulation of time information). Additionally,
the model reproduced previous data (Dshemuchadse et al., 2012)
in that it showed an effect of the simulated degree of self-control
(which was implemented as a high vs. low response threshold)
only in the delay condition, but not in the date condition.

An explanation for this behavior was suggested by the analy-
sis of the activation dynamics within the response layer, which
revealed reversals of the dominance of the choice options over the

course of a trial (cf. Busemeyer and Townsend, 1993). In the delay
condition, the faster accumulation of the time information had
the effect that time information initially dominated the option
preference, as it exerted a stronger influence on the activation of
the option patterns than the value information. In a decision sit-
uation with low self-control – assumed to be associated with a
lower response threshold – the final decision is predominantly
driven by the more rapidly accumulating time information, lead-
ing to an overvaluation of time information and thus stronger
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Scherbaum et al. Dynamic modeling of intertemporal choice

temporal discounting. In contrast, in a decision situation with
a higher degree of self-control – assumed to be associated with
a higher response threshold – the accumulation process is pro-
longed, which leaves more time for the slowly accumulating value
information to exert its influence on the option preferences and
thus leads to less temporal discounting. In the date condition,
however, this pattern changes, since by assumption the accumu-
lation rate of the time information is reduced, leading to a more
balanced influence of time and value. Therefore, in this condition
the amount of temporal discounting is by and large independent
from the degree of self-control.

In summary, our computational model of temporal discount-
ing integrates theoretical assumptions derived from the explana-
tory approach and assumptions concerning the influence of spe-
cific factors (self-control and contextual framing) derived from
a predictive approach, by specifying the non-linear dynamics of
information accumulation during the option evaluation process.
To validate the predictions of our model, we conducted an exper-
iment in which we operationalized the simulated factors self-
control and contextual framing and examined whether they would
exert effects on human choice behavior mimicking the model
predictions.

EXPERIMENT
The aim of the experiment was to investigate in an intertem-
poral choice task whether the two factors self-control and con-
textual framing would interact in the same way as predicted by
our computational model. Firstly, to manipulate the amount of
self-control, we imposed a response deadline forcing subjects to
respond quickly and thus severely restricting the opportunity for
deliberate reflection about the choice outcomes (cf. Kim and Lee,
2011). This way we aimed to reduce the length of the accumulation
process in a way comparable to a lowered response threshold or
an increased initial activation of response units in connectionist
models (e.g., Botvinick et al., 2001). Under these circumstances,
we predicted stronger temporal discounting compared to a con-
trol condition without a response deadline. Secondly, to vary the
contextual framing of time information, we capitalized on the so-
called date-delay effect (Read et al., 2005; LeBoeuf, 2006), which
denotes the observation that time discounting is reduced when
times are presented as calendar dates instead of delays. We assumed
that framing time in calendar dates would lead to slower accumu-
lation of the time information due to the more complex format.
From our simulation results we derived the prediction that fram-
ing time in calendar dates should lead to less discounting and a
reduced effect of the response deadline manipulation. In sum-
mary, by independently manipulating (i) the amount of reflection
and/or self-control during intertemporal choices (via imposing a
response deadline) and (ii) the accumulation rate of time informa-
tion (via the contextual framing), we aimed to provide empirical
evidence that these two factors exert an interactive influence on
temporal discounting as predicted by our model simulation.

MATERIALS AND METHODS
Participants
Fifty students (32 female, mean age= 23.75) of the Technische
Universität Dresden took part in the experiment and were assigned

at random to the two framing (date vs. delay) conditions. All par-
ticipants had normal or corrected to normal vision. They gave
informed consent to the study and received class credit or 5 C
payment.

Apparatus and stimuli
Stimuli were presented in white or gray on a black background
on a 17 inch screen running at a resolution of 1280× 1024 pix-
els (75 Hz refresh frequency). The experiment was controlled by
the Eprime 1.2 software (Psychology Software Tools) running on
a Windows XP SP2 personal computer. Subjects had to press the
key X on a standard German computer keyboard to choose the
sooner/smaller option and the key M to choose the later/larger
option.

Two types of screens were presented to the subjects: prepara-
tion screens and choice screens (see Figure 4). On both types of
screens, the two choice options were presented on the midline of
the screen, with one option on the left side (sooner and smaller
option) and one option on the right side (later and larger option).
The font used for the presentation was Courier New with a size of
18 points. On the preparation screen only the values of the options
(e.g., “20, 23 Euro”) were presented in white color. On the choice
screen, the values were presented again (albeit in gray color) and
directly beneath them the corresponding delays, e.g., “in 3 Tagen”
(“in 3 days”) or the corresponding dates, e.g., “19 Juli” (July, 19)
were shown in white color.

Procedure
On each trial participants had to decide which of two options
they preferred: the left (sooner but smaller) or the right (later but
larger) option. They were instructed to respond to the hypothet-
ical choices as if they were real choices. Trials were grouped into
mini-blocks of 14 trials (Figure 4). For each mini-block, the two
monetary values remained constant and only the times of the two
options were varied. Each mini-block consisted of a preparation
screen followed by 14 choice screens. The preparation screen only
showed the option values and was presented for 5 s. This procedure
was chosen to allow participants to encode the value information
in advance, because we suspected that otherwise the amount of
information especially in the response deadline condition might
lead to a neglect of some of the information. However, the main
goal of the response deadline was not to restrict encoding of the
option information but rather to restrict the time available for sub-
sequent reflection about the options and their anticipated future
outcomes. After the preparation phase, each of the subsequent
14 choice screens additionally showed the varying option times.
Each choice screen was preceded by a fixation cross presented for
500 ms. Upon the presentation of each choice screen, participants
had to indicate their choice, starting 300 ms after the screen onset.
In the response deadline condition, they had to respond within a
time window of 1800 ms after onset of the presentation screen. If
they responded too late, a feedback screen was presented indicat-
ing an error. In the control condition, no deadline was imposed
and participants were free respond at any time they chose.

Design
The experimental design was similar to the simulated paradigm,
with a slightly increased number of time intervals and value
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FIGURE 4 | Procedure and setup of the experiment. The subjects were
divided into two groups (varying the time framing) and the experiment was
split up into blocks (varying the response deadline), consisting each of 16

mini-blocks (varying option values), consisting in turn of 14 trials (varying
option delays). Before each mini-block, the option values were presented
for 5 s.

differences. Hence, for each participant and block, we orthogo-
nally varied the time interval between the options (1, 2, 3, 5, 7,
10, and 14 days) and the value of the sooner option as percent-
ages of the value of the later option (20, 50, 70, 80, 88, 93, 97, and
99%). The percentage of the value of the sooner option was varied
between mini-blocks, while the time interval between the options
was varied randomly between trials within each mini-block.

Additionally, we orthogonally varied the time of the sooner
option (0 and 7 days) and the value of the later option (19.68 and
20.32 Euro). The time of the sooner option was varied to con-
trol for effects that may be specific for decisions where one of the
options is immediately available (i.e., today) in contrast to deci-
sions where both the sooner and later options are delayed. The
value of the later option was varied to collect a sufficiently large
number of data points without repeating identical trials, which
could have induced memory effects. As neither of these two fac-
tors had any reliable effects, data was collapsed across them in the
analyses reported below.

The response deadline was varied between blocks: one block
with a response deadline of 1800 ms and another block without
deadline were presented in random order. The framing of time
(delay vs. date) was varied between subjects, who were randomly
assigned to one of the two framing groups.

RESULTS
Experimental data
On 1.62% of the trials (SD= 1.83) in the deadline condition,
responses were too slow and hence not included in the analy-
ses. As expected, participants showed varying degrees of temporal
discounting in the four different conditions (Figure 5). A mixed
analysis of variance (ANOVA) with the within-subjects variable
response deadline (with vs. without) and the between-subjects
variable time framing (delay vs. date) and the k-parameter of the
discounting function as the dependent variable (extracted from
the data analogous to the simulation data processing) revealed a
significant main effect of time framing, F(1,48)= 4.78, p < 0.05,
and a significant interaction between response deadline and time
framing,F(1,48)= 7.34,p < 0.01. The main effect reflected steeper
discounting when time was framed in terms of delays compared
to dates. The interaction reflected the fact that subjects showed
steeper discounting in the response deadline condition compared
to the condition without deadline, but this was only the case
when the time was framed in terms of delays [delays: t (24)= 2.12,
p < 0.05; dates: t (24)=−1.16, p= 0.26].

To examine the effectiveness of the deadline manipulation,
an analogous ANOVA was computed with response time as the
dependent variable. This analysis revealed a main effect of response
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FIGURE 5 | Indifference points depicting the decrease in subjective value
as a function of intervals for the four conditions delay-deadline,
delay-free, date-deadline, and date-free. Error bars indicate standard errors.

The inset shows the k -values of hyperbolic functions fit to the respective
data. Stars mark statistical significance at p < 0.05, error bars indicate
standard errors.

deadline as the only reliable result, F(1,48)= 25.518, p < 0.001
(all other ps > 0.3), indicating faster responses when subjects had
to respond within the deadline (M = 760 ms, SD= 165 ms) com-
pared to the condition without response deadline (M = 1013 ms,
SD= 376 ms).

Comparison with the model predictions
To compare the simulated and experimental data, we performed
two correlation analyses on the mean indifference curves in the
different conditions and on the mean k-values in the different
conditions. As expected, the indifference curves of simulated and
experimental data were highly correlated (r2

= 0.96, p < 0.001), as
were the simulated and empirically obtained k-values (r2

= 0.97,
p < 0.001). There was thus a very good fit between model and
experimental data.

DISCUSSION
As we had predicted from our computational model, the two
variables response deadline and time framing not only exerted
reliable effects on temporal discounting, but the experiment also
yielded the expected interaction of the two variables. First, we
replicated the standard date-delay effect, which was reflected in
steeper discounting when time was framed in terms of delays
compared to when it was framed in terms of dates. Secondly,
we found that imposing a response deadline of 1800 ms induced
steeper discounting compared to when participants responded at
their leisure. However, most importantly, we obtained a reliable
interaction between the two variables response deadline and time
framing, which reflected the fact that the effect of the response
deadline was only present in the delay but not in the date condition.

The experiment thus replicated the critical results of the model
simulation.

Interestingly, the influence of time framing was numerically
much stronger than the influence of the response deadline. At
present we do not know whether this reflects a genuine difference
in the relative strength of the two factors or just reflects the fact
that the deadline imposed in our experiment was to lenient to
produce stronger effects on choice behavior. Although the effec-
tiveness of the deadline manipulation was demonstrated by the
fact that decisions times were reliably shorter when the response
deadline was imposed, it must be noted that decision times in the
condition without deadline were also relatively fast and on average
well below the response deadline of 1.8 s. It is thus well conceivable
that a stricter deadline, which would impose more severe restric-
tions on subjects’ opportunity to recruit self-control would exert
stronger effects on choice behavior and lead to a higher proportion
of choices of sooner/smaller rewards.

Furthermore, the experimental setup differs slightly from the
model concerning the presentation of the options. In the experi-
mental setup, the values of the options are presented in advance.
In contrast to this, the accumulation process for time interval
and value starts simultaneously in the model. We assume that,
although the values have been processed prior, the option eval-
uation process only starts when all information is presented. In
line with a previous study (Dshemuchadse et al., 2012), our results
support this assumption, since time information still dominates
the final decision reflected in temporal discounting.

One general concern with computational models is the num-
ber of degrees of freedom when fitting model and empirical data
due to the number of parameters that could be manipulated. It
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is therefore important to note that the model showed tempo-
ral discounting across a wide range of parameter configurations.
Likewise, the critical effects of the response threshold and the accu-
mulation rates were obtained across a wide range of parameter
settings. Furthermore, we constrained the number of free para-
meters by setting several parameters such as the amount of lateral
inhibition to a fixed value in all layers (for more details, see the
Appendix). Last but not least it should be noted that, even though
care has to be taken in choosing the parameters for a model, not
every simple model will succeed in producing specific results and
interaction patterns simply be fine-tuning of parameters (for fur-
ther discussion see McClelland, 2009). In conclusion, the present
empirical results validate core predictions derived from our com-
putational model and indicate that different framings of time
information are associated with more or less complex processing
operations, which influence the accumulation rate of time infor-
mation and thus the impact of this information on the option pref-
erences particularly in the early phase of the decision process. As a
result, presenting time in terms of delays increases the likelihood of
choosing the sooner/smaller option, due to the stronger impact of
the rapidly accumulating time information compared to the more
slowly accumulating time information in the date condition.

GENERAL DISCUSSION
In this article, we presented a dynamic connectionist model of
intertemporal choice behavior by which we attempted to integrate
theoretical mechanisms derived from an explanatory approach
and influencing factors (i.e., self-control and contextual fram-
ing) derived from a predictive approach. Our modeling approach
builds on previous connectionist models of the process of option
evaluation in multiattributive choice (Roe et al., 2001; Usher and
McClelland, 2001). In our simulation of an intertemporal choice
task, we modeled differences in the amount of self-control by
varying response thresholds (assuming that a low response thresh-
old – by promoting rapid decisions – reduces the likelihood that
time consuming self-control processes are recruited prior to the
final choice). Secondly, we modeled differences in the framing of
time information (dates vs. delays) by varying the activation accu-
mulation rates in the time input layer. The simulation yielded the
typical date-delay effect: in the delay condition the model exhibited
increased temporal discounting compared to the date condition.
Furthermore, the simulation yielded evidence for an interaction
between time framing and response threshold: a reduced response
threshold (assumed to reflect less self-control) increased discount-
ing, but this was the case only in the delay condition. This pattern
was related to the frequency of re-decisions or “changes of mind”
(Resulaj et al., 2009) within a trial and fits with results of a previ-
ous study, in which we used movement trajectories to investigate
the time course of intertemporal decision making (Dshemuchadse
et al., 2012). These model predictions were further successfully val-
idated in a new behavioral experiment, in which we manipulated
the hypothesized degree of self-control by imposing a response
deadline and induced different time framings via the standard
date-delay manipulation.

The present model and empirical data can be viewed as an
initial proof of principle demonstrating the possible gain and fea-
sibility of an approach to intertemporal choice, that focuses on

the dynamical properties of the decision process and tests spe-
cific predictions derived from computational (e.g., connectionist)
modeling. In the following, we will evaluate our dynamic, process-
oriented approach, and discuss the integrative benefits in the
context of the three research approaches to intertemporal choice
distinguished in the introduction: the descriptive, the explanatory,
and the predictive approach.

The descriptive approach provides mathematical functions to
formalize central aspects of temporal discounting. This approach
is integrated into our data analysis, where we fitted a hyperbolic
function to the discounting curves. However, in contrast to find-
ings indicating an optimal fit for models using functions with two
or more parameters (e.g., Green et al., 1994; McKerchar et al.,
2009) we choose a single-parameter hyperbola for two reasons.
First, since the k-parameter and the hyperbolic model has been
widely used in other studies of discounting (e.g., Kable and Glim-
cher, 2007; Ballard and Knutson, 2009), we attempted to make
our results directly comparable to these studies. Second, since
our primary goal was to compare model predictions with the
empirical data, the single-parameter hyperbolic function offers
a parsimonious characterization of discounting curves in terms of
a single-parameter compared to models with several interdepen-
dent parameters. In conclusion, we capitalized on insights from the
descriptive approach to derive a compact quantitative description
of core aspects of decision behavior (Doyle, 2010).

The explanatory approach proposes theoretical mechanisms
that apply at different stages of the decision process. Three theo-
retical assumptions concerning mechanisms were integrated into
our computational model. First, the assumption of a logarithmic
perception of time (cf. Zauberman et al., 2009) was embedded into
the non-linear activation function of the network units represent-
ing the option attribute “time of delivery of a reward.” Second,
an additive valuation process (cf. Killeen, 2009) was implemented
by having separate networks units represent the option attributes
value and time, which then activated simultaneously the respec-
tive option. Third, we assumed that the accumulation of evidence
(cf. Stewart et al., 2006) resulting in the final choice occurs with
varying speed depending on the type of information.

Although we incorporated several mechanisms as postulated in
other theories of choice behavior, we obviously also had to ignore
other assumptions of these theories as well as a wide range of
alternative theories not directly relevant for our dynamic model-
ing approach. On the one hand, we followed a process-oriented
approach stemming from perceptual decision making (Bogacz
et al., 2007; Wang, 2008; Summerfield and Tsetsos, 2012). Such
an approach stands in contrast to theories of intertemporal choice
building on stepwise mechanisms and focusing on the result of
the decision (Trope and Liberman, 2003; Killeen, 2009; Loomes,
2010). On the other hand, our computational model was based
on models of multiattributive choice (Roe et al., 2001; Usher and
McClelland, 2001; Otter et al., 2008) with a competition process
between options at its core: options are represented by different
network units that inhibit each other and the choice is deter-
mined by the unit that is more strongly activated. This assumption
stands in contrast to the assumptions and mechanisms of other
models. For example, Stewart et al. (2006) proposed a compe-
tition between statistical frequencies: each option is compared
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with samples from memory, the frequency of favorable com-
parisons is counted, and the option with the higher frequency
count is chosen. A further comparison mechanism was proposed
by Scholten and Read (2010) between attributes: the attributes
of the options are compared, the difference between the attrib-
utes is weighed against each other, and the more valued option
is chosen. Finally, typical brain systems approaches are based
on the competition between different subsystems of the brain.
Metcalfe and Mischel (1999), for example, proposed that a hot
brain system usually favors the sooner/smaller option and a cool
brain system favors the later/larger option. Since the two systems
do interact, the dominating system determines which option is
chosen.

In summary, we made an attempt to integrate several mecha-
nisms postulated within the explanatory approach into our com-
putational model to demonstrate the potential gains of a dynamic
process-oriented modeling approach to intertemporal choice. It
has to be admitted, however, that in its current form our compu-
tational model is primarily intended as a proof of principle and
will have to be elaborated further to explain a wider range of find-
ings and to examine whether and in what respects its explanatory
power may supersede that of alternative models of intertempo-
ral choice (e.g., Stewart et al., 2006; Loomes, 2010; Scholten and
Read, 2010). As integrative enhancements, the interaction between
the different option attributes time and value (Scholten and Read,
2010) could be implemented via inhibition between the two lay-
ers; the finding of greater discounting rates for gains than for
losses (Thaler and Shefrin, 1981) could be implemented via dif-
ferent accumulation rates as it has been done for the different
time framings; the effect of stronger discounting under memory-
load (Hinson et al., 2003, but see Franco-Watkins et al., 2006)
can be explained with memory-load restraining resources and
hence restricting deliberate reflection comparable to the influence
of time restriction.

The third general approach discussed in the introduction, that
we termed the predictive approach, aims to identify factors influ-
encing intertemporal choices. Two such factors were included
into our computational model and the reported experiment: the
amount self-control and the contextual framing of time infor-
mation. The amount of self-control was manipulated by varying
the response threshold in the model and by imposing a response
deadline in the experiment. Lowering the response threshold in
the model led to faster responses due to a shorter process of evi-
dence accumulation (cf. Busemeyer et al., 2006). Alternatively, one
could have varied the baseline activation level to prolong or speed
up responses, which, however, leads in most cases to similar results
(see, e.g., Botvinick et al., 2001 in the context of a model account-
ing for post-error slowing). By imposing a response deadline in the
experiment, we forced subjects to respond quickly, which should

likewise reduce the duration of the evidence accumulation process
and is known to induce more impulsive choices (Kim and Lee,
2011). Our assumption that a lowered response threshold (as
induced by a response deadline) leads to reduced self-control is
consistent with the fact that these processes are time consuming
and fits with evidence indicating that a lack of self-control is asso-
ciated with impaired behavioral inhibition and more impulsive
choices (Soubrie, 1986; Stein et al., 1993). While this relatively
general use of the term self-control suffices for the purposes of
the present investigation, it should be noted that self-control is a
multifaceted construct (e.g., Evenden, 1999; Santisteban and Arce,
2006) allowing for alternative implementations as, for instance,
in theories postulating multiple decision systems (e.g., Thaler and
Shefrin, 1981; Fudenberg and Levine, 2006).

To examine the influence of contextual framing – and specifi-
cally the framing of time information – on intertemporal choice,
we manipulated the accumulation rate of time information in the
model and the presentation format (delay vs. calendar dates) in the
experiment. The manipulation of the accumulation rate rests on
the assumption that the processing of dates is more complex than
the processing of delays. This should lead to different rates at which
time information accumulates in the respective processing layer,
in a manner analogously to what has been assumed in models of
perceptual decision making (cf. Ratcliff and Smith, 2004; Palmer
et al., 2005). Our manipulation of the format of the time informa-
tion in the experiment relied on findings from previous studies of
the date-delay effect (Read et al., 2005; LeBoeuf, 2006) and yielded
findings consistent with this earlier work. Nevertheless, it should
be mentioned that alternative interpretations of the date-delay
effect have been proposed (Read et al., 2005; LeBoeuf, 2006). While
in the present study we examined two critical factors influencing
intertemporal choice – self-control and contextual framing – it is
an aim for future investigations to extend the present model to
account for other relevant factors (see, e.g., Frederick et al., 2002)
and different forms of contextual framing (see, e.g., Kahneman
and Tversky, 1984).

In summary, the present model and empirical results provide
an initial demonstration of the gain and feasibility of a dynami-
cal, process-oriented approach to intertemporal choice based on
computational modeling. By combining connectionist modeling
and experimental data, we obtained evidence that self-control and
time framing exert interactive effects on temporal discounting,
which can be accounted for by dynamic properties of the decision
process, in particular, the interaction of different accumulation
rates and different response thresholds.
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APPENDIX
MODEL ARCHITECTURE
The model consists of two input layers and a response layer,
with two units per layer. Activation of each unit is calculated by
non-linear first order differential equations as has been done pre-
viously for patterns of neural activation (Amari, 1977; Erlhagen
and Schöner, 2002). Simulated by numerical integration, results
were obtained using Matlab 2006a running under Windows XP
SP3. The difference equation over time t for the activation u of
units in a layer had the following form:

τu̇ (t ) = −u (t )− h + wi · σ (u (t ))+ w · Input(t ) + N

Here, τ denotes the timescale, h the resting level, wi the interac-
tion weight within the layer (self excitation and lateral inhibition),
and w the weight of inputs into the layer; Input defines the input
into the layer, N denotes random noise (distributed normally with
M = 0 and SD= 0.0025), and σ denotes a sigmoid non-linearity,
mirroring neural population dynamics:

σ (x) = 1
/
(1+ e (−β · (x − α))) .

Hence, each unit contributes to interactions in the network only
to the extent that its activation exceeds a soft threshold (Cohen
et al., 1992; Erlhagen and Schöner, 2002).

Following this scheme, the equation for the input layers was:

τu̇ (t ) = −u (t )− h + wii · σ (u (t ))+ wsi · S (t )+ N

Here, wii denotes the interaction weight within the input layers,
wsi the weight of external inputs into the layers, S(t ) represents the
external stimulus input into the layer. To ensure baseline levels of
activations for external stimulations for all possible inputs, inputs
were defined by

S (t ) = Smax − wsi + Sraw (t ) · wsi .

Here, Smax denotes the maximum strength of the input signal,
set to 7, Sraw denotes the signals defined by the values and times
of the respective options (ranging from 0 to 1, see model input,
below), and wsi denotes the weight of the input with respect to
Smax, set to 0.3 for times and 0.7 for values.

For the input layer representing value information, we set
τV= 30. For the input layer representing time information, we
simulated different speeds of information accumulation, by set-
ting τT= 10 for the fast accumulation condition and setting τ= 30
for the slow accumulation condition.

Analogously to the input layers, the equation for the response
layer was:

τu̇ (t ) = −u (t )−h+wir ·σ (u (t ))+wi1r ·I1 (t )+wi2r ·I2 (t )+N

Here, wir denotes the interaction weight within the response
layer,wi1r wi2r denote the strength of input from the input lay-
ers, and I 1 and I 2 represent the signal from the input layers.
Responses were considered as made when σ (u(t )) reached a

response threshold. This threshold was sampled at random from a
normal distribution with an SD of 0.0075 and a mean of 0.9 for the
high threshold condition and a mean of 0.77 in the low threshold
condition. The timescale of information accumulation was set to
the same value as for the value input layer, τV, hence τ= 30.

The weight matrices are shown in the following. The inter-
actions within the input layers, and the response layer were
defined by

wii =

(
1 −2
−2 1

)
, . wir =

(
1 −2
−2 1

)
Hence, within all layers, there was the same strong lateral

inhibition compared to a weaker self excitation of each node.
Signal transmission from each input layer to the response layer

was defined by

wi1r = wi2r =

(
5 0
0 5

)
.

Hence, the input layers were associated equally with the
response layer and each unit within an input layer representing the
time or value of an option activated the response unit representing
the preference for this option.

The other parameters where chosen as follows: h= 5, α= 0,
β= 1.5.

The parameters h,α,β, Smax and the connection weights wsi, wii,
wir,wi1r wi2r were chosen to produce classical discounting behav-
ior. By choosing equal values for wii and wir as well as for wi1r wi2r

we aimed to minimize the number of free parameters and keep the
model as simple as possible. Within these constraints, the model’s
discounting behavior was qualitatively similar across a wide range
of parameter choices.

The two critical parameter variations concerned the response
threshold (0.9 vs. 0.77) and the accumulation rate of the time
information τT. Again, we set τT, τR, and τT to equal values (in
the slow accumulation condition) to minimize the number of free
parameters. Hence, the only free parameter was τT in the fast accu-
mulation condition, with the constraint τT(fast) < τT(fast). Within
these constraints, the presented effects were qualitatively stable
across a wide range of parameter combinations.

CALCULATION OF MODEL INPUT AND PROCEDURE
The input to the input layers representing time and value infor-
mation for options 1 and 2 was defined by the input vectors
ST= (T 1,T 2) and SV= (V 1,V 2). ST and SV were varied orthog-
onally (see description of paradigm). For ST, T 1 was chosen from
{0,7}. T 2 was defined by T 1+TI, the interval between the options,
with TI chosen from {1, 3, 5, 8, 11, 14}. ST was then transformed
to normalized input values by

ST = 1−
√

ST
/

Tmax .

Hence, time was normalized to the maximum possible time
value, transformed non-linearly to mirror non-linear time percep-
tion (see main text) and inverted, so that lower times lead to higher
input activation, mirroring the preference for smaller delays.
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For SV, V 2 was set to 1, and V 1 was chosen so that the ration
V 1/V 2 was {0.2, 0.5, 0.7, 0.85, 0.95, 1}. Since SV was already nor-
malized to a maximum value of 1, no further transformation was
necessary to receive normalized input values. Hence, higher values
lead to higher input activation, mirroring the preference for high
values.

Each trial began with an inter-trial interval of 50 cycles with-
out input, followed by the activation of the input vectors. The
trial ended when the output activation of one of the two response
units reached the response threshold and, hence, a choice was
performed.
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