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Natural textures have characteristic image statistics that make them discriminable from
unnatural textures. For example, both contrast negation and texture synthesis alter the
appearance of natural textures even though each manipulation preserves some features
while disrupting others. Here, we examined the extent to which contrast negation and
texture synthesis each introduce or remove critical perceptual features for discriminating
unnatural textures from natural textures. We find that both manipulations remove informa-
tion that observers use for distinguishing natural textures from transformed versions of
the same patterns, but do so in different ways. Texture synthesis removes information that
is relevant for discrimination in both abstract patterns and ecologically valid textures, and
we also observe a category-dependent asymmetry for identifying an “oddball” real texture
among synthetic distractors. Contrast negation exhibits no such asymmetry, and also does
not impact discrimination performance in abstract patterns. We discuss our results in the
context of the visual system'’s tuning to ecologically relevant patterns and other results

describing sensitivity to higherorder statistics in texture patterns.

Keywords: texture discrimination, texture synthesis, image statistics

INTRODUCTION
Texture perception supports a wide range of visual tasks (Landy,
under review). Natural texture appearance can be used to estimate
material properties (Motoyoshi et al., 2007), infer 3D shape (Liand
Zaidi, 20005 Fleming et al., 2004, 2011), and segment boundaries
in complex scenes (Malik and Perona, 1990; Malik et al., 2001).
Texture processing, by which we refer to whatever it is the visual
system does to recognize “stuft” rather than “things,” (Adelson
and Bergen, 1991) is usually conceived of implicitly or explicitly
in terms of a summary of visual information (e.g., feature his-
tograms). Determining what measurements the visual system uses
to encode texture appearance remains an open and important
question. Besides the visual tasks described above, understanding
the code for texture appearance may also be relevant for character-
izing the constraints on visual performance in a far wider range of
tasks. Recent results suggest that the nature of texture representa-
tions (and their limitations) may explain performance in crowding
tasks (Balas et al., 2009), visual search (Rosenholtz et al., 2012b);
and provide a language for describing the effects of visual attention
(Rosenholtz et al., 2012a). Texture representations are lossy — typ-
ically, information about where specific features were in the image
is lost, but aggregate data about the frequency and co-occurrences
of image features is retained. The transformation implemented by
processing an image via texture representations may be the basis
of a distinct mode of processing that governs much of what see in
the visual periphery (Freeman and Simoncelli, 2011; Rosenholtz,
2011) leading to a wide range of effects that follow from “seeing
sidelong” (Lettvin, 1976).

We have referred to texture processing as a lossy image transfor-
mation since there are many circumstances in which micropatterns

that are easily distinguishable in isolation nonetheless are indis-
tinguishable in the context of a texture field (Julesz, 1981; Beck,
1983). Clearly some information is unavailable in a texture repre-
sentation, but what information is included and what is left out?
There are multiple image statistics that the human visual system
is known to be sensitive to. If we just consider summary statis-
tics that can be applied to the intensity histogram of independent
and identically distributed (IID) textures, for example, observers’
discrimination ability relies upon three mechanisms: the mean,
variance, and “blackshot” (sensitivity to the darkest elements) of
candidate textures (Chubb et al., 1994, 2004). Observers are also
sensitive to the skewness of the intensity histogram of natural tex-
tures, which alters perceived glossiness (Motoyoshi et al., 2007;
Sharan et al., 2008). The power spectrum of natural textures con-
tains information that can be used to predict shape from texture
(Li and Zaidi, 2001) and observers’ judgments of texture similar-
ity (Balas, 2008). The power spectrum’s magnitude roll-off factor
(the coefficient B, for images characterized by a 1/f® spectrum) is
also a useful predictor of roughness judgments for fractal surfaces
(Padilla et al., 2008). Finally, the visual system is also known to
be sensitive to higher-order statistics in natural textures. Higher-
order pixel statistics (relationships between “needles,” triangles,
and higher-order structures created by jointly measuring n-tuples
of intensities) can be balanced to extreme degrees (Julesz et al.,
1978; Tyler, 2004), yet lead to visually discriminable textures. The
discriminability of natural textures from synthetic textures created
by matching wavelet coefficients at multiple scales (Heeger and
Bergen, 1995) also demonstrates sensitivity to higher-order statis-
tics — if observers only used histograms of oriented edge filter out-
puts to encode texture appearance, then synthetic textures created
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by the Heeger—Bergen algorithm should be indistinguishable from
the real thing. Similarly, synthetic textures that use joint encoding
of wavelet coefficients (Portilla and Simoncelli, 2000) are also dis-
criminable from their parent images in the visual periphery (Balas,
2006) depending on the subset of joint statistics that are permit-
ted to contribute to the representation of appearance. Were the
Portilla—Simoncelli model a complete model of texture perception,
natural textures should be indistinguishable from the synthetic
textures created by the algorithm — the fact that they are discrim-
inable indicates that participants use information beyond what
is in the model. Texture perception thus relies on a number of
summary statistics that encode visual appearance, some of which
have been identified and are known to contribute to specific tasks
and specific aspects of appearance, and some of which remain
unspecified but nonetheless reveal themselves by their absence
from synthetic textures that are imperfect copies of natural images.

In the current study, we examined what information observers
use to discriminate natural textures from unnatural ones. Specif-
ically, we defined two kinds of unnatural texture corresponding
to two transformations of natural texture appearance: contrast
negation and parametric texture synthesis. These transformations
are of particular interest for several reasons. First, each transfor-
mation preserves a well-defined set of features. Contrast negation
preserves orientation energy and the isophotes in a texture image
(Fleming and Bulthoff, 2005), while texture synthesis preserves
the set of image statistics that form the basis of the model under
consideration. Second, each transformation also disrupts specific
aspects of appearance. Contrast negation reverses edge polarity (a
180° change in phase), while summary statistics beyond the scope
of a particular texture synthesis model are not likely to be con-
strained in a synthetic image. For example, the Heeger—Bergen
model does not measure the co-occurrence of filter outputs —
in this context, joint relationships between filters are considered
beyond the scope of that particular model and are in practice not
matched between original and synthetic textures. We assume that
both of these transformations cause images of natural textures to
deviate from the properties to which the human visual system is
tuned (Tkacik et al., 2010).

We conducted two experiments using a 4AFC detection para-
digm that required observers to identify a target oddball texture
patch from an array of unique texture patches. Since no two images
in the array were identical, participants had to perform this task
by comparing texture appearance across patches rather than rely-
ing on simpler image-level strategies (e.g., pixel matching). In
each task, we asked how easy it was for observers to discriminate
natural textures from unnatural textures subject to some trans-
formation applied to the entire array of textures. In Experiment
1, we asked how the ability to distinguish between natural and
synthesized textures was affected by the positive or negative con-
trast polarity of the entire array. In Experiment 2, we asked how
the ability to distinguish between natural and contrast-negated
textures was affected by replacing the original patches compris-
ing an array with synthetic versions of the same. In each case, the
crucial question was whether the transformation applied to the
entire array (contrast negation in Experiment 1, texture synthesis
in Experiment 2) affected the discrimination task under consider-
ation — if so, then observers must have been using information in

the original images that was no longer available in the transformed
images.

In both tasks, we also examined whether detection of the odd-
ball texture was affected by the appearance of the oddball. That
is, is there an asymmetry for detecting a natural texture among
unnatural distractors, or vice versa? Balas (2006) used both types
of oddball to discourage observers from reaching high levels of
performance via trivial strategies, but did not analyze error rates
separately for these conditions. Here we do so, since the pres-
ence or absence of such an asymmetry tells us whether or not
the transformation applied to the unnatural textures in each task
homogenizes distractor appearance. If, for example, patches froma
synthetic texture are more homogenous than patches from its orig-
inal parent texture, an oddball from the original image should be
easier to detect than an oddball from the synthetic image by virtue
of the decreased variability in distractor appearance (Rosenholtz,
2000,2001). Finally, we compared performance with familiar, real-
world textures (fruit and vegetable textures) to performance with
unfamiliar, abstract artwork. Comparing the results across these
two categories served an important purpose. This comparison
allowed us to assess the contribution of artifacts arising purely
from the method of transforming our natural textures into their
unnatural counterparts, ruling out effects driven solely by idiosyn-
crasies of the synthesis or negation processes. The abstract artwork
textures that we used lacked discernible objects, were clearly pla-
nar, and lacked a wide range of interesting material properties.
In short, though they contained extended contours, differently
oriented structures, and a range of pixel intensities, they lacked
many other qualities of textures we typically encounter. Should
any effects we observe depend solely on image artifacts introduced
during contrast negation or texture synthesis, there should be no
interaction with stimulus category — the same artifacts should
be evident in both types of texture. An interaction with texture
category, on the other hand, would tell us that there is a crucial
difference between removing information from a natural image
and removing information from a generic complex pattern.

EXPERIMENT 1

In our first experiment, we examined how observers’ ability to
distinguish natural and synthetic textures was affected by the
contrast polarity of the images under consideration. We used a
4AFC oddball detection paradigm to measure discrimination per-
formance for two texture classes: (1) fruits and vegetables, and
(2) Abstract artwork. We included Abstract paintings as a control
condition since these images share the general 1/f profile of spatial
frequency that natural scenes and textures exhibit (Taylor et al,,
2011), but lack most other properties of real-world textures (e.g.,
shape-from-shading, material properties, segmentable objects).

METHODS

Subjects

We recruited 13 participants (eight female) to take part in Experi-
ment 1. Participants were between the ages of 18-22 years old and
self-reported normal or corrected-to-normal vision.

Stimuli
We selected 16 grayscale textures for use in this task. Eight of
these textures depicted fruits and vegetables and the remainder
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depicted abstract artworks (Figure 1). We chose textures in both
categories to be fairly homogeneous, to be well-matched accord-
ing to the scale of the constituent items in the texture, and to
have fairly flat intensity distributions. All images were 256 x 256
pixels in size and contained 256 gray-levels. The power spectrum
magnitude roll-off of these textures (1/f®) did not differ by cate-
gory [Average BFruitVegetable = —2.36, Average Babstractart = —2.20,
t(18) = —1.01, p = 0.33, two-tailed independent-samples #-test].

We used each original texture to create three transformed tex-
tures: (1) A contrast-negated version of the original texture, (2)
a synthetic version of the original, and (3) a contrast-negated
synthetic version of the original — this was created by contrast-
negating the same synthetic texture described in (2). Contrast
negation was carried out using the GIMP image-editing appli-
cation. Parametric texture synthesis was performed in Matlab
using the Portilla—Simoncelli algorithm (Portilla and Simon-
celli, 2000), which matches synthetic texture appearance to an
original texture based on a texture code that is largely com-
prised of correlations between complex wavelet coefficients. We
chose this algorithm since it has recently been used in a range
of studies characterizing peripheral vision (Balas, 2006; Balas
et al., 2009; Rosenholtz et al., 2012b). A detailed description
of the algorithm can be found in the original manuscript, or
in Balas et al. (2009). There are, of course, several alternative
techniques for synthesizing natural textures. The most successful
methods for graphics applications, however, are non-parametric
methods that use image quilting or similar approaches to repro-
duce textures without representing them in terms of a consistent
vocabulary of image features (Efros and Leung, 1999; Efros and
Freeman, 2001). As such, the relationship between these algo-
rithms and the human visual system is more difficult to inter-
pret, and so we have opted to use a robust parametric model
here.

Synthetic textures were generated based on the default para-
meters of the Portilla—Simoncelli model and 50 iterations of the
synthesis procedure. We obtained good convergence for all of
the syntheses, as measured by near-zero changes in average pixel

Real

Real

Synthetic
o '

Positive

Negative

Abstract Art Textures

Fruit/Vegetable Textures

FIGURE 1 | Examples of textures from the fruit/vegetable category
(left) and the abstract art category (right). Original textures in each
category were transformed into synthetic textures using the
Portilla=Simoncelli algorithm (right column of each panel) and were also
contrast-negated (bottom row of each panel).

intensity at the final iteration (indicating a local minimum for
matching image statistics between the parent and synthetic image)
and also by close agreement between the texture statistics of the
original image and the synthetic image (indicating that the local
minimum attained is globally good). Adjusting the parameters of
the P-S model will certainly have an impact on the outcome of the
synthesis procedure, and we opted to use the default parameters
here because we were unable to identify a set of parameter val-
ues that yielded synthetic textures that were of subjectively higher
quality. In principle, increasing the number of orientations, or
changing the spatial neighborhood over which correlations are
stored could change synthetic texture appearance to more closely
match target images, but in practice, we found that the default
parameters were difficult to consistently improve upon over the
set of images we chose to test here.

Finally, all images were divided into quadrants, and each quad-
rant was further cropped with a circular window 128 pixels in
diameter. Each image thus yielded four non-overlapping circular
patches. The intensity (pixel values) histogram of each patch was
equalized, so that simple pixel statistics (e.g., mean luminance)
could not be used to discriminate one patch from another.

Procedure

We asked participants to complete a 4AFC oddball detection task
using the original and transformed stimuli described above. In
this experiment, target texture patches differed from distractors
by virtue of real/synthetic appearance. On each trial, participants
simultaneously viewed four unique texture patches: three non-
overlapping patches from one larger image, as described above,
and another which was the target “oddball” stimulus. The texture
patches were presented on a uniform black background, arranged
in a cross-shape (Figure 2) with the location of the oddball texture
randomized on each trial. Participants identified the position of
the oddball on each trial using a USB gamepad.

Participants were free to view each array of texture patches for
an unlimited amount of time, but were encouraged to correctly
identify the oddball as quickly as possible. Eye movements were
not constrained, so participants were free to foveate all of the
texture patches on each trial. Since eye movements were not pro-
scribed, observers who made multiple fixations across the extent
of our stimulus array accumulated information from both foveal
and peripheral vision. Critically, since all of the image patches
presented on a single trial were unique, an observer cannot suc-
ceed at this task by attempting to scrutinize and match individual
micropatterns, even though presentation is unlimited.

We presented the stimuli on a 1024 x 768 display that was posi-
tioned at a distance of 60 cm from the participant. This distance
was controlled using a Headspot chin rest, which was adjusted so
that the display was situated at eye-level. At this viewing distance,
each patch subtended ~2° of visual angle.

We manipulated several properties of the stimulus array in
Experiment 1. First, the entire array of textures could be com-
prised either of contrast-positive or contrast-negative versions
of the patches. This manipulation allowed us to examine the
extent to which discriminating between real and synthetic tex-
tures depended upon visual features that are specific to natural
contrast polarity. Second, we varied the appearance of the oddball
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Oddball

FIGURE 2 | Schematic representation of a single trial in Experiment 1.
The four texture patches are unigue, and in this instance the target oddball
patch is the single synthetic patch in an array of real patches. Participants’

task was to identify the location of the oddball (Top, Bottom, Left, or Right)
as quickly and accurately as possible.

across trials such that half of the time the oddball patch was the
only real texture presented among synthetic distractors, and half
of the time the opposite was the case. By varying the nature of
the oddball, we were able to assess whether or not there was an
extant asymmetry in identifying a real vs. synthetic oddball, which
is an important indicator that distractor appearance may be more
homogenous in one case than the other (Rosenholtz, 2001). Specif-
ically, we hypothesized that texture synthesis may homogenize the
appearance of distinct patches due to the loss of higher-order sta-
tistics, which would lead to an advantage for detecting real oddballs
among synthetic distractors. Finally, we asked observers to per-
form this task using both our set of natural object textures (fruits
and vegetables) and our set of abstract art textures. These texture
categories were presented to participants in separate blocks, with
block order alternated across participants and oddball type and
contrast polarity randomized within each block. By comparing
the effects of oddball type and contrast polarity across categories,
we were able to determine whether or not the impact of nega-
tion and texture synthesis was specific to categories observers have
substantial experience with.

Participants completed 48 trials per condition, for a grand total
of 384 trials (192 per block). Participants typically completed the
entire experiment in ~25 min. All stimulus display and response
collection routines were implemented in Matlab using the Psych-
toolbox extensions (Brainard, 1997; Pelli, 1997). All experimental
procedures and recruitment methods were approved by the North
Dakota State University IRB.

Results
We measured participants’ accuracy and response latency to cor-
rect answers in all conditions. We found that response latencies

tended to be quite long (~2.5s per trial averaged across all
participants) and were also highly variable within individual sub-
ject’s data. As such, we chose not to analyze these data further in
this task or Experiment 2, since it was not clear how best to sum-
marize the data from individual participants in terms of standard
measures of central tendency.

To analyze our accuracy data, we calculated each participants’
proportion correct in each condition (Figure 3) and analyzed
the results with a 2 x 2 x 2 repeated-measures ANOVA with tex-
ture category (fruit/vegetable vs. abstract art), contrast polarity
(positive vs. negative), and oddball type (real vs. synthetic) as
within-subject factors. We note that given our data is binomial
(correct/incorrect) it is more proper to use probit or logit analysis
instead of the linear model that is typically employed in similar
studies, and so in both Experiments 1 and 2, we also carried out a
logit analysis of our data. In each case, the results of obtained with
the logit function were highly consistent with the results obtained
from the linear model, and here we report the latter on the grounds
that most readers are likely to be more familiar with this than the
alternative.

The ANOVA revealed main effects of category [F(1,12) =58.1,
p <0.001, n? =0.83] and contrast [F(1, 12) =19.55, p=0.001,
n% =0.62], indicating that discrimination performance was less
accurate for abstract textures and contrast-negated textures. The
main effect of contrast negation was qualified by an interaction
between texture category and contrast, however [F(1, 12) =22.23,
p=0.001, 1% =0.65], such that the impact of contrast negation
on performance was significantly reduced in the abstract art con-
ditions. Finally, we also observed an interaction between texture
category and oddball type [F(1, 12) = 5.80, p =0.033, 1> =0.33],
such that synthetic oddballs were easier to detect in the abstract
art conditions, but real oddballs were easier to detect in the
fruit/vegetable conditions. No other main effects or interactions
were significant.

DISCUSSION

The results of Experiment 1 reveal several interesting features of
natural texture processing. First, we find that contrast negation of
the entire stimulus array does affect the ability to discriminate real
from synthetic textures, but not for textures of abstract artwork.
This suggests that contrast negation removes information from the

Natural Textures Abstract Art
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FIGURE 3 | Average proportion correct for all conditions in Experiment
1. Error bars represent +1 standard error of the mean.
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stimulus array that observers can use for discriminating between
real and synthetic textures. Participants must use fairly complex
statistics to identify the target in this task at all, since our real and
synthetic textures have well-matched intensity histograms, orien-
tation histograms, and joint histograms that describe several types
of wavelet correlations. One typical proxy for “higher-order” statis-
tics in natural textures, the phase spectrum (Emrith et al., 2010),
also does not offer a good account of the effect of negation in
our task. Following contrast negation, the phase of each image is
rotated 180°, but since this is true for all the images in the array,
numerical comparisons between the target and the distractors do
not change. The information lost must thus be some other prop-
erty of the textures used here, and the dependency of the negation
effect on texture category suggests that this information is irrel-
evant or unavailable for comparisons between real and synthetic
abstract artwork.

Second, we also observed an interaction between the effect of
oddball type and texture category. We suggest that these results
indicate that homogenization of texture appearance following syn-
thesis is more evident for fruit/vegetable textures than abstract art.
We interpret this detection asymmetry as evidence for homoge-
nization based on Rosenholtz’s (2001) argument that many visual
search asymmetries can be interpreted in terms of systematic
differences in appearance variation in the two categories under
consideration. An alternative interpretation of our data would be
to hypothesize that the synthesis process removes some critical
image feature that is present in the target texture, and which can
be detected pre-attentively by the human visual system. We cannot
explicitly rule out this possibility, but there are two primary reasons
why we think it is a less parsimonious account of our results. First,
as Rosenholtz (2001) discusses, hypothesizing new pre-attentive
features in general leads to an unwieldy theory of what the visual
system is computing — the description of the visual system is more
of a laundry list of potential features than it is a theory based
on consistent computational principles. Second, positing a true
feature-based asymmetry depends on careful consideration of the
experimental design in an appropriate feature space to ensure that
there are not built-in asymmetries present. Given that we do not
as yet know the right feature space for evaluating natural textures
like those used here, we suggest that we cannot legitimately claim
that our asymmetry is the result of a pre-attentively detected fea-
ture. However, regardless of which interpretation one favors, both
this effect of the oddball and the overall effect of negation could
be the result of material properties being difficult to recover from
transformed texture images. The abstract textures we used in this
task lacked qualities like glossiness (Anderson and Kim, 2009),
translucency (Fleming and Bulthoff, 2005), or roughness, all of
which depend in part on high-order statistics that are not gener-
ally preserved in synthetic or negated textures. Removing material
properties could homogenize texture appearance as we hypothe-
size, or material properties could be an example of an image feature
that is detected pre-attentively.

We continued in Experiment 2 by asking participants to per-
form a similar oddball detection task as described in Experiment 1,
but with a design that complements the manipulations we imple-
mented in our first task. In this case, we asked participants to
detect an oddball texture that was defined by contrast polarity,

subject to a transformation of the entire stimulus array via texture
synthesis. This second task allowed us to determine if contrast
negation and texture synthesis disrupt texture discrimination in a
similar manner, or if these transformations differentially disrupt
natural texture appearance.

EXPERIMENT 2

In Experiment 2, we examined how participants’ ability to distin-
guish between natural and contrast-negated textures was impacted
by the removal of higher-order statistics via texture synthesis. As in
Experiment 1, we used a 4AFC oddball detection paradigm to fur-
ther examine how the type of target and texture category affected
performance in this task.

METHODS

Subjects

We recruited 11 participants (four female) to take part in Experi-
ment 2. Participants were between the ages of 18-22 years old and
self-reported normal or corrected-to-normal vision. None of the
participants who volunteered for Experiment 2 had taken part in
Experiment 1.

Stimuli
We used the same stimulus set described in Experiment 1 for this
task.

Procedure

We used the same paradigm in Experiment 2 as described above
for Experiment 1. Participants were asked to select the oddball
texture patch from an array of four unique items. The critical dif-
ference between this task and Experiment 1 is that the oddball in
this task is defined by contrast polarity (positive or negative). Thus,
the target texture can either be the only contrast-negated image
among positive distractors or the converse (Figure 4). As in Exper-
iment 1, we manipulated texture category in separate blocks that
were alternated for presentation order across participants, and var-
ied the type of oddball randomly within these blocks. Further, to
examine the extent to which discriminating positive and negative
texture patches depends upon a rich set of natural image statis-
tics, we presented participants with arrays composed entirely of
real textures as well as arrays comprised only of synthetic textures.
The real/synthetic appearance of the entire array was randomized
across trials within each category block.

All stimulus and display parameters were identical to those
described in Experiment 1. Again, all experimental procedures
and recruitment methods were approved by the North Dakota
State University IRB.

Results
As in Experiment 1, we determined participants’ accuracy
in each condition (Figure 5) and submitted these values to
a 2 x 2 x 2 repeated-measures ANOVA, with texture category
(fruits/vegetables vs. abstract art), texture appearance (real vs. syn-
thetic), and oddball type (positive vs. negative) as within-subjects
factors.

The ANOVA revealed main effects of category [F(1,
10) = 385.2, p < 0.001, n> =0.98] and texture appearance [F(1,
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Oddball

FIGURE 4 | Schematic representation of a single trial in Experiment 2.
Like Experiment 1, we used four unique texture patches on each trial. In
this task, however, the oddball is of opposite contrast polarity than the
distractors. A contrast-negated oddball is shown here.
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FIGURE 5 | Average proportion correct for all conditions in Experiment
2. Error bars represent +1 standard error of the mean.

10) =120.7, p < 0.001, 1% = 0.92], indicating poorer performance
with abstract art textures and synthesized texture patches. We also
observed an interaction between category and texture appearance
[E(1, 10) =21.8, p=0.001, n> = 0.69], such that the impact of
texture synthesis on performance appears to be reduced (but not
absent) in the abstract art category relative to the fruit/vegetable
textures. No other main effects or interactions reached signifi-
cance. As in Experiment 1, we repeated this analysis with a logit
link function, which yielded results consistent with this analysis.

DISCUSSION

The key results of Experiment 2 are twofold: first, texture syn-
thesis does remove information observers use to discriminate
between positive- and negative-contrast texture patches. While
we did observe an interaction with texture category, unlike Exper-
iment 1, this is likely due to a floor effect for detecting the oddball in

the abstract artwork condition. The synthesized arrays are harder
for participants, but performance with the original textures was
already quite poor, leading to an interaction based on the size of
an effect in the same direction as we obtained with fruit/vegetable
textures. Second, we found no evidence of an oddball effect in
this task — accuracy did not differ as a function of whether the
oddball was of positive or negative polarity. Unlike texture syn-
thesis, contrast negation does not appear to induce any changes in
appearance that alter the homogeneity of texture patches. Contrast
negation and texture synthesis thus both remove information that
observers can use to discriminate between natural and unnatural
textures, but the losses incurred by these transformations differ
in their scope, and also differ in terms of their impact on texture
homogeneity.

GENERAL DISCUSSION

The results of Experiment 1 and Experiment 2 extend Balas’ (2006)
initial study of critical features for natural texture perception in
several ways. In Experiment 1, we have demonstrated that dis-
criminating natural from synthetic textures (a task that ostensibly
requires observers to detect differences in summary statistics that
are not explicitly matched by the Portilla-Simoncelli model) is
affected by contrast negation in a category-dependent way. Con-
trast negation of the entire stimulus array preserves the amplitude
spectrum of the constituent texture patches and also does not
impact observers’ ability to use diagnostic information in the phase
spectrum for discrimination. The rotation of the entire phase spec-
trum through 180° does not, for example, disrupt either local phase
congruence (Morrone and Burr, 1988) or the phase computa-
tions explored by Phillips and Todd (2010) as a means by which
macroscopic structures can be characterized. The imposition of
contrast negation must therefore disrupt different perceptually
relevant features that observers use to distinguish between nat-
ural and synthetic textures. This may include material properties
(Motoyoshi et al., 2007) used either on their own or as a proxy for
local shape computations (Fleming et al., 2004). In Experiment 2,
we demonstrated that discriminating natural textures on the basis
of contrast polarity was similarly impaired (though with aless clear
category-dependence) by the removal of higher-order statistics via
texture synthesis. Therefore, observers must be using information
beyond what is contained in the joint wavelet statistics used by
the Portilla—Simoncelli model to distinguish between positive and
negative contrast patches from the same parent texture.

One simple conclusion that follows from our results is that
observers’ make use of a rich and complex set of summary statistics
for the purposes of texture discrimination. This is commensu-
rate with a number of recent findings. Anderson and Kim (2009)
noted that though pixel skewness correlates with perceived glossi-
ness in some circumstances, interactions between local surface
geometry and local image statistics are also critical for material
perception. Similarly, the “bumpiness” and glossiness of textured
surfaces are measured conjointly (Ho et al., 2008). In both cases,
texture synthesis (which can disrupt local conjunctions that sup-
port the recovery of surface geometry) and contrast negation
(which can disrupt perceived glossiness and translucency) would
be expected to disrupt material perception. The recovery of shape
from texture is also known to be disrupted following synthesis of
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the original texture (Fleming et al., 2003), and the disruption of
specularities by contrast negation may also disrupt shape com-
putations that are based on texture appearance (Fleming et al.,
2004). These transformations thus disrupt multiple mid- to high-
level texture properties of natural textures, which we would expect
to be relevant in our fruit/vegetable condition, but not necessarily
in our abstract artwork condition.

Our data also imply that the visual system is tuned to nat-
ural texture appearance. We have found that specific deviations
from natural texture statistics across the entire stimulus array
lead to an impaired ability to discriminate texture patterns —
this is the case when we consider abstract art textures as exam-
ples of unnatural textures, and also applies to contrast-reversed
and synthetic textures. In each of these three cases, observers
do more poorly when asked to discriminate between texture
patches that do not match the typical appearance of natural
textures. This result differs from reports that natural image sta-
tistics impair the detection of contrast boundaries (Arsenault
et al., 2011) and distortions of local spatial structure (Bex, 2010).
Specifically, we find that ecologically relevant texture appear-
ance is facilitative, both when we consider the performance cost
incurred by asking participants to discriminate between abstract
artwork patterns relative to more ecologically valid textures and
also when we consider the effects of our two manipulations of
texture appearance. However, all three of these studies (the cur-
rent result; Bex, 2010; and Arsenault et al., 2011) demonstrate
that the visual system is in some sense tuned to the statistics of
the natural world — the difference is how that tuning impacts
performance.

Finally, the differential effect of oddball type in Experiments
1 and 2 suggests that contrast negation and texture synthesis
do fundamentally different things to natural texture appearance.
Specifically, contrast negation does not alter the perceived homo-
geneity of texture patches, while texture synthesis does so in a
category-dependent manner (which may reflect ecological tun-
ing of the visual system to a subset of texture categories). This
distinction between how negation and texture synthesis differen-
tially disrupt texture appearance may be related to Motoyoshi and
Kingdom’s (2007) proposal that there are two streams of second-
order processing: one stream that is sensitive to polarity (but not
orientation), and another that is sensitive to orientation (but not
polarity). Target detection in Experiments 1 and 2 may be pri-
marily supported by orientation-sensitive and polarity-sensitive
mechanisms, respectively, but it is unclear how the different prop-
erties of these streams would lead to the observed asymmetries
of oddball type observed in Experiment 1. More broadly, contrast
negation and texture synthesis (as operationalized here) may dif-
fer in the extent to which they disrupt the “things” and the “stuff”
in texture images. Intuitively, texture synthesis may disrupt both
qualities of a texture image while contrast negation may primarily
disrupt the “stuff”in a texture, since the preservation of edge distri-
butions following contrast negation may preserve observers’ ability
to segment discrete objects. This is an appealing idea, and examin-
ing the differential properties of textures made up of objects and
textures that lack segmentable structures could shed light on this
issue. We note however, that “things” and “stuff” are likely to be
disrupted by both transformations to some degree, especially since

contrast negation is known to disrupt shape recovery in some cir-
cumstances (Fleming et al., 2004), which may subsequently lead
to difficulties inferring the “things” that are in an image as well as
the material properties.

The current results suggest several interesting questions for
further research. First, we have used just one parametric texture
synthesis model as the basis for measuring the extent to which
higher-order statistics impact the discrimination of natural tex-
tures from unnatural textures. Selective lesioning of the model
(Balas, 2006) or augmentation of its vocabulary could potentially
inform us as to which statistics observers use in both of our
tasks. Manipulating the parameters of the P-S model could also
reveal important aspects of how natural texture discrimination is
implemented — Freeman and Simoncelli (2011), for example, have
created what they call texture “metamers” by varying the scale
parameter across the periphery. By varying this parameter (and
others) we could potentially examine how sensitive our results
are to the amount of local integration used to estimate appear-
ance. Second, some non-parametric texture synthesis techniques
that use texture-quilting as a method for synthesizing textures
(Efros and Freeman, 2001) guarantee complete preservation of
texture appearance within a local neighborhood, but may intro-
duce errors at larger scales subsequent to the assemblage of texture
patches into a larger pattern. Varying the size of the constituent
tiles in such a synthesized texture may thus be a useful means of
examining the size of the spatial neighborhood observers use to
compare natural textures to transformed ones, and how computa-
tions at different spatial scales are disrupted by the manipulations
we have employed here. Attempts to adapt non-parametric tech-
niques like pixel-growing (Efros and Leung, 1999) and quilting
may help us investigate the spatial extent of texture processing
even if these models are not so directly analogous to the human
visual system. Finally, we have made a rather crude comparison
here between two texture categories: images of food and images
of abstract artwork. For our purposes, these categories were useful
insofar as they differed substantially in terms of observers’ expe-
rience with them and the range of material properties, etc., that
were present in each category. Our choice of stimuli raises the
obvious question of generality, however — are our effects specific
to fruit and vegetables? What differences between these categories
drove the category interactions we observed? At a category level or
an item level, considering the impact of specific image properties
(e.g., edge density, similar to Arsenault et al., 2011) may help clar-
ify the underlying mechanisms supporting these effects. Likewise,
systematically varying mid- and high-level image properties across
a wider range of categories (e.g., glossy and matte textures, dense
vs. sparse textures) may yield further insight into what statistics
observers make use of in natural texture discrimination tasks.
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