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We describe a mathematical model of learning and memory and apply it to the dynamics
of forgetting and amnesia. The model is based on the hypothesis that the neural systems
involved in memory at different time scales share two fundamental properties: (1) repre-
sentations in a store decline in strength (2) while trying to induce new representations in
higher-level more permanent stores. This paper addresses several types of experimental
and clinical phenomena: (i) the temporal gradient of retrograde amnesia (Ribot’s Law), (ii)
forgetting curves with and without anterograde amnesia, and (iii) learning and forgetting
curves with impaired cortical plasticity. Results are in the form of closed-form expres-
sions that are applied to studies with mice, rats, and monkeys. In order to analyze human
data in a quantitative manner, we also derive a relative measure of retrograde amnesia
that removes the effects of non-equal item difficulty for different time periods commonly
found with clinical retrograde amnesia tests. Using these analytical tools, we review stud-
ies of temporal gradients in the memory of patients with Korsakoff’s Disease, Alzheimer’s
Dementia, Huntington’s Disease, and other disorders.
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INTRODUCTION
Since the 1950s, many models of long-term memory and retro-
grade amnesia have been published that are based on an abstrac-
tion of the neuroanatomy, giving a particularly important role to
the hippocampus and adjacent medial temporal lobe (MTL) struc-
tures (see McClelland et al., 1995; Squire and Alvarez, 1995; Murre,
1996; Meeter and Murre, 2004a, 2005). These models postulate
that memories show an initial dependence on the hippocampus
that diminishes with time. This process of becoming-independent
is often referred to as memory consolidation (Meeter and Murre,
2004a). It is typically assumed that repeated reinstatement of a
hippocampal-neocortical representation drives this systems-level
consolidation process, which authors believe (largely) takes place
during sleep (e.g., Stickgold et al., 2000; Stickgold, 2005; Ellenbo-
gen et al., 2006; Marshall and Born, 2007). In the past, we have
modeled this process in some detail using a neural network model
(Murre, 1996; Meeter and Murre, 2005), demonstrating that such
a model can explain many of the characteristics of amnesia and
semantic dementia (Meeter and Murre, 2004b). The work pre-
sented here can be seen as an abstraction of our earlier work based
on neural network models of amnesia (Murre et al., 2007), which
also assumed a hippocampus-to-cortex consolidation processes.
In this paper we extend this model and apply it to a wider range
of data.

Although several models have been able to qualitatively repro-
duce some data emerging from the study of amnesia, only a
few studies presenting quantitatively rigorous treatments have
appeared, mostly – like our model – in the context of a neural
network model (McClelland et al., 1995; Nadel et al., 2000). If it
were possible to capture the shape of retention in various forms
of amnesia, this could be used to better validate tests of amnesia
and connect parameters at the neural level, such as the severity of

a lesion, to behavioral measures, such as the gradient of the retro-
grade amnesia curve. In this paper, we describe a model of learning
and forgetting, the Memory Chain Model, and demonstrate that it
can also account for amnesia. The model’s mechanisms are a high-
level abstraction of known processes and structures in the brain:
a newly learned pattern mobilizes a cascade of mechanisms such
as firing neurons, activated neural assemblies, synaptic changes,
neural recruitment, and axonal growth (e.g., Milner et al., 1998;
McGaugh, 2000). These processes are all able to hold a memory
for a certain time period, from ultra-brief to very long.

Although the mechanisms of memory differ vastly in qual-
ity and scale, it is our main hypothesis that all neural mecha-
nisms involved in memory share two fundamental characteristics,
which form the basis for our mechanism of abstraction: First,
a process’s memory strength diminishes over time. Second, as
long as a memory has not been lost, it continues to generate
or induce more permanent memory processes in a higher-level
store. For example, as long as neural assemblies are firing, synaptic
enhancement may take place: one process induces another, more
permanent process. It is our hypothesis that these two funda-
mental properties operate on all time scales in roughly the same
manner.

If our hypothesis is correct it would explain why forgetting
curves can be described by the same shape function, whether
ranging over seconds, months, or years, despite very different
underlying neural processes (e.g., based on firing neurons, changes
in synaptic strength, or growth of entirely new connections).
Suppose, for example, that we have two processes, say WM (work-
ing memory) and LTP (long-term potentiation in hippocampus).
Then, in terms of our assumptions, we have the situation where
WM is decaying while trying to “write” its contents to hippocam-
pal LTP, which itself would also decaying exponentially, though at
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a much slower rate. The question we ask ourselves in this paper
is: Given that our hypothesis holds true, what would be the resul-
tant, combined process in terms of retrieving the contents from
memory? That is, can we say something about the shape retention
curve? As it turns out, the mathematical expressions for such a
process can indeed be derived and are well-formed. Moreover, they
can be adapted to prevalent memory measures such as cued recall
and recognition and the extension to neural systems is straight-
forward. Furthermore, if we assume that a retention curve is the
result of several interacting neural processes, also the pathological
curves can be derived and analyzed. These are the memory curves
obtained from amnesia patients or experimental animals,. The
model, thus, ties neurobiology and pathology to behavior. For this
it is crucial that the parameters in the equations correspond in a
meaningful and transparent manner to neurobiological or psycho-
logical processes or systems, which is what we aim to accomplish
in this paper.

The main objective of this paper, thus, is to verify our hypoth-
esis about the uniformity of neural memory processes at different
time scales. In order to achieve this we apply the model to amnesia
and carry out initial tests by fitting the model to a variety of data
sets. Though the model was not developed specifically for amne-
sia, we will show that without any modifications it can account
for the data. We will first review the model, leaving the mathe-
matical details for Appendix. The model is then tested on data
from animals and human patients in the Section “Results.” In the
Section “Discussion,” we evaluate the implications of the results
for consolidation theory.

THEORY
Our model assumes that memory processes can be decomposed
into a number of processes that contain memory representa-
tions. Processes are system-level abstractions of neurobiological
processes and structures. Lifetimes of representations in these

memory processes range from milliseconds (extremely short-term
processes) to decades (very long-term processes).

A memory representation consists of one or more traces, any of
which suffices to retrieve the memory. Such a memory trace could
for example be a neural pathway that has been strengthened by
LTP so that upon its activation a learned response will be elicited.
Such a trace can either encode a rather complete copy of a memory
(cf. trace replicas in Nadel et al., 2000) or merely a critical feature
(in the sense of feature models, as in Murdock, 1974) that allows
retrieval of the entire memory representation.

During the period of measurement, a newly learned memory
will engage one or more of the processes. Processes are chained
in a feedforward manner (see Figure 1). Each trace in a process
generates traces of its representation in the next higher process,
for example through LTP in hippocampus (Abraham, 2003) or
neocortex (Racine et al., 1995; Trepel and Racine, 1998). This
trace generation is governed by chance, the generation proba-
bility being one of the parameters in the model. During initial
learning, we assume that the to-be-learned material gradually
generates traces in the first process in the chain. A trace has a
probability of being lost, for example because it is overwritten
by different traces or because of neural noise. All traces in a
process share the same loss probability. Once a trace is lost, it
can no longer generate new traces in higher processes. Higher
processes in the chain have lower decline rates, so that the process
sketched here is one of rapidly declining processes trying to salvage
their representations by generating traces in more slowly declining
processes.

In this paper we will assume that retrieval of a single mem-
ory trace in any of the processes suffices for complete recall. The
search process initiated by the retrieval cue will typically reactivate
only part of a process. This makes memory retrieval stochastic:
even if traces are present, it is possible that none will be recovered
during attempted retrieval. This is the case if the neural pathways

FIGURE 1 | Illustration of the memory chain. (A) Memory systems at different time scales, with memory decline in each system and induction (generation)
of new representations in the next system. (B) Abstract representation used in the Memory Chain Model.
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activated by a given memory cue do not manage to connect to any
of the memory traces.

One might compare this retrieval process to searching for an
unlit candle in a dark apartment using only a flashlight, for exam-
ple, when the electricity suddenly shuts off during a dark night.
Suppose that zero or more candles are randomly scattered around
an unfamiliar room. We compare the search for a memory trace
in the brain with the search for a candle to light, not knowing
beforehand whether any are present. We start pointing our flash-
light beam around on the floor randomly until we find a candle,
at which point we have accomplished the retrieval. This example
highlights four aspects of the search process: (i) A large size of the
flashlight beam will speed up the search. This may be compared to
a more specific or better memory cue. (ii) The more candles there
are, the higher the chances of finding one soon. Thus, if there are
more traces in the brain that represent a given memory, chances
of retrieval increase. Such an increase is accomplished through
additional learning (more memory traces=more candles in the
example). (iii) The longer we stumble around with our flashlight,
the higher the chance of eventually finding a candle. This suggests
that the longer we allow a subject to attempt to retrieve some-
thing, the higher the chances of eventual retrieval. (iv) If I have
only 1 min to find a candle, I may not find any, even if several are
present. Then again, I may get lucky. Thus, in time-limited search,
retrieval failures are common even if memory traces are present.
Given the same number of memory traces, retrieval may some-
times be successful and at other times it may fail, though more
candles will increase chances of success substantially.

Exactly how the different aspects of the neural process interact
to produce characteristic shapes of forgetting and amnesia curves
is the topic of this paper. A few additional assumptions are nec-
essary to connect the biology to the behavior, for example, how
strong a trace must be to still elicit a response. We deliberately
abstract from many details of the neurobiological processes (i.e.,
ignore them), in order to achieve rigorous, systems-level formal-
ization, leaving the role of many of the remaining – possibly highly
relevant – details to be explored in other models. After having sum-
marized the results in a few equations, we apply them to a variety
of data sets to explore the strengths and weaknesses of the model.

FORMALIZATION
The assumptions introduced above can be translated into a math-
ematical model that allows the derivation of the shape of learning
and forgetting. Appendix gives details of the derivations that are
relevant for this paper. We will here limit ourselves to discussing
some of the key concepts.

The expected total number of traces is called the intensity of the
memory. New learning trials add their contribution to the existing
intensity (cf. more candles in the example above). Different from
the example is that memory traces will start to decline very soon
after their formation.

An important neurobiological mechanism of memory trace
formation is LTP, which increases due to repeated activation,
both in hippocampus (Bliss and Gardner-Medwin, 1973; Abraham
et al., 2002) and neocortex (Racine et al., 1995). Longer learning
periods and repeated learning trials lead to a proportional increase
in intensity by simply adding their contribution, but only up to a

point. A biologically plausible model must recognize that neuro-
biological resources are finite and place limits on the strength and
number of synaptic connections that can be formed. There must,
therefore, be a maximum to the intensity a memory trace can
reach. When this maximum is approached, the learning process
saturates and becomes less effective (Huang and Kandel, 1994).
With these assumptions, we can describe the shape of the learning
curve as well as the advantage of spaced over massed learning in
some detail, which we do in a separate paper (Chessa and Murre,
2007).

After learning, various processes may lead to a loss of traces,
described by the decline function, which describes the decline of
intensity after learning as a function of time. Throughout this
paper we will assume a constant decay rate, thus arriving at an
exponentially declining function. It should be remarked, how-
ever, that the exponential decline assumption is not critical for
the working of the model, which may also be developed with for
example a power function as a decline function, though the result-
ing equations are more complicated and not all closed-form. Apart
from mathematical tractability, there are in our opinion also sound
psychological and neurobiological reasons for assuming exponen-
tial decay. Our model shares the exponential decline assumption
with classic models in memory psychology, for example, the two-
process mathematical model by Atkinson and Shiffrin (1968) and
the Bower–Lockhart attribute models (Murdock, 1974). Recall
data obtained from laboratory experiments that intend to measure
short-term memory decline through the classical Brown–Peterson
learning and distraction task also support an exponential decline
(Peterson and Peterson, 1959). There is, furthermore, evidence at
a neural level for exponential decline of LTP within single brain
structures (Barnes and McNaughton, 1980; Abraham and Otani,
1991; Abraham, 2003).

The effectiveness of the search processes is determined by the
quality of retrieval cues presented to the subject. A good example
of this is the study by Wagenaar (1986), who cued his own autobi-
ographical memory by providing himself with one, two, or three
memory cues (e.g., about who was present, or when the event took
place). In our model, this translates into an increase in the size of
the “section of memory” searched in one time unit, increasing the
chances of encountering a memory trace (widening the flashlight
beam above leads to more floor area covered per minute). In most
experiments addressed here, however, the quality of the cues is not
varied between conditions and without loss of generality we can
set the total size of the cued area per time unit to 1. Cue qual-
ity is denoted as q (see Table 1 for an overview of symbols and
equations).

A special case of cue variation concerns tests of retrograde
amnesia for patients. In these tests, the questions for the remote
time period are often made easier than for the recent time periods.
This can be interpreted as providing better cues for remote time
periods, a practice that makes the shape of the retention curves
impossible to interpret, each of its points having been manip-
ulated arbitrarily. We return to this point when discussing the
relative retrograde gradient (rr-gradient), which aims to remedy
this problem.

In the formal model, the effects of learning, storage, and
retrieval are multiplied to arrive at the total memory intensity. The
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Table 1 | Overview of the equations and symbols used in this paper,

assuming a2=0.

Normal forgetting curve p(t) = 1− e−{r1(t)+r2(t)}

= 1− exp
(
−µ1e−a1t

−
µ1µ2

a1

(
1− e−a1t ))

Ribot gradient pRibot(t) = 1− e−r2(t)

= 1− exp
(
−µ1µ2

a1

(
1− e−a1t ))

Relative retrograde

gradient (data

transformation)

rr (t) =
−loge(1− plesioned(t))
−loge(1− pcontrol(t))

Relative retrograde

gradient

rr (t) =

{
−a1

(
1− ea1t )−1

µ2
+ 1

}−1

Symbol Description

Free parameters

µ1 Acquired intensity (during learning) of

hippocampal/MTL process

µ2 Consolidation rate to the neocortical process

a1 Decline rate of hippocampal/MTL process

a2 Decline rate of neocortical process

(assumed to be 0 here)

λ Lesion size (0 is no lesion; 1 is full lesion)

Derived functions

p(t ) Recall probability as a function of time t

r1(t ) Intensity of the hippocampal (MTL) process

r2(t ) Intensity of the neocortical process

r12(t ) Combined intensity of r1(t ) and r2(t )

rr (t ) Relative retrograde gradient

intensity increases with learning and decreases with forgetting as
a function of time:

memory intensity (time) = acquired intensity

× intensity decline (time)

× cue quality

Acquired intensity represents the contribution of the learn-
ing trial, decline represents the effects of time-dependent stor-
age processes, and cue quality represents the effectiveness of the
memory search.

All experiments analyzed in this paper use probability of recall,
p(t ), as the dependent measure, where t is the age of the memory:
the time elapsed since acquisition of the memory. The relation
between memory intensity and recall probability can be described
by a simple function: p(t )= 1− e−intensity (t ) (see Appendix).
Figure 2 shows a typical forgetting function where “hippocam-
pus” process declines rapidly, while the “neocortex” process builds
up intensity. In cases of high consolidation rates (e.g., in Stick-
gold et al., 2000), this may even lead to a temporary increase in
total intensity and hence recall probability, but such cases are not
modeled in this paper. As the hippocampal process is depleted,
the build-up of neocortical process comes to a stand-still, which
would eventually turn into a decline (not shown in Figure 2).

We have already tested our model on a variety of experiments
with normal subjects demonstrating that our model is able to
describe the shape of forgetting and learning. It has also been
applied to learning and forgetting of TV commercials and printed
advertizements (Chessa and Murre, 2007). An example of a fit to a
forgetting curve with 1800 observations per data point is given in
Figure 3. Due to the high number of observations, the error bars
of the data points would fall within the dots. Despite these high
numbers of observations, our model fits these data well, suggest-
ing that we have captured an important aspect of the processes
underlying learning and forgetting.

An objection to these types of fitting exercises is that all forget-
ting curves have roughly the same shape and are thus fitted by a
large class of mathematical models (Roberts and Pashler, 2000). In
other words, forgetting and learning curves contain only a limited
amount of information to constrain models, which is why in this
paper we expand the range of application by fitting the model to
processes affected by various types of lesions and pathologies. The
question is: Can good fits be achieved across conditions and exper-
iments by varying meaningful parameters? Can we, for example, fit
the“forgetting”curve of hippocampus-lesioned animals by setting
the hippocampus component of the model to zero? Though such
fits still do not “prove” that the model is correct, they would be
encouraging in that it would seem that model had captured some
important elements of memory and the underlying neurobiology.
In particular, it would be support in favor of our hypothesis about
the common characteristics of generation (induction) and decline
of neural memory processes across time scales.

In this paper, we focus on experiments that compare normal
forgetting with the effects of lesioning (or disrupting) the MTL
and the neocortex. A working hypothesis is that these structures
can be identified as two processes of the model. This is a continu-
ation of our earlier work with neural network models of amnesia
by us (e.g., Murre, 1996; Murre et al., 2001; Meeter and Murre,
2004a, 2005) and others (e.g., McClelland et al., 1995; Squire and
Alvarez, 1995; Nadel and Moscovitch, 1997).

Most of the experiments considered here do not contain data
points in very brief retention intervals such as in the seconds or
minutes range. If that were the case, we would need early stores like
working memory. We will usually assume that these early processes
have already run their course and ignore them. So, we consider the
hippocampus or MTL as Process 1 and the neocortex as Process
2. It should perhaps be pointed out that this model presents the
minimal model that could be applied to these data. In our neural
network models (e.g., Meeter et al., 2002; Talamini et al., 2005), we
have found it worthwhile to include a third, intermediate process
(entorhinal cortex, parahippocampal gyrus). The data considered
in this paper, however, are too noisy to allow testing of such higher-
order models. We have included studies with different animals,
pathologies, procedures, and materials to test the model across a
range of data. Most are more or less “classic” data in the field. We
are aware that the model should be tested on a much wider range
but we consider this work for the future (see Discussion).

Each abstract neural process of the model is characterized by
two parameters. The first parameter concerns the rate with which
a process fills up with newly generated traces. In this paper, a sub-
script 1 denotes the hippocampus (or MTL) and a subscript 2 the
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FIGURE 2 | Example of typical forgetting curve with simulated underlying processes in hippocampal and neocortical stores. (A) Intensity as a function
of time. (B) Recall probability as a function of time. The curves in (A,B) are based on the same parameters.

FIGURE 3 | Example application of the Memory Chain Model to a
forgetting curve, with a high number of observations per data point
using a three-process recall probability function (solid curve) and the
power-law (dotted curve). The recall data are word pairs from Rubin et al.

(1999). Each data point is based on 1800 observations. The model fitted well
on the chi-square test, which becomes more severe with the number of
observations (α=0.55 and R2 > 0.999). The power-law was rejected by the
chi-square test.

neocortex (see Table 1). In particular, µ1 refers to the intensity
acquired during learning, µ2 refers to the rate with which the neo-
cortex is filled due to consolidation. The second parameter is the
decline rate, which we denote as a1 and a2, for the hippocampus
and neocortex, respectively.

THE RIBOT GRADIENT
Since the work of Ribot (1881) in the nineteenth century, it is
known that the temporal gradient in retrograde amnesia, often
named“Ribot gradient”in his honor, shows a characteristic pattern
with disproportional memory loss for recent time periods. Given
our assumption that the hippocampal (MTL) process is damaged
in amnesia, the shape of the Ribot gradient can be derived from the
Memory Chain Model: it is a retention curve where the contribu-
tion of the hippocampal (MTL) process is removed. Below,“Ribot
gradient” will refer to such a pathological forgetting curve and
“forgetting curve” will refer to the curve of the healthy controls.

In this paper, r1(t ) will refer to the intensity of the hippocampal
process (as a function of time) and r2(t ) to that of the neocortical
process (see Table 1). In the Memory Chain Model the total mem-
ory intensity is simply the sum of the intensities of the individual
processes: r(t )= r1(t )+ r2(t ). A full lesion at time t l of the hip-
pocampus translates to removing the contribution of r1(t l) from
the total intensity r(t l). What remains in such a case is the neocor-
tical intensity, r2(t l), which reflects the result of the consolidation
process until the lesioning time t l. It, thus, immediately follows
that the shape of the Ribot gradient with a full hippocampal lesion
at time t l is identical to the expression for r2(t l). Tests of retrograde
amnesia do not measure intensity directly but they rather measure
recall probability. The predicted shape of these test gradients is,
therefore, given by pRibot(t ) = 1− e−r2(t1) (see Appendix)

If the hippocampus is lesioned at time t l, then there no more
memories will be formed after that. There will also be no more
consolidation from hippocampus-to-cortex. That means that if
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the intensity of a particular memory at the time of the lesion is
r(t l), then after that will only follow a decline of the memory
intensity with neocortical decline rate a2, the equation of which is
given by r(tl)e−a2(τ) where τ is the time elapsed since the lesion.
We have not been able to find data of high enough quality on such
post-lesion forgetting curves, though in principle they could be
fitted. Hence, we will drop the subscript l in t l and continue to
write t in equations for the Ribot gradient, assuming that in the
data considered post-lesion forgetting is negligible.

We often find that neocortical decline (parameter a2) is close
to zero for the material and time periods used in the experi-
ments tested here, for example, because the time period is too
short for any neocortical decline to become prominent. Equations
for the normal forgetting curve and the Ribot gradient equation
are derived in Appendix and listed in Table 1 for the case of no
neocortical forgetting and a full lesion of the hippocampal area.

In some lesion studies discussed below, we leave the size of the
lesion as a free parameter. The lesion parameter is denoted as λ,
with 0≤λ≤ 1. If the lesion parameter is 0, no lesion is present
and if λ= 1 we have a 100% lesion. In case of a partial lesion, the
Ribot gradient is equal to pRibot(t ) = 1− e−[(1−λ)r1(t )+r2(t )]. The
effects of full and partial lesions of the hippocampal process are
illustrated in Figure 4.

THE RELATIVE RETROGRADE GRADIENT
As far as we are aware, this is the first time a closed-form expres-
sion (i.e., one that can be expressed analytically as a finite sum of
well-known functions) is proposed for the Ribot gradient. Unfor-
tunately, there is problem in applying it directly to patient data.
This stems from the fact that in tests of retrograde amnesia it

FIGURE 4 | Illustration of partial retrograde amnesia, from a full lesion
to no lesion of Process 1 (hippocampus/MTL). Values of the lesion
parameter λ were 1.0, 0.875, 0.75, 0.5, and 0.0. The other parameters were
µ1 =2.0, a1 =0.3, µ2 =0.1, and a2 =0 (simulated data with arbitrary time
units).

is almost never possible to counterbalance items, because by their
very nature these items are tied to their time period, some of which
will be more memorable than others. Also, items with questions
about remote events are typically made easier than recent items
(e.g., tests may have recent, rather minor events in national poli-
tics and also major, historical events during World War II for the
remote time periods). There are good clinical and theoretical rea-
sons for doing this. With a nearly flat but high forgetting curve for
the controls (say around 85%), there is a higher chance of uncov-
ering a Ribot gradient for the patient groups because floor effects
are diminished for the remote time periods. If this were not done,
controls would be near floor for remote time periods and there
would be little room to uncover Ribot gradients. When fitting a
model, however, this implies that items can only be compared in
a pair-wise manner, and not across time periods. The shape of
the individual curves is distorted by the manipulation of item dif-
ficulty. It also implies that recent and remote items may be of a
completely different nature; we will return to this hard-to-evaluate
issue in the Section “Discussion.”

Our model offers a way to still use the data of non-
counterbalanced retrograde amnesia tests. As we show in Appen-
dix, dividing the intensity (but not the recall probability) of the
patient’s curve by that of the control’s curve results in a new
curve from which the acquired intensity parameter µ1 and the
cue specificity parameter q are eliminated. The latter parameters
are associated among others with how well the items have been
learned and how easily they can be retrieved. Removing their effect
also removes the distortion. Like the Ribot gradient, the resulting
curve is defined over the period before the lesion; it describes the
proportion of intensity that has survived (such a curve cannot be
obtained by dividing the recall probabilities, because parameters
µ1 and q will not cancel each other out in that case). We call the
resulting curve the rr-gradient,because it expresses the shape of the
Ribot gradient relative to the normal forgetting curve. The shape
of the rr-gradient is derived in Appendix and given in Table 1 for
the case of a full hippocampal lesion with and without neocortical
decline.

Most tests of retrograde amnesia give us recall probabilities as
a function of time elapsed, which is denoted as p(t ). An observed
recall probability p(t ) can be transformed into intensity r(t ) by
taking−loge(1− p(t )), where loge is the natural-based logarithm.
This data transformation can be carried out on the average test
results and is also given in Table 1. One could also take the ratio
of the untransformed probabilities p(t ) (e.g., Brown, 2002), but
this is less accurate because of the non-linear transformation from
underlying trace intensity (which varies over a wide range) to
probability (which is constrained between 0 and 1). This means
that say a probability of 0.90 does not reflect a trace that is 50%
stronger than one that has a response probability of 0.60, but
rather one that is more than 150% stronger. Figure 5 illustrates
how manipulation of item difficulty leads to distorted forgetting
and Ribot gradients. The rr-gradients, however, do not vary.

When lesions of Process 1 (hippocampus/MTL) are not com-
plete, the rr-gradient will not pass through 0 but it will intersect
the ordinate. As we show in Appendix, the point of intersection
is equal to 1−λ, where λ is the hippocampal lesion parameter.
Thus, if 70% of the hippocampus is lesioned, the rr-gradient will
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FIGURE 5 |The relative retrograde gradient remains unaffected by
manipulation of item difficulty. (Illustration with self-generated data
points. (A) Example forgetting curve (white dots) and Ribot gradient (black
dots), generated with the model using µ1 = 2, a1 =0.04, µ2 =0.01, and

a2 =0. (B) Distorted curve where µ1 has been multiplied with (from left to
right) 1, 1.4, 1.8, 1.4, and 2. (C) Relative retrograde gradient for the
undistorted curves. (D) Relative retrograde gradient for the distorted
curves.

intersect the ordinate at 0.3. It should be remarked that this unle-
sioned fraction does not necessarily coincide with, say, the volume
of remaining tissue and may vary with task difficulty.

The rr-gradient is first of all simply a transformation of the
data. Figure 5B presents an idealized example of how a jagged
forgetting and Ribot curve would be transformed into a smooth
rr-gradient. Another characteristic is that when easy and hard
questions in a test are plotted separately, they should have the
same rr-gradients because they are not affected by item diffi-
culty. In Figure 6, we present data from Korsakoff ’s Disease
patients and control subjects (Albert et al., 1979), see Studies
a–c in our Table 3, divided into easy and hard questions. For
each study, the upper panels 1 and 2 show the recall proba-
bilities, while the lower panels 3 and 4 show the empirical rr-
gradient (i.e., the transformed data) with a best fitting curve based
on our model. The rr-gradients tend to be smoother than the
non-transformed curves. Also, the rr-gradients of easy and hard
items of one study are more similar than their non-transformed
curves.

The rr-gradient allows us to examine the sizable database of
human patient studies in retrograde amnesia in a novel manner
and make more informed comparisons.

RESULTS
Unfortunately, data in the neuropsychology of memory is not very
suitable for quantitative modeling (Murre, 2002). The number of
subjects is often lower than six and the number of observations per
data point frequently does not exceed 20. The subjects (patients)
often have neuropathologies in addition to the one diagnosed and
targeted. These factors give rise to great variability in the empir-
ical curves. Furthermore, the number of data points per curve
rarely exceeds five. Such data typically do not constrain models
very much: many models may fit them. We attempt here to coun-
teract some of these limitations by fitting our model to a variety
of suitable amnesia studies and animal experiments.

For this paper, we selected a number of “classical”data sets from
studies that investigate the effects of hippocampal or neocortical
afflictions and that include a normal forgetting curve as a control.
A restriction was that there be at least four data points per curve,
so that we had at least eight data points per study and at least four
for the rr-gradient. Studies with merely an ordinal time scale were
excluded, unless it was possible to assign plausible time values to
the categories. Where appropriate, we will discuss the relevance of
the animal results for our understanding of comparable syndromes
in human patients.
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FIGURE 6 | Data from three studies with Korsakoff patients and controls
(Albert et al., 1979; see Studies a–c in ourTable 3). In each study, panels 1
and 2 represent easy and hard items, respectively. Open circles represent

patient data, solid circles controls. Panels 3 and 4 give the relative retrograde
gradient for easy and hard items, respectively, shown with triangles. The solid
curves are fits by the model, assuming that a2 =0.

ANALYSIS OF ANIMAL DATA
Forgetting curves and Ribot gradients in retrograde amnesia
We selected the six prospective animal studies on retrograde amne-
sia that include at least four data points per curve (see Figure 7;
Table 2). We fitted the pathological and control curves simul-
taneously with a two-process model. Given the noisy data and
the relatively short period of measurement (up to a few weeks
or months), we hypothesized that neocortical decline would not
yield any measurable effects. We therefore set the decline parame-
ter of the neocortical process a2 to 0 in all fits. We also assumed
that the lesions would be complete rather than partial, allowing
us to fix λ at 1. We thus had 8 or 10 data points and three para-
meters per study: acquired intensity during the training phase
µ1, hippocampal decline rate a1, and neocortical consolidation
rate µ2.

During our analyses, the study by Wiig et al. (1996) gave a
very bad fit, with the model explaining less than 20% of the
variance (R2 < 0.20). Inspection of the curves suggested that the
time periods were of unequal difficulty, varying in pairs. We con-
tacted the first author, who confirmed that items had indeed not

been counterbalanced. The dominant item-effects obscure the true
shape of the forgetting and Ribot gradients. We, therefore, calcu-
lated an rr-gradient for these data, which removed the item-effects
and exposed a much smoother empirical curve (see triangles in
Figure 7D).

The fits are summarized in Table 2 and give R2 values in the
range from 0.70 to 0.96. Our model explains 89% of the variance
in the data on average. Clearly, the high noise level in the data
imposes only weak constraints on the shape of the fitted curves.
Nonetheless, we can conclude that the model provides an ade-
quate account for the animal Ribot gradients without adding new
parameters to the original model.

Forgetting with anterograde amnesia
The Memory Chain Model predicts altered observed forgetting
curves when Process 1 (hippocampus) has been lesioned. For
short-term forgetting, there cannot be any transfer from working
memory to a lesioned hippocampus, so there will be increased
forgetting in case of full or (substantial) partial hippocampal
lesions.
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FIGURE 7 | Fits of the model to six animal experiments on
retrograde amnesia. Experimental animals have lesions to various
parts of the MTL (open squares), controls have mock lesions (closed
circles). Fitted lines are solid without markers. SeeTable 2 for further
details. (A) Using mice with two-choice spatial discrimination (Cho
et al., 1993). (B) Using mice with two-choice spatial discrimination (Cho

and Kesner, 1996). (C) Using rats in a contextual fear paradigm (Kim
and Fanselow, 1992). (D) Using rats (Wiig et al., 1996). Here, the
triangles represented the relative retrograde gradient, as in Figure 6.
(E) Using rats with social learning of food preference (Winocur, 1990).
(F) Using monkeys in a delayed matching to target task (Zola-Morgan
and Squire, 1990).

Table 2 | Fits to experiments with mice, monkeys, and rats with lesions or transgenic alterations in the indicated structures.

Study Experimental design factors Model

P Time-scale Task Lesion D µ1 µ2 a1 R2 MTL lifetime

(days)

Cho et al. (1993) m 3.5–56 days Two-choice spatial discrimination EC 8 1.50 0.00325 0.103 0.94 9.7

Cho and Kesner (1996) R 3.5–42 days Spatial discrimination EC 8 1.60 0.0146 0.0249 0.97 40.2

Kim and Fanselow (1992) R 3.5–56 days Contextual fear conditioning H 8 1.07 0.0149 0.0279 0.93 35.9

Wiig et al. (1996) R 7–56 days Visual discrimination F 5 0.00798 0.0335 0.94
†

29.9

Winocur (1990) R 0–10 days Socially acquired food preference DH 8 1.21 0.124 0.286 0.88 3.5

Zola-Morgan and Squire (1990) M 14–112 days Delayed matching to stimulus H 10 1.78 0.0116 0.0446 0.71 22.4

Frankland et al. (2001) m* 1–50 days Contextual fear conditioning NC 23 0.372 0.519 0.326 0.98 3.1

P, participants; m, mice; m*, genetically altered mice; M, monkeys; R, rats; EC, entorhinal cortex, H, hippocampus, F, fornix, DH, dorsal hippocampus, NC, impaired

neocortical plasticity; D, number of data points; parameters are given for time units in days. † Parameter values are for rr-gradient.

Squire and Zola-Morgan (1991). One animal study by Squire
and Zola-Morgan (1991) is particularly suitable to test our predic-
tion. Monkeys were tested in a delayed non-matching to sample
paradigm with delays of 8, 15, 60, and 600 s. Five groups of animals
received lesions of the MTL, as follows: I. No lesion (Controls), II.
Hippocampus, III. Hippocampus and amygdala, IV. Hippocampus
and perirhinal cortex, andV. Large MTL lesion. We fitted these data
with a two-process model, assuming that“Process WM”was a form
of working memory and Process 1 corresponded with the MTL, as
elsewhere in this paper. The model was fitted simultaneously to all
data points, leaving only the lesion parameter free for each of the
four lesioned curves to reflect the varying sizes of the MTL lesions

(For the control curve, we assume no lesion). We thus fitted 20 data
points with seven free parameters: acquired intensity in working
memory (shared among all curves, µWM= 5.61), decline in work-
ing memory (shared, aWM= 0.185), working-memory-to-MTL
learning (shared, µ1= 0.0599), and four lesion sizes expressed
here as decreased working-memory-to-MTL learning rates, µ1,
of 0.0329, 0.0252, 0.0180, and 0.0084, for conditions II–V, respec-
tively (see Figure 8B, in which these values have been translated to
lesion sizes, relative to the unlesioned value of 0.0599). Although
the data are rather noisy, the general pattern is clear enough and it
is adequately reproduced by the model, which explains 95.4% of
the variance (see Figure 8A).
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FIGURE 8 | Forgetting with various levels of anterograde amnesia caused
by increasing lesion sizes in a DNMT task (Squire and Zola-Morgan,
1991). (A) Data (points) and model fit (solid lines). Performance as a function

of delay period (logarithmic time scale). (B) Relative, functional lesion sizes in
the medial temporal lobe (MTL), derived from the working-memory-to-MTL
learning rates (see text). Here, 100% would be a full, functional lesion.

Cortical amnesia
The six animal studies on retrograde amnesia above show how
long-term memory fractionates into two neuroanatomically dis-
tinguishable memory processes, where Process 1 is the hippocam-
pus (or MTL) and Process 2 is the neocortex. In these stud-
ies, Process 1 is lesioned in an experimental group but not in
a control group. The opposite pattern could conceivably also
occur. Frankland et al. (2001) carried out a forgetting study
with genetically manipulated mice in which neocortical plastic-
ity was nearly absent as measured by long-term potentiation.
Hippocampal plasticity, however, was intact. The neuropathol-
ogy of semantic dementia has similar effects on hippocampal
and neocortical learning (Murre et al., 2001; Meeter and Murre,
2004b), so that the genetically altered mice (Frankland et al.,
2001) can be viewed as a partial animal model of semantic
dementia.

We analyzed the first experiment, which used a fear-
conditioning paradigm (see Figures 1A,C,E,F in Frankland et al.,
2001). A foot shock was paired with a context; after a retention
delay the animal’s fear reaction when placed in the experimental
context was evaluated. In Experiment 1a, both experimental and
control mice (wild-type) were given three foot shocks and evalu-
ated for freezing after retention delays of 1, 3, 10, 17, and 50 days.
In Experiment 1b, eight foot shocks were given. In Experiment 1c,
control mice that were given one foot shock were compared with
experimental mice that were given eight foot shocks. In Experi-
ment 1d, freezing was measured after daily single foot shocks for
three consecutive days.

We fitted the data using four parameters: intensity acquired
per learning trial (i.e., per shock) µ1= 0.372, hippocampal
decline rate a1= 0.326, consolidation rate (hippocampus-to-
cortex) µ2= 0.519 in wild-type mice and µ2= 0 in genetically
altered mice. The multiplication factor used for eight foot shocks
was 3.34, meaning that we assume that eight massed foot shocks
were as effective as 3.34 shocks under non-massed conditions. We

assumed that the cortical decline rate a2 was zero for the time
course of the experiment.

Without learning in the neocortex, retention depends solely
on hippocampal decline. The Memory Chain model would there-
fore predict that the genetically manipulated mice would show
abnormally steep forgetting. The data and model fits are shown in
Figures 9A–C and meet our expectations. Not only do they val-
idate the qualitative prediction, we also consider the quantitative
evaluation of the model’s fit to these data satisfactory, considering
we are using a total of only four parameters for all curves.

Frankland et al. (2001) also report a learning curve under
repeated learning conditions (daily single foot shocks). Given that
we have only a few data points, we will fit the learning curve using a
straightforward approach: We simply add the intensities acquired
at each learning trial, taking into account forgetting. Intensity for
the first trial would be r1(0), for the second trial, r1(1)+ r1(0),
for the third data trial: r1(0)+ r1(1)+ r1(2), where the numbers
0, 1, and 2 refer to how many days ago the learning trials had
been received. Similarly, the fourth data point was calculated as:
r1(0)+ r1(1)+ r1(2)+ r1(3). In the function r1(t ), we used the
parameters µ1 and a1 (µ2 and a2 were 0) with the values estimated
for the genetically altered mice above.

In the Frankland study (their Figure 1F), one of the two
groups of experimental animals had received eight foot shocks
30 days earlier. Our model predicts that after 30 days these will
be largely forgotten, because the hippocampal representation will
have declined while consolidation to the cortex did not occur.
Indeed, in the original data (Frankland et al., 2001), the two curves
nearly coincide. We, therefore, compared our predicted learning
curve with the average of the two learning curves reported. Our
predicted learning curve followed to the data points closely, as can
be observed in Figure 9D.

In conclusion, we were able to fit the basic result of the study by
Frankland et al. (2001), namely evidence of lack of consolidation
to the cortex (Figure 9A). In addition, we could also account for
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FIGURE 9 | Observed freezing data (circles) and predicted data (lines)
of the study by Frankland et al. (2001) using the assumption of zero
consolidation in the experimental condition (see text). Open circles
refer to experimental subjects (mice), closed circles to controls. (A)
Forgetting curves after learning with three foot shocks. (B) Forgetting

curves after learning with eight foot shocks. (C) Forgetting curves after
learning with one foot shock (controls) and eight foot shocks
(experimental). (D) Repeated learning in experimental animals receiving
one foot shock per day. The observed data are averaged over two
conditions (see text for details).

the effects of different learning strengths (Figures 9A–C) and for
the effects of repeated learning (Figure 9D). All curves were fitted
simultaneously using only four free parameters, explaining 97.6%
of the total variance.

ANALYSIS OF HUMAN DATA
Whereas with experimental animals lesions are highly controlled,
in amnesia patients lesions are determined by neuropathology. In
this section, we will fit our model to studies in which different neu-
ropathologies are investigated, in particular Korsakoff ’s Disease,
Alzheimer’s Dementia, and Huntington’s Disease.

The areas with greatest damage in Korsakoff ’s Disease are
ones thought to form one memory system with the hippocampus
(Aggleton and Brown, 1999). We therefore modeled this disease
by (partially) eliminating the contribution of the hippocampal
process. In Alzheimer’s Dementia, hippocampal atrophy is in a
later stage of the disease accompanied by diffuse cortical damage,
involving loss of synaptic connections and entire neurons. This
means that upon retrieval the intensity of the neocortical process is
decreased. Patients with Alzheimer’s Dementia were therefore fit-
ted by taking into account both hippocampal lesions and lowering
the intensity function of the neocortex by taking (1−λ2)·r2(t ),
where λ2 is the neocortical (functional) lesion size.

Retrograde amnesia in Huntington’s Disease is often tied
to retrieval deficits (Deweer et al., 2001). With Huntington’s

Disease we therefore assume normal encoding and storage in both
processes, but an impaired retrieval process, which is expressed by
assuming a cue quality q less than 1. The rr-gradient for Hunting-
ton patients, their intensity divided by that of the healthy controls,
is a constant function: [r1(t )+ r2(t )]qH/[r1(t )+ r2(t )]= qH < 1,
where qH is the reduced retrieval cue parameter in Hunting-
ton’s Disease. In other words, we expect a flat rr-gradient for
Huntington’s Disease that crosses the ordinate at qH.

All human studies considered here are retrospective. For rea-
sons elaborated above, they can only be fitted with the rr-gradient
or a similar relative measure. As with the animal experiments, we
set the cortical decline rate to zero, assuming that the effects of
long-term cortical forgetting are overshadowed by error sources
in the data. With the rr-gradient, µ1 and q are not used (they
cancel out in the derivation when a2= 0, see Appendix). Checks
with a2 left free were performed as well, but rarely gave a signifi-
cant improvement in fit. We usually obtained an adequate fit with
three free parameters: a1 (hippocampal decline rate), µ2 (consol-
idation), and λ (lesion size; 0 is no lesion, 1 is full lesion), with an
extra parameter λ2 (neocortical lesion size) in case of Alzheimer’s
Dementia (though here the hippocampal lesion parameter was
shared). We also repeated all fits using a power function instead
of an exponential decline, obtaining very similar fits (within a few
percentage points of the quoted values) indicating that an expo-
nential decline in a process is not critical for these results. There
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is analytical evidence that supports these findings: both the Ribot
gradient and the rr-gradient have certain fundamental properties
that are independent of the choice of the memory decline function
(see Appendix).

Summarizing, we predict that Korsakoff patients show rr-
gradients that reflect Ribot gradients because the medial tempo-
ral system is partially lesioned. Alzheimer’s Dementia patients’
rr-gradients should be similar but lower because of additional
neocortical lesions. Huntington’s Disease patients should have
flat rr-gradients. We have no clear predictions for the remain-
ing patient groups except that their rr-gradients would also reflect
Ribot gradients because of lesions in the MTL.

The results are given in Table 3. The data, rr-gradients and
model fits are shown in Figures 10–13, for the various patholo-
gies. The model explains about 85% of the data on average (with
an average sum of squared differences of 0.035). The results were
in line with our predictions. The advantages and limitations of the
empirical rr-gradients can be directly observed in these figures:
even when the measured curves are quite erratic, the rr-gradients
tend to be smooth. When one of the curves approaches floor or
ceiling, however, the rr-gradient tends to amplify noise, as the
transformation to the underlying intensity then becomes more
sensitive to error.

With exception of the study using subjects undergoing electro-
convulsive therapy (ECT; Squire et al., 1975), the human rr-
gradients all indicate partial lesions, i.e., with a size less than
100%. This indicates either residual functioning of the MTL
or a partial dependence of tests on brain areas not affected
by the lesion (e.g., involving general knowledge). The animal
studies above suggested 100% lesions. We can hypothesize that
under laboratory conditions full lesions can be administered with
high reliability, whereas patients present with mixtures of partial
lesions.

We fitted the Korsakoff and Alzheimer patients of one study
(Kopelman, 1989) simultaneously, assuming the same decline and
MTL lesion parameters. The fit conforms well to our hypothesis
about comparable MTL damage but aggravated neocortical lesions
in Alzheimer’s Dementia. Allowing non-shared lesion parameters
gave nearly the same results.

Studies k and l (Beatty et al., 1988) in Table 3 use the same
tests as Studies m and n, respectively, except that more extensive
cues were made available. We can, thus, treat m and n as the easier
variants. Separate fits already gave a good agreement of the para-
meters, as can be verified in the table. Fitting k and m (Korsakoff
patients) simultaneously further improved the fit (combined R2

was 93% variance explained). The same is true for the Huntington
patients (Studies l and n).

Huntington’s Dementia was hypothesized to show a flat rr-
gradient, a trend that can clearly be observed in Figure 12,
although for n2 in Figure 12, it would be possible to fit a non-
flat rr-gradient. In the latter case, however, the reliability of the
rr-gradient suffers from the fact that the points approach each
other in the tail of the curves. The fact that the fitted curve
nearly replicates l2 in Figure 12 further reinforces the notion that
Huntington’s Disease produces a flat rr-gradient.

A general conclusion is that these human data, though very
noisy, are amenable to quantitative analysis if a relative gradient

is derived. Moreover, the gradients of the different patient groups
conformed to the theoretical expectations.

DISCUSSION
Above, we have shown how our existing model of learning and
forgetting, The Memory Chain Model, can account for a range of
amnesia data in a quantitative manner: (i) temporal gradients in
mice, rats, and monkeys with various forms of MTL lesions, (ii)
increased forgetting gradients in monkeys with progressively large
MTL lesions, (iii) increased forgetting gradients in mice that lack
neocortical LTP, (iv) the shape of the learning curve of such mice,
fitting well without additional parameters, and (v) over 20 data
sets from human patients with Korsakoff ’s Dementia, Alzheimer’s
Dementia, Huntington’s Disease, and other disorders. In most
cases, only three free parameters suffice more the model to do
an adequate job fitting the data. Though the individual data sets
are quite noisy and thus not very constraining, the combination of
several such sets offers a more comprehensive test of our model. We
conclude that our main hypothesis, about the shared fundamental
characteristics of decline of memory traces and their induction in
more permanent stores, is not rejected by these fits of the model
to these data.

Also, the analyses show that even the noisy neuropsychologi-
cal data considered here are amenable to quantitative treatment.
From the Memory Chain model, we could derive what is proba-
bly the first closed-form expression for the Ribot gradient. In the
form of the rr-gradient, it also allows retrograde amnesia data to
be rid of structural confounds stemming from manipulating test
item difficulties.

Several novel predictions can be derived from our model that
cannot also be derived from general consolidation theory (Meeter
and Murre, 2004a). In fact, consolidation theory only addresses
amnesia, and has little to say about normal forgetting or normal
learning; one may argue that the theory is ad hoc in that respect.
We show, however, that consolidation theory leads to an integrated
and consistent framework that makes verifiable predictions across
a wide range of phenomena. Some of these predictions are qualita-
tive, or at least can be stated verbally without recourse to equations,
others are quantitative and concern the precise shape of learning
and forgetting curves. We give examples of each.

The rr-gradient generates a prediction, namely that empirical
data thus transformed will become insensitive to manipulation
of item difficulty. This prediction receives an initial verification
in Figure 6. It should be emphasized that if a relative gradient is
derived by simply taking the ratio of the probability-correct scores
(Brown, 2002), such a manipulation does not generally make the
data insensitive to manipulation of item difficulty. Consolidation
theory (verbally stated) does not offer such a transformation and
it is indeed often hard to interpret retrograde amnesia gradients
where the normal controls perform better on the remote items
than on the recent ones.

From the fits of the hippocampal decline (forgetting) and cor-
tical consolidation function of the genetically altered mice (Frank-
land et al., 2001), we can derive quantitative predictions regarding
the outcome of a, still to be done, hippocampal lesion experiment:
the ensuing Ribot gradient should be described by r2(t ) with the
parameters found and reported in this paper. This function was
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FIGURE 10 |Ten studies with Korsakoff’s Disease patients and matched
controls. The letters a–j with each panel correspond to Studies a–j inTable 3.
The panels are presented in pairs, where panel 1 of a pair contains the

measured data (solid circles are controls, open circles are patients), and 2 the
data transformed to a relative retrograde gradient (always shown as triangles,
with the solid line indicating the model fit).

not measured directly in their experiment and its precise shape
stands as a prediction for follow-up studies. For the Frankland
et al. (2001) data we predict that repeated learning trials give rise
to a learning curve, which shape we could predict without addi-
tional parameters. Such a shape can only be predicted if some
underlying measure of intensity (strength) is used with a suitable
transformation from intensity to observed behavior (e.g., here, to
probability-correct).

A direct prediction from our main hypothesis is that forget-
ting curves have fundamentally the same shape at both short-term
and (very) long-term scales (e.g., forgetting over seconds has the
same basic shape as forgetting over decades), and so do learn-
ing curves. Our hypothesis also explains why this should be the
case, namely because forgetting processes share two fundamental
characteristics at all time scales (memory decline and induction of
memory traces into higher, more permanent processes). Another
general prediction of our model is that memory performance can
temporarily go up before going down again. No other quantita-
tive model known to us has predicted such reminiscence effects.

Yet, they are occasionally reported under circumstances of high or
prolonged consolidation (e.g., Stickgold et al., 2000).

One fundamental assumption was that the MTL and neocortex
are systems in the Memory Chain Model. This approach is similar
to that taken by earlier models (McClelland et al., 1995; Squire
and Alvarez, 1995; Murre, 1996). Nadel and Moscovitch (1997)
dub this approach the “Standard Theory of Amnesia,” which they
reject, proposing instead that memories remain dependent on the
hippocampus without consolidation of episodic memories to the
neocortex. In their model, partial lesions of the hippocampus will
tend to affect older memories less, because these will have built up
a stronger representation, while recent memories will not have had
this opportunity. Full lesions will always lead to a complete loss of
all memories, both recent and remote. Nadel et al. (2000) present
both a connectionist model and an analytical model as existence
proofs that their assumptions give rise to the characteristics aimed
for. Unfortunately, like the model by McClelland et al. (1995), these
variants contain unsolvable integrals that must be approximated
numerically. They are, therefore, not closed-form expressions and
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FIGURE 11 |Three studies with Alzheimer’s Dementia patients and matched controls. The letters with each panel correspond to those inTable 3. See
Figure 10 for further explanation.

FIGURE 12 | Four studies with Huntington’s Disease patients and matched controls. The letters with each panel correspond to those inTable 3. See
Figure 10 for further explanation.

are more difficult to analyze mathematically. Nadel et al. (2000)
plot example curves for a range of parameters but these have atyp-
ical U-shaped forgetting functions, where memory performance
first goes down – as it should – and then goes back up again –
which it should not. They also did not include formal fits of the
model to data, so it is difficult to assess how it would fare on fits to
experimental results. We review and discuss the theory by Nadel
and Moscovitch in detail in Meeter and Murre (2004a) and Murre
et al. (2001), comparing its merits with consolidation theory and
other alternatives.

One of the points of criticism by Nadel and Moscovitch (1997)
to consolidation theory is that the MTL seems to hold memories
for a very long time, often in the order of decades for humans.
We agree with this criticism; the basic finding of long lifetimes in
the MTL (Nadel and Moscovitch, 1997) is also found for some
of the patient groups considered here. By taking the inverse of
the hippocampal decline parameter, a−1

1 , we obtain the expected
lifetime of a single trace of a memory in MTL.

For the Korsakoff and Alzheimer data we found expected
MTL lifetimes in the order of a decade. In four cases, the model
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FIGURE 13 | Seven studies with various patient groups and matched controls. The letters with each panel correspond to those inTable 3. See Figure 10
for further explanation.

suggested that the MTL remained involved throughout the life
of the patients. For these studies, however, higher hippocampal
decay rates were obtained if a non-zero neocortical decline was
allowed. For ECT, transient global amnesia (TGA), and hypoxia
the lifetimes were in the order of 0.2–4 years, suggesting a less
widespread pathology. Whereas the human data thus range from
a few months to several decades, for the animal data we find MTL
expected lifetimes in the range of 3–30 days (see Table 2; also see
McClelland et al., 1995).

The wide range in process life times is probably caused by the
great variation in to-be-remembered material. Useful comparisons
across tasks and species would require a much more extensive the-
ory of the underlying representations than is currently available. In
summary, we agree with the authors of the Multiple-Trace Theory
(Nadel and Moscovitch, 1997) that the very long life times of mem-
ories in the hippocampus/MTL are an oddity, found mainly in the
patient fits but not in the fits to animal studies. It is not clear to

us, what the implications of this are. On the one hand, a quantita-
tive account can easily incorporate these long-range consolidation
processes. On the other hand, what would be the evolutionary
mechanism that fosters such extremely slow induction processes,
where it takes decades to transfer information from one part of the
brain to another? One answer that may offer an interesting com-
promise is one that elaborates further on the nature of memories
after certain periods of time and in different brain areas (Wang
and Morris, 2010).

The debate between adherents and skeptics of consolidation
theory has continued for over 15 years now. The model pre-
sented in this paper is a rather straightforward implementation
of some of the main assumptions in consolidation theory, mainly
the hippocampus-to-cortex dialog. The model fits the data quite
well, but it is possible that a good mathematical model of the
Multiple-Trace Theory would fare even better on these data. A
problem with deriving such a model, however, is that it assumes
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within hippocampus consolidation where existing traces multi-
ply and thus lead to a gradual strengthening of certain traces
within hippocampus. Such a process of self-consolidation is easily
modeled but gives rise to mathematical singularities or “run-
away consolidation” (Meeter, 2003). This problem was solved by
Nadel et al. (2000) by introducing additional assumptions about
trace-dependent time-limited processes but curves shown in the
paper are still U-shaped. In our opinion, the Multiple-Trace The-
ory still awaits a more complete mathematical treatment with fits
to data.

The Memory Chain Model currently offers a mathematical
framework that is tied to some global aspects of the neurobiol-
ogy underlying memory. Such a framework allows formal testing
of consolidation models with two or more processes, given that
suitable data are available. It also allows the development of more
powerful clinical tests for diagnosis, for example, through removal
of certain item artifacts and decomposition of test results into hip-
pocampal and neocortical memory components. We have recently
applied the model to novel tests of retrograde amnesia with ECT
illustrating the potential usefulness of the Memory Chain Model
in clinical memory experiments (Meeter et al., 2011).

We would like to emphasize that the framework presented here
was not originally developed just to explain amnesia, but first and
foremost to describe learning and forgetting in normal subjects.
Indeed, it has without any modifications been applied to learn-
ing and forgetting of TV commercials (Chessa and Murre, 2007)
as well as other experiments in short-term and long-term for-
getting (e.g., see Figure 3). Here we have shown that the same

model can also describe a wide range of amnesia data. This sets
it apart from other models of amnesia, nearly all of which have
been developed with the aim to (just) explain amnesia. It also dis-
tinguishes it from most theories that aim to describe the shape
of forgetting, few of which address the possible neurobiological
underpinnings. Many such models try to capture the forgetting
curve in a simple mathematical function (Wixted and Ebbesen,
1991; Rubin and Wenzel, 1996; Wixted and Carpenter, 2007).
Yet, we know that from a neurobiological perspective the for-
getting curve is a composite, involving many different processes
and structures in dorsolateral prefrontal cortex, hippocampus,
and temporal cortex, etc. Any curve-fitting approach based on
simple functions such as the power function [i.e., of the shape
p(t )= bt−a] is, therefore, ultimately doomed to fail on more
comprehensive data sets that capture longer time scales, involve
certain pathologies or are simply much more precise because
of very large samples. Though there is sometimes a good use
for such simple functions, we advocate focusing on neurobio-
logical characteristics as a starting point to derive mathemati-
cal models that capture the formation and decline of memory
parsimoniously.
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APPENDIX
MATHEMATICAL ANALYSES
Forgetting curve
To derive recall probability we note that the number of traces in
the region searched during retrieval follows a Poisson distribu-
tion (Chessa and Murre, 2007). If we assume that retrieving a
single trace suffices for recall, the form of the forgetting function
becomes:

p (t ) = 1− e−r(t )

where p(t ) is the recall probability at time t and where r(t ) is
the intensity of the memory process at t. Here, t is the age of the
memory since acquisition.

The effects of learning and memory decline are combined in
the intensity function r(t ):

r (t ) = [r1(t )+ r2(t )+ . . .+ rR(t )] q

for a multi-process model with R processes (in this paper, we usu-
ally have R= 2). In the equation for r(t ), q is the cue strength
parameter. Unless mentioned otherwise, q will be suppressed (i.e.,
we take q= 1 without loss of generality).

The memory intensity function of the first (hippocampal)
process is

r1(t ) = µ1e−a1t ,

which expresses a decline in intensity, assuming a constant decline
rate a1 and an initial intensity (immediately after learning) of µ1.

To derive the intensity function of the second (neocortical)
process, we hypothesize that there is a rehearsal or consolidation
process that generates representations in the neocortical process
on the basis of the remaining hippocampal trace. The generation
rate is assumed to be proportional to r1(t ). While this generation
process is still continuing, the content of the neocortical process
starts to decline with constant rate a2. These assumptions give rise
to the following expression for neocortical trace intensity r2(t ):

r2(t ) = µ2

∫ t

0
r1(τ)e−a2(t−τ) d τ

The integral term expresses an interaction (technically: a con-
volution) of the generation process from the relatively rapidly
declining first (hippocampal) process to the more gradually declin-
ing second (neocortical) process. Here, µ2 expresses the rate of
consolidation from the first to the second process. Straightforward
integration and substitution yields:

r12(t ) = r1(t )+ r2(t ) = µ1e−a1t
+

µ1µ2

a1 − a2

(
e−a2t

− e−a1t ) ,

where the subscript 12 in r12(t ) denotes the intensity function for
two processes, i.e., for the composite process that consists of (1)
hippocampus and (2) neocortex.

Ribot gradient
Process 1 models the hippocampal process, in which we now
introduce a partial lesion of size λ, with 0≤λ≤ 1, 0 meaning
no lesion and 1 meaning a full lesion. For the expression of the
Ribot gradient we then obtain:

r(1)2(t ) = γµ1e−a1t
+

µ1µ2

a1 − a2

(
e−a2t

− e−a1t ) ,

where γ= 1−λ. Here, t is still the age of the memory and there-
fore the equation is valid immediately after lesioning. After this,
there would forgetting in the neocortex with rate a2 and no fur-
ther consolidation from hippocampus (see main text and below).
The round brackets of the index in r (1)2 are used here to indi-
cate a partial lesion of process 1. It can be shown that if a2= 0
and γ= 1−λ=µ2/a1, the Ribot gradient is flat with constant
intensity µ1µ2/a1. (This implies that in case of a flat, non-zero
retrograde amnesia curve, there may well have been a long-term
consolidation process operating up until the moment of lesion.) In
case of a full hippocampal lesion (γ= 0) and if a2= 0, the equa-
tion for the Ribot gradient has some interesting properties that
are independent of the choice of memory decline function: (i)
r (1)2(0)= 0, (ii) the derivative for t = 0 is equal to µ1µ2, (iii) r (1)2

is an increasing function, and (iv) it has no flex points if µ1 > 0.
In the derivation above, we have assumed that relatively little

time has elapsed after the hippocampal lesion at time t and that
a2= 0. If this is not the case, the neocortical process will continue
to decline with rate a2, yielding an intensity of r2(t )e−a2τ at time τ

post-lesion, where r2(t ) is defined above. In case of a partial lesion,
we would have to add to this the continuing effect of consolida-
tion, albeit at a lower rate (e.g., using a rate proportional to γµ2:
the lesion size multiplied by the original consolidation rate).

Relative retrograde gradient
The rr-gradient with a full lesion (signaled with square rather than
round brackets around the index of the lesioned process) is defined
as r [1]2/r12. We obtain a three-parameter curve as follows:

rr[1]2(t ) =
r[1]2(t )

r12(t )
=

[
a1 − a2

µ2

(
e(a1−a2)t

− 1
)−1
+ 1

]−1

For a2= 0, this expression can be simplified to

rr[1]2(t ) =

[
−a1

(
1− ea1t

)−1

µ2
+ 1

]−1

In case of partial lesioning of Process 1, we have

rr(1)2(t ) =
r(1)2(t )

r12(t )

=
γr1(t )+ r2(t )

r1(t )+ r2(t )

= γrr1[2](t )+ rr[1]2(t )

where γ= 1−λ as above. For t = 0, we have r2(0)= 0, so that
rr(1)2(0)= γ. In other words, in the case of a partial lesion, the
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rr-gradient expressed as intensity (not probability) intersects the
ordinate at γ. The rr-gradient has other properties that are inde-
pendent of the choice of memory decline function: (i) it tends
to 1 as t→∞; furthermore, if a2= 0, then (ii) rr(1)2 is strictly

increasing, (iii) its derivative for t = 0 is equal to λµ2, and (iv) it
has no flex points if and only if r1

′(t ) + µ2r1(t ) > 0 for every t,
that is, when the induction rate from hippocampus to neocortex
is greater than the decline rate in the hippocampus.
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