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Primate inferior temporal (IT) cortex is thought to contain a high-level representation of
objects at the interface between vision and semantics. This suggests that the perceived
similarity of real-world objects might be predicted from the IT representation. Here we
show that objects that elicit similar activity patterns in human IT (hIT) tend to be judged as
similar by humans.The IT representation explained the human judgments better than early
visual cortex, other ventral-stream regions, and a range of computational models. Human
similarity judgments exhibited category clusters that reflected several categorical divi-
sions that are prevalent in the IT representation of both human and monkey, including the
animate/inanimate and the face/body division. Human judgments also reflected the within-
category representation of IT. However, the judgments transcended the IT representation in
that they introduced additional categorical divisions. In particular, human judgments empha-
sized human-related additional divisions between human and non-human animals and
between man-made and natural objects. hIT was more similar to monkey IT than to human
judgments. One interpretation is that IT has evolved visual-feature detectors that distin-
guish between animates and inanimates and between faces and bodies because these
divisions are fundamental to survival and reproduction for all primate species, and that
other brain systems serve to more flexibly introduce species-dependent and evolutionarily
more recent divisions.

Keywords: object perception, vision, neuronal representation, fMRI, representational similarity analysis, human,
primate

INTRODUCTION
How does our percept of the similarity of two objects arise from
our internal representation of the objects? One influential theory
holds that perceived similarity can be explained on the basis of
the distance between the objects in a conceptual space (e.g., Gär-
denfors, 2004). A conceptual space can be seen as analogous to
the spatial environment that we live in: in both the location of
an object is determined by its positions on a set of dimensions.
The difference lies in the dimensions that define the space: for our
spatial environment, the location of an object can be specified by
three spatial coordinates (x, y, and z dimensions); for a concep-
tual space, the dimensions can be any object properties, including
perceived color, shape, or semantic category. The location of a
perceived object in a conceptual space is interpreted as the mental
representation of that object. Distances between object representa-
tions inform us about their relationships: the greater the distance,
the greater the perceived dissimilarity. Perceived similarity can be
estimated by asking observers to make explicit object-similarity
judgments.

How the perceived similarity of two objects can be explained on
the basis of their mental representation has long been of interest
to philosophers, mathematicians, and psychologists (e.g., Carnap,
1928/1967; Shepard, 1958; Torgerson, 1958; Rosch et al., 1976;

Tversky, 1977; Edelman, 1998). The geometrical model of the
mental representation described above (e.g., Shepard, 1958; Torg-
erson, 1958; Edelman, 1998) can account for a great variety of
empirical findings and the most recent versions (e.g., Gärdenfors,
2004) also account for phenomena, such as context dependence,
that were initially thought to be difficult to accommodate (Good-
man, 1972; Tversky, 1977; for a recent review, see Decock and
Douven, 2011). Importantly, the geometrical model enables a
direct comparison between brain representational similarity and
similarity judgments. In keeping with the concept of distance in
a representational space, we describe judgments and brain repre-
sentations in terms of dissimilarities, rather than similarities. We
study correlations between representational dissimilarity matri-
ces (RDMs) within the framework of representational similarity
analysis (RSA, Kriegeskorte et al., 2008a) to quantitatively compare
brain, behavior, and computational models.

Object representations are thought to be implemented in the
brain by means of population codes (e.g., Sanger, 2003). If the neu-
rons represent the dimensions of some conceptual space, then the
distances in neuronal pattern space are identical to the conceptual
distances. Neuronal recordings and functional magnetic resonance
imaging (fMRI) both provide only very impoverished samples of
a neuronal population code. With recordings we are missing most
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of the cells. With fMRI, each voxel reflects a local spatiotemporal
average of neuronal activity. In either case, we are sampling a sub-
set of the dimensions of the neuronal response space. However,
the representational distance in our sample can be interpreted as
an estimate of the representational distance in the neuronal popu-
lation code (e.g., Kiani et al., 2007; Kriegeskorte et al., 2008b). This
line of thought has become increasingly popular in recent years
(Edelman et al., 1998; Haxby et al., 2001; McClelland and Rogers,
2003; Kriegeskorte and Kreiman, 2011).

Multiple studies have shown that distributed activity patterns
in human inferior temporal (IT) cortex – a large region of object-
selective cortex located in the ventral visual stream – contain
information about category membership of visual objects (Haxby
et al., 2001; Cox and Savoy, 2003). These results are broadly consis-
tent with earlier findings by Edelman et al. (1998), who pioneered
the application of geometrical models of shape similarity to brain
data and showed initial evidence for clustering by category. Group-
ing individual real-world objects on the basis of the similarity of
the activity patterns they elicit in IT reveals clusters corresponding
to well-known object categories, including animate and inanimate
objects and, within the animates, faces, and bodies (Kiani et al.,
2007; Kriegeskorte et al., 2008b). Major category clusters (e.g., ani-
mates) contain smaller clusters (e.g., faces and bodies), suggesting
a hierarchical organization. The categorical divisions are strikingly
similar between human and monkey IT (mIT) and, importantly,
not accounted for by a range of computational models of low- and
intermediate complexity features (Kriegeskorte et al., 2008b).

The presence of hierarchically organized clusters that corre-
spond to well-known object categories parallels earlier findings on
human categorization behavior by Rosch et al. (1976), who intro-
duced the concept of superordinate (e.g., animate objects), basic
(e.g., faces), and subordinate categories (e.g., female faces). This
parallel suggests that IT, which is thought to be at the interface of
perception and cognition, might be the neuronal substrate for the
mental representations giving rise to object-similarity judgments.
In line with this idea, several studies have suggested a relationship
between perceived similarity and activity-pattern similarity in pri-
mate object-selective cortex for abstract and computer-generated
visual shapes (Edelman et al., 1998; Op de Beeck et al., 2001, 2008;
Kayaert et al., 2005; Haushofer et al., 2008). However, these studies
have not thoroughly investigated the mental similarity representa-
tion of real-world object images and its relation to the inherently
categorical IT representation. Do human object-similarity judg-
ments reflect the IT object space, including its hierarchy of category
clusters?

In order to investigate whether objects that elicit similar activity
patterns in IT are perceived as similar, we compared dissimilar-
ity judgments and IT activity-pattern dissimilarities for 96 color
photos of isolated objects, spanning a wide range of object cat-
egories, including faces and bodies. The stimuli (Figure 1) were
the same as those used in Kriegeskorte et al. (2008b) [and subset
of the stimuli used in Kiani et al. (2007)]. We used the activity-
pattern dissimilarity matrices estimated for human IT (hIT) and
mIT in Kriegeskorte et al. (2008b). We estimated perceived dissim-
ilarities (Figure 2) by acquiring object-similarity judgments in 16
different human observers, using a novel multi-arrangement (MA)
method (Kriegeskorte and Mur, 2012), which enables efficient

FIGURE 1 | Stimuli. This figure shows the object images that we
presented to our subjects. Two stimuli were described as ambiguous by
several of our subjects during debriefing. These stimuli (back of a human
head, knitting wool) are marked with a yellow “A.” This figure is adopted
from Kriegeskorte et al. (2008b).

measurement of perceived similarity for large sets of objects. We
compared the object-similarity judgments to hIT activity-pattern
dissimilarities using (a) descriptive visualizations (Figures 3 and
4), (b) inferential analyses of categorical structure (Figures 5–7),
(c) inferential analyses of continuous structure (Figures 8 and
9), and (d) descriptive and inferential analyses of inter-subject
reliability and categoricality (Figures 10–13). We additionally
related the object-similarity judgments to mIT (Figure 7), to com-
putational models of varying complexity, and to brain-activity
measurements from visual regions other than IT, including early
visual cortex (EVC) (Figure 10).

MATERIALS AND METHODS
OBJECT-SIMILARITY JUDGMENTS
Subjects
Sixteen healthy human volunteers (mean age= 28 years; 12
females) participated in the MA experiment. Subjects had nor-
mal or corrected-to-normal vision; 13 of them were right-handed.
Before participating, the subjects received information about the
procedure of the experiment and gave their written informed
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FIGURE 2 | Continued
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FIGURE 2 | Dissimilarity judgments by multi-arrangement (MA). (A)
Dissimilarity judgments were acquired using a novel MA method, which
allows efficient and subject-tailored acquisition of perceived similarity for large
sets of objects. Subjects were asked to arrange the objects according to their
similarity, using mouse drag-and-drop on a computer display. Perceived
similarity was communicated by adjusting the distances between the objects:
objects perceived as similar were placed close together; objects perceived as
dissimilar were placed further apart. The upper panel of the figure shows
screenshots taken at different moments during the acquisition of the
dissimilarity judgments for one subject. Columns correspond to trials and
rows show object arrangements over time, running from the start (first row)
to the end of each trial (final arrangement, last row). The first trial contained all
object images; subsequent trials contained subsets of images that were

adaptively selected to optimally estimate perceived similarity for each subject.
The black dots represent not-shown arrangements during a trial (small dots)
and not-shown trials (large dots). (B) Once acquisition of the dissimilarity
judgments was completed, inter-object distances of the final trial
arrangements were combined over trials by rescaling and averaging to yield a
single dissimilarity estimate for each object pair. Conceptually, this step can
be seen as “inverse” multidimensional scaling, since it combines several
lower-dimensional (2D) similarity representations into one higher-dimensional
similarity representation. This process is shown for two example objects
pairs: a boy’s face and a hand (red), and carrots and a stop sign (blue). Their
single-trial dissimilarity estimates (arrows) are combined into a single
dissimilarity estimate, which is placed at the corresponding entry of the RDM
(lower panel). Mirror-symmetric entries are indicated by lighter colors.

consent for participating. The experiment was conducted in accor-
dance with the Ethics Committee of the Faculty of Psychology and
Neuroscience, Maastricht University.

Multi-arrangement method
A detailed description of the MA method, including empirical val-
idation of the method by comparison to conventional methods,
can be found in Kriegeskorte and Mur (2012).

Perceived object-similarity is conventionally measured using
pairwise dissimilarity judgments (e.g., Cortese and Dyre, 1996;
Cooke et al., 2007). Given the large number of object pair
dissimilarities to be measured in our study (96 objects, 4560 possi-
ble pairs), acquiring pairwise dissimilarity judgments, or any other
measure that considers each possible pair of objects separately,
would be practically difficult. Data acquisition would require many
hours and multiple sessions. Moreover, subjects might change their
implicit criteria when judging pairwise dissimilarities one-by-one
over different sessions. The MA method solves these problems
by allowing subjects to communicate multiple object-pair dissim-
ilarities at once (Figure 2). In the MA method, subjects com-
municate perceived object-similarity by arranging multiple object
images in 2D on a computer screen by mouse drag-and-drop.
The use of spatial arrangement as a measure of perceived sim-
ilarity has been proposed before (Goldstone, 1994; Risvik et al.,
1994). Our MA method extends this earlier work by introduc-
ing adaptive selection of object subsets during measurement, in
order to efficiently and optimally estimate perceived similarity
for each individual subject. Using our MA method, the acqui-
sition of the 4560 pairwise dissimilarities only required 1 h per
subject.

The method can be summarized as follows. Each arrangement,
or trial, consists of multiple (>2) objects that have to be arranged
in a circular “arena” such that inter-object distances reflect per-
ceived dissimilarity (similar objects are placed close together, dis-
similar objects are placed further apart). This approach enables
time-efficient measurement of perceived object-similarity because
moving one object changes multiple object-pair dissimilarities
at once. Single-trial estimates of object-pair dissimilarities are
computed as Euclidean distances between the objects (after
normalization of object positions by the diameter of the arena).
On the first trial, subjects arrange all objects. On subsequent trials,
they arrange subsets of objects. To optimize the object subsets to be
presented on subsequent trials, we assume that the arrangements
are affected by isotropic placement noise in 2D. The dissimilarity

signal-to-noise ratio of the estimates then depends on how closely
the objects are placed together in the arena: if two objects are
placed close together (smaller dissimilarity signal), the dissimilar-
ity estimate will have a smaller signal-to-noise ratio than when
they are placed further apart. After each trial, the object subset
for the next trial is constructed adaptively so as to provide more
evidence for the object pairs whose current combined estimates
are expected to have the greatest error, thus aiming to minimize
the maximum error of the final dissimilarity estimates. For exam-
ple, the object pair placed closest together on the first trial will
be sampled again on the next trial so as to increase the evidence
for estimating the dissimilarity of these two objects. The use of
multiple trials also enables the subjects to communicate similarity
relationships that would require more than two dimensions to
be accurately estimated. The duration of the MA acquisition can
either be fixed (e.g., 1 h as in our experiment) or contingent upon
the quality of the estimated dissimilarities (e.g., ensuring that
the maximum error margin across all pairs is below a certain
threshold). The MA method was implemented in Matlab (The
MathWorks Inc.).

We instructed our subjects to “Please arrange these objects
according to their similarity,” such that similar objects were
placed close together and dissimilar objects were placed further
apart. The instruction intentionally did not specify which object
properties to focus on, as this would have biased our perspec-
tive on the mental representation of the objects. In other words,
the general instruction enabled us to investigate which properties
subjects would spontaneously use when judging object-similarity
for a large set of real-world object images. After performing the
experiment, subjects were asked to report which object features
they had used for object arrangement.

Construction of the representational dissimilarity matrix
For each subject, the dissimilarity estimates acquired for a given
stimulus pair were averaged across trials. Rescaling of each trial’s
dissimilarity estimates was required before averaging, because sub-
jects were instructed to use the entire arena for each arrangement,
making only the relations between distances on a single-trial, but
not the absolute on-screen distances meaningful. For example,
a given dissimilarity between two objects tended to correspond
to a greater on-screen distance when the two objects appeared
in a smaller subset on a given trial. The single-trial dissimilarity
estimates were therefore iteratively rescaled so as to align them to
the overall average (minimizing the sum of squared deviations)
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FIGURE 3 | Representational dissimilarity matrices (RDMs) and MDS
arrangements for human IT and judgments. Human IT activity patterns and
human similarity judgments both show an inherently categorical
representation of real-world object images with an animate/inanimate top-
level division. At the same time, the similarity judgments show additional
categorical divisions and stronger clustering than the hIT similarity
representation. (A) RDMs based on hIT activity patterns and human similarity
judgments. Each RDM is based on data from multiple subjects (4 and 16,
respectively), averaged at the level of the dissimilarities. Each entry of a
matrix represents hIT activity-pattern dissimilarity (1-r, where r is Pearson

correlation coefficient; 316 most visually responsive bilateral hIT voxels
defined using independent data) or judged dissimilarity (relative Euclidean
distance as measured by the MA method) for a pair of objects. The matrices
were independently transformed into percentiles (see color bar). (B)
Multidimensional scaling (MDS; criterion: metric stress) was used to visualize
the hIT and judgment similarity representations of the 96 real-world object
images. Distances between images reflect the dissimilarities that are shown
in the RDMs in (A): images that elicited similar activity patterns or that were
judged as similar are placed close together; images that elicited dissimilar
activity patterns or were judged as dissimilar are placed further apart.
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FIGURE 4 | Hierarchical clustering for human IT and human judgments.
hIT object-activity patterns have been shown to cluster according to natural
categories (top panel) (Kriegeskorte et al., 2008b). In order to assess whether
human object-similarity judgments show a similar categorical structure, we
performed hierarchical cluster analysis on the similarity judgments (bottom
panel). Hierarchical cluster analysis starts with single-image “clusters” and
successively combines the two clusters closest to each other to form a
hierarchy of clusters. The vertical height of each horizontal link reflects the

average dissimilarity between the stimuli of two linked subclusters. hIT
activity-pattern dissimilarity was measured as 1-r (where r is Pearson
correlation coefficient), judged dissimilarity was measured as relative
Euclidean distance (using the MA method). Text labels indicate the major
clusters. Both hIT activity patterns and human similarity judgments cluster the
objects according to natural categories and show a top-level
animate/inanimate division. However, the human similarity judgments
introduce additional categorical divisions.

until convergence. The 4560 trial-average dissimilarity estimates
were placed in an RDM. RDMs were constructed for each subject
separately and then combined by averaging.

fMRI EXPERIMENT
Acquisition and analysis of the fMRI data have been described in
Kriegeskorte et al. (2008b), where further details can be found.
More information on the RSA framework can be found in
Kriegeskorte et al. (2008a).

Subjects
Four healthy human volunteers participated in the fMRI exper-
iment (mean age= 35 years; two females). Subjects were right-
handed and had normal or corrected-to-normal vision. Before
scanning, the subjects received information about the procedure
of the experiment and gave their written informed consent for
participating. The experiment was conducted in accordance with
the Institutional Review Board of the National Institutes of Mental
Health, Bethesda, MD, USA.
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FIGURE 5 | Human dissimilarity judgments emphasize additional
categorical divisions not present in human IT. (A) We decomposed the
dissimilarity matrices for hIT and judgments into two additive components,
reflecting the category-related dissimilarity variance and non-category-related
dissimilarity variance (i.e., within-category dissimilarities and noise). (B) The
decomposition was performed by fitting a linear model with multiple predictor
dissimilarity matrices, each reflecting a categorical division (red, magenta,
cyan, blue) or an imbalance between average within-category dissimilarities
of two categories (e.g., average within-animate dissimilarity < average
within-inanimate dissimilarity). We fitted the model to the RDMs for hIT and
judgments using ordinary-least-squares and estimated the ratio of
category-related dissimilarity variance (captured by the model) and

non-category-related dissimilarity variance (residuals). We then equated the
proportion of residual variance by adding noise to the RDM with smaller
proportion residual variance. The judgments had a smaller proportion of
residual variance. The judgments matrix shown in A contains the added noise.
Equating the residual variance is necessary for valid statistical inference (for
details on the noise model and inference, see Materials and Methods).
(C) We then fitted the model to the residual-equated RDMs and compared hIT
and judgments in terms of the percentage of category variance explained by
each category division. The animate/inanimate and face/body divisions
explained significantly more variance in hIT than in the judgments. The
human/non-human and natural/artificial divisions explained significantly more
variance in the judgments than in hIT.

www.frontiersin.org March 2013 | Volume 4 | Article 128 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Perception_Science/archive


Mur et al. Object-similarity judgments and IT

FIGURE 6 | Categorical divisions in human IT and monkey IT. We used the
linear model from Figure 5 (repeated in (B) for convenience) also to compare
the IT representations between human and monkey [same data as in
Kriegeskorte et al. (2008b) for both species; a more in-depth analysis of the
monkey data is Kiani et al. (2007)]. (A,B) The proportion of residual variance
was greater in mIT than hIT. Residual variance was therefore equated by
adding noise to the hIT matrix (which is therefore not identical to Figure 5).

(C) Descriptively, the animate/inanimate and face/body divisions are
prominent in both hIT and mIT and the human/non-human and natural/artificial
divisions less so. Monkey IT might emphasize the animate/inanimate division
less and the face-body division more relative to human IT. However, we could
not perform the randomization test of Figure 5 here, because there were only
two monkey subjects. For further inferential analyses comparing hIT, mIT, and
human judgments, see Figure 7.

Experimental design and task
Stimuli were presented using a rapid event-related design (stim-
ulus duration, 300 ms; interstimulus interval, 3700 ms) while

subjects performed a fixation-cross-color detection task. Stim-
uli were displayed on a uniform gray background at a width of
2.9˚ visual angle. Each of the 96 object images was presented
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FIGURE 7 | Human IT and monkey IT are more similar to each other
than to human judgments. (A) hIT, mIT, and human judgment RDMs
compared in a second-order MDS arrangement (criterion: metric stress;
distance measure: 1 – Pearson r ) before (left) and after (middle) equating
the proportion of non-category-related variance by adding dissimilarity
noise to the hIT and judgment RDMs. Statistical inference (right, via
bootstrapping the stimulus set) indicates that hIT and mIT RDMs are more
similar to each other than either of them is to human judgments. (B) The

same analysis applied to the predicted RDMs of the category-model
(Figure 5) suggests that hIT and mIT are very similar in terms of the
categorical divisions they emphasize and significantly more similar to each
other in this respect than either of them is to human judgments. (C) The
same analysis applied to the residual RDMs of the category-model shows
a weak reflection of the category-model results: hIT and mIT appear
slightly more similar to each other than either of them is to the human
judgments.

once per run. Subjects participated in two sessions of six 9 min
runs each. In addition, subjects participated in a separate block-
localizer experiment. Stimuli (grayscale photos of faces, objects,
and places) were presented in 30-s category blocks (stimulus dura-
tion, 700 ms; interstimulus interval 300 ms). Subjects performed a
one-back repetition-detection task on the images.

Functional magnetic resonance imaging
Blood-oxygen-level-dependent fMRI measurements were per-
formed at high resolution (voxel volume: 1.95 mm× 1.95 mm×
2 mm), using a three Tesla General Electric HDx MRI scanner,
and a custom-made 16-channel head coil (Nova Medical Inc.).
We acquired 25 axial slices that covered IT and EVC bilater-
ally (single-shot, gradient-recalled Echo Planar Imaging: matrix

size: 128× 96, TR: 2 s, TE: 30 ms, 272 volumes per run, SENSE
acquisition).

Estimation of single-image activity patterns
fMRI data were preprocessed in BrainVoyager QX (Brain Inno-
vation) using slice-scan-time correction and head-motion cor-
rection. All further analyses were conducted in Matlab (The
MathWorks Inc.). Single-image activity patterns were estimated
for each session by voxel-wise univariate linear modeling (using
all runs except those used for region-of-interest definition). The
model included a hemodynamic-response predictor for each
of the 96 stimuli along with run-specific motion, trend, and
confound-mean predictors. For each stimulus, we converted the
response-amplitude (beta) estimate map into a t map.
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FIGURE 8 | hIT activity-pattern dissimilarities and judged dissimilarities
are significantly correlated within all images and within category
subsets of images. (A) Scatter plot of hIT activity-pattern dissimilarities and
judged dissimilarities taken from the subject-average RDMs shown in
Figure 3A. A dot is placed for each stimulus pair based on its hIT
activity-pattern dissimilarity and judged dissimilarity (three example stimulus
pairs are shown). The large gray dots represent all possible stimulus pairs
(r =0.39, p < 0.0001; r is Spearman correlation coefficient). The smaller
colored dots placed on top of the gray dots code for subsets of images:
green dots represent animate object pairs (r =0.34, p < 0.0001), cyan dots
represent inanimate object pairs (r =0.19, p < 0.0001), and red dots
represent object pairs consisting of an animate and an inanimate object

(r =−0.16, p < 0.9975). Consistent with the results in Figure 3, the
marginal histograms show that both hIT and judged dissimilarities are larger
for object pairs that cross the animate-inanimate category boundary (red)
than for object pairs that do not cross this boundary (green and cyan). (B) To
test whether the continuous match between hIT and judged dissimilarities
would generalize to the population of similarity judgment subjects, we
computed the correlation of each single-subject judgment RDM with the
subject-average hIT RDM and tested whether the average of those
correlations was significantly larger than zero, using a one-sample t test.
Bars show the average correlation between hIT and judged dissimilarities
across subjects. Error bars show SEM. Asterisks indicate significance
(p < 0.001).

Definition of regions of interest
All regions of interest (ROIs) were defined on the basis of indepen-
dent experimental data and restricted to a cortex mask manually

drawn on each subject’s fMRI slices. Human IT was defined by
selecting the 316 most visually responsive voxels within the IT
portion of the cortex mask. Visual responsiveness was assessed

Frontiers in Psychology | Perception Science March 2013 | Volume 4 | Article 128 | 10

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Mur et al. Object-similarity judgments and IT

FIGURE 9 | hIT activity-pattern dissimilarities and judged dissimilarities
are significantly correlated within most finer-grained category subsets of
images. (A) Scatter plots of hIT and judged dissimilarities taken from the

subject-average RDMs in Figure 3A. A dot is placed for each stimulus pair
based on its hIT activity-pattern dissimilarity and judged dissimilarity. The large

(Continued )
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FIGURE 9 | Continued
gray dots represent all possible stimulus pairs, the smaller colored dots
placed on top of the gray dots code for subsets of images as indicated in
the plot legends. Plot legends show Spearman correlation coefficients and
associated p-values computed with a one-sided stimulus-label
randomization test (10,000 randomizations). Asterisks indicate significance
(***=p < 0.001, **=p < 0.01). The hIT and judgment similarity structures
are significantly correlated within the following subsets of images: faces,
bodies, human bodies, humans, non-human animates, natural objects, and

artificial objects. This suggests a shared within-category similarity structure.
(B) The within-category match between hIT activity-pattern dissimilarities
and judged dissimilarities generalizes to the population of similarity
judgment subjects. We computed the correlation of each single-subject
similarity judgment RDM with the subject-average hIT RDM and tested
whether the average of those correlations was significantly larger than zero,
using a one-sample t test. Bars show the average correlation between hIT
and judged dissimilarities across subjects. Error bars show SEM. Asterisks
indicate significance (p < 0.001).

using the t map for the average response to the 96 object images.
The t map was computed on the basis of one third of the runs
of the main experiment within each session. To define EVC, we
selected the 1057 most visually responsive voxels, as for IT, but
within a manually defined anatomical region around the cal-
carine sulcus within the cortex mask. The fusiform face area (FFA)
(Kanwisher et al., 1997) and parahippocampal place area (PPA)
(Epstein and Kanwisher, 1998) were defined based on the separate
block-localizer experiment. The FFA was defined by the contrast
faces minus objects and places; the PPA was defined by the con-
trast places minus objects and faces. Each of the four resulting
unilateral regions contained 128 voxels.

Construction of the representational dissimilarity matrix
For each ROI, we extracted a multivoxel pattern of activity (t map)
for each of the 96 stimuli. For each pair of stimuli, activity-pattern
dissimilarity was measured as 1−Pearson linear correlation across
voxels within the ROI (0 for perfect correlation, 1 for no correla-
tion, 2 for perfect anticorrelation). The resulting 4560 pairwise
dissimilarity estimates were placed in an RDM. RDMs were con-
structed for each subject and session separately and then combined
by averaging.

COMPARING REPRESENTATIONAL SIMILARITY BETWEEN BRAIN AND
BEHAVIOR
Descriptive visualizations
To compare hIT activity-pattern dissimilarities and dissimilarity
judgments, we first visualized the data in multiple ways (Figures 3
and 4). These figures display not only the RDMs, but also the asso-
ciated multidimensional scaling (MDS) plots (Torgerson, 1958;
Shepard, 1980) and hierarchical cluster trees (Shepard, 1980).
The MDS plots (criterion: metric stress) display the multidimen-
sional similarity representations in 2D: the closer the objects, the
more similar their activity patterns or the higher their perceived
similarity. The hierarchical cluster trees (linkage method: aver-
age linking) explore, which object clusters emerge from the data
when objects are grouped based on activity-pattern or perceived
similarity.

Comparing categorical structure
The descriptive visualizations were complemented by inferen-
tial analyses addressing the question whether hIT and simi-
larity judgments emphasize different categorical divisions. For
this purpose, we assumed conventional categorical divisions
(animate/inanimate, face/body, human/non-human, and nat-
ural/artificial) and tested whether the percentage of dissimilarity
variance explained by a given categorical division was greater for
hIT or for the similarity judgments.

Linear model of category-related variance. We modeled each
RDM (hIT, judgments) as a linear combination of RDMs rep-
resenting the category divisions and within-category clustering
imbalances (Figures 5A,B). Clustering imbalance refers to a
difference in degree of clustering for the categories involved in a
division, e.g., stronger clustering within faces than within bodies.
The model was fit using ordinary least squares. We then com-
pared the proportion of the total dissimilarity variance explained
by the category-model for hIT and judgments. This proportion
was larger for the judgments (0.59) than for hIT (0.39). This must
be due to a combination of two components: the within-category
variance and the noise. In order to perform statistical inference
on the difference between hIT and judgments with respect to
a given categorical division despite the different proportions of
residual variance, we took two steps. (1) We expressed variance
explained by that division as a portion of the total variance
explained by the category-model (thus measuring, for example,
animate/inanimate variance as a percentage of total category-
related variance) (Figure 5C). We used the squared beta weights to
estimate explained variance, yielding estimates that are normalized
for predictor energy. (2) We added dissimilarity noise to the judg-
ment RDM, so as to equate the proportion dissimilarity variance
explained by the category-model between hIT and judgments. The
noise-equated judgment RDM is shown in Figure 5A.

Note that ordinary-least-squares fitting is often motivated by
the fact that it gives a maximum-likelihood estimate when the
errors are independent and Gaussian. Here we model dissimi-
larities, which are not independent or Gaussian. The ordinary-
least-squares fit merely serves to give us descriptive indices of the
relative strength of different categorical divisions. Our method of
inference on these statistics is not dependent on assumptions of
Gaussianity or independence and has been validated by simula-
tion (An alternative approach to modeling the categorical divi-
sions, motivated by maximum-likelihood estimation, would be to
replace the correlation distances by correlations, i.e., to use simi-
larities instead of dissimilarities, apply the Fisher Z transform, and
then fit a category-model by least squares. The Z values reflecting
the similarities would still be dependent and not exactly Gaussian,
but perhaps the model would be preferable from a statistical per-
spective. This approach would require a validation study, which is
beyond the scope of the present paper).

Equating residual variance. To equate the proportion residual
variance between judgments and hIT, we assumed that the dissim-
ilarity noise arises from isotropic Gaussian noise affecting single-
subject patterns in a high-dimensional representational space. In
the limit of infinite dimensions, the noise displacements are then
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FIGURE 10 | Similarity judgments’ match to brain and model
representations. (A) Multidimensional scaling of similarity
representations (criterion: metric stress, distance measure: 1-r, where r is
Spearman correlation coefficient). The MDS plot visualizes the
relationships between multiple RDMs simultaneously. Text-label colors
indicate the type of similarity representation: red indicates brain-activity,
blue indicates human similarity judgments, black indicates simple
computational models, and gray/blue indicates complex computational
models. Single-subject similarity judgment RDMs are shown as well
(smaller font). The gray connections between the RDMs reflect the
inevitable distortions induced by arranging the higher-dimensional

similarity representations in a lower-dimensional space (2D). (B) Match
bars for several brain regions and models showing their deviation from the
subject-average similarity judgment RDM. The deviation is measured as
1−Spearman correlation between RDMs. Text color encodes the type of
representation as in (A). Error bars indicate the standard error of the
deviation estimate. The standard error was estimated as the standard
deviation of 100 deviation estimates obtained from bootstrap resamplings
of the condition set. The p-value below each bar indicates whether the
associated RDM is significantly related to the similarity judgment RDM
(stimulus-label randomization test, 10,000 randomizations). hIT is the best
match to the similarity judgments.

orthogonal to the representational distances. We assumed this
orthogonality and a Euclidean distance metric. By the Pythagorean
theorem, for each pattern, its squared Euclidean noise displace-
ment can then be added to each squared Euclidean distance of
that pattern to other patterns, to simulate the effect of the noise.
After adding the noise components to the squared Euclidean
RDM, we took the square root to convert back to the original

RDM units. We adjusted the standard deviation of the Gaussian
noise to equate the proportion of category-related variance in the
RDM.

Randomization test. To test whether hIT and judgments place
different emphasis on a given categorical division, we performed
statistical inference on the difference in percentage of explained
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FIGURE 11 | Human judgments show similar reliability but stronger
categoricality than human IT. (A) Multidimensional scaling of
single-subject similarity representations (criterion: metric stress, distance
measure: 1-r, where r is Spearman correlation coefficient). The MDS plot
visualizes the relationships between multiple RDMs simultaneously.
Text-label colors indicate the type of similarity representation: red indicates
human IT, blue indicates human similarity judgments. Subject-average
RDMs are shown in larger font. The gray connections between the RDMs
reflect the inevitable distortions induced by arranging the
higher-dimensional similarity representations in a lower-dimensional space
(2D). Visual inspection of the MDS plot suggests that variability across
subjects is similar for judgments and hIT. (B) This panel shows inter-subject
reliability for hIT and judgments. We estimated inter-subject reliability as the
average pairwise inter-subject RDM correlation (Spearman r ), using sets of

(Continued )

FIGURE 11 | Continued
four subjects (one set for hIT; 5,000 randomly selected subsets for the
judgments). The hIT reliability falls well within the judgment distribution,
indicating that hIT and judgments do not significantly differ in terms of
reliability. (C) This panel shows categoricality for hIT and judgments. We
estimated categoricality as the proportion of dissimilarity variance explained
by the category-model (Figure 5B), averaged across sets of four subjects
(one set for hIT; 5,000 randomly selected subsets for the judgments). Note
that we fitted the model after accounting for any difference in reliability
between judgments and hIT. The hIT categoricality falls within the bottom
5% of the judgment distribution, which indicates that the judgments are
more categorical than the hIT representation.

FIGURE 12 | Single-subject RDMs and category-model predictions for
human IT and human judgments. To give an impression of categoricality
at the single-subject level, we plotted the single-subject RDMs for hIT and
judgments (top panel), and the associated single-subject category-model
predictions (bottom panel). The category-model (Figure 5B) was fitted to
each subject’s RDM after equating inter-subject reliability between hIT and
judgments. Visual inspection suggests stronger categoricality for the
judgments than for hIT.
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category variance between hIT and judgments (Figure 5C).
Inference was performed by randomization of the data labels
(“hIT” or “judgments”) across subjects, simulating the null
hypothesis that hIT and judgments do not differ in the percentages
of category-related dissimilarity variance explained by the categor-
ical divisions. We performed 10,000 randomizations, each yielding
an estimate of our test statistic under the null hypothesis. If the
actual difference (for the true labeling) in percentage of explained
category variance for a given categorical division fell within the
most extreme 5% of the simulated null distribution (two-sided
test), we rejected the null hypothesis of no difference in categorical
structure between hIT and judgments for that categorical division.

To check whether the label randomization test succeeds at con-
trolling the false-positive rate at 0.05, we simulated the case of
two sets of RDMs with an identical categorical structure (null
hypothesis), but different levels of dissimilarity noise. The num-
ber of conditions and categorical divisions matched those in our
actual data. The proportions of residual variance of the cat-
egory model were set to match those in hIT and judgments.
We ran the simulation 100 times, each time performing (1)
the noise-adjustment step to equate the proportion of resid-
ual variance, (2) the fitting of the category model, and (3) the
label-randomization test (1,000 randomizations) on the simu-
lated RDMs. The false-positives rates for all simulated category
divisions (animate/inanimate, face/body, natural/artificial) were
consistently below 0.05, suggesting that our test is valid and slightly
conservative.

Comparison between human and monkey IT. We additionally
compared the categorical structure between human and mIT using
the same approach (Figure 6). The monkey RDM is based on neu-
rophysiological recordings from a population of IT cells (Kiani
et al., 2007), which we previously compared to hIT in terms of
continuous structure (Kriegeskorte et al., 2008b). We could not
perform statistical inference for the human-monkey compari-
son of categorical divisions because the monkey data were based
on only two subjects, which is too few to perform a valid ran-
domization test. Instead, we compared the hIT, mIT, and human
judgment RDMs in a second-order MDS arrangement (Figure 7).
To test whether the RDMs were significantly related, we cor-
related each pair of RDMs (i.e., hIT-mIT, hIT-judgments, and
mIT-judgments), and performed statistical inference on each pair-
wise correlation coefficient using a stimulus-label randomization
test (10,000 randomizations), which simulates the null hypoth-
esis of unrelated RDMs. If the actual correlation coefficient fell
within the top 5% of the null distribution, we rejected the null
hypothesis of unrelated RDMs. Even if all RDMs are significantly
related, some of them might be more strongly related than oth-
ers. To test whether two RDMs were more closely related than
two other RDMs, we performed statistical inference on the differ-
ence of the correlation distances (1 – Pearson r) using bootstrap
resampling of the stimulus set (1,000 resamplings). This simulates
the distribution of differences between the correlation distances
that we would expect to observe if we repeated the experiment for
different samples of stimuli (drawn from the same hypothetical
distribution of stimuli). If 0 fell in the top or bottom 2.5% of the
difference distribution, we rejected the null hypothesis of equal

relatedness of both pairs of RDMs and concluded that the two
more highly correlated RDMs were more closely related.

Comparing continuous structure
We performed further inferential analyses addressing the question
whether hIT and similarity judgments share continuous dissim-
ilarity variance. To address this question, we tested whether the
dissimilarity estimates of corresponding object pairs were signifi-
cantly correlated between hIT and judgments. We performed this
test for all objects (Figure 8), and for category subsets of objects
(Figure 9). We used the same test to relate the judgments to brain-
activity measurements from visual regions other than hIT, and to
computational models of varying complexity (Figure 10).

We estimated the degree of correlation using Spearman’s rank
correlation coefficient, since we expected a monotonic, but not
necessary linear, relationship between hIT and judgment RDMs.
The correlation was restricted to the lower triangle of each RDM,
which contained all possible pairwise dissimilarity estimates. The
classical method for inference on correlation coefficients assumes
independent pairs of measurements for the variables being corre-
lated. Such independence cannot be assumed for RDMs, because
each dissimilarity estimate is dependent on two stimuli, each of
which also codetermines the dissimilarities of all its other pair-
ings in the RDM. We therefore tested the relatedness of the hIT
and judgment RDMs by randomization of the stimulus labels
(Figures 8A, 9A, and 10B). We performed 10,000 randomizations,
each yielding an estimate of the correlation coefficient under the
simulated null hypothesis that hIT and judgments do not share
continuous dissimilarity variance. The obtained estimates served
as a null distribution for statistical inference. If the actual cor-
relation coefficient fell within the top 5% of the simulated null
distribution, we rejected the null hypothesis of unrelated RDMs.

We also tested the relatedness of the hIT and judgment RDMs
in a random-effects analysis across subjects (Figures 8B and 9B).
This analysis enables generalization of the results to the population
and does not assume independence of the dissimilarity estimates
in an RDM. We first computed single-subject Spearman rank cor-
relation coefficients by correlating each single-subject judgment
RDM with the subject-average hIT RDM. We then transformed
these correlation coefficients using the Fisher Z transform and
performed a standard one-sample t test on the resulting Z val-
ues. The t test was used to determine whether the average of the
single-subject Z values was larger than zero.

Measurement noise affects correlation estimates, e.g., it might
weaken the observed correlation between two variables (hIT, judg-
ments). An attenuation correction could alleviate the influence
of noise, however, this would ideally require estimating the test-
retest reliability of the hIT and judgment data. This was not
feasible since the judgments were acquired in a single session.
The reported correlation coefficients are therefore not corrected
for attenuation. Although this might have decreased our sensitiv-
ity to effects, it does not affect the validity of our stimulus-label
randomization test.

Comparing inter-subject reliability and categoricality
To get an impression of the inter-subject variability of hIT and
judgment RDMs, we performed second-order MDS (criterion:
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FIGURE 13 | Human similarity judgments show substantial
consistency across subjects, for all images and for most category
subsets of images. The upper triangle of each matrix shows all
possible pairwise inter-subject RDM correlations (Spearman r ). The
mirror-symmetric entries in the lower triangle of each matrix show the

corresponding thresholded p-values. p-values were computed using a
stimulus-label randomization test with 10,000 randomizations and
corrected for multiple comparisons using the False Discovery Rate. The
average of all pairwise 120 inter-subject correlations is shown below
each matrix.

metric stress; distance measure: 1− Spearman r) on the single-
subject RDMs for hIT and judgments combined (Figure 11A):
the closer two subjects in the MDS plot, the more similar their
representational similarity structures. The MDS visualizations
were complemented by inferential analyses addressing the ques-
tion whether hIT and judgments differ in inter-subject reliability
(Figure 11B). We estimated inter-subject reliability as the average
pairwise correlation (Spearman r) between single-subject RDMs.
We first computed the inter-subject reliability for hIT (four sub-
jects, six pairwise comparisons), and then repeatedly selected
random subsets of four subjects from the judgment data (16
subjects) to estimate inter-subject reliability for the judgments
(5,000 randomizations). We used these 5,000 estimates as a null

distribution for statistical inference: if the hIT estimate fell within
the most extreme 5% of the judgment distribution, we rejected
the null hypothesis of no difference between hIT and judgments
in inter-subject reliability.

If we consider both measurement error and inter-subject vari-
ation as noise, we can equate noise levels by equating inter-
subject reliability, and address the question whether the similar-
ity judgments are more categorical than the hIT representation
(Figure 11C). Although inter-subject reliability was not signifi-
cantly different between judgments and hIT, we explicitly equated
it using the same procedure as described previously under the
heading ‘Equating residual variance’ (i.e., by adding dissimilar-
ity noise to the single-subject judgment RDMs; inter-subject
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reliability for hIT was 0.28, average inter-subject reliability for
the judgments was 0.32). Note that this time the amount of noise
was adjusted to equate inter-subject reliability, not the proportion
of category-related variance, enabling us to compare the latter
between judgments and hIT. We fitted the category model (shown
in Figures 5 and 6) to the noise-equated single-subject RDMs, and
computed the proportion of category-related dissimilarity vari-
ance for each subject. We used the subject-average proportion of
category-related dissimilarity variance as an estimate of categori-
cality. We first estimated categoricality for hIT (four subjects), and
then repeatedly selected random subsets of four subjects from the
judgment data (16 subjects) to estimate categoricality for the judg-
ments (5,000 randomizations). We used these 5,000 estimates as
a null distribution for statistical inference: if the hIT estimate fell
within the bottom 5% of the judgment distribution, we rejected
the null hypothesis of no difference between hIT and judgments
in categoricality. Figure 12 shows the single-subject hIT and judg-
ment RDMs and the single-subject category-model predictions
(estimated using noise-equated RDMs) for visual inspection.

Figure 13 displays inter-subject reliability for the judgments in
more detail. The correlation matrices show all possible pairwise
inter-subject correlation coefficients (Spearman r), for all images
(top panel), and for category subsets of images (smaller panels).
Statistical inference was performed using stimulus-label random-
ization tests, simulating the null hypothesis of uncorrelated RDMs.
Results were corrected for multiple comparisons using the False
Discovery Rate.

MODEL REPRESENTATIONS OF THE STIMULI
We processed our stimuli to obtain their representations in a num-
ber of simple and complex computational models. The model rep-
resentations have been described previously (Kriegeskorte et al.,
2008a,b), but are repeated here for completeness. Each image was
converted to a representational vector as described below for each
model. Each representational vector was then compared to each
other representational vector by means of 1-r as the dissimilarity
measure (where r is Pearson correlation coefficient). The result-
ing model RDMs were then compared to the similarity judgment
RDM (Figure 10).

Binary silhouette image
The RGB color images (175× 175 pixels) were converted to binary
silhouette images, in which all background pixels had the value 0
and all figure pixels had the value 1. Each binary silhouette image
was then converted to a pixel vector (175× 175 binary numbers).

Luminance image
The RGB color images (175× 175 pixels) were converted to lumi-
nance images. Each luminance image was then converted to a pixel
vector (175× 175 numbers).

Color image (CIELAB)
The RGB color images (175× 175 pixels) were converted to the
CIELAB color space, which approximates a linear representation
of human perceptual color space. Each CIELAB image was then
converted to a pixel vector (175× 175× 3 numbers).

Color set (joint CIELAB histogram)
The RGB color images (175× 175 pixels) were converted to the
CIELAB color space. The three CIELAB dimensions (L, a, b),
were then divided into six bins of equal width. The joint CIELAB
histogram was computed by counting the number of figure pix-
els (gray background left out) falling into each of the 6× 6× 6
bins. The joint histogram was converted to a vector (6× 6× 6
numbers).

V1 model
The luminance images (175× 175 pixels, 2.9˚ visual angle) were
given as input to a population of modeled V1 simple and com-
plex cells (Riesenhuber and Poggio, 2002; Lampl et al., 2004; Kiani
et al., 2007). The receptive fields (RFs) of simple cells were simu-
lated by Gabor filters of four different orientations (0˚, 90˚,−45˚,
and 45˚) and 12 sizes (7–29 pixels). Cell RFs were distributed over
the stimulus image at 0.017˚ intervals in a cartesian grid (for each
image pixel there was a simple and a complex cell of each selectivity
that had its RF centered on that pixel). Negative values in outputs
were rectified to zero. The RFs of complex cells were modeled by
the MAX operation performed on outputs of neighboring sim-
ple cells with similar orientation selectivity. The MAX operation
consists in selecting the strongest (maximum) input to determine
the output. This renders the output of a complex cell invariant to
the precise location of the stimulus feature that drives it. Simple
cells were divided into four groups based on their RF size (7–9
pixels, 11–15 pixels, 17–21 pixels, 23–29 pixels) and each com-
plex cell pooled responses of neighboring simple cells in one of
these groups. The spatial range of pooling varied across the four
groups (4× 4, 6× 6, 9× 9, and 12× 12 pixels for the four groups,
respectively). This yielded 4 (orientation selectivities)× 12 (RF
sizes)= 48 simple-cell maps and 4 (orientation selectivities)× 4
(sets of simple-cell RF sizes pooled)= 16 complex cell maps of
175× 175 pixels. All maps of simple and complex cell outputs
were vectorized and concatenated to obtain a representational vec-
tor for each stimulus image. We also included a version of the V1
model in which we averaged all simple and complex cell responses
representing the same retinal location (averaging also across ori-
entation selectivities and RF sizes) in order to mimic the effect of
downsampling by population averaging within fMRI voxels (“V1
model, smoothed”).

HMAX-C2 based on natural image fragments
This model representation developed by Serre et al. (2005)
builds on the complex cell outputs of the V1 model described
above (implemented by the same group). The C2 features
used in the analysis may be comparable to those found in
primate V4 and posterior IT. The model has four sequential
stages: S1-C1-S2-C2. The first two stages correspond to the
simple and complex cells described above, respectively. Stages
S2 and C2 use the same pooling mechanisms as stages S1
and C1, respectively. Each unit in stage S2 locally pools infor-
mation from the C1 stage by a linear filter and behaves as
a radial basis function, responding most strongly to a par-
ticular prototype input pattern. The prototypes correspond
to random fragments extracted from a set of natural images
(stimuli independent of those used in the present study). S2
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outputs are locally pooled by C2 units utilizing the MAX
operation for a degree of position and scale tolerance. A
detailed description of the model (including the parameter
settings and map sizes we used here) can be found in Serre
et al. (2005). The model, including the natural image frag-
ments, was downloaded from the author’s website in January
2007 (for the current version, see http://cbcl.mit.edu/software-
datasets/standardmodel/index.html).

RADON transform
As an example of a model inspired by image processing, we
included the Radon transform, which has been proposed as a func-
tional account of the representation of visual stimuli in the lateral
occipital complex. The Radon transform of a two-dimensional
image is a matrix, each column of which corresponds to a set
of integrals of the image intensities along parallel lines of a
given angle. We used the Matlab function radon to compute
the Radon transform for each luminance image. We additionally
used smoothed versions of these radon-transformed images (low-
passed), which were computed by convolving the transformed
images with a Gaussian kernel of 11.75 pixels full width at half
maximum (“radon, smoothed”).

RESULTS
HUMAN JUDGMENTS REFLECT IT CATEGORICAL DIVISIONS AND
INTRODUCE HUMAN-RELATED ADDITIONAL DIVISIONS
Figure 3 visualizes the dissimilarity data for judgments and hIT.
Both the RDMs (Figure 3A) and MDS arrangements (Figure 3B)
suggest that the human judgments strongly emphasize con-
ventional categorical divisions. The top-level division is ani-
mate/inanimate just like in the hIT representation. In addition,
both hIT and judgments show a tight cluster of human faces.
Compared to the hIT representation, the judgments appear to
exhibit tighter (sub)clusters, which could reflect the nature of
the representation or different noise levels of the measurements.
Further analyses support the first explanation (Figure 11). The
cluster analysis (Figure 4) suggests that, in addition to the ani-
mate/inanimate and face/body divisions that are present in both
representations, the judgments show a natural/artificial division
among the inanimate objects and a prominent human/non-
human division among the animate objects. The human/non-
human division appears at a higher level of the hierarchy (sug-
gesting that it explains more pattern variance) than the face/body
division. Both additional divisions observed in the human judg-
ments concern the distinction between human-associated objects
(human face or body, or artificial, i.e., man-made, object) and non-
human-associated objects (non-human face or body, or natural
object).

Debriefing reports of the subjects are consistent with the
descriptive visualizations of the judgment data. Fifteen out of six-
teen subjects indicated that they arranged the objects by semantic
category. The specific categories mentioned by the subjects corre-
spond to the (sub)clusters shown in Figure 3B (e.g., human faces,
monkeys/apes, fruits, tools). Most subjects indicated that they also
used shape and color to arrange the objects, specifically within
category clusters.

Figure 5 shows the inferential analysis of category-related
variance components. The categories were defined according to
our prior hypotheses based on the literature and used con-
ventional categorical divisions (animate/inanimate, face/body,
human/non-human, natural/artificial). We used a linear model
of category-related dissimilarity variance (Figures 5A,B) and
estimated the percentage of the total category-related vari-
ance explained by each categorical division (Figure 5C). Con-
sistent with the clustering results, this showed that the ani-
mate/inanimate and face/body divisions were prominent in both
hIT and judgments, and that the judgments additionally intro-
duced the divisions human/non-human and natural/artifical.
Inferential comparisons showed that the human/non-human and
the natural/artificial division are significantly stronger in the
judgments than in hIT (p < 0.01 for both divisions, random-
ization test), and the animate/inanimate and the face/body divi-
sion are significantly weaker (p < 0.01, p < 0.025, respectively).
Since the category-related variance claimed by each division is
defined as a percentage of the total category-related variance
for each RDM, the additional divisions seen in the judgments
come at the expense of the other divisions. The smaller percent-
age for the animate/inanimate and the face/body division in the
judgments might, thus, be entirely explained by the additional
divisions.

HUMAN IT IS MORE CLOSELY RELATED TO MONKEY IT THAN TO
HUMAN JUDGMENTS
Figures 6 and 7 bring in the mIT data. Figure 6 suggests that
hIT and mIT share their major categorical divisions, i.e., the
top-level animate/inanimate division and the face/body division
within the animates, consistent with descriptive visualizations
in earlier work (Kriegeskorte et al., 2008b). Figure 7 visually
and inferentially relates the three RDMs (hIT, mIT, and human
judgments). The three RDMs are significantly related, as are
their category-related components of the dissimilarity variance
(p < 0.0001 for each pairwise comparison). This, however, does
not exclude that some RDMs might be more strongly related
than others. Further analyses showed that the RDMs for hIT
and mIT are significantly more similar than either of them is
to the judgments (p < 0.05, p < 0.01, respectively; Figure 7A).
When we consider only the category-related component of the
dissimilarity variance (Figure 7B), this effect is even more pro-
nounced: hIT and mIT are much more similar to each other
than either of them is to the judgments (p < 0.001, p < 0.001,
respectively). When we consider only the non-category-related
component (Figure 7C), we see a weak reflection of the same
qualitative picture: hIT and mIT appear slightly more similar to
each other than either of them is to the judgments (p > 0.05,
p < 0.01, respectively). Consistent with this finding, the non-
category-related components are significantly correlated between
human and monkey IT (p < 0.0001) but not between human
judgments and either monkey or human IT. We did not find
any evidence that human judgments are more closely related to
hIT than to mIT for the original RDMs, for the category-related
component RDMs, or for the non-category-related component
RDMs.
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HUMAN JUDGMENTS REFLECT THE IT REPRESENTATION, EVEN
WITHIN CATEGORIES
We have seen that hIT dissimilarities are more closely related
to mIT dissimilarities than to human dissimilarity judgments.
This does not mean that human judgments do not reflect the
hIT representation. To investigate in detail to what extent and for
which categories hIT and judgments share continuous dissimilar-
ity variance, we tested whether the dissimilarities were significantly
correlated between hIT and judgments across object pairs. We
performed this test for all objects (in which case a significant cor-
relation could be driven by shared categorical divisions) and for
category subsets of objects. The dissimilarities were significantly
correlated, both within all objects and within most category sub-
sets of objects (Figures 8A and 9A). In particular, dissimilarities
were significantly correlated (stimulus-label randomization test
applied to group-average RDMs) within the following categories:
animate objects, inanimate objects, faces, bodies, human bodies,
humans (faces and bodies), non-human animates (faces and bod-
ies), natural objects, and artificial objects. We found no evidence
for a dissimilarity correlation between hIT and human judgments
within the following categories: human faces, animal faces, and
animal bodies. The highest correlation coefficients between hIT
activity-pattern dissimilarities and dissimilarity judgments were
found within humans (r = 0.60), within faces (r = 0.40), and
within natural objects (r = 0.46).

A similar pattern of dissimilarity correlations between hIT and
human judgments was found in a random-effects analysis across
subjects (Figures 8B and 9B). Again, hIT and judgments were sig-
nificantly correlated within all images and within most category
subsets of images, including all subsets that were identified by the
stimulus-label randomization test. This suggests that our results
can be generalized to the population of similarity-judgment sub-
jects. These results show that,although judgments emphasize addi-
tional categorical divisions, they do reflect the representational
dissimilarities of IT, even within categories.

HUMAN IT EXPLAINS HUMAN JUDGMENTS BETTER THAN OTHER
VENTRAL-STREAM REGIONS AND COMPUTATIONAL MODELS
Other brain regions, including EVC, the FFA, and the PPA, did
not match the judgments as well as hIT (Figure 10). FFA showed a
lower, but still significant correlation with the similarity judgments
(r = 0.22, p < 0.0001); for EVC and PPA, the correlation was not
significant. Computational models based on low-level and more
complex natural image features also did not match the similarity
judgments as well as hIT (Figure 10B). Among the models, sim-
ple models based on object color and shape, and a more complex
model based on natural image features thought to be representa-
tive of primate V4 and posterior IT (Serre et al., 2005), showed the
closest match to the similarity judgments.

HUMAN JUDGMENTS SHOW STRONGER CATEGORICALITY THAN
HUMAN IT
Categorization is a hallmark of human judgment, so one might
expect judgments to be more categorical than the high-level visual
representation. The MDS arrangement in Figure 3B and the hier-
archical clustering trees in Figure 4 might seem to support this

prediction, suggesting that judgments are more strongly cate-
gorical than hIT. However, this appearance could have resulted
from more noise in the hIT measurements. We therefore infer-
entially compared the reliability of hIT and judgment RDMs
and also inferentially compared categoricality after accounting
for any difference in reliability. Results are shown in Figure 11.
The MDS arrangement of single-subject RDMs in Figure 11A
shows that subjects cluster according to type of measurement
(judgments or hIT), but also suggests similar variability across
subjects for judgments and hIT. Consistent with this observa-
tion, Figure 11B shows that inter-subject reliability does not differ
significantly between hIT and judgments (randomization test,
two-sided p= 0.61), i.e., the judgment and hIT measurements
are equally reliable. We then tested whether the judgments are
more categorical than the hIT representation by comparing the
proportion of category-related dissimilarity variance between hIT
and judgments (Figure 11C). The subject-average proportion of
category-related variance was 0.21 for hIT, and 0.31 for the judg-
ments (the value reported for the judgments is the mean of the
judgment distribution, see Materials and Methods). The results
of our test suggest that the judgments are indeed more categor-
ical than the IT representation (randomization test, one-sided
p < 0.05). Visual inspection of Figure 12, which displays all single-
subject RDMs and category-model predictions, is consistent with
this conclusion: it gives the impression of stronger categoricality of
the judgments than hIT, even at the single-subject level. Together,
these results suggest that the strong categorical clustering observed
for the judgments in Figures 3 and 4 reflects a difference in the
nature of the two representations, not a difference in measurement
noise.

HUMAN JUDGMENTS SHOW SUBSTANTIAL CONSISTENCY ACROSS
SUBJECTS
Figure 10A shows that the single-subject judgment RDMs clus-
ter together within the larger context provided by the RDMs of
different brain regions and computational models. One of the
subjects (S11) falls outside of the cluster, showing a similarity
representation more similar to simple models based on image fea-
tures than to the similarity representations of the other subjects.
This subject reported to have arranged objects by shape instead
of semantic category. Consistent with the observation that single-
subject representations cluster together, all but two of the 120
possible pairwise correlations between single-subject RDMs were
significantly greater than zero (Figure 13, top panel). These results
could be driven (completely) by category divisions shared across
subjects. We therefore repeated the same procedure for category
subsets of images (Figure 13, smaller panels). Results suggest that,
for most tested categories, within-category similarity structure is
also shared across subjects.

DISCUSSION
HUMAN OBJECT-SIMILARITY JUDGMENTS ARE CATEGORICAL AND
REFLECT THE IT OBJECT REPRESENTATION
We asked subjects to judge object-similarity for a large set of
real-world object images and investigated whether these similar-
ity judgments reflected the IT object representation, including its
hierarchy of category clusters and within-category structure. Our
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results show that human similarity judgments are categorical (con-
sistent with Rosch et al., 1976; Edelman et al., 1998) and reflect the
two major categorical divisions that characterize the primate-IT
object representation: the top-level animate/inanimate division
and the face/body division among the animates (Kiani et al., 2007;
Kriegeskorte et al., 2008b).

The shared top-level animate/inanimate division relates to neu-
ropsychological (Warrington and Shallice, 1984; Capitani et al.,
2003), behavioral (Kirchner and Thorpe, 2006; New et al., 2007),
and neuroimaging findings (Martin et al., 1996; Chao et al., 1999;
Kriegeskorte et al., 2008b; Connolly et al., 2012; Naselaris et al.,
2012) that suggest a special status for the living/non-living divi-
sion. This special status might be explained in terms of evolution-
ary pressure toward fast and accurate recognition of animals (New
et al., 2007). Recognizing animals, whether they were predator
or prey, friend or foe, was of vital importance to our primate
ancestors. Recognizing faces was key to survival and reproduc-
tion as well, since faces carry important information that can
be used to infer the emotions, intentions, and identity of other
animals. The IT representation is likely to play a central role in
these essential visual functions, and might be optimized, at the
phylo- and/or ontogenetic level, to distinguish essential categorical
divisions.

Alternatively, one might argue that the categorical structure
of both the similarity judgments and the IT object representa-
tion can be explained in terms of visual similarity. We refer to
features as “visual” if they are not expressly designed (e.g., by
supervised learning) to discriminate categories or encode seman-
tic variables. Previous studies have shown a relationship between
perceived visual shape similarity and IT activity-pattern similarity
for abstract object shapes (Kayaert et al., 2005; Haushofer et al.,
2008; Op de Beeck et al., 2008). Animate and inanimate objects
differ in the parts they are composed of and consequently in visual
properties (Tyler and Moss, 2001). For sufficiently visually distinct
categories, category clustering is expected to arise solely based on
visual similarity. In order to test if our findings could be accounted
for by visual similarity, we studied model representations of the
stimuli. A simple silhouette model and a more complex com-
putational model based on natural image features at a level of
complexity thought to approximately match V4 and posterior IT
(Serre et al., 2005) – do not show a clear categorical structure
(Figure 10; for more detailed analyses, see Kriegeskorte et al.,
2008b), and do not account for either the similarity judgments
or IT. We are in the process of testing a wider range of models. It is
important to note that the space of visual feature representations
that could be considered is infinite, and so a visual feature account
can never strictly be ruled out. However, our current interpretation
is that the IT features might be designed to emphasize behaviorally
important categorical divisions.

It has been shown that visual features of intermediate com-
plexity, which IT is sensitive to (Tanaka, 1996), are optimal for
category discrimination (Ullman et al., 2002). However, sensitiv-
ity to visual features of intermediate complexity alone does not
lead to a categorical object representation. What may be needed
is explicit design, i.e., selection of the visual features that are most
informative about category membership (Ullman et al., 2002).
Indeed, some studies have suggested that IT is especially sensitive

to category-discriminating visual features (Sigala and Logothetis,
2002; Lerner et al., 2008). Categories whose detection is highly
important to the organism, including animals and faces (see also
Mahon et al., 2009), are most likely to be represented by optimized
IT features (Schyns et al., 1998).

Our results show that similarity judgments reflect not only the
two major categorical divisions of the IT representation, but also
the IT within-category similarity structure. Given the functional
properties of IT, this within-category match is likely to be based
on visual similarity between objects that belong to the same cate-
gory cluster. This explanation is consistent with the reports of our
subjects, stating that they used object color and shape to arrange
objects within category clusters. Furthermore, these findings are
consistent with the previously reported relationship between per-
ceived object shape and IT activity-pattern similarities (Edelman
et al., 1998; Kayaert et al., 2005; Haushofer et al., 2008; Op de
Beeck et al., 2008). The matching within-category dissimilarities
of IT and judgments might also be explained in terms of a com-
mon underlying prototype model (see Cutzu and Edelman, 1998;
Edelman, 1998).

HUMAN OBJECT-SIMILARITY JUDGMENTS TRANSCEND THE
PRIMATE-IT OBJECT REPRESENTATION
Several features of the object-similarity judgments cannot be
explained by the IT representation. The human judgments show
stronger categorical clustering and introduce additional human-
specific categorical divisions: between human and non-human
animals and between man-made and natural objects. Both of
these additional divisions relate to the human species. They could
reflect the involvement of other brain systems that either con-
tribute these particular divisions or enable flexible task-dependent
categorization.

It is important to note that judging similarity is a complex
conscious process associated with shifts of overt and covert atten-
tion, while the IT representation was characterized here under
passive-viewing conditions, while the subjects performed a task at
fixation to which the objects were irrelevant. Our finding that IT,
under passive-viewing conditions, predicts some of the major cat-
egorical divisions and within-category structure in the similarity
judgments suggests an involvement of IT in the judgments. How-
ever, the nature of the judgment task is such that it will involve
many brain systems, including those associated with attention
and executive control, and these might even influence the repre-
sentational space within IT. These brain systems might include
prefrontal cortex, which has been implicated in goal-directed
behavior (see Duncan, 2010) and task-dependent categorization
(Freedman et al., 2001; Roy et al., 2010; but see Minamimoto et al.,
2010).

Similarity judgments are dependent on task instruction (Liu
and Cooper, 2001). The task instruction given to the subjects in
our experiment was very general (“Please arrange these objects
according to their similarity”). Note that the instruction did not
refer to “images,” but to “objects” and thus presumably elicited
functional and semantic descriptions along with visual ones. Each
object can be described by multiple properties, including color,
shape, real-world size, function, and semantic category, and sub-
jects were free to choose and weight these properties according
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to their subjective preferences. Nevertheless, subjects exhibited a
strong tendency to group the objects by the same four semantic
categories (human, non-human animal, natural object, artificial
object) and by similar within-category features. The consistency
across subjects may reflect the shared component of the human
experience. The focus on these categorical divisions makes sense
given their importance in daily life.

From the comparison here of IT and judgments within humans,
it is clear that the human judgments introduce additional divi-
sions. We did not have comparable behavioral data for the mon-
keys, so we do not know whether monkeys also introduce addi-
tional divisions when judging similarity in the context of natural
behavior. Previous behavioral studies in monkeys showed that
monkeys represent objects categorically (Sands et al., 1982; Kiani
et al., 2007), but these studies did not investigate differences in
categorical structure between IT activity-pattern similarity and
perceived similarity.

FUTURE DIRECTIONS
Our study takes an important first step toward the identifica-
tion of the neuronal basis of similarity judgments of real-world
object images. Our focus here was on the ventral-stream object
representation. Future research should investigate the similarity
representation in the entire brain, for example using a searchlight
mapping approach (Kriegeskorte et al., 2006) to find the region
that matches the similarity judgments most closely. A closer match
to the similarity judgments might also be found by combining
information from different brain regions.

Another avenue for future research would be to systematically
investigate the effect of task instruction on both the judgments and
the brain representation. Task instruction can be used to “bias”
the subjects toward using certain object dimensions for judging
object-similarity, e.g., color, shape, real-world size, esthetic appeal.
It will be interesting to see to what degree the similarity judgments
reflect the task instruction and how task instruction modulates the
explanatory contributions of different brain regions. Furthermore,

the influence of task instruction on inter-subject consistency could
be investigated. A more specific task instruction might increase
inter-subject consistency, but this might also depend on the object
property mentioned in the task instruction (e.g., color vs. esthetic
appeal).

One drawback of the current study is that the judgments and the
IT representation are based on different groups of subjects. This
enabled a more interpretable comparison of the explanatory power
of the IT representation in human and monkey, and does estab-
lish a close relationship between judgments and IT. However, it is
important to also investigate brain representations and judgments
in the same subjects (e.g., Haushofer et al., 2008; Op de Beeck et al.,
2008). This might reveal an even closer match and might enable us
to explain individual idiosyncrasies of the judgments on the basis
of the same subjects’ brain representations.

CONCLUSION
We conclude that human similarity judgments of visually pre-
sented real-world objects reflect the categorical divisions that are
prominent in the primate-IT representation and also the within-
category similarity structure of the IT representation. The IT
categorical divisions include animate/inanimate and face/body,
divisions that are behaviorally important to all primates. Despite
reflecting IT, similarity judgments also transcend the IT rep-
resentation in that they introduce additional categorical divi-
sions. In the human, these are the human-specific distinc-
tions between humans and other animals and between man-
made and natural objects. These divisions unexplained by IT
may reflect a contribution to similarity judgments from other
brain systems that enable flexible categorization for adaptive
behavior.
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