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Traditional neuroanatomic models of language comprehension have emphasized a core
language network situated in peri-Sylvian cortex. More recent evidence appears to extend
the neuroanatomic network beyond peri-Sylvian cortex to encompass other aspects of
sentence processing. In this study, we evaluate the neuroanatomic basis for processing
the ambiguity in doubly-quantified sentences. For example, a sentence like "All the dogs
jumped in a lake” can be interpreted with a collective interpretation (e.g., several dogs
jumping into a single lake) or a distributive interpretation (e.g., several dogs each jumping
into a different lake). In Experiment 1, we used BOLD fMRI to investigate neuroanatomic
recruitment by young adults during the interpretation of ambiguous doubly-quantified sen-
tences in a sentence-picture verification task. We observed that young adults exhibited a
processing cost associated with interpreting ambiguous sentences and this was related
to frontal and parietal cortex recruitment. In Experiment 2, we investigate ambiguous
sentence processing with the identical materials in non-aphasic patients with behavioral
variant frontotemporal dementia (bvFTD) who have frontal cortex disease and executive and
decision-making limitations. bvFTD patients are insensitive to ambiguity associated with
doubly-quantified sentences, and this is related to the magnitude of their frontal cortex dis-
ease. These studies provide converging evidence that cortical regions that extend beyond
peri-Sylvian cortex help support the processing costs associated with the interpretation of

ambiguous doubly-quantified sentences.
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INTRODUCTION

Neuroanatomic models of language comprehension traditionally
implicate a core peri-Sylvian language network in sentence pro-
cessing. Much evidence has been accumulated to suggest that
“Broca’s area” located in left inferior frontal cortex (IFC)and left
posterolateral temporal cortex (pITC) — so-called Wernicke’s area —
support the grammatical and semantic relationships between sen-
tence constituents (Friederici and Gorrell, 1998; Friederici et al.,
2003; Grodzinsky and Friederici, 2006; Grodzinsky and Santi,
2008). However, many sentences depend on additional process-
ing resources, such as sentences that are ambiguous. In this paper
we provide converging evidence for the neural basis for these
additional resources from an fMRI study of healthy adults and
a behavioral study with non-aphasic patients who have a focal
neurodegenerative disease that compromises these resources.

In the present study, we focus on the class of ambiguous sen-
tences involving quantifiers. A quantifier comes from a class of
words that expresses a referent’s quantity. There are at least three
sub-classes of quantifiers (McMillan et al., 2005, 2006; Troiani
et al., 2009a,b). First-order quantifiers like “at least three” appear
to depend directly on number knowledge. We have empirically
demonstrated that focal neurodegenerative patients with parietal

disease due to corticobasal syndrome (CBS) and posterior corti-
cal atrophy (PCA) have highly correlated deficits understanding
first-order quantifiers and precise numbers (McMillan et al., 2006;
Troiani et al., 2009a; Morgan et al., 2011), and regression analyses
relate this impairment directly to parietal disease. Likewise, com-
prehension of first-order quantifiers is associated with activation
of parietal cortex in fMRI studies of healthy adults (McMillan
et al., 2005; Troiani et al., 2009a; Heim et al., 2012). A second sub-
class of quantifiers like “less than half” are higher-order. These
depend on number knowledge plus strategic executive resources
and working memory. Higher-order quantifiers are additionally
associated with dorsolateral prefrontal cortex (dIPFC), as shown
by fMRI activation in healthy adults (McMillan et al., 2005) and
deficits following neurodegenerative disease in prefrontal regions
(McMillan et al., 2006; Troiani et al., 2009a; Morgan et al., 2011).
A third class of quantifiers like “all” and “some” are Aristotelean,
and depend on a simple attentional mechanism associated with
medial PFC regions (Troiani et al., 2009a).

While prior work has been limited to investigating unambigu-
ous quantifiers, a quantifier is often ambiguous when co-occurring
in the same sentence as a second quantifier, that is, when the
sentence is “doubly-quantified.” Consider the following examples:
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(1A) All the dogs jumped in a lake.
(1B) All the dogs jumped in a puddle.

Sentences 1A and 1B contain two quantifiers, the logical quan-
tifier “all” and the existential quantifier “a,” and as a result are
ambiguous. Both of these sentences can be interpreted with either
a collective interpretation (e.g., several dogs jumping into a shared
lake or puddle) or a distributive interpretation (e.g., each of sev-
eral dogs jumping into its own lake or puddle). While it has been
suggested that individuals prefer a collective interpretation for
doubly-quantified sentences containing “all” (Ioup, 1975), both
interpretations are plausible and therefore one can hypothesize
that readers incur a processing cost associated with interpreting
these sentences.

Psycholinguistic researchers have debated whether ambiguous
sentences are processed in a serial manner where a preferred inter-
pretation is developed during the course of processing (Ferreira
and Clifton, 1986; Garnsey et al., 1997), or a parallel manner
where the ultimate interpretation is achieved at the end of the
sentence (MacDonald, 1994; MacDonald et al., 1994; Gibson and
Pearlmutter, 1998; Spivey and Tanenhaus, 1998). Regardless of the
preference for a serial or parallel approach to sentence process-
ing, doubly-quantified sentences that are more ambiguous appear
to be associated with an increased processing cost. Empirical evi-
dence supporting the increased cost associated with more ambigu-
ous doubly-quantified sentences comes from several sources. An
ERP study observed that less-preferred interpretations of doubly-
quantified sentences do not yield typical semantic responses such
as a N400, but instead are associated with a slow wave negative
shift (Dwivedi et al., 2010). An eye-tracking study found that par-
ticipants show delayed reading times when they encounter a less-
preferred resolution of a doubly-quantified sentence compared to
a more preferred interpretation (Filik et al., 2004).

Investigations of the neuroanatomic basis for the processing
cost associated with the comprehension of more ambiguous sen-
tences may be clarified by evaluating the interpretation of doubly-
quantified sentences. Some fMRI studies have shown increased
activation of the core sentence processing system during compre-
hension of ambiguous sentences. For example, higher levels of
brain activation were observed in left IFC and left p]TC when an
ambiguous sentence was resolved in favor of either the more pre-
ferred or less-preferred interpretation, as compared to an unam-
biguous sentence (Mason et al., 2003). The authors explained their
findings on the basis of a ranked parallel model that increases
activation throughout the core sentence processing network to
maintain multiple possible sentence interpretations.

Neuroimaging studies of healthy adults and voxel-based mor-
phometric assessments of patients with focal neurodegenera-
tive diseases have suggested an alternate approach to the neu-
roanatomic basis of sentence processing. This implicates brain
regions beyond those involved in the traditional peri-Sylvian
model of language processing. From this perspective, the core
peri-Sylvian language network in the left hemisphere may recruit
additional resources as needed to support sentence processing
(Wingfield and Grossman, 2006). For example, some sentences
in real-world conversations can be quite lengthy, and additional
working memory resources may be necessary in order to support
the processing demands associated with these sentences. In fMRI

studies of healthy adults, we and others have found that lengthy
sentences recruit dorsal portions of IFC outside of the tradi-
tional peri-Sylvian language network to support working memory
(Caplan and Waters, 1999; Cooke et al., 2002, 2006; Kaan and
Swaab, 2002; Fiebach et al., 2005). This area is similar to that
activated in fMRI studies of verbal working memory (Smith and
Jonides, 1999; Smith et al., 2001). Moreover, converging evidence
comes from non-aphasic patients with working memory limita-
tions who have difficulty interpreting lengthy sentences, and this
impairment is associated with disease in dorsal portions of IFC
important for working memory (Cooke et al., 2003; Peelle et al.,
2008).

The interpretation of ambiguous sentences also may implicate
brain regions that are outside of core peri-Sylvian sentence pro-
cessing areas. Previous fMRI work in healthy adults in our lab thus
associated the disambiguation of sentences containing a tempo-
rary structural ambiguity with dIPFC (Novais-Santos et al., 2007).
We related this to an on-line decision-making mechanism that
estimates the more likely interpretation of a sentence’s ambiguous
structure based on the probabilities associated with the biases of
the sentence’s verb. We also observed upregulation of dIPFC when
evaluating the probabilistic likelihood of an ambiguous pronoun’s
referent (McMillan et al., 2011). More recently, an fMRI study
reported activation of decision-making mechanisms in PFC dur-
ing the resolution of doubly-quantified sentences (McMillan et al.,
2011). However, this fMRI evidence required participants to make
a forced choice of either a distributive or collective interpretation,
and our finding may simply have reflected activations needed for
task performance.

In the present study, we investigated the neuroanatomic basis
for the resolution of doubly-quantified sentence meaning in two
experiments. First, we performed a BOLD fMRI study with healthy
young adults who were asked to verify whether a doubly-quantified
sentence accurately describes a scene representing either a collec-
tive or a distributive interpretation. We manipulated the trans-
parency with which the sentence reflected the collective or distrib-
utive character of the picture. Second, we used identical stimulus
materials to investigate the comprehension of doubly-quantified
sentences in behavioral variant frontotemporal dementia (bvFTD)
patients, and we related their performance to the anatomic distri-
bution of their gray matter atrophy. These patients do not have
aphasia and have relatively preserved grammar and semantics.
However, they have executive and social decision-making lim-
itations associated with prefrontal cortex disease (Libon et al.,
2007; Rascovsky et al., 2011; McMillan et al., 2012b). We hypoth-
esized that comprehension of ambiguous, doubly-quantified sen-
tences will incur additional processing costs, reflected by increased
response times, that rely on both language resources in peri-Sylvian
cortex and additional fronto-parietal resources that extend beyond
a core language network.

EXPERIMENT 1: BOLD fMRI STUDY IN HEALTHY ADULTS
METHODS

Participants

Seventeen young adults were recruited from the University of
Pennsylvania community and financially compensated for their
participation. All participants were right-handed, native-English
speakers with a negative history of neurological or psychiatric
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disorders. See Table 1A for a summary of demographic char-
acteristics. Informed consent was provided by all participants
according to a protocol approved by the Institutional Review
Board at the University of Pennsylvania. One participant was
excluded from all analyses for responding with the same button-
press for every experimental trial and therefore all analyses include
16 participants.

Experimental stimulus materials

We generated a total of 54 ambiguous doubly-quantified sentences
such as “All the dogs jumped in a puddle/lake.” In one-third of
the sentences the final noun was a smaller object (e.g., “puddle”)
consistent with a distributive interpretation and one-third of the
sentences contained a larger object (e.g., “lake”) to yield a collective
interpretation. To minimize the possibility that participants devel-
oped a heuristic for responding, we also included a midsize object
(e.g., “pond”) in one-third of our stimuli. Since all experimental
stimuli were identical with the exception of the final noun (e.g., “All
the dogsjumpedina___.”) we only evaluated the psycholinguistic
properties of the final noun across conditions.

We additionally generated two sets of baseline materials. First,
we generated 54 unambiguous baseline sentences that explicitly
disambiguated between a collective and a distributive interpreta-
tion. Among the unambiguous baseline sentences were sentences
that used “same” (e.g., “All the dogs jumped in the same lake”),
“different” (e.g., “All the dogs jumped in a different lake”), and
“the” (e.g., “The dogs jumped in a lake”). Second, we developed

Table 1 | Mean (Standard Error) demographic characteristics of (A)
healthy young adults in the functional MRI experiment (Experiment 1)
and (B) healthy seniors and behavioral variant frontotemporal
dementia (bvFTD) patients from behavioral Experiment 2.

54 filler sentences that only differed from the stimuli described
above by containing the quantifier “every” substituted for “all.”
These filler materials containing “every” were intended to obscure
to participants that quantified sentences are ambiguous and thus
the focus of the experiment. For all analyses we average across all
three unambiguous baseline subtypes.

Experimental procedure

Each experimental trial was comprised of three events, each last-
ing the duration of 1 TR (3000 ms): (1) an inter-stimulus interval
consisting of a blank white screen (2500 ms) and a fixation cross
(500 ms) to orient attention; (2) a stimulus sentence presenta-
tion (3000 ms); and (3) representation of the stimulus sentence
along with a picture illustrating either a collective or a distributive
interpretation of the sentence (see Figure 1). Participants were
instructed to decide whether the sentence described the picture.
Participants were given up to 3000 ms for their judgments.

Prior to the MRI scanning session, participants were given a
practice session containing 10 trials to familiarize them with the
form of the stimulus materials and the task, and we allowed them
to ask questions before entering the scanner. These stimulus items
were not re-presented in the experimental task.

All 162 stimuli (54 ambiguous doubly-quantified sentences;
54 unambiguous baselines sentences; 54 “every” filler sentences)
were pseudo-randomly distributed across three blocks of equal
duration (8.1 min) so that there were equal numbers of each
condition within each block. Within each block, we additionally
included 11 (15%) randomly distributed null events consisting of
a blank screen for the duration of 1 TR (3000 ms). Participants
were provided with a 2-min break between each block.

Sentences were presented in black font on a white background
using a mirror projection system connected to the computer run-
ning E-Prime presentation software. Using a fiber optic response
pad (FORP), we monitored whether participants endorsed a

Experiment N Age Education MMSE . 5 : -
sentence-picture pair and we monitored their response latency.
(A) EXPERIMENT 1: BOLD fMRI The FORP rested on the participant’s lap and contained four
Healthy young adults 16 23.4(0.6) 16.3 (0.4) - buttons oriented in a left-right fashion. To minimize the con-
(B) EXPERIMENT 2: BEHAVIORAL PATIENT STUDY found associated with lateralized button-pressing for a particular
bvFTD 16 64.3 (2.0) 15.4(0.8) 24.7 (1.2)  category of response, half of the participants pushed the left-
Healthy Seniors 16 64.4(2.0) 14.3 (0.5) 29.1(0.3) most button with their left forefinger for an endorsement and
Collective Interpretation Distributive Interpretation
Smaller ﬂﬂ'}:’%
Object
Larger
Object
FIGURE 1 | Sample stimulus images for experimental sentence materials.
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the rightmost button with their right forefinger for a rejection.
The FORP was reversed for the other half of the participants.

We monitored participants’ response times to ambiguous
doubly-quantified sentences and unambiguous baseline sentences.
We eliminated large outlier responses that were greater than
2.5 standard deviations from each individual participants’ over-
all mean response time, resulting in a removal of 1.7% of total
responses. Since both a “yes” and “no” response can be considered
“correct” for ambiguous items we included all response times in
our analyses. For all analyses we evaluated log-transformed reac-
tion times. A separate analysis restricted to “yes”-only responses
revealed a similar statistical result.

Neuroimaging acquisition and analysis

Scans were acquired on a Siemens 3.0 T Trio scanner. Each ses-
sion began with acquisition of a high-resolution T1-weighted
structural volume using an MPRAGE protocol (TR = 3000 ms,
TE=3ms, flip angle=15°, I mm slice thickness, 192 x 256
matrix, resolution = 0.9766 mm x 0.9766 mm x 1 mm). We col-
lected whole-brain BOLD volumes containing 42 axial slices and
acquired with fat saturation, 3 mm isotropic voxels, flip angle of
15°, TR=3s, TEeff = 30 ms, and a 64 x 64 matrix.

BOLD fMRI data preprocessing and statistical analyses were
performed using SPM8 (Wellcome Trust Centre for Functional
Neuroimaging, London, UK). We first modeled each individual
participant’s data. Low-frequency drift was removed with high-
pass filtering with a cutoff period of 128's and autocorrelations
modeled using a first-order autoregressive model. Whole-brain
volumes for each participant were realigned to the first volume
in the series (Friston et al., 1995) and coregistered with the struc-
tural volume (Ashburner and Friston, 1997). After realignment, we
inspected each participant’s motion in all directions to verify that
no participants had excessive motion artifact, defined as more than
3 mm movement in any axis. The transformation required to bring
a participant’s images into standard MNI152 space was calculated
using tissue probability maps (Ashburner and Friston, 1997), and
these warping parameters were then applied to all functional brain
volumes for that participant. During spatial normalization, func-
tional data were interpolated to isotropic 2 mm voxels. The data
were spatially smoothed with an 8 mm FWHM isotropic Gaussian
kernel.

For each stimulus category, hemodynamic response was esti-
mated by convolving the onset times with a canonical hemody-
namic response function. A general linear model approach was
used to calculate parameter estimates for each variable for each
subject, and linear contrasts for comparisons of interest. These
estimates were then entered into second-level random effects
analyses to allow us to make inferences across participants.

Our whole-brain fMRI analysis was performed using a one-
sample ¢-test in SPM8. We evaluated the activation for ambiguous
doubly-quantified sentences relative to unambiguous sentences
for the event that included the sentence and picture presentation.
This high-level baseline allowed us to subtract out the resources
associated with sentence reading and picture processing in an
effort to isolate the additional processing demands associated
with the comprehension of ambiguous sentences. We report a

FDR-corrected height threshold (g < 0.05) and included clusters
exceeding an extent threshold of 20 adjacent voxels.

RESULTS

Behavioral results

An analysis of response latencies revealed that participants
respond on average 93 ms slower for ambiguous doubly-quantified
sentences relative to unambiguous sentences [#(17)=2.74;
p < 0.05](Refer to Figure 2).

fMRI results

A whole-brain analysis of doubly-quantified sentences relative to
unambiguous baseline sentences revealed activation of five corti-
cal regions (see Figure 3 and Table 2). This included peri-Sylvian
regions in left IFC and left pITC. We additionally observed activa-
tion beyond peri-Sylvian cortex that extended from left IFC into
left dIPFC and also included other clusters in right rostral PFC
(rPFC), left inferior parietal cortex, and dorsomedial PFC.

EXPERIMENT 1 INTERIM DISCUSSION
Our fMRI results are broadly consistent with neuroimaging stud-
ies of language comprehension that have implicated plTC and IFC
in a core peri-Sylvian language network (Friederici et al., 2003;
Grodzinsky and Friederici, 2006; Grodzinsky and Santi, 2008). As
in a previous study (Mason et al., 2003), we observed increased
activation of this network for ambiguous sentences compared to
unambiguous sentences. Importantly, we found that additional
brain regions are recruited as well during subjects’ processing of
doubly-quantified sentences, implicating these extra-Sylvian brain
regions in support of the additional resources needed to interpret
ambiguous sentences.

The extra-Sylvian regions activated for ambiguous sentences
compared to unambiguous sentences included right rPFC, left
dIPFC, dorsomedial prefrontal cortex, and left parietal cortex.

1500

1400

1300

1200

Response Time (msec)

1100

1000

Unambiguous Ambiguous

Sentence Type

FIGURE 2 | Response times (ms) for healthy young aduits for
unambiguous baseline sentences and ambiguous doubly-quantified
sentences.
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sentences.

FIGURE 3 | Regions of activation observed in whole-brain analysis for ambiguous doubly-quantified sentences minus baseline unambiguous

To further evaluate the necessary role of these regions for
comprehending ambiguous doubly-quantified sentences we pre-
sented identical stimulus materials to non-aphasic patients with
bvFTD. These patients typically have disease in frontal and ante-
rior temporal regions (Pereira et al., 2009; Whitwell et al., 2010),
and have executive, decision-making, and social limitations despite
relatively preserved language abilities (Gleichgerrcht et al., 2010;
Rascovsky et al., 2011; McMillan et al., 2012b). A deficit inter-
preting ambiguous sentences in these non-aphasic patients would
lend additional support to the claim that the core peri-Sylvian
sentence processing system recruits additional resources to sup-
port the processing costs associated with the interpretation of
ambiguous sentences.

EXPERIMENT 2: BEHAVIORAL-IMAGING CORRELATION
STUDY IN PATIENTS WITH BEHAVIORAL VARIANT
FRONTOTEMPORAL DEGENERATION
METHODS
Participants
We recruited 16 bvFTD patients from the Frontotemporal Degen-
eration Center at the University of Pennsylvania. All patients were
diagnosed by a board-certified neurologist using published con-
sensus criteria (Rascovsky et al., 2011). Other causes of dementia
and cognitive difficulty were excluded by clinical exam, blood, and
neuroimaging tests. We additionally recruited 16 healthy seniors
from the community as a behavioral control group. Healthy
seniors and bvFTD patients were demographically comparable for
age [#(30) < 1; ns] and education [#(30) =1.25; ns]. An evalu-
ation of overall dementia severity was performed using the 30-
point scale Mini-Mental Status Examination (MMSE), and this
revealed that bvFTD patients had lower MMSE scores than healthy
seniors [£(30) =3.61; p <0.001]. Nevertheless, bvFTD patients
averaged within the “non-demented” range on this scale (Mean
MMSE = 25). Table 1B summarizes clinical and demographic fea-
tures. Informed consent was provided by all participants according
to a protocol approved by the Institutional Review Board at the
University of Pennsylvania.

High-resolution volumetric neuroimaging was available for
a subset of bvFTD patients (N =11), as described below. MRI
images were not available for the remaining bvFTD patients due to
health and safety exclusion criteria, including claustrophobia and
metallic objects in the body (e.g., pacemakers and shrapnel). We

Table 2 | Regions of activation for doubly-quantified sentences minus
baseline sentences (p < 0.05 FDR-corrected; 20 voxel extent).

Neuroanatomic L/R Peak MNI Z-score Voxels
Region (BA) coordinate

x y z
Inferior parietal (40/7) L -32 -60 b4 4.02 209
Rostral prefrontal (10) R 24 60 -6 3.74 28
Posterior-lateral tem- L —54  —44 8 4.01 40
poral (22)
Inferior frontal (45) L —46 18 20 4.88 906
Dorsomedial M 4 16 b4 394 30

prefrontal (6)

additionally recruited 14 age- [#(23) = 1.34; ns] and education-
[#(23) < 1; ns] matched healthy seniors from the community as a
structural neuroimaging control group.

Stimulus materials and design

We used identical stimulus materials to those administered in the
fMRI experiment above, including 54 doubly-quantified experi-
mental stimuli (equally divided among small and large objects),
54 unambiguous baseline stimuli, and 54 filler sentences contain-
ing “every” were used in this experiment. Half of the pictures
illustrated a distributive interpretation and half a collective inter-
pretation. Participants were instructed to decide whether the sen-
tence describes the picture. Each sentence stimulus was presented
for 3000 ms followed by the presentation of the sentence together
with a picture depicting a particular interpretation. Participants
were given a maximum of 10 to respond to each stimulus item.
We analyzed log-transformed response times for responding to
ambiguous doubly-quantified and unambiguous sentence mate-
rials. We eliminated large outlier responses that were greater than
2.5 standard deviations from each individual participants’ over-
all mean response time, resulting in a removal of 4.0% of total
responses. Since both a “yes” and “no” response can be considered
“correct” for ambiguous items we included all response times in
our analyses. A separate analysis restricted to “yes”-only responses
revealed a similar statistical result.

www.frontiersin.org

April 2013 | Volume 4 | Article 153 |5


http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive

McMiillan et al.

Quantifier resources

Neuroimaging acquisition and analysis

High-resolution T1-weighted three-dimensional spoiled gradi-
ent echo images were acquired with repetition time = 1,620 ms,
echo time=3ms, slice thickness 1.0mm, flip angle 15°,
matrix =192 x 256, and in-plane resolution 0.9 mm x 0.9 mm.
All images were preprocessed using PipeDream! and Advanced
Normalization Tools (ANTs)? to perform the most stable and reli-
able multivariate normalization and structure-specific processing
currently available (Avants et al., 2008, 2010; Klein et al., 2010).
PipeDream deforms each individual dataset into a standard local
template space in a canonical stereotactic coordinate system. Core
processing involves mapping T1 structural MRI to a population-
specific local template. A diffeomorphic deformation was used
for registration that is symmetric so that it is not biased toward
the reference space for computing the mappings, and topology-
preserving to capture the large deformation necessary to aggregate
images in a common space. These algorithms allow template-based
priors to guide a calculation of gray matter probability, which we
use as a proxy for gray matter density. All MRI volumes were then
resampled to 2mm? resolution and smoothed using a FWHM
5 mm kernel implemented in SPM8.

To identify regions of reduced gray matter density in bvFTD we
performed a two-samples ¢-test in SPM8 for bvFTD patients rela-
tive to healthy seniors. For this analysis we used a FDR-corrected
height threshold (g < 0.05) and only accepted clusters that sur-
vived a 100 adjacent voxel extent. To relate gray matter density to
behavioral performance we performed a two-stage analysis. First,
we defined regions of interest (ROI) that consisted of voxels that
had significantly reduced gray matter density relative to healthy
seniors and then identified the conjunction of reduced gray matter
density in bvFTD patients and the regions of activation observed
in Experiment 1. We then exported the mean gray matter den-
sity within each overlapping ROI. Second, we performed bivariate
correlations relating response times for ambiguous sentences to
the gray matter density within each ROI (p < 0.05 Bonferroni cor-
rected for multiple comparisons). We constrained our correlation
analyses to the conjunction of disease and fMRI ROIs in order to
limit our interpretations to areas of known disease. It would other-
wise be difficult to interpret a significant correlation outside these
overlapping regions since variance in gray matter density may be
related to disease-independent factors such as aging or individual
differences in neuroanatomical structure.

RESULTS

Behavioral results

We performed an ANOVA of response times with a Sen-
tence Type x Group design. This revealed a significant Sentence
Type x Group interaction [F(1, 30)=4.58; p <0.05]. bvFTD
patients did not show a difference in response times across ambigu-
ous and unambiguous sentences, while healthy seniors showed
significant processing cost of an average of 393 ms for ambigu-
ous sentences relative to unambiguous sentences. A main effect
also revealed that bvFTD patients were overall slower to respond

Uhttps://sourceforge.net/projects/neuropipedream/
Zhttp://www.picsLupenn.edu/ANTS/

4500 Bl bvFTD
4000 @ Seniors
3
» 3500
E
[}
€ 3000
'._.
3 2500
c
o
@
$ 2000
=
1500
1000
Unambiguous Ambiguous
Sentence Type
FIGURE 4 | Response times (ms) for bvFTD patients and healthy
seniors for unambiguous baseline sentences and ambiguous
doubly-quantified sentences.

to sentence materials than healthy seniors [F(1, 30)=11.19;
p < 0.005] (see Figure 4).

Volumetric MRI results

An analysis of volumetric MRI revealed significantly reduced gray
matter density for bvFTD patients relative to healthy seniors in
frontal and temporal cortex, including: bilateral rPFC, rostrome-
dial PFC, right IFC, left dIPFC, left insula, left anterior cingulate,
left medial temporal cortex, bilateral anterior temporal cortex,
and right pITC (see purple and yellow regions in Figure 5A and
Table 3). Among these regions of reduced gray matter density
in bvFTD, we observed five ROIs that overlapped with regions
of fMRI activation during ambiguous doubly-quantified sentence
interpretation reported in Experiment 1. These regions, illustrated
in yellow in Figure 5A (see also Table 4), include right rPFC, two
clusters in left dIPFC, left IFC, and left ventrolateral prefrontal
cortex.

We performed correlation analyses to relate bvFTD patients’
response times to ambiguous sentences with reduced gray mat-
ter density in each ROI overlapping with the fMRI results from
Experiment 1. These analyses revealed that response times to
ambiguous sentences were related to gray matter density in left
dIPEC [r = —0.68; p < 0.05 Bonferroni corrected] (see Figure 5B).
Correlations of ambiguous sentence response times in the remain-
ing ROIs did not approach significance (p > 0.1 Bonferroni cor-
rected). However, an analysis evaluating gray matter density in
the left dIPFC revealed that density in this ROI was related to the
other ROIs (all p < 0.05 Bonferroni corrected) suggesting that an
overall degradation of a network involved in the interpretation of
doubly-quantified sentences may contribute to bvFTD patients’
compromised sensitivity to ambiguity.

EXPERIMENT 2 INTERIM DISCUSSION
Healthy seniors, like young adults in Experiment 1, responded
slower to ambiguous than unambiguous sentences and these
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FIGURE 5 | (A) Colored regions (pink and yellow) represent regions of
significantly reduced gray matter density for behavioral variant
frontotemporal dementia (bvFTD) patients relative to healthy seniors

(p <0.05 FDR; 100 voxel extent) and yellow regions represent overlapping
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reduced density with fMRI activation for healthy young adults in
Experiment 1; (B) A significant correlation between an overlapping region
in dorsolateral prefrontal cortex correlates with response times for
ambiguous doubly-quantified sentences.

results are consistent with the hypothesis that additional process-
ing costs are incurred to support the comprehension of doubly-
quantified sentences. However, non-aphasic patients with bvETD
did not demonstrate a processing cost associated with ambigu-
ity. We found that bvFTD patients’ response times to ambiguous
doubly-quantified sentences were related to disease in left dIPFC,
aregion recruited by young adults to support ambiguous sentence
processing demands. This dIPFC region was also correlated with
the magnitude of atrophy in additional frontal regions and sug-
gests that bvFTD patients may have a degraded network extending
beyond peri-Sylvian cortex that contributes to their insensitivity
to ambiguity associated with doubly-quantified sentences.

GENERAL DISCUSSION
Many utterances in our day-to-day speech are ambiguous. Never-
theless, we are able to resolve these ambiguities and communicate
effectively. In the present study, we found that this depends only
in part on the core left peri-Sylvian sentence processing network.
We obtained converging evidence from an fMRI study of healthy
adults and a bvFTD patient study that extra-Sylvian regions addi-
tionally contribute to the processing resources required to resolve
ambiguous doubly-quantified sentences.

In the fMRI study we observed recruitment of four cortical
regions that extend beyond the traditional peri-Sylvian language
network, including right rPFC, dorsomedial prefrontal cortex, a

cluster extending into left dIPFC, and left parietal cortex. Together,
these regions have often been implicated as contributing to a multi-
demand network that supports the upregulation of resources to
support a variety of cognitive tasks (Duncan, 2010). BOLD resting
studies have also suggested that dIPFC and parietal cortex acti-
vation together contribute to an executive-control network that
correlates with executive task performance (Seeley et al., 2007). We
observed that left dIPFC atrophy was related to bvFTD patients’
response times to ambiguous doubly-quantified sentences and that
the magnitude of left dIPFC atrophy was correlated with atrophy
in the other frontal regions that overlapped with fMRI task acti-
vation. We interpret these findings as evidence that extra-Sylvian
regions contribute to the processing resources required to inter-
pret ambiguous doubly-quantified sentences and that atrophy in
these regions result in an insensitivity to the ambiguous nature of
these sentences. While the current study cannot resolve the specific
mechanistic nature that each of these regions contributes to ambi-
guity resolution we provide a potential account for each region in
the context of previous studies.

We observed activation of dIPFC during the interpretation
of ambiguous sentences in the fMRI study of healthy adults,
and this overlapped with a dIPFC area of gray matter atrophy
in bvFTD. Moreover, we found a correlation between bvFTD
patient performance and gray matter atrophy in dIPFC. Previous
work has associated this area with the interpretation of sentences
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Table 3 | Regions of significantly reduced gray matter density in
bvFTD patients relative to demographically matched healthy seniors
(p < 0.05 FDR-corrected; 100 voxel extent).

Neuroanatomic L/R Peak MINI Z-score Voxels
Region (BA) coordinate

X y z
Rostromedial M -6 50 16 4.63 4163
prefrontal (10)
Rostral prefrontal (10) L —26 52 4 4.31 297
Rostral prefrontal (10) L —26 44 30 3.96 254
Inferior frontal (44/45) R 50 4 22 381 385
Dorsolateral L —-40 2 38 4.1 154
prefrontal (9)
Anterior cingulate L -18 -10 24 3.77 m
(24)
Insula (12) L —-38 12 4 3.29 135
Medial temporal (21) L -38 —-24 16 4.7 578
Anterior temporal L —36 8 —26 3.86 176
(38)
Anterior temporal R 42 10 -30 3.76 347
(38)
Posteriorlateral R 52 26 0 3.54 110
temporal (22)

Table 4 | Regions of overlap between fIVIRI activation in healthy young
adults and reduced gray matter density in bvFTD patients relative to
healthy seniors.

Neuroanatomic L/R Centroid MNI
Region (BA) Coordinate

X y z
Dorsolateral L —46 6 38
prefrontal (9)
Rostral prefrontal (10) R 22 58 -6
Inferior frontal (45) L —36 18 22
Ventrolateral L —-34 30 -2
prefrontal (47)
Dorsolateral L —42 20 30

prefrontal (9)

containing a temporary structural ambiguity (Novais-Santos etal.,
2007). dIPEC is within the spectrum of prefrontal brain regions
involved in decision-making and ambiguity resolution (Novais-
Santos et al., 2007; Hoenig and Scheef, 2009; McMillan et al., 2011,
2012a). More recently, non-linguistic studies have suggested that
dIPFC may be involved in probabilistic estimation (Casey et al.,
2001; Scheibe et al., 2010), and in a pronoun resolution task dIPFC
activation was modulated by the likelihood of a pronoun referring
to a referent (McMillan et al., 2012a). In the current study, dIPFC
activation may also be related to probability since “all” has a pre-
ferred, or probabilistically more likely, collective interpretation,
but future work is required to investigate the specific role of this
region in ambiguity resolution.

An alternate hypothesis is that dIPFC activation is related to a
difficult working memory challenge. Some fMRI studies have sug-
gested that the magnitude of dIPFC activation supports increased
working memory demands. For example, when the N-back task
requires participants to maintain one or two items in working
memory activation is typically observed in more inferior frontal
regions, but when participants need to maintain three or more
items activation extends dorsally to include dIPFC (Braver et al.,
1997; Botvinick et al., 2001). A counter-argument for this pattern
of activation is that dIFPC instead supports a strategic manipula-
tion rather than increased working memory capacity (Smith et al.,
2001). bvFTD patients have working memory deficits (Libon et al.,
2007) and this can potentially interfere with their comprehension
of sentences with lengthy material (Cooke et al., 2003). While we
did not explicitly manipulate working memory demands in these
stimuli, the experimental stimuli were matched with the baseline
stimuli for sentence length and only differed by a single word.
Another possible explanation of dIPFC activation is that, together
with anterior cingulate activation, these regions may be contribut-
ing to response selection during task performance rather than the
properties of the stimulus sentences (Cohen et al., 2000; Botvinick
etal., 2001, 2004).

In the fMRI study, we also found that rPFC is recruited during
the interpretation of doubly-quantified sentences. rPFC has been
associated with strategic planning and sub-goal decision-making
in non-linguistic contexts that depend on several contingencies
(Koechlin et al., 2003; Badre and Wagner, 2007; Koechlin and
Hyafil, 2007; Badre et al., 2009). This area has been associated
with sub-goal and episodic goal monitoring, relational integra-
tion, and shifting from internal to external attention. We forward
the hypothesis that rPFC is recruited to perform a similar role in
the interpretation of doubly-quantified sentences. In the present
study, comprehension depends in part on appreciating that a sen-
tence can have multiple meanings, that sub-goal planning may
play a role in interpreting the contingency relationship between
the interpretive bias associated with a quantifier and the size of the
object in the sentence, and that “all” is biased toward a collective
interpretation that maps on to a larger object. We hypothesize that
this complex process may be coordinated in part by rPFC.

Additional evidence consistent with the hypothesis that rPFC
is involved in decision-making during the processing of ambigu-
ous sentences, even though it is not part of the core left peri-
Sylvian language network, comes from the study of patients with
bvFTD. These patients are not aphasic: their speech is generally
well-structured grammatically, and they have minimal difficulty
interpreting word meaning, although they do have some difficulty
appreciating the hierarchical structure of lengthier narratives (Ash
et al., 2006; Farag et al., 2010) and they are impaired at lexical
selection when trying to establish common ground with a con-
versational partner (McMillan et al., 2012b). Despite the absence
of aphasia, these patients appear to have difficulty appreciating
the ambiguity present in a doubly-quantified sentence. In contrast
we observed that healthy young adults (Experiment 1) and healthy
seniors (Experiment 2) exhibit a processing cost when interpreting
doubly-quantified sentences.

We also observed activation of inferior parietal cortex.
One possibility relates this to the quantifier component of a
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double-quantified sentence. For example, previous investigations
of quantifier comprehension demonstrated inferior parietal cor-
tex activation, supporting a numerosity-related mechanism for
understanding quantifiers (McMillan et al., 2005, 2006, 2011; Mor-
gan etal., 2011; Heim et al., 2012). However, parietal activation in
previous work was associated with first-order and higher-order
quantifiers more than Aristotelean quantifiers like “all” (Troiani
et al., 2009a). A related possibility is that the magnitude of the
objects (e.g., the size of a puddle versus a lake) contributed to
the comprehension of these sentences, and comprehension of the
magnitude dimension of these objects may have in part played a
role in parietal activation (Heim et al.,2012). This is less likely since
magnitude information was present in both the experimental and
the baseline stimuli, although detailed appreciation of magnitude
may have been needed only for the ambiguous stimuli. An alter-
nate possibility is that parietal activation may be related in part to
a component of the decision-making mechanism that integrates
several elements of a decision to find an optimal solution (Platt and
Glimcher, 1999; Huettel et al., 2005; McMillan et al., 2012a). Addi-
tional work is needed to establish the basis for parietal activation
in this study.

The BOLD fMRI study additionally demonstrated activation
of peri-Sylvian brain regions during the processing of doubly-
quantified sentences, including both left pITC and left IFC. These
regions are commonly implicated in supporting a core lan-
guage network (Friederici et al., 2003; Grodzinsky and Friederici,
2006; Grodzinsky and Santi, 2008). It is possible that this core
language network is upregulated in part to support the work-
ing memory resources needed to disambiguate ambiguous sen-
tences (Mason et al., 2003), but importantly our findings suggest
that additional processing resources are also required to sup-
port the processing costs associated with interpreting doubly-
quantified sentences. Critically, bvFTD patients’ limitations were
not related to the magnitude of disease in these core language
regions.

We emphasize that our findings are based on converging data
from multiple sources, including both fMRI and patient data. This

is important because fMRI studies show correlated activation of
brain regions contributing to task performance in healthy adults,
but do not identify the subset of these regions that are necessary for
performance — in this case, the brain regions that contribute to dis-
ambiguating a doubly-quantified sentence. Even with a high-level
baseline condition such as we used in the present study, there may
be other factors contributing to the difference between ambigu-
ous and unambiguous sentences that are not accounted for in the
“cognitive subtraction” logic underlying the fMRI study. Perhaps
even more crucial is evidence from patients with disease in brain
regions critical to testing our hypothesis about the disambigua-
tion of doubly-quantified sentences. This is critical because these
patients have difficulty interpreting a sentence even though they
do not have aphasia. This emphasizes the apparent contribution of
resources that are not part of the core sentence processing network
to the interpretation of ambiguous sentences.

There are several shortcomings in our study, and these should
be kept in mind when interpreting the results. First, we did
not study the role of the parietal lobe in non-aphasic patients
with parietal disease to see if they too have difficulty interpret-
ing ambiguous sentences. This would have helped establish the
basis for parietal activation, and determined whether parietal acti-
vation seen in the fMRI study is related to decision-making or
magnitude. Second, it will be important to confirm our find-
ings with another kind of ambiguous sentence to evaluate the
specific mechanistic role of the implicated extra-Sylvian neu-
roanatomic regions. With these caveats in mind, our findings
are consistent with the claim that frontal and parietal brain
regions outside of the traditional peri-Sylvian sentence processing
network contribute to the disambiguation of doubly-quantified
sentences.
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