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Illusions provide a window into the brain’s perceptual strategies. In certain illusions, an
ostensibly task-irrelevant variable influences perception. For example, in touch as in audi-
tion and vision, the perceived distance between successive punctate stimuli reflects not
only the actual distance but curiously the inter-stimulus time. Stimuli presented at differ-
ent positions in rapid succession are drawn perceptually toward one another. This effect
manifests in several illusions, among them the startling cutaneous rabbit, in which taps
delivered to as few as two skin positions appear to hop progressively from one position
to the next, landing in the process on intervening areas that were never stimulated. Here
we provide an accessible step-by-step exposition of a Bayesian perceptual model that
replicates the rabbit and related illusions. The Bayesian observer optimally joins uncertain
estimates of spatial location with the expectation that stimuli tend to move slowly. We
speculate that this expectation – a Bayesian prior – represents the statistics of naturally
occurring stimuli, learned by humans through sensory experience. In its simplest form,
the model contains a single free parameter, tau: a time constant for space perception.
We show that the Bayesian observer incorporates both pre- and post-dictive inference.
Directed spatial attention affects the prediction-postdiction balance, shifting the model’s
percept toward the attended location, as observed experimentally in humans. Applying
the model to the perception of multi-tap sequences, we show that the low-speed prior fits
perception better than an alternative, low-acceleration prior. We discuss the applicability of
our model to related tactile, visual, and auditory illusions. To facilitate future model-driven
experimental studies, we present a convenient freeware computer program that imple-
ments the Bayesian observer; we invite investigators to use this program to create their
own testable predictions.

Keywords: probabilistic inference, sensory saltation, motion illusions, tactile spatial attention, optimal percepts,
Kalman smoothing, somatosensory spatiotemporal perception, sensory uncertainty

INTRODUCTION
Illusions provide investigators a window into the brain’s uncon-
scious perceptual strategies. In a particularly interesting category
of illusions, an ostensibly task-irrelevant stimulus feature strongly
influences the perception of a target feature. Here we consider one
group of such illusions, characterized by the curious influence of
time on the tactile perception of space (Figure 1).

When humans are asked to judge the distance between two
brief taps delivered in rapid succession to the skin, they con-
sistently underestimate the true distance. Indeed, the perceived
distance between taps shortens systematically as the time between
taps is reduced. This perceptual length contraction occurs even
when the participant is explicitly instructed to attend only to the
distance between stimuli, and to ignore the time. The phenom-
enon is particularly pronounced on the forearm and other body
areas that have poor spatial acuity. Several striking illusions result
from this puzzling compressive effect of time on space perception
(Figures 1A–C). For instance, a stimulus sequence consisting of

two-taps delivered at one position followed by two taps at another,
with a short inter-stimulus interval (ISI) separating the second
and third taps, is perceived as four taps hopping progressively
along the arm: the second and third taps are perceptually dis-
placed from their true positions, as if attracted toward one another
(Figure 1C). This phenomenon is known as sensory saltation,
or more famously, the cutaneous rabbit illusion (Geldard and
Sherrick, 1972; Geldard, 1982). Analogous phenomena occur in
vision (Geldard, 1976; Lockhead et al., 1980; Khuu et al., 2011)
and audition (Bremer et al., 1977; Shore et al., 1998; Getzmann,
2009).

Why does time influence space perception in this manner?
Much research supports the view that perception works out a
probabilistic best guess. An optimal probabilistic (i.e., Bayesian)
observer interprets the current sensory input, not in isolation, but
rather within the context of the structure and statistics of the nat-
ural world (Knill and Pouget, 2004; Vilares and Kording, 2011). By
exploiting its knowledge of the world, the observer achieves a more
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Goldreich and Tong Sensory saltation as Bayesian inference

FIGURE 1 | Perceptual length contraction. Perception
underestimates the distance between successive taps to the skin.
Stimuli on the forearm are illustrated in the upper panels, along with
their perception (forearm sketches). Corresponding human data and
Bayesian model fits are plotted in the lower panels. In this and
subsequent figures, we illustrate stimulus sequences that progress
distally on the arm; the illusions occur also for stimuli in the opposite
direction. (A) Top: at short ISI (t ), the perceived length (l*) between
two taps to the forearm is less than the actual length (l ). Bottom:
perceived length grows linearly with actual length, but with a slope
less than 1. Filled circles: human perceptual data from Marks et al.
(1982) for electrocutaneous stimuli delivered at t = 0.24 s. Solid line:
fit of the Bayesian model. Dashed line: l= l*. (B) Top: a pair of taps
delivered to the right forearm at short ISI (t 2) is perceived to have the

same spacing as a more closely spaced pair of taps (l 1 < l 2) delivered
to the left forearm at longer ISI (t 1 > t 2). Bottom: the spacing ratio,
l 2-to-l 1, resulting in perceived equality of spacing on the two arms, as
a function of the ISI ratio, t 1-to-t 2. Filled circles: human perceptual
data from Lechelt and Borchert (1977). Curve: fit of the Bayesian
model. Data points from left to right had t 1 =0.2, 0.35, 0.5, 0.65, and
0.8 s, with t 2 =1.0 s− t 1, and l 1 =10 cm. (C) Top: 4 taps delivered to
two skin sites are perceived as hopping sequentially along the arm,
because the short ISI (t ) between taps 2 and 3 results in contraction
of the perceived distance between them (l* < l ). Bottom: the
perceived length from taps 2–3 asymptotically approaches the actual
length (l= 10 cm, dashed line) as ISI is increased. Filled circles:
human perceptual data from Kilgard and Merzenich (1995). Curve: fit
of the Bayesian model.

accurate perceptual inference. Following the Bayesian model of
Goldreich (2007), we hypothesize that perception interprets suc-
cessive taps to the skin as arising from a moving object that touches
down intermittently, and that perception expects slowly moving
objects to occur more often than rapidly moving ones. We specu-
late that the expectation for slow movement results from a lifetime
of experience with tactile stimuli that are primarily stationary (e.g.,
the pressure of clothing against the skin) or – somewhat less fre-
quently – slowly moving (e.g., grooming, movement of clothing
during walking, etc.). Thus, in the observer’s experience, stimuli
separated by large distances at short ISI are uncommon. Faced
with such a stimulus sequence, and somewhat uncertain as to the
true locations of the taps, the brain concludes that the sensory
measurements were caused by a stimulus sequence that was more
probable a priori: one that moved at a slower speed (i.e., shorter
distance) on the skin. Under this view, the influence of time over
space perception, far from reflecting a design flaw in our percep-
tual machinery, is a consequence of optimal probabilistic inference
under conditions of sensory uncertainty.

Here, we present and elaborate on the Bayesian observer model
introduced by Goldreich (2007). We show that our model is com-
patible with the view that the rabbit illusion – and perceptual
length contraction generally – involves concomitant pre- and post-
diction. By prediction, we mean an inference process in which

earlier sensory events influence the perception of later ones. By
postdiction, we mean an inference process in which later sen-
sory events influence the perception of earlier ones (Eagleman
and Sejnowski, 2000). We show interestingly that pre- and post-
diction emerge naturally from our model, even though the model
does not explicitly represent these processes. We show further that
directed spatial attention shifts the Bayesian observer’s percept by
modulating the prediction-postdiction balance. Finally, we apply
our Bayesian model to the perception of spatiotemporal stimulus
patterns that are more complex than those depicted in Figure 1.

THE FUNDAMENTALS OF THE BAYESIAN OBSERVER
Stochastic variability in stimulus-evoked neural activity presents
one of many challenges to perception. An identical repeated stim-
ulus – such as a tap to a particular location on the skin – will evoke
a different neural response on each trial (Sripati et al., 2006). Con-
sequently, a given response could have been caused by a stimulus
at any one of many locations. The spatial uncertainty caused by
stochastic variability is lessened, but not eliminated, when a stim-
ulus activates a larger number of neurons. On the forearm, where
receptor density is relatively low, humans can localize a stimulus
to within about±1 cm of its true location; on the fingertip, where
receptor density is much higher, localization improves to about
±1 mm (Weinstein, 1968).
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To model stochastic neural variability, we assume that a single
tap to the skin evokes an internal position measurement that is ran-
domly sampled from a Gaussian distribution centered at the true
tap position, with a standard deviation, σs, that depends on the
receptor density (the subscript s signifies “spatial”)1. On repeated
trials with an identical tap position, the measurement will vary
stochastically, but on average will equal the true position. In the
absence of any other perceptual influence, the measurement is the
location the observer perceives. Consequently, on average the per-
ception of an isolated single tap to the skin is veridical. However,
unlike an isolated single tap, a rapid spatiotemporal tap sequence
is not veridically perceived (Figure 1). To understand why, we
explore a probabilistic model – a Bayesian observer that makes a
perceptual best guess.

We begin by considering sequences of two taps, which result
in two uncertain spatial measurements (x1m , x2m) and a detected
time, t, between them2. The Bayesian observer (Figure 2) attempts

1Neuroscientists may find it useful to conceive of the measurement as the location
of the peak of evoked activity in the underlying receptor population (or its corti-
cal equivalent), or more precisely as the maximal likelihood estimate of stimulus
location, based on the neural response.
2We assume here that the observer veridically perceives the time between taps,
such that temporal uncertainty is zero. Goldreich (2007) showed that temporal

to infer the actual tap positions (x1, x2) that produced the mea-
surements (x1m , x2m). We refer to each possible (x1, x2) pair
as a candidate trajectory, and to the measured positions (x1m ,
x2m) as the measured trajectory. The Bayesian observer consid-
ers both the likelihood and the prior probability of every candidate
trajectory. A trajectory’s likelihood is the probability that the tra-
jectory would give rise to the measured trajectory. The plot of
trajectory likelihoods – the likelihood function – is a cloud of
uncertainty centered on the measured trajectory (Figure 2A, top).
We analogize the likelihood function to a (typically unconscious)
sensation – a precursor to the conscious percept.

A trajectory’s prior probability is the frequency with which the
observer expects the trajectory to occur; this may be the prevalence
of the trajectory in nature, which the observer has learned from
experience. The plot of prior probabilities – the prior density – rep-
resents the observer’s expectation regarding trajectory occurrence.
Crucially, our Bayesian observer believes that slow trajectories are
more common than fast ones. We model this low-speed prior

uncertainty exerts a negligible effect on the percept when stimuli occur on a skin
region with poor spatial acuity, such as the forearm. Accordingly, here we confine
ourselves to modeling stimuli on the forearm, which is also the skin region most
often tested in experimental studies of the cutaneous tau and rabbit illusions.

FIGURE 2 | Bayesian model. (A) The observer’s likelihood function, prior
probability density, and posterior probability density in response to taps
sensed (i.e., measured by the observer) at positions (x 1m , x 2m )= (3, 7 cm)
(open red circles in all plots). Each pixel in the intensity plots represents a
candidate trajectory: a possible tap 1 position and tap 2 position pair (x 1, x 2).
Lighter color indicates higher probability (each plot is individually auto-scaled
to take advantage of the full brightness range). The measured trajectory
length is lm = x 2m − x 1m = 4 cm. Top: the observer’s likelihood function plots
the probability of the measured trajectory given each candidate trajectory. The
observer understands that a single tap at any location produces a
measurement drawn from a Gaussian distribution centered at that location,
with standard deviation σs; thus, the likelihood function is a two-dimensional
Gaussian density centered on the measured trajectory. Middle: the observer
expects slow movement to occur more commonly; we model this
expectation as a Gaussian distribution over trajectory speed, with mean zero
and standard deviation, σv. Consequently, the observer expects closely
spaced taps, and its prior is maximal along the x 1 = x 2 diagonal. Bottom: the
posterior probability of each trajectory is proportional to the product of its

likelihood and prior. The mode of the posterior (filled red circle) is the percept.
(B) Space-time plots equivalently illustrate the inference process. Top: open
red circles show measured tap positions (vertical-axis) and times of
occurrence (horizontal-axis). Error bars (±1σs) represent the spatial
imprecision of the measurements. The slope of the line connecting the taps is
the measured trajectory speed: lm /t =4 cm/0.15 s=27 cm/s. Middle: the
observer’s low-speed expectation is represented by the line of slope zero and
diagonal lines of slopes ±1σv =±10 cm/s. The distance traversed at speed σv

in time t is tσv = 1.5 cm. The ascending diagonal line is shallower than the
measured velocity: 10 cm/s < 27 cm/s. Equivalently, tσv = 1.5 cm < lm = 4 cm.
Thus, the measured trajectory violates the observer’s low-speed expectation.
Bottom: the perceived trajectory (filled red circles and red line) is a
compromise between the measured trajectory (open circles, reproduced
from top panel) and expectation (middle panel). Each tap has migrated
perceptually by 1 cm toward the other, resulting in perceptual length
contraction: l*=2cm < lm =4 cm. The perceived trajectory speed is
l*/t=2 cm/0.15 s=13 cm/s. In both panels, σs =1 cm, σv =10 cm/s, t =0.15 s,
x 1m =3 cm, x 2m =7 cm.
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as a Gaussian density over trajectory speed, with mean zero and
standard deviation σv (the subscript v signifies “velocity”). Thus,
trajectories in which the two taps are spaced closer together (i.e.,
lower-speed trajectories) have greater prior probability than those
in which the taps are spaced farther apart (Figure 2A, middle).

Using Bayes’ rule, the observer multiplies each trajectory’s like-
lihood by its prior probability to obtain its posterior (final) proba-
bility. In essence, the observer combines sensation with expectation
to achieve perception. The mode of the posterior distribution – the
most probable trajectory – is the observer’s percept (Figure 2A,
bottom). Because of the low-speed prior, the percept underes-
timates the distance between rapidly presented stimuli. In the
example illustrated, whereas the measured tap positions were (3,
7 cm), the percept was (4, 6 cm). The perceived distance between
taps (l∗= 2 cm) was thus half the measured distance (lm= 4 cm)
(Figures 2A,B).

How, exactly, does the time between taps influence perceptual
length contraction? This question is answered in Figure 3. Because
speed is distance divided by time, the prior probability falls off
more sharply with distance when the time between taps is short.

While always maximal along the x1= x2 diagonal, the prior widens
as ISI increases (Figure 3A, left to right). As a consequence, per-
ceptual length contraction is most pronounced at shorter ISIs; as
ISI increases, the perceived distance between taps asymptotically
approaches the measured distance (Figure 3B).

We have explained the influence of time on the Bayesian
observer’s perception of space, but what of the influence of space
itself on space perception? In Figure 4, we find reassuringly that
l∗ varies linearly with lm, although length contraction ensures that
the slope of the relationship is less than one.

THE PERCEPTUAL LENGTH CONTRACTION FORMULA
In the Section“The Bayesian model”in Appendix, we show that the
Bayesian observer’s posterior density is a two-dimensional Gauss-
ian distribution. The mode of the posterior reveals a relationship
between l∗ and lm:

l∗ =
lm

1+ 2
(

σs
σv t

)2 (1)

FIGURE 3 |Time affects space perception. (A) The columns display the
observer’s likelihood function, prior probability density, and posterior
probability density on four trials in which the measured trajectory (open red
circle in all plots) was x 1m =3 cm, x 2m =7 cm, and the time, t, between taps
was (left to right) 0.05, 0.15, 0.25, and 0.35 s. Because the observer has a
low-speed expectation, it most strongly expects the taps to fall close together
when the time between them is short; thus, the narrowest prior distribution is
found in the left column, and the prior distribution widens as t increases. The
perceived trajectory (mode of the posterior, filled red circle) is pulled closer to
the x 1 = x 2 diagonal when the prior is sharper. Therefore, the observer
experiences more pronounced length contraction as t decreases. Conversely,
as t increases, length contraction diminishes, and the perceived trajectory
asymptotically approaches the measured trajectory (note diminishing distance

between filled and open circles in the posterior plots as t increases). For all
columns, σs =1 cm, σv =10 cm/s. (B) The perceived first and second tap
positions (filled red circles), corresponding to the mode of each of the
posterior plots above, are graphed along with the measured tap positions
(dashed lines). The perceived distance between taps asymptotically
approaches the measured distance as t increases (compare to Figure 1C,
lower). (C) The amount of perceptual length contraction depends not only on t
and σv but also on σs. Here we simulate a trial at t=0.1 s for an observer
whose spatial acuity is worse (σs =2 cm) than the observer in (A). Although
its posterior density is broader, this observer has the same percept (mode of
the posterior) as the observer in (A) with t =0.05 s (leftmost column in A).
Note that the ratio of σs to σvt is identical (=2) in the two cases. It is this ratio
that determines the amount of perceptual length contraction.
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FIGURE 4 | Perceived distance grows linearly with measured distance.
(A) The columns display the observer’s likelihood function, prior probability
density, and posterior probability density on five trials, in which the measured
distance was progressively increased from 2 to 6 cm while t was held
constant at 0.1 s. The mode of the posterior (filled red circle) tracks but lags
the measured trajectory (open red circle). To facilitate comparison, yellow

crosshairs in all posterior plots mark the posterior mode in the leftmost
column. (B) The measurements, x 1m and x 2m , are plotted as open circles; the
observer’s percept (mode of the posterior), as filled circles. l* grows linearly
with, but consistently underestimates, lm (compare to Figure 1A, lower). The
measurements (x 1m , x 2m ) were, from left to right: (4, 6 cm), (3.5, 6.5 cm), (3,
7 cm), (2.5, 7.5 cm), and (2, 8 cm). In all panels, σs =1 cm, σv =10 cm/s.

Equation 1 is the perceptual length contraction formula, first
reported by Goldreich (2007). Notice that, as we have seen, this
formula predicts that l∗ asymptotically approaches lm in the limit
that t approaches infinity (Figures 3A,B), that the degree of length
contraction is determined by the ratio of σs to σvt (Figure 3C),
and that, at fixed t, l∗ relates linearly to, but underestimates, lm
(Figure 4).

Because σs and σv occur only as a ratio in the length contraction
formula, it is convenient to rewrite the formula as:

l∗ =
lm

1+ 2
(

τ
t

)2 (2)

where tau (τ), defined as σs/σv, has units of time, and is the model’s
single free parameter3. From Eq. 2 we see that tau is a time constant
for space perception. The smaller the value of tau, the more the
perceived length increases toward the measured length as inter-
stimulus time increases: l∗= (1/3) lm when t = τ, and l∗= (2/3)
lm when t = 2τ (Figure 5A). Thus, the larger the value of τ, the
more susceptible the observer is to perceptual length contraction:
for a given t and lm, an observer with a larger τ will perceive a
shorter trajectory (Figures 5A,B).

3We note for reference that Goldreich (2007) defined the model’s free parameter as
λ= σv/σs; thus, the lambda parameter in that paper is simply the reciprocal of the
tau parameter.

To develop an intuition for these effects of tau, consider that
the parameter can be rewritten:

τ =
σs

σv
=

1
/
σv

1
/
σs
=

strength of low-speed expectation

spatial acuity
(3)

Thus, tau reflects the strength of the observer’s low-speed
expectation relative to the observer’s spatial acuity. Tau is large
in an observer with poor spatial acuity (large σs) and a strong
expectation for slow movement (small σv). This observer places
trust in the low-speed expectation; the observer’s perception is
considerably length contracted. Tau is small in an observer with
excellent spatial acuity (small σs) and little expectation regard-
ing movement speed (large σv). This observer places trust in the
measurement; the observer’s perception is only modestly length
contracted.

The perceptual length contraction formula closely fits human
data from a variety of experiments (Figure 1; see also Goldreich,
2007 for additional data fits). The fit is particularly satisfying given
that the formula has just a single free parameter. The best-fit τ-
values for the data displayed in Figures 1A–C were 0.21, 0.11, and
0.08 s. The larger τ for the Figure 1A fit may reflect the use of
electrocutaneous stimuli by Marks et al. (1982), the source of the
data plotted in Figure 1A. Electrical pulses tend to be more dif-
ficult to localize (larger σs) than mechanical taps (Higashiyama
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A

B

FIGURE 5 | Exploring the perceptual length contraction formula. (A)
Perceived length, l*, plotted against ISI (t ), for a trajectory of measured
length lm =10 cm, at five values of the parameter τ (Eq. 2). Perceived length
asymptotically approaches measured length as t increases. Each curve
reaches l*= (1/3) lm (lower dashed line) when t= τ, and l*= (2/3) lm (upper
dashed line) when t=2τ. (B) Perceived length, l*, plotted against
measured length, lm, for a trajectory of t =0.1 s, at five values of τ [color
code as in (A)]. Perceived length grows linearly with, but underestimates,
measured length. Observers with larger τ experience more pronounced
length contraction. Dashed diagonal line: l*= lm.

and Hayashi, 1993), which were used to generate the data in
Figure 1B (Lechelt and Borchert, 1977) and Figure 1C (Kilgard
and Merzenich, 1995). Measures of point localization suggest that
σs is on the order of 1 cm in response to light mechanical stim-
uli on the forearm (Weinstein, 1968; Martikainen and Pertovaara,
2002; Cody et al., 2008); thus, taking τ= 0.1 s as a nominal value
for mechanosensory perception on the forearm, we infer that σv is
on the order of 10 cm/s.

BAYESIAN PERCEPTION IS OPTIMAL BECAUSE IT IS
BENEFICIALLY BIASED
Before developing our model further, we pause to consider an
important conceptual question: we have described the Bayesian
observer as achieving an optimal perceptual inference, but we have
also shown that the observer consistently underestimates the mea-
sured distance between taps. How can an observer be both biased
and optimal? This important question applies to any Bayesian
observer with a non-uniform prior distribution.

The short answer to the question is that bias is optimal when
it accurately reflects the stimulus statistics. In a world in which
slow trajectories are more common than fast ones (and, therefore,
among trajectories with any given inter-stimulus time, t, short
lengths are more common than long ones), an observer is justified

in perceiving trajectories as shorter than measured. Paradoxically,
then, the Bayesian observer is optimal precisely because it is biased.

To understand this thoroughly, we must appreciate the con-
sequences of both measurement and stimulus variability. In
Figures 2–5 we artificially specified (x1m , x2m). In a laboratory
experiment, however, the investigator can control only the stim-
ulus, not the measurements. As explained, we conceive of each
measured tap location as sampled from a Gaussian distribution of
standard deviation σs, centered on the actual tap location. Thus, if
the skin is stimulated repeatedly with the identical trajectory, the
measurement and consequently the percept will vary stochastically
from trial to trial (Figure 6).

By incorporating measurement variability, the simulation
shown in Figure 6 is a more realistic representation of a laboratory
experiment than are the simulations shown in the earlier Figures.
Crucially for our understanding of the paradox of bias and opti-
mality, however, Figure 6 would be an unrealistic portrayal of the
Bayesian observer’s experience in the real-world. In the real-world,
not only the measurements but also the trajectories themselves
are drawn from a distribution. In Figure 7, we more closely sim-
ulate what we envision to be real-world tactile experience. The
figure plots the lengths of one million trajectories sampled from
a zero-mean velocity distribution (for clarity of illustration, all
with t = 0.15 s), from each of which spatial measurements were
sampled and processed into a percept.

A comparison of the statistics of the measured length, lm
(Figure 7A) with those of the perceived length, l∗ (Figure 7B)
reveals that, although the observer’s perception is biased, it is more
accurate than the measurement. In fact, the observer’s perception
is optimal precisely because it is biased. To understand why, con-
sider that the majority of these real-world trajectories have very
short lengths (l close to zero). Because short trajectories are more
common, any measured length, lm, most often originates from a
trajectory of shorter true length, l. The Bayesian observer’s per-
cept is biased by the prior to take this crucial knowledge into
account; consequently, over the course of many trials, the per-
cept more closely reflects the true stimulus than the measurement
does. This is indicated by the smaller vertical scatter of the percept
(Figure 7B, left) than of the measurement (Figure 7A, left) around
the diagonal line.

Further inspection of the scatterplot in Figure 7A reveals that,
for any true trajectory length, l, the measurement, lm, occurs with
equal frequency above and below the diagonal line. Thus, the his-
togram of lm samples is centered on l (Figure 7A, center). For this
reason, the measured length is termed an “unbiased estimator” of
the true length. Despite this lofty denomination, however, it is clear
from the same scatterplot that for any magnitude lm other than 0,
the distribution of true lengths has a smaller average magnitude
(when lm > 0, l tends to lie to the left of the diagonal line; when
lm < 0, l tends to lie to the right of the diagonal line). Thus, lm is
an inaccurate estimator in the sense that the stimuli that result in a
particular lm are on average offset from that lm (Figure 7A, right).
If an observer were to report lm as the estimate of trajectory length,
the observer would be found to systematically report trajectories
as being longer than they actually are.

Figure 7B shows that the statistics of the perceived length, l∗,
are opposite in character to those of the measured length. For any
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FIGURE 6 | Measurement noise causes stochastic perception. (A) The
columns display the observer’s likelihood function, prior probability
distribution, and posterior probability distribution on five trials with the
identical stimulus trajectory: x 1 =3 cm, x 2 = 7 cm, t =0.15 s. Each
measured stimulus position was randomly sampled from the true location;
thus, the measured trajectory (x 1m , x 2m ; open red circle) bounces randomly
from trial to trial around the fixed true value (3, 7 cm; red cross). Because
the likelihood function is centered on the measurement, it too bounces.

Consequently, the observer’s percept (mode of the posterior, filled red
circle) varies stochastically from trial to trial. (B) The measured tap positions
(open circles) and perceived tap positions (mode of posterior, filled red
circles) on each trial, compared to the actual tap positions (dashed lines). On
every trial, the perceived trajectory length (l*, distance between filled
circles) underestimates the measured length (lm, distance between open
circles); the perceived trajectory length therefore on average
underestimates the actual trajectory length (l ).

true trajectory length, l, the perceived length, l∗, systematically
underestimates the magnitude of l (Figure 7B, left and center).
Thus, the perceived length is termed a “biased estimator.” This
bias is beneficial, however: because of it, at any l∗, the distribu-
tion of true lengths is centered on a mean of l∗ (the values of
l are symmetrically distributed around the diagonal line in the
scatterplot). Thus, l∗ is an accurate estimator in the sense that
the stimuli that result in a particular l∗ indeed on average have
length equal to that l∗ (Figure 7B, right). The observer’s report of
l∗ can be trusted as accurately reflecting, on average, the true tra-
jectory length. Importantly, the variance of l given l∗ (Figure 7B,
right) is smaller than the variance of lm given l (Figure 7A, cen-
ter). This again reveals that the percept is more accurate than the
measurement.

SELECTIVE SPATIAL ATTENTION SHIFTS THE PERCEIVED
TRAJECTORY
Up to this point, we have assumed that the observer’s spatial uncer-
tainty,σs, is uniform within the tested area (σs will, of course, differ
between body areas, such as forearm and finger). However, spa-
tial attention is associated with cortical receptive field recruitment
and sharpening within the attended area (Anton-Erxleben and
Carrasco, 2013). Thus, if an observer were to focus attention pref-
erentially on one location, we might expect σs to decrease there
while plausibly increasing at unattended locations. Indeed, on the
arm, the spatial error of localization decreases by as much as 30%

when attention is directed to the stimulated skin region (Moore
et al., 1999; O’Boyle et al., 2001).

If spatial acuity is modulated by selective attention, how might
length contraction percepts be affected? In a cutaneous rabbit
experiment, Kilgard and Merzenich (1995) found that when par-
ticipants were not asked to focus their attention to any particular
area of the arm, the midpoints of the perceived and actual tra-
jectories tended to coincide (Figure 8A, left). In contrast, when
participants were instructed to direct their attention either distally
or proximally, the midpoint of the perceived trajectory shifted
toward the attended location (Figure 8A, center, right). This
occurred because the tap within the attended skin area migrated
less perceptually than did the tap within the unattended area, an
effect confirmed by Flach and Haggard (2006).

The Bayesian observer replicates this attention effect: when σs

decreases in one skin area relative to the other, the perceived trajec-
tory midpoint shifts toward the attended location (Figures 8B,C).
The relatively precise measurement of the “attended tap” impedes
its perceptual migration, while the relatively imprecise measure-
ment of the “unattended tap” facilitates its perceptual migration.
In this situation, length contraction is accomplished primarily by
the perceptual displacement of the unattended tap.

In the Section“Generalization to inhomogeneous spatial uncer-
tainty” in Appendix, we derive a generalization of the length
contraction formula that incorporates separate σs1 and σs2 val-
ues representing spatial uncertainty around the two tap locations.
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FIGURE 7 | Bayesian perception is optimal because it is biased. On each
of 1 million trials, a first tap position (x 1) was drawn from a uniform
distribution, and a second tap position (x 2) was drawn from a Gaussian
distribution centered on the first tap position, with standard deviation
tσv = 1.5 cm (i.e., σv =10 cm/s, t =0.15 s; see Eq. A8 in Appendix). Measured
positions, x 1m and x 2m , were then drawn independently from Gaussian
distributions of standard deviation σs =1 cm, centered on the corresponding
tap positions (x 1 and x 2). (A) Left : scatterplot of measured trajectory length
(lm = x 2m − x 1m ) against actual trajectory length (l= x 2 − x 1) for each of the
trials (dots); negative lengths indicate trajectories in which x 2 < x 1. Dashed
vertical and horizontal lines: l=0 and lm =0. Diagonal dashed line: lm = l.
Vertical blue line: l =3 cm. Horizontal red line: lm =3 cm. Center : histogram (h)
of lm values that occurred when l was between 2.95 and 3.05 cm (i.e., lm

samples that fell along the blue vertical line in the scatterplot). The histogram
is a Gaussian distribution centered at lm =3 cm (asterisk). Right : histogram of
l values of trajectories that gave rise to lm between 2.95 and 3.05 cm (i.e., l
samples that fell along the red horizontal line in the scatterplot). The histogram
represents the observer’s posterior density over l. It is a Gaussian distribution
centered at l=1.6 cm, not 3 cm (asterisk). (B) Left, center, and right panels as
in (A), but for l* rather than lm. Center : l* is a biased estimator. Right : on trials
in which the observer perceived l*=3 cm, the true trajectory length averaged
3 cm. Because the perceived length is a deterministic function of the
measurement, this histogram has the same variance as the posterior density
over l. Inset formulas in (A) center and (B) right show the variances of these
histograms (See “One-dimensional reductions” in Appendix). These are equal
to the mean-squared error between each estimator and the true length.

In the general equation, the single spatial uncertainty,σs , of Eq. 1 is
replaced by the root-mean-square uncertainty at the two locations,
σrms:

l∗ =
lm

1+ 2
(

σs(rms)
σv t

)2 =
lm

1+
σ2

s1+σ2
s2

(σv t )2

(4)

We show further that the shift, ∆midpt, in the perceived trajec-
tory midpoint away from the measured trajectory midpoint is:

∆midpt =
lm
2

(
σ2

s1 − σ2
s2

(σv t )2
+ σ2

s1 + σ2
s2

)
(5)

THE PREDICTIVE-POSTDICTIVE FORMULATION
The rabbit illusion is often described as providing compelling
evidence for perceptual postdiction, a process whereby the per-
ception of an earlier event is modified by the occurrence of a later
one. Postdiction is indeed an attractive explanation for the per-
ceptual migration of tap 2 toward the location of tap 3 in the
rabbit illusion (Figure 1C). As shown by Kilgard and Merzenich

(1995), tap 3 also migrates perceptually toward the location of
tap 2 (Figure 1C). Therefore, prediction apparently is also at play:
the perception of a later event (tap 3) depends upon an earlier
one (tap 2).

In light of these considerations, it may seem surprising that our
Bayesian observer replicates length contraction illusions without
explicitly representing either pre- or postdictive inference. How is
this possible? The answer is that pre- and postdiction are implic-
itly embedded in the model via the action of the low-speed prior.
The low-speed prior transforms the observer’s likelihood func-
tion into a posterior density by pulling the observer’s perception
of each tap position toward the measured position of the other
(Figure 2).

We can reveal the pre- and postdiction hidden in the Bayesian
observer by decomposing the model’s two-dimensional (x1, x2)
calculations (Figure 9A) into a series of one-dimensional infer-
ences regarding each tap’s position individually (Figure 9B). Using
its low-speed expectation, the observer can from the first tap’s
likelihood function predict a probability distribution over the
position of the subsequent, second, tap, and from the second tap’s
likelihood function postdict a probability distribution over the
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FIGURE 8 | Modeling the effects of spatial attention. (A) Depiction of a
cutaneous rabbit illusion experiment reported by Kilgard and Merzenich
(1995). Participants either received no specific instruction or were instructed
to direct their attention (yellow highlight) toward the proximal or distal
forearm. The investigators found that in the directed attention conditions, the
perceived positions of tap 2 (green) and tap 3 (blue) were shifted toward the
attended location (forearm sketches). (B) In the Bayesian observer, a
reduction in σs at the attended relative to the unattended location reproduces
the perceptual shift reported by Kilgard and Merzenich (1995). Left panel : the
Bayesian observer’s likelihood function, prior and posterior density when σs

does not vary with location, simulating the no-instruction condition in (A). In

this case, the perceived and measured trajectory midpoints coincide. Center
two panels: effect of σsp < σsd, where the subscripts p and d refer to the
proximal and distal arm areas. The greater the reduction of σsp relative to σsd,
the more the perceived trajectory migrates proximally toward the tap 2
measurement. Right two panels: effect of σsd < σsp. The greater the reduction
of σsd relative to σsp, the more the perceived trajectory migrates distally
toward the tap 3 measurement. For all plots in (B), the measurements (x 2m ,
x 3m ) were (3, 7 cm), the time between taps 2 and 3 was 0.06 s, and σv was
10 cm/s. (C) The perceived (mode of posterior) tap 2 and 3 positions (green
and blue circles) for each of the five conditions in (B) directly above,
compared to the measured tap positions (dashed lines).

position of the previous, first, tap (arrows in Figure 9B). We call
these two distributions the predicted prior and postdicted prior
densities4.

Next, the observer simply multiplies each tap’s likelihood func-
tion by that tap’s prior to obtain the posterior density over the tap’s
position. We show in the Sections “One-dimensional reductions”
and “The prediction-postdiction formulation” in Appendix that

4Note that “prior” in the Bayesian context does not imply “before” the stimulus
occurs, but rather “independent of the measurement.” The predicted prior over tap
2’s position is constructed using all knowledge available to the observer except the
tap 2 measurement, x2m . Similarly, the postdicted prior over tap 1’s position is con-
structed using all knowledge available to the observer except the tap 1 measurement,
x1m .

the posteriors so obtained are identical to those that would result
from extracting one-dimensional distributions from the joint (x1,
x2) posterior: if the joint posterior (Figure 9A, bottom) were mar-
ginalized (i.e., integrated) vertically, it would yield the posterior
over x1 shown in Figure 9B, bottom left; if integrated horizon-
tally, it would yield the posterior over x2 shown in Figure 9B,
bottom right.

In the Section “The prediction-postdiction formulation” in
Appendix, we show that the predicted and postdicted priors are
Gaussian densities, and that their means and variances are:

µpre= x1m µpost= x2m

σ2
pre = σ2

s1 + (σv t )2 σ2
post = σ2

s2 + (σv t )2
(6)
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FIGURE 9 | Prediction-postdiction formulation. (A) The observer’s
two-dimensional joint (x 1, x 2) likelihood function, prior and posterior densities.
The measured trajectory was x 1m = 3 cm, x 2m= 7 cm, with t =0.15 s. The
observer settings were σs =1 cm, σv =10 cm/s. (B) The inference process in
(A) reformulated as a series of one-dimensional inferences regarding x 1 and
x 2 individually. Top left : the tap 1 likelihood function (red), p(x 1m | x 1), is
centered on x 1m . Because of its low-speed expectation, the observer predicts
(red arrow) that the most probable position for a future tap 2 will also be 3 cm.
Middle right : the observer’s predicted prior over tap 2 (light red) represents
its belief concerning the position of tap 2, projected 150 ms forward in time
from the occurrence of tap 1. Top right : the observer’s tap 2 likelihood
function (blue), p(x 2m | x 2), is centered on x 2m . Because of its low-speed
expectation, the observer postdicts (blue arrow) that the most probable
position for the preceding tap 1 was also 7 cm. Middle left : the observer’s
postdicted prior over tap 1 (light blue) represents its belief concerning the
position of tap 1, projected 150 ms backward in time from the occurrence of
tap 2. Left column: using Bayes’ theorem, the observer multiplies the tap 1
likelihood function (red) by the tap 1 postdicted prior (light blue) to obtain the

tap 1 posterior (purple). Right column: similarly, the observer multiplies the
tap 2 likelihood function (blue) by the tap 2 predicted prior (light red) to obtain
the tap 2 posterior (purple). (C) Individual tap likelihoods, priors, and
posteriors graphed with the same color scheme as in (B), for three
trajectories of progressively increasing ISI. At t = 0.05 s, pre- and postdiction
both result in relatively sharp priors that exert a strong influence over the
percept (mode of the posterior). As t is increased, the pre- and postdicted
priors become lower and broader: pre- and postdiction become increasingly
uncertain with the passage of time. The priors thus exert diminishing
influence, and the percept approaches the measurement (compare to
Figure 3A). For all panels in (C), σs =1 cm, σv =10 cm/s. (D) Effect of directed
spatial attention, as in Figure 8. Top: a reduction in σs1 sharpens the tap 1
likelihood function, increasing the strength of prediction (note sharp predicted
prior over tap 2), while an increase in σs2 broadens the tap 2 likelihood
function, decreasing the strength of postdiction (note broad postdicted prior
over tap 1). Middle: when σs1 = σs2, pre- and postdiction have equal strength.
Bottom: reduction in σs2 relative to σs1 results in effects opposite those seen
in the top panel. For all panels in (D), t =0.06 s, σv =10 cm/s.
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Equations 6 show that the prior density over each tap’s position
is centered on the measurement of the other tap, reflecting the
observer’s low-speed expectation (the most probable speed being
zero). The variance of each prior density reflects the observer’s
uncertainty regarding the other tap’s measurement (σs1 or σs2) and
the observer’s prior uncertainty regarding trajectory speed (σv),
which translates into an increasing uncertainty regarding the dis-
tance traversed as the elapsed time, t, increases (σvt ). Thus, percep-
tual length contraction diminishes with increasing t (Figure 9C),
as shown previously (Figures 3 and 5A).

Figure 9D shows that the predictive-postdictive formulation
accurately reproduces the effects of directed spatial attention, pre-
viously explored in Figure 8. When attention is directed around
the location of the first tap (σs1 < σs2), the predicted prior is
sharper than the postdicted prior (σ2

pre < σ2
post). Consequently,

prediction exerts a dominant influence, perceptually displacing
the second tap asymmetrically toward the first (Figure 9D, top).
When attention is directed around the location of the second tap
(σs2 < σs1), the postdicted prior is sharper (σ2

post < σ2
pre). In this

case, postdiction dominates, perceptually displacing the first tap
asymmetrically toward the second (Figure 9D, bottom).

THE PERCEPTION OF MULTI-TAP SEQUENCES
Up to this point, we have modeled the perception of two-tap
trajectories5. How might a Bayesian observer handle multi-tap
sequences, delivered conceivably to any number of skin sites? An
observer could apply a low-speed prior independently to the move-
ment between each tap and the next one. Alternatively, an observer
might apply a low-speed prior to the first tap pair of the sequence,
but thereafter incorporate an expectation that the velocity of each
pair be similar to that of the preceding pair: a low-acceleration
prior (See “Multi-tap perception” in Appendix).

Here, we test each of these Bayesian observers with multi-tap
sequences that produce illusions in humans. We consider two well-
known illusions. The first is the tau effect, so-named by Helson
(1930) and subsequently described in elegant detail by Helson and
King (1931). The second is a multi-tap rabbit, characterized in a
delightful paper by Geldard (1982). In Figures 10 and 11, we show
that the observer with a low-speed prior produces good fits to the
human perceptual data; in Figure 12, we show that the observer
with a low-acceleration prior does not.

In the tau effect experiment, taps at three skin positions define
two spatial and two temporal intervals (Figure 10). Helson and
King (1931) reported that, when t 2= t 1 and l2= l1, the partici-
pants perceived the two lengths as equal: l∗2 = l∗1 . As t 2 was pro-
gressively reduced, however, tap 3 had to be located progressively
farther down the arm (i.e., l2 had to be progressively increased) in
order to make l∗2 equal l∗1 (Figures 10B,C). The best-fit of our low-
speed-prior observer to the average of the human data occurred at
τ= 0.10 s. The Bayesian observer closely replicated the space-time
curve characterizing human perception (Figure 10C).

5Although we have encountered a four-tap rabbit experiment (Figures 1C and 8),
our approach was to consider the first and forth taps as mere reference points, so we
modeled the perception of taps 2 and 3 only. Indeed, the first and forth taps in that
sequence do not interact perceptually with the second and third, from which they
are separated by large ISIs.

FIGURE 10 |The tau effect. (A) Three taps to the arm, at positions
x 1 =0 cm, x 2 = 3 cm, and x 3 (variable), define two spatial intervals, l 1 =3 cm
and l 2 (variable), and two temporal intervals, t 1 =0.5 s and t 2 (variable).
Because t 2 < t 1, at some l 2 > l 1 the two intervals will be perceived to be of
equal length (l 2*= l 1*). (B) At each of five t 2 settings (identified at right of
plots), Helson and King (1931) progressively increased l 2 by shifting x 3

along the arm in 0.5-cm increments. On each trial, the participant reported
whether the second spatial interval was perceived to be shorter than, equal
to, or longer than the first interval. To accurately estimate each participant’s
point of subjective equality (PSE), we transformed these data into a
two-alternative forced-choice format by distributing the participant’s “equal”
responses evenly to the “shorter” and “longer” response categories. We
then fit each participant’s transformed data (proportion “l 2 is longer”
responses) at each t 2 setting with a Weibull psychometric function (blue
curves). Each psychometric function provides a PSE (vertical line): the x 3 at
which the psychometric function intersected 0.5 (horizontal line), indicating
that l 2*= l 1*. The PSE shifted progressively to the left as t 2 was increased
(note: when x 3 =6 cm, l 2 actually does equal l 1). The transformed data
shown are from one participant (“Observer C”) in Helson and King (1931).
(C) Trajectories for which l 2*= l 1*. Blue points: mean x 3 that resulted in
l 2*= l 1* among the six participants tested by Helson and King (1931), at
each of the five t 2 settings. Blue lines: ±1 SD. Red points: best-fit
performance of the Bayesian low-speed observer (τ=0.10 s).

In the 15-tap rabbit experiment, five taps are delivered con-
secutively at each of three positions along the arm (Figure 11).
Geldard (1982) found that when the time between consecutive taps
was 0.05 s, participants perceived the first 10 taps in the sequence
as hopping at an approximately uniform rate up the arm, each
tap displaced by a constant spatial increment from the preceding
one (Figures 11A,B, center). At an ISI of 0.3 s, perception was
reportedly veridical (Figure 11B, left). At an ISI of 0.02 s, the per-
ceived sequence began partway up the arm and traced a non-linear,
somewhat sigmoidal path (Figure 11B, right).

The low-speed-prior observer’s perception with τ= 0.10 s
agrees qualitatively with the perception of human participants
(Figure 11C). To understand why, first note that, at an ISI of 0.05 s
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FIGURE 11 |The 15-tap rabbit illusion. (A) Geldard (1982) delivered five taps
at each of three locations along the arm. When ISI between successive taps
was 0.05 s, participants reported perceiving a linear spatial progression of
taps 1 through 10 (forearm sketch). (B) The same spatial sequence shown in
(A), at three different ISIs, resulted in distinct percepts (Geldard, 1982). Left :
at 0.3 s ISI, perception was veridical. Center : at 0.05 s ISI, perception was as
shown in (A). Right : at 0.02 s ISI, the taps were perceived to begin at a
position between 2 and 3 cm along the arm, and to advance in a non-linear
spatial progression. Open circles: true tap positions; blue points: human
perceptual report. (C) The Bayesian low-speed observer’s perception with a
standard setting of τ=0.10 s (e.g., σs =1 cm, σv =10 cm/s) shows much
similarity to participants’ subjective reports. Open circles: true tap positions;

red points: Bayesian observer’s perception (mode of the posterior). Dashed
slanted lines have slope 10 cm/s (i.e., 1σv). Note that the two rapid jumps in
the true trajectory (from tap 5 to tap 6, and from tap 10 to tap 11) occur at a
speed much greater than σv when the ISI is 0.05 s (center ) or 0.02 s (right );
thus, perceptual length contraction occurs in these cases. In contrast, at an
ISI of 0.3 s (left ), the trajectory does not strongly violate the observer’s
low-speed expectation; thus, perception is nearly veridical. (D) The Bayesian
low-speed observer’s perception can be made even closer to human reports if
the value of σs varies along the arm. The observer’s percept at each ISI is
shown for σs =1, 2, and 0.5 cm around the proximal, middle, and distal arm
regions, respectively. Line segments at right have length equal to 1σs at each
location. The value of σv was fixed at 10 cm/s.

(Figure 11C, center) or 0.02 s (Figure 11C, right), the rapid jumps
in the stimulus sequence are in clear violation of the observer’s
low-speed expectation (see diagonal dotted lines with slope σv).

Consequently, perceptual length contraction occurs for those tap
pairs: the perceived distance between taps 5 and 6, and between
taps 10 and 11, is considerably smaller than the actual distance.
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FIGURE 12 | Comparison between the low-speed-prior and
low-acceleration-prior observers. (A) The tau effect. Red points:
low-speed-prior observer’s performance, reproduced from Figure 10C, and
extended to 1 s on the x -axis. Purple points: low-acceleration-prior observer’s

performance. (B) The 15-tap rabbit. Red points: low-speed-prior observer’s
performance, reproduced from Figure 11B. Purple points: low-acceleration-
prior observer’s performance. For both observers in (A) and (B), τ was set to
0.10 s (i.e., σs =1 cm, σv = 10 cm/s).

Now, what causes the progressive perceptual displacement of the
many taps that are, in reality, at the same position? Interestingly,
each jump in the actual stimulus sequence results in a chain reac-
tion that propagates, with diminishing strength, to more distant
taps. The rapid jump from tap 5 to tap 6 induces perceptual
length contraction that pulls tap 5 considerably upward in the plot
(and tap 6 downward). This places perceived distance between
taps 4 and 5, which given the short ISI is sufficient to violate
the observer’s low-speed expectation as applied to that tap pair.
Consequently, taps 4 and 5 are perceptually attracted, resulting in
some upward perceptual displacement of tap 4, placing perceptual
distance between it and tap 3, and so on.

How would perception of the 15-tap sequence change if the
observer were to direct its spatial attention unequally along the
arm? To explore this question, in Figure 11D we have plotted the
low-speed-prior observer’s perception under conditions of “stan-
dard”attention to the proximal arm (σs = 1 cm),directed attention
to the distal arm (σs = 0.5 cm), and relative inattention (σs = 2 cm)
to the area in-between. Comparison of Figures 11D,C indicates
that adjustment to spatial attention affects perception in ways that
depend upon ISI. For the particular values of σs used in this exam-
ple, perception of the 0.3 s ISI sequence remains nearly veridical
(Figure 11D, left), whereas perception of the 0.05 s ISI sequence
to some extent (center), and of the 0.02 s ISI sequence to a greater
extent (right), are shifted upwards in the plots. The result is that
the observer’s perception even more closely resembles that of the
human participants reported by Geldard (1982).

Unlike the low-speed-prior observer, the low-acceleration-
prior observer distinctly fails to match human perception

(Figure 12). In the tau effect scenario, a discordant feature of the
low-acceleration-prior observer is that, when t 2= t 1 and l2= l1,
the observer fails to perceive the lengths as equal, instead perceiv-
ing l2

∗> l1
∗. This perceptual asymmetry occurs because only the

first segment of the trajectory is subject to a low-speed prior. Thus,
when t 2= t 1, l2 must be made shorter than l1 in order to be per-
ceived as equal. Consequently, in our simulation of Helson and
King (1931) using the low-acceleration-prior-observer, x3 fails to
converge to 6 cm as the tap 3 time approaches 1 s (Figure 12A,
purple points). The performance of the low-speed-prior observer,
in contrast, does converge as expected (red points).

In the 15-tap rabbit experiment,at 0.05 s ISI and more markedly
at 0.02 s ISI, the low-acceleration-prior observer perceives the tra-
jectory to start below the actual tap 1 location and to end above the
actual tap 15 location: the perceived trajectory is longer than the
actual trajectory (Figure 12B, purple points). This is incompatible
with human perceptual report, and opposite to the perception of
the low-speed-prior observer (red points). The perceptual under-
shoot and overshoot occur because the rapid jumps in the actual
stimulus sequence extend perceptually in both directions at nearly
constant velocity, in keeping with the observer’s low-acceleration
expectation.

DISCUSSION
PERCEPTUAL LENGTH CONTRACTION AS BAYESIAN INFERENCE
Length contraction illusions have long fascinated and puzzled
investigators. The tactile tau effect was first reported almost
100 years ago (Gelb, 1914). It was later named and investigated
in detail in the early 1930s (Helson, 1930; Helson and King, 1931).
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The best-known length contraction illusion, the cutaneous rabbit,
was discovered serendipitously some 40 years later, when Geldard
and colleagues, intending to study the tau effect, mistakenly pro-
duced a stimulus pattern similar to the rapid sequences shown
in Figure 11B (Geldard and Sherrick, 1972; Geldard, 1982). The
resulting perception of taps hopping up the arm led a surprised
observer to exclaim “who let the rabbit loose?” (Geldard, 1982).
Over the years, investigators have proposed creative explanations –
geometrical, mathematical, and neural – for these and related
illusions (Jones and Huang, 1982; Brigner, 1988; Wiemer et al.,
2000; Grush, 2005; Flach and Haggard, 2006).

The Bayesian observer model expounded here provides a con-
cise and coherent explanation for the tau effect, the cutaneous rab-
bit, and related spatiotemporal illusions. Elapsed time influences
the perception of traversed space because the observer expects
objects to move slowly. In its simplest form, the model contains
a single free parameter, tau: a time constant for space perception
(Eqs 2 and 3). While much research remains to be done, we are
encouraged by the close fit of the model to human perceptual
data. Because a single model replicates the tau effect (Figure 10),
the rabbit (Figures 1C and 11), and other spatiotemporal illusions
(Figures 1A,B; see also Goldreich, 2007), we suggest that these
illusions are manifestations of a single perceptual assumption: a
low-speed prior. Our confidence in this suggestion is strengthened
by the finding that a single value of the tau parameter (∼0.1 s)
provides good fits to perception on the forearm as measured in
experiments using different paradigms and carried out by multiple
laboratories.

A central feature of Bayesian perceptual models is that they
consider multiple hypotheses – in our case, candidate trajecto-
ries. The idea that the brain perceives by evaluating candidates
is consistent with the “multiple drafts” theory of Dennett and
Kinsbourne (1992). These authors propose that, confronted with
stimuli such as those depicted in Figure 11, the brain favors a
distributed sequence of taps as the most “parsimonious” interpre-
tation. This suggestion is compatible with our model if one equates
parsimony with posterior probability. However, Dennett and Kins-
bourne (1992) do not explain on what grounds an observer judges
a particular interpretation to be the most parsimonious, nor do
they explain why the percept changes as a function of ISI.

Bayesian perceptual models make precise, quantitative predic-
tions regarding the relationships among perceptual variables (e.g.,
Eq. 1). These relationships spring from Bayes’ theorem: the prod-
uct of a hypothesis’ likelihood and prior probability is proportional
to its posterior probability. We liken the prior distribution to the
observer’s expectation derived from experience, and the likeli-
hood function to the sensation evoked by the stimulus (Figure 2).
In our view, then, the Bayesian perceptual framework beautifully
formalizes Helmholtz’s suggestion that “previous experiences act
in conjunction with present sensations to produce a perceptual
image” (Helmholtz, 1925).

Bayesian observers interpret sensory data in light of an internal
model – a conception of the structure and statistics of the world.
Bayesian perception is optimal when the observer’s internal model
accurately represents the world – that is, when the observer’s prior
distribution matches the stimulus distribution, and the observer’s
likelihood function accurately reflects the process by which stimuli

map to measurements (Figure 7). Unfortunately, the natural sta-
tistics of tactile stimuli have not been sufficiently characterized
to constrain a prior distribution, nor is our knowledge of tactile
sensorineural responses sufficient to specify the precise shape of
a likelihood function. Accordingly, we fit a Gaussian prior and
Gaussian likelihood to the human behavioral data. Subtle dis-
crepancies between the human data and the model’s performance
could result from our Gaussian assumptions. Future research is
needed to determine the precise shapes of the priors and likeli-
hoods used by individual participants. In any event, we speculate
that a low-speed prior reflects the natural statistics of tactile stim-
uli, learned by humans through experience. If so, illusions such
as the cutaneous rabbit may reveal the operation of an opti-
mal observer who brings an expectation forged by real-world
experience (the low-speed prior) into an artificial setting (the
laboratory).

THE WIDE APPLICABILITY OF THE LOW-SPEED-PRIOR OBSERVER
Our Bayesian observer model may explain a variety of percep-
tual phenomena beyond the tactile illusions we have considered.
One such phenomenon is the out-of-body rabbit illusion. In a
clever experiment, Miyazaki et al. (2010) showed that humans
perceived taps as hopping progressively along an aluminum bar
resting across the index fingers of the hands, when in actuality
the taps were delivered only to the points on the bar directly above
each finger. To apply the model to this scenario, it is necessary only
to know the observer’s likelihood function evoked by a tap to the
bar: p(measurement | tap location along bar). An interesting twist
here is that both hands might detect any single tap to the bar. This
does not preclude the construction of a likelihood function; it sim-
ply requires consideration of the sensory input to both hands. For
instance, a more intense vibration felt with the right hand would
result in a likelihood function whose peak lies to the right of the
bar’s center. Once the single tap likelihood functions are deter-
mined empirically, it would be straightforward to fit the model to
the behavioral data with a low-speed prior. Of interest would be to
compare the value of σv so obtained to the value (∼10 cm/s) that
fits the perception of trajectories delivered directly to the skin.

Our model provides insight into crossmodal interactions
in length contraction illusions (Kawabe et al., 2008; Asai and
Kanayama, 2012). In a 2-location, 3-tap rabbit paradigm, Asai and
Kanayama (2012) demonstrated that the cutaneous rabbit was
more consistently perceived when a visual flash occurred concur-
rently with, and at the typical illusory location of, the second tap.
The model readily accommodates this cue-combination scenario.
As shown in Figure 6, stochastic variability in the measurement
causes trial-to-trial variability in the perceived location of either
tap. Provided the Bayesian observer assumes that the concurrent
visual and tactile measurements resulted independently from the
same event, the observer’s likelihood function over that event’s
location will be the product of the visual and tactile likelihoods.
The visual measurement will therefore sharpen and shift the com-
bined likelihood function toward the flash location, increasing the
frequency with which the observer perceives the tactile stimulus
to fall at that location. To test the model, one would first mea-
sure participants’ spatial uncertainty (σs) in response to taps and
flashes delivered in isolation. The model could then be used to
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make testable predictions regarding the perceptual influence of
the flash.

Finally, our model may account for saltation illusions in both
vision (Geldard, 1976; Lockhead et al., 1980; Khuu et al., 2011)
and audition (Bremer et al., 1977; Shore et al., 1998; Getzmann,
2009). Provided the brain expects visual and auditory stimuli to
move slowly, the model predicts pronounced length contraction
when stimulus sequences traverse areas of poor spatial acuity (high
σs). In vision, this prediction has already been confirmed: the
visual rabbit illusion occurs in response to peripheral but not cen-
tral stimuli (Geldard, 1976). Furthermore, a low-speed prior has
been implicated in visual motion perception (Weiss et al., 2002;
Stocker and Simoncelli, 2006). Future experimental studies will
assess the quantitative fit of our model to visual and auditory
saltation illusions.

Despite its apparently wide applicability, we do not suggest that
a low-speed prior alone can account for a majority of motion illu-
sions. Interestingly, several visual motion phenomena (Nijhawan,
2002; Hubbard, 2005) involve endpoint overestimation similar
to that caused by the low-acceleration prior that did not match
the tactile data considered here (Figure 12B). Research is needed
to clarify the conditions under which perception incorporates a
low-acceleration prior.

THE PERCEPT AS A COMBINED PRE- AND POST-DICTIVE INFERENCE
Our Bayesian observer’s percept can be viewed as resulting from
concomitant pre- and post-dictive inference. For instance, in two-
tap trajectories, the first tap predicts the location of the second,
while the second postdicts the location of the first (Figure 9). We
suspect that Bayesian pre- and postdiction will be found to act
together in many perceptual scenarios, whether or not these sce-
narios incorporate a low-speed prior. Indeed, it has already been
reported that the two processes collaborate in the flash-lag effect
(Rao et al., 2001; Soga et al., 2009), an illusion in which a brief
visual flash placed alongside a moving object is perceived to lag
behind the object.

By hypothesizing a link between spatial attention and σs , as
suggested by point localization experiments (Moore et al., 1999;
O’Boyle et al., 2001), we have shown how attention can shape
the relative influence of pre- and postdiction on the percept
(Figure 9D). When attention is directed around the location
of the first tap (σs1 < σs2), prediction dominates, and the sec-
ond tap is perceived as asymmetrically displaced toward the first.
When attention is directed around the location of the second tap
(σs2 < σs1), postdiction dominates, and the first tap is perceived
as asymmetrically displaced toward the second. Under conditions
of imbalanced spatial attention, the trajectory midpoint is there-
fore perceived as shifted toward the attended location, as specified
by Eq. (5). As the spatial attention balance is adjusted from one
extreme to another, the model smoothly transitions between a per-
cept influenced predominantly by prediction to one influenced
predominantly by postdiction.

Researchers have often referred to the rabbit illusion as a post-
dictive phenomenon, without mentioning the involvement of
prediction (Bays et al., 2006; Blankenburg et al., 2006; van Wassen-
hove, 2009; Miyazaki et al., 2010; Asai and Kanayama, 2012).
Indeed, initial work on the rabbit described only the perceptual

displacement of the earlier tap(s) toward the later one(s) (Gel-
dard and Sherrick, 1972), consistent with an exclusively postdictive
process. However, it is clear from modern studies of the rabbit
that both earlier and later taps undergo perceptual displacement –
whether by equal distances or not (Kilgard and Merzenich, 1995;
Flach and Haggard, 2006; Trojan et al., 2010). This supports our
conclusion that the illusion involves concomitant predictive and
postdictive inference.

Why did initial rabbit illusion investigations describe only the
displacement of earlier taps toward later ones? In his three-tap
“reduced rabbit” paradigm, Geldard (1982) stimulated with a
“locator”(tap 1) followed at large ISI by an“attractee”(tap 2) at the
same position, which he reported as perceptually displaced toward
the subsequent “attractant” (tap 3) delivered at a different loca-
tion. The participants’ report that tap 2 was perceptually displaced
toward tap 3, but not vice versa, may have owed to the absence
of a second locator tap placed at the position of tap 3. Without
a locator tap for spatial comparison, participants may have been
unaware that tap 3 was perceptually displaced. This hypothesis was
considered and discarded by Geldard (1982) upon preliminary
investigation, but Kilgard and Merzenich (1995), using a 4-tap
paradigm that included a second locator tap, did find symmetric
perceptual displacement of taps 2 and 3 (Figure 1C).

Alternatively,as demonstrated by Kilgard and Merzenich (1995)
and modeled here, asymmetric rabbit percepts could reflect an
imbalance in spatial attention (Figures 8 and 9D; Eq. 5). An
interesting possibility is that – particularly during multi-tap
sequences – participants have time to redistribute their spatial
attention on the fly. When investigators randomize the direction
of movement (up or down along the arm), the participants cannot
know where to expect the first tap, so they presumably distribute
their spatial attention equally. After the first tap has occurred, how-
ever, experienced participants will know where the trajectory is
heading, and might direct their attention fully toward the upcom-
ing final location. This would cause a decrease in σs at the final
location, consequently shifting the percept toward that point (e.g.,
Figure 11D).

SPECULATIONS REGARDING NEURAL IMPLEMENTATION
We have described two computational approaches by which
our Bayesian observer could obtain its percept: either multi-
dimensional inference (e.g., the two-dimensional inference
shown in Figure 9A) or equivalent one-dimensional prediction-
postdiction (Figure 9B). Which, if either,approach might the brain
implement? The two approaches yield the same percept, but they
scale very differently in difficulty as the number of taps increases.
In the case of a sequence of n taps, the joint likelihood function,
prior, and posterior would each require n dimensions. The neural
representation of such multi-dimensional distributions would
appear to pose considerable challenges. More plausibly, the brain
could undertake one-dimensional predictive-postdictive inference
recursively.

It is tempting to reinterpret the graphs in Figure 9 as plots
of activity (e.g., spike rates) of a series of cortical neurons that
represent the corresponding skin positions (x-axes). Under this
interpretation, the predicted prior is a mound of cortical neural
activity evoked by tap 1 that decays and broadens over time
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(Figure 9C). When the second tap initiates a second mound of
cortical activity (the tap 2 likelihood function), the two mounds
interact (e.g., through summation), resulting in a tap 2 percept that
is shifted toward the tap 1 location. For trajectories with greater
ISI, the tap 1 mound would have more time to decay, and would
thus exert less influence over the tap 2 percept. This idea is sim-
ilar to a model proposed by Flach and Haggard (2006). The idea
is attractively simple; nevertheless, it seems able to account sat-
isfactorily only for prediction, not postdiction. A more complex
network model was proposed by Wiemer et al. (2000), but that
model produces perceptual length dilation at large ISIs, a result
contradicted by behavioral data.

Computationally, the perception of multi-tap sequences can
be achieved with recursive predictive-postdictive Bayesian infer-
ence. The Kalman filter is an algorithm for recursive predictive
inference (Haykin, 2001), for which plausible neural implementa-
tion schemes have been proposed (Deneve et al., 2007; Beck et al.,
2011). Kalman smoothing combines the Kalman filter with recur-
sive postdictive inference (Haykin,2001). The percepts obtained by
our Bayesian observer are identical to those that would result from
an appropriately configured Kalman smoother (see “Multi-tap
perception” in Appendix). Smoothing has already been implicated
in the flash-lag effect (Rao et al., 2001) and proposed to contribute
to a variety of motion illusions, including the rabbit (Grush, 2005),
though to our knowledge a specific neural implementation for the
Kalman smoother has not yet been proposed.

TESTABLE PREDICTIONS
Our Bayesian observer model makes many testable predictions; we
encourage other investigators to pursue these experimentally.

The model predicts that perceptual length contraction will be
more pronounced on body areas with worse spatial acuity or – on
a given body area – in response to stimuli that are harder to

localize (e.g., weaker taps to the skin). Because σs can be inde-
pendently manipulated and measured using single taps, the length
contraction formula (Eq. 1) can be used to make specific testable
predictions regarding the effect of body area or stimulus strength
on the perception of two-tap trajectories.

Under conditions of imbalanced spatial attention, the model
predicts that perceptual length contraction will occur in accor-
dance with Eq. 4 and that the midpoint of the perceived two-tap
trajectory will vary in accordance with Eq. 5. These predictions
could be tested experimentally by independently measuring an
observer’s σs1 and σs2 under different degrees of directed spatial
attention, then measuring the trajectory percepts under the same
conditions.

As explained above, the model can be used to make testable
predictions regarding a variety of perceptual length contrac-
tion phenomena beyond those that we have modeled in this
paper. These include the out-of-body rabbit, crossmodal influ-
ences on the rabbit percept, and the visual and auditory rabbit
illusions.

We encourage readers to generate their own predic-
tions by using our freely downloadable computer pro-
gram, Leaping Lagomorphs (http://psych.mcmaster.ca/goldreich-
lab/LL/Leaping_Lagomorphs.html). This convenient program
implements the Bayesian observer, with either balanced or imbal-
anced spatial attention, and outputs its perception in response to
any stimulus sequence that the user cares to enter.
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APPENDIX
Here, we further develop mathematically, and offer new conceptual insights into, the basic Bayesian observer model put forth by Goldre-
ich (2007). In the following seven sections, we: 1) specify the observer’s generative model, and derive the posterior probability density
over tap trajectories and the perceptual length contraction formula; 2) generalize the derivation to include inhomogeneous spatial
acuity caused by selective spatial attention; 3) consider useful one-dimensional reductions of the two-dimensional posterior density; 4)
reformulate the observer’s percept as a combined predictive-postdictive inference; 5) model the perception of multi-tap sequences; 6)
consider extensions of the model that incorporate additional sources of uncertainty; and 7) describe how we fit the model to human
perceptual data.

THE BAYESIAN MODEL
We consider here an observer whose goal is to perceive the locations of two-taps delivered to the skin in rapid succession. We assume
that the observer has an internal generative model – a conception of the statistics of moving tactile stimuli – and that it interprets the
stimulus sequence optimally within the context of its generative model. Briefly, the observer considers two taps that occur in rapid
succession to result from a single moving object, and it considers that tactile objects tend to move slowly. Specifically, according to the
generative model: (1) An object briefly touches the skin at a location, x1, drawn from a uniform density. (2) The object moves away
from x1 with velocity v, drawn from a Gaussian density with mean zero and standard deviation σv; at some elapsed time t (independent
of x1), the object again briefly touches the skin, at location x2. (3) Noisy sensorineural activity evoked by each tap results in measured
values for the tap positions, x1m and x2m , drawn from Gaussian densities centered on the actual tap positions, x1 and x2, with standard
deviations σs.

Bayes’ formula
The observer’s goal is to infer the positions of the taps (x1, x2), which we refer to as the movement trajectory. We assume in this basic
model that the observer perceives the time between taps, t, veridically. Thus, the observer knows x1m , x2m , and t, and wishes to infer x1

and x2. According to Bayes’ formula, the posterior over trajectories is proportional to the product of likelihood and prior:

p (x1, x2|x1m , x2m , t ) ∝ p (x1m , x2m|x1, x2, t ) p (x1, x2|t ) (A1)

We now work out the observer’s prior and likelihood.

Prior probability density
The observer’s prior probability density over trajectories is:

p (x1, x2|t ) = p (x2|x1, t ) p (x1|t ) (A2)

Because t and x1 are independent, p(x1|t ) = p(x1), and this is a constant (x1 being drawn from a uniform distribution). Therefore,
we can write more concisely:

p (x1, x2|t ) ∝ p (x2|x1, t ) (A3)

We note that, given x1 and t, x2 is a function of the velocity, v :

x2 = x1 + vt (A4)

Thus, the probability that v resides in the infinitesimal region (v± dv
2 ) is equal to the probability that x2 resides in the corresponding

infinitesimal region (x2 ±
dx2

2 ):

p (x2| x1, t ) dx2 = p (v) dv (A5)

It follows that:

p (x2|x1, t ) = p (v)

∣∣∣∣ dv

dx2

∣∣∣∣ = p(v)

t
(A6)

Now recall that the observer has a low-velocity prior expectation:

p(v) =
1

√
2πσv

exp

(
−

v2

2σ2
v

)
=

1
√

2πσv
exp

(
−

((x2 − x1) /t )2

2σ2
v

)
(A7)
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Referring to Eqs A3, A6, and A7, we therefore have:

p (x1, x2|t ) ∝ p (x2|x1, t ) =
1

√
2πσv t

exp

(
−

(x2 − x1)
2

2(σv t )2

)
(A8)

The observer’s prior probability density over trajectories is proportional to a Gaussian distribution over the distance between
taps, with mean zero and standard deviation σv t . Reflecting the low-speed prior, when the elapsed time, t, is large, a wide range of
displacements is permissible; when t is shorter, the observer expects the two taps to more closely coincide spatially.

For future reference, we note that x2, like x1, is independent of t. We see this by integrating Eq. A8 with respect to x1:

p (x2|t ) =

∫
x1

p (x1, x2|t ) dx1 ∝

∫
x1

1
√

2πσv t
exp

(
−

(x2 − x1)
2

2(σv t )2

)
dx1 = 1 (A9)

Thus, x2 is independent of t, and, like p(x1), p(x2) is a constant. Eq. A8 shows that x2 is conditionally dependent on t, given x1.

Likelihood function
The tap positions measured by the observer, x1m and x2m , are drawn independently from Gaussian densities centered on the actual tap
positions, with standard deviations σs . Therefore, the observer’s likelihood function is:

p (x1m , x2m|x1, x2, t ) = p (x1m|x1) p (x2m|x2) (A10)

where

p (x1m|x1) =
1

√
2πσs

exp

(
−

(x1m − x1)
2

2σ2
s

)
p (x2m|x2) =

1
√

2πσs
exp

(
−

(x2m − x2)
2

2σ2
s

)
(A11)

Posterior probability density
The observer uses Bayes’ formula (Eq. A1) to calculate the posterior density over trajectories. It is useful to express the posterior density
in several ways. First, referring to Eqs A3 and A10, we see that Bayes’ formula can be rewritten:

p (x1, x2|x1m , x2m , t ) ∝ p (x1m|x1) p (x2m|x2) p (x2|x1, t ) (A12)

Next, from Eqs A8 and A11, we have

p (x1, x2|x1m , x2m , t ) ∝ exp

(
−

(
(x1m − x1)

2
+ (x2m − x2)

2

2σ2
s

+
(x2 − x1)

2

2(σv t )2

))
(A13)

Finally, following some rearrangement, Eq. A13 can be written as a two-dimensional (2D) Gaussian distribution

p (x1, x2|x1m , x2m , t ) ∝ exp

(
−

1

2(1− ρ2)

(
(x1 − x1∗)

2
+ (x2 − x2∗)

2
− 2ρ (x1 − x1∗) (x2 − x2∗)

σ2

))
(A14)

where the posterior mode (x1∗ , x2∗) is given by

x1∗ = x1m

(
(σv t )2

+ σ2
s

(σv t )2
+ 2σ2

s

)
+ x2m

(
σ2

s

(σv t )2
+ 2σ2

s

)
x2∗ = x1m

(
σ2

s

(σv t )2
+ 2σ2

s

)
+ x2m

(
(σv t )2

+ σ2
s

(σv t )2
+ 2σ2

s

)

and the variance (σ2) and correlation coefficient (ρ) are given by:

σ2
= σ2

s
σ2

s + (σv t )2

2σ2
s + (σv t )2 ρ =

σ2
s

σ2
s + (σv t )2

We assume that the observer reads out the posterior mode as the percept. Note that the perceived positions, x1∗ and x2∗ , are weighted
averages of the measurements, x1m and x2m . The perceived positions are drawn toward one another as the time between taps shortens,
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converging toward the measurement midpoint, (x1m + x2m)/2, in the limit that t approaches zero. As t approaches infinity, by contrast,
x1∗ and x2∗ approach the measured values, x1m and x2m .

Subtracting x1∗ from x2∗ , we find that the perceived distance between taps, l∗ = x2∗ − x1∗ , relates to the measured distance,
lm = x2m − x1m , according to the formula:

l∗ = x2∗ − x1∗ =
x2m − x1m

1+ 2
(

σs
σv t

)2 =
lm

1+ 2
(

τ
t

)2 (A15)

where we have defined the parameter tau as the ratio of the observer’s spatial uncertainty to the width of the low-speed prior: τ = σs
σv

.
Although the measured tap positions will vary stochastically from trial to trial, on average they will equal the actual tap positions.

Thus, on average the perceived distance is related to the true distance, l, as:

l∗ =
l

1+ 2
(

τ
t

)2 (A16)

This is the perceptual length contraction formula, previously derived – using a different approach and expressed in a slightly different
form – by Goldreich (2007).

GENERALIZATION TO INHOMOGENEOUS SPATIAL UNCERTAINTY
So far we have assumed equal spatial uncertainty, σs , at each point on the skin. Here, we consider the more general situation in which
each tap may be associated with a different spatial uncertainty, σs1 and σs2, as might occur if the participant were to focus spatial
attention on one skin region. In this case, the likelihood functions, Eq. A11, become:

p (x1m|x1) =
1

√
2πσs1

exp

(
−

(x1m − x1)
2

2σ2
s1

)
p (x2m|x2) =

1
√

2πσs2
exp

(
−

(x2m − x2)
2

2σ2
s2

)
(A17)

Consequently, the posterior density over tap positions (Eq. A13) becomes

p (x1, x2|x1m , x2m , t ) ∝ exp

(
−

(
(x1m − x1)

2

2σ2
s1

+
(x2m − x2)

2

2σ2
s2

+
(x2 − x1)

2

2(σv t )2

))
(A18)

Following rearrangement, Eq. A18 can be re-written as a 2D Gaussian distribution,

p (x1, x2|x1m , x2m , t ) ∝ exp

(
−

1

2
(
1− ρ2

) ( (x1 − x1∗)
2

σ2
1

+
(x2 − x2∗)

2

σ2
2

−
2ρ (x1 − x1∗) (x2 − x2∗)

σ1σ2

))
(A19)

where the posterior mode (x1∗ , x2∗) is given by

x1∗ = x1m

(
(σv t )2

+ σ2
s2

(σv t )2
+ σ2

s1 + σ2
s2

)
+ x2m

(
σ2

s1

(σv t )2
+ σ2

s1 + σ2
s2

)
x2∗ = x1m

(
σ2

s2

(σv t )2
+ σ2

s1 + σ2
s2

)
+ x2m

(
(σv t )2

+ σ2
s1

(σv t )2
+ σ2

s1 + σ2
s2

)

and the variances
(
σ2

1, σ2
2

)
and correlation coefficient (ρ) are given by:

σ2
1 = σ2

s1
σ2

s2 + (σv t )2

σ2
s1 + σ2

s2 + (σv t )2 σ2
2 = σ2

s2
σ2

s1 + (σv t )2

σ2
s1 + σ2

s2 + (σv t )2 ρ =
σs1σs2√(

σ2
s1 + (σv t )2

) (
σ2

s2 + (σv t )2
)

It follows that

l∗ = x2∗ − x1∗ =
lm

1+
σ2

s1+σ2
s2

(σv t )2

=
lm

1+ 2
(

σs(rms)
σv t

)2 (A20)
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Thus, the uniform spatial uncertainty, σs , of Eq. A15 is replaced by the root-mean-square of the uncertainty at the two locations:

σs(rms) =

√
σ2

s1 + σ2
s2

2
.

Interestingly, when σs1 6= σs2, the midpoint of the perceived trajectory no longer coincides with the midpoint of the measured
trajectory. From the expressions (Eq. A19) for x1∗ and x2∗ it is easily shown that the shift, ∆midpt, in the perceived trajectory midpoint
away from the measured trajectory midpoint is:

∆midpt =
x1∗ + x2∗

2
−

x1m + x2m

2
=

lm
2

(
σ2

s1 − σ2
s2

(σv t )2
+ σ2

s1 + σ2
s2

)
(A21)

ONE-DIMENSIONAL REDUCTIONS
The two-dimensional joint (x1, x2) posterior density (Eq. A19) fully represents the observer’s belief distribution over stimulus trajec-
tories, and it captures dependencies between the variables. Nevertheless, it can be useful to express the observer’s belief about a single
parameter of interest, although this entails a loss of information about dependencies. One such parameter of interest is the length,
l, between taps. Other parameters of interest are the tap positions, x1 and x2, considered individually. Here we derive the observer’s
one-dimensional posterior densities over each of these parameters.

Posterior density over trajectory length
The posterior over trajectory length, l= x2− x1, can be found by integrating across the joint posterior:

p (l|x1m , x2m , t ) =

∫
x1

p (x1, x2 = l + x1|x1m , x2m , t ) dx1 (A22)

The posterior over l can also be found by noting that, from Eq. A8, the observer’s prior over l is:

p (l|t ) =
1

√
2πσv t

exp

(
−

l2

2(σv t )2

)
(A23)

Further, from Eq. A17, we see that the observer’s displacement measurement, lm= x2m− x1m , is normally distributed with mean l
and variance σ2

s1 + σ2
s2 :

p (lm|l) =
1√

2π
(
σ2

s1 + σ2
s2

) exp

(
−

(lm − l)2

2
(
σ2

s1 + σ2
s2

)) (A24)

Thus, by Bayes’ rule, the posterior over l is proportional to the product of these two Gaussian densities:

p (l|lm , t ) ∝ p (lm|l , t ) p (l|t ) (A25)

The result is a Gaussian posterior density with mean and variance given by:

µl posterior =
lm

1+
σ2

s1+σ2
s2

(σv t )2

, σ2
l posterior =

1
1

σ2
s1+σ2

s2
+

1
(σv t )2

(A26)

The mean of the posterior over l is again the length contraction formula, Eq. A20. The variance of the posterior over l is smaller than
the variance of lm, given l. For this reason, the observer’s length percept is more accurate than the length measurement (see Figure 7).

Marginal posterior densities over x1 and x2

To express the observer’s belief about each tap’s position individually, we can integrate the joint posterior along x2 to find the marginal
posterior over x1, and integrate the joint posterior along x1 to find the marginal posterior over x2:

p (x1|x1m , x2m , t ) =

∫
x2

p (x1, x2|x1m , x2m , t ) dx2

p (x2|x1m , x2m , t ) =

∫
x1

p (x1, x2|x1m , x2m , t ) dx1

(A27)
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Because the joint posterior density is a 2D Gaussian (Eq. A19), the marginalization integrals (Eq. A27) have simple solutions:

p (x1|x1m , x2m , t ) =
1

√
2πσ1

exp

(
−

(x1 − x1∗)
2

2σ2
1

)
p (x2|x1m , x2m , t ) =

1
√

2πσ2
exp

(
−

(x2 − x2∗)
2

2σ2
2

) (A28)

THE PREDICTION-POSTDICTION FORMULATION
Here, we show that the observer’s marginal posterior over x2 can be equivalently derived from predictive inference: upon observing
tap 1, the observer predicts (infers forward in time) a prior over tap 2; the observer then combines this predicted prior with the tap 2
likelihood to obtain the posterior over x2. Conversely, the marginal posterior over x1 can be derived from postdictive inference: upon
observing tap 2, the observer postdicts (infers backward in time) a prior over tap 1; the observer then combines this postdicted prior
with the tap 1 likelihood to obtain the posterior over x1.

Predicting tap 2 upon observing tap 1
Replacing the integrand in lower Eq. A27 with the expression from Eq. A1, we have:

p (x2|x1m , x2m , t ) ∝

∫
x1

p (x1m , x2m|x1, x2, t ) p (x1, x2|t ) dx1 (A29)

Further expanding the integrand, we have:

p (x2|x1m , x2m , t ) ∝

∫
x1

p (x1m|x1) p (x2m|x2) p (x2|x1, t ) p (x1) dx1 (A30)

Because p (x2m|x2) does not depend on x1, we move it outside the integral. Thus, we have:

p (x2|x1m , x2m , t ) ∝ p (x2m|x2)

∫
x1

p (x1m|x1) p (x2|x1, t ) p (x1) dx1 (A31)

Now we note that, according to Bayes’ formula:

p (x1m|x1) p (x1) ∝ p (x1|x1m) (A32)

Substituting Eq. A32 into Eq. A31 yields:

p (x2|x1m , x2m , t ) ∝ p (x2m|x2)

∫
x1

p (x2|x1, t ) p (x1|x1m) dx1 (A33)

Equation A33 is Bayes’ formula for the tap 2 position, x2. It states that the marginal posterior density over x2 is proportional to the
product of the tap 2 likelihood, p (x2m|x2), and the tap 2 predicted prior density,

p (x2|x1m , t ) =

∫
x1

p (x2|x1, t ) p (x1|x1m) dx1 (A34)

The predicted prior projects belief forwards in time. It reflects the observer’s beliefs about tap 2, given the tap 1 measurement and
the elapsed time. Based on x1m , the observer can generate a posterior over tap 1, p(x1|x1m). The predicted prior over a particular tap
2 position is then calculated by integrating across every possible tap 1 the product of this tap 1 posterior with the probability that the
particular tap 2 will follow.
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Postdicting tap 1 upon observing tap 2
Replacing the integrand in upper Eq. A27 with the expression from Eq. A1, we have:

p (x1|x1m , x2m , t ) ∝

∫
x2

p (x1m , x2m|x1, x2, t ) p (x1, x2|t ) dx2 (A35)

Further expanding the integrand, we have:

p (x1|x1m , x2m , t ) ∝

∫
x2

p (x1m|x1) p (x2m|x2) p (x1|x2, t ) p (x2) dx2 (A36)

Because p(x1m |x1) does not depend on x2, we move it outside the integral. Thus, we have:

p (x1|x1m , x2m , t ) ∝ p (x1m|x1)

∫
x2

p (x2m|x2) p (x1|x2, t ) p (x2) dx2 (A37)

Now we note that, according to Bayes’ formula:

p (x2m|x2) p (x2) ∝ p (x2|x2m) (A38)

Substituting Eq. A38 into Eq. A37 yields:

p (x1|x1m , x2m , t ) ∝ p (x1m|x1)

∫
x2

p (x1|x2, t ) p (x2|x2m) dx2 (A39)

Equation A39 is Bayes’ formula for the tap 1 position, x1. It states that the marginal posterior density over x1 is proportional to the
product of the tap 1 likelihood, p(x1m |x1), and the tap 1 postdicted prior density,

p(x1|x2m , t ) =

∫
x2

p (x1|x2, t )p (x2|x2m) dx2 (A40)

The postdicted prior projects belief backwards in time. It reflects the observer’s beliefs about tap 1, given the tap 2 measurement and
the elapsed time. Based on x2m , the observer can generate a posterior over tap 2, p(x2|x2m). The postdicted prior over a particular tap
1 position is then calculated by integrating across every possible tap 2 the product of this tap 2 posterior with the probability that the
particular tap 1 preceded.

Formulas for the predicted and postdicted prior densities
We now solve the predicted and postdicted prior integrals (Eqs A34 and A40). To find the predicted prior, we substitute from Eqs A8
and A17 left, into Eq. A34:

p (x2|x1m , t ) =

∫
x1

1
√

2πσv t
exp

(
−

(x2 − x1)
2

2(σv t )2

)
1

√
2πσs1

exp

(
−

(x1m − x1)
2

2σ2
s1

)
dx1

=
1

2πσv tσs1

∫
x1

exp

[
−

(
(x2 − x1)

2

2(σv t )2 +
(x1m − x1)

2

2σ2
s1

)]
dx1

(A41)

We note that, upon much rearrangement:

(x2 − x1)
2

2(σv t )2 +
(x1m − x1)

2

2σ2
s1

=
(σv t )2

+ σ2
s1

2σ2
s1(σv t )2

(
x1 −

x2σ
2
s1 + x1m(σv t )2

(σv t )2
+ σ2

s1

)2

+
1

2

(
(x2 − x1m)2

(σv t )2
+ σ2

s1

)
(A42)

Thus, Eq. A41 becomes,

p (x2|x1m , t ) =
1

2πσv tσs1
exp

(
−

(x2 − x1m)2

2
(
(σv t )2

+ σ2
s1

)) ∫
x1

exp

−
(

x1 −
x2σ

2
s1+x1m(σv t )2

(σv t )2
+σ2

s1

)2

2σ2
s1(σv t )2

(σv t )2
+σ2

s1

dx1 (A43)
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The integrand is a Gaussian function with standard deviation

σs1σv t√
(σv t )2

+ σ2
s1

.

Because the integral of an un-normalized Gaussian function of standard deviation σ is
√

2π σ, Eq. A43 simplifies to:

p (x2|x1m , t ) =
1

2πσv tσs1
exp

(
−

(x2 − x1m)2

2
(
(σv t )2

+ σ2
s1

)) √
2πσs1σv t√

(σv t )2
+ σ2

s1

(A44)

Therefore, the predicted prior density over x2 is

p (x2|x1m , t ) =
1√

2π
(
(σv t )2

+ σ2
s1

) exp

(
−

(x2 − x1m)2

2
(
(σv t )2

+ σ2
s1

)) (A45)

That is, the predicted prior is a Gaussian with mean and variance

µpre = x1m σ2
pre = (σv t )2

+ σ2
s1 (A46)

A similar derivation reveals that the postdicted prior density over x1 is

p (x1|x2m , t ) =
1√

2π
(
(σv t )2

+ σ2
s2

) exp

(
−

(x1 − x2m)2

2
(
(σv t )2

+ σ2
s2

)) (A47)

That is, the postdicted prior is a Gaussian with mean and variance

µpost = x2m σ2
post = (σv t )2

+ σ2
s2 (A48)

MULTI-TAP PERCEPTION
So far, we have considered trajectories composed of just two taps. An interesting question arises in modeling the perception of multi-tap
stimuli: is the observer’s generative model (a) a direct extension of the one we have considered here, such that a zero-mean low-speed
prior applies independently to each pair of consecutive taps, or (b) does the observer expect velocity to be consistent across the multi-tap
trajectory, such that the prior applied to each tap pair might be a Gaussian centered on the velocity of the preceding pair (a zero-mean
low-acceleration prior)?

Considering trajectories with an arbitrary number of taps, n, and permitting inhomogeneous spatial acuity, possibilities (a) and (b)
result in the following generalizations of Eq. A18:

(a)

p ({xi} | {xim} , {ti}) ∝ exp

(
−

(
n∑

i=1

(xim − xi)
2

2σ2
si

+

n−1∑
i=1

(xi+1 − xi)
2

2(σv ti)
2

))
(A49)

(b)

p ({xi} | {xim} , {ti}) ∝ exp

−
 n∑

i=1

(xim − xi)
2

2σ2
si

+
(x2 − x1)

2

2(σv t1)
2 +

n−1∑
i=2

(
xi+1−xi

ti
−

xi−xi−1
ti−1

)2

2σ2
v


 (A50)

Here {xi} refers to the set of tap positions, x1, x2, . . . xn; {xim} to the corresponding set of measurements; {ti} to the set of times
elapsed between each tap i and tap i+ 1; and σsi to the spatial uncertainty associated with tap i.

The observer’s percept {x∗i } in case (a) or (b) can be found by taking partial derivatives of Eq. A49 or Eq. A50 with respect to each of
the {xi}, setting these to zero, and solving the simultaneous equations. We used this method to find the percepts depicted in Figures 10
and 11 [case (a)] and Figure 12 [case (b)].
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Alternatively, the identical percept can be found through Kalman smoothing (Haykin, 2001), a recursive extension of the predictive-
postdictive formulation described above. The Kalman smoother consists of an iterative forward (predictive) pass through the stimulus
sequence, followed by a backward (postdictive) pass. For model (a), the algorithm for the forward pass (the Kalman filter) is:

Ki =
σ2

i−1|i−1 + (σv t )2

σ2
i−1|i−1 + (σv t )2

+ σ2
s

x̂i|i = x̂i−1|i−1 + Ki
(
xim − x̂i−1|i−1

)
σ2

i|i = (1− Ki)
(
σ2

i−1|i−1 + (σv t )2
) (A51)

Here, Ki is the Kalman gain at time i; the notation x̂i|j refers to the estimated position of tap i based on all taps up to and including
tap j ; and σ2

i|j is the variance of that estimate. The filter is initialized at the first tap, with x̂1|1 = x1m , σ2
1|1 = σ2

s , and runs forward until

tap n is reached. The Rauch-Tung-Striebel algorithm for the subsequent backward pass is:

Ci =
σ2

i|i

σ2
i|i + (σv t )2

x̂i|n = x̂i|i + Ci
(
x̂i+1|n − x̂i|i

)
σ2

i|n = σ2
i|i + C2

i

(
σ2

i+1|n − σ2
i|i − (σv t )2

) (A52)

We verified that Eqs A51 and A52 yielded the same percepts plotted in Figures 10 and 11.

EXTENSIONS
Although skin is a two-dimensional surface, we have so far considered only a single position axis, x, along which stimuli occur. In
essence, we have assumed that the orthogonal, y coordinate, of the taps is a known constant. We have also assumed that the time, t, is
known. Each of these restrictions can be removed.

Two-dimensional movement
A more realistic generative model would allow stimuli to move in any direction along a two-dimensional skin surface. To accomplish
this, we can adopt an (x,y) Cartesian coordinate system in which the orthogonal components of the velocity vector are independently
specified by low-speed priors:

p (vx ) =
1

√
2πσv

exp

(
−

v2
x

2σ2
v

)
=

1
√

2πσv
exp

(
−

(
(x2 − x1)

/
t
)2

2σ2
v

)

p
(
vy
)
=

1
√

2πσv
exp

(
−

v2
y

2σ2
v

)
=

1
√

2πσv
exp

(
−

((
y2 − y1

)/
t
)2

2σ2
v

) (A53)

The tap 1 and 2 likelihood functions generalize to:

p
(
x1m , y1m|x1, y1

)
=

1
√

2πσs1
exp

(
−

(x1m − x1)
2
+
(
y1m − y1

)2

2σ2
s1

)

p
(
x2m , y2m|x2, y2

)
=

1
√

2πσs2
exp

(
−

(x2m − x2)
2
+
(
y2m − y2

)2

2σ2
s2

) (A54)

The posterior over trajectories then takes the form:

p
(
x1, y1, x2, y2|x1m , y1m , x2m , y2m , t

)
∝ exp

−
 (x1m − x1)

2
+
(
y1m − y1

)2

2σ2
s1

+
(x2m − x2)

2
+
(
y2m − y2

)2

2σ2
s2

+

(
(x2 − x1)

2
+
(
y2 − y1

)2
)2

2(σv t )2


 (A55)

It is straightforward to show that the length contraction formula resulting from Eq. A55 is identical to Eq. A20. Indeed, if we define
the x-axis as the axis along which the tap measurements lie, then marginalization of Eq. A55 over y1 and y2 recovers the posterior
density Eq. A18.
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Temporal uncertainty
Our model has assumed that the time between stimuli, t, is perceived veridically. This assumption can be removed. Goldreich (2007)
showed that the Bayesian observer with temporal uncertainty tends to overestimate t in addition to underestimating l. Thus, the
Bayesian observer can model time dilation as well as length contraction illusions.

FITTING TO HUMAN PERCEPTUAL DATA
We found the value of tau that minimized the mean-squared error (MSE) between human and model performance. This was done
separately for the perceptual data from Marks et al. (1982), Lechelt and Borchert (1977), and Kilgard and Merzenich (1995), shown in
Figures 1A–C, and for the data from Helson and King (1931), shown in Figure 10.

The data of Helson and King (1931) required some processing prior to the fitting procedure. We fit the data reported in Tables 2–6 of
Helson and King (1931). In those experiments, on each trial the participant reported whether the second spatial interval was perceived
to be shorter than, equal to, or longer than the first interval (which was fixed at 3 cm). To fit these data, we first transformed them
into an equivalent two-alternative forced-choice format by distributing each participant’s “equal” responses evenly to the “shorter” and
“longer” response categories. We then fit each participant’s transformed data (proportion “l2 is longer” responses) at each t 2 setting
with a Weibull psychometric function:

Ψa,b,γ,δ (l2) = (1− δ)

[
γ+ (1− γ)

(
1− 2

−

(
l2−3cm

a

)b
)]
+

δ

2

Here δ is a lapse rate, γ is the probability that the concentrating participant would answer “l2 is longer” when in fact l2= l1 (i.e.,
3 cm), a is a position parameter, and b is a slope parameter. We found the maximum likelihood parameter settings, and from them
read off the point of subjective equality (PSE: l2 that the participant judged longer than l1 with 50% probability). We fit the Bayesian
observer’s tau to minimize the MSE between its performance and the average PSE of the six human participants across the five t 2 values
tested by Helson and King (1931). Before doing these fits, we discarded the data from one of the six participants on one of the five t 2

points: “Observer B” of Helson and King (1931) did not have a valid PSE at t 2= 0.25 s because that participant’s transformed “l2 is
longer” response proportion was greater than 50% at all l2 values.
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