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Theories of embodied cognition suppose that perception, action, and cognition are tightly
intertwined and share common representations and processes. Indeed, numerous empiri-
cal studies demonstrate interaction between stimulus perception, response planning, and
response execution. In this paper, we present an experiment and a connectionist model
that show how the Simon effect, a canonical example of perception–action congruency,
can be moderated by the (cognitive representation of the) task instruction. To date, no
representational account of this influence exists. In the experiment, a two-dimensional
Simon task was used, with critical stimuli being colored arrows pointing in one of four
directions (backward, forward, left, or right). Participants stood on a Wii balance board,
oriented diagonally toward the screen displaying the stimuli. They were either instructed
to imagine standing on a snowboard or on a pair of skis and to respond to the stimulus
color by leaning toward either the left or right foot. We expected that participants in the
snowboard condition would encode these movements as forward or backward, resulting
in a Simon effect on this dimension. This was confirmed by the results. The left–right con-
gruency effect was larger in the ski condition, whereas the forward–backward congruency
effect appeared only in the snowboard condition. The results can be readily accounted for
by HiTEC, a connectionist model that aims at capturing the interaction between percep-
tion and action at the level of representations, and the way this interaction is mediated
by cognitive control. Together, the empirical work and the connectionist model contribute
to a better understanding of the complex interaction between perception, cognition, and
action.

Keywords: stimulus–response congruency, task set, perception–action interaction,Wii balance board, connectionist
modeling, Simon effect, top-down modulation

INTRODUCTION
Theories of embodied cognition (e.g., Glenberg, 1997; Barsalou,
1999; Wilson, 2002) suggest that cognition, perception, and action
are tightly intertwined and share common representations and
processes. In the last decade, this view has been studied extensively,
and much evidence in its favor has been accumulated. Many stud-
ies have demonstrated that cognition interacts with perception
and action, suggesting that these systems share the same repre-
sentations and processes (e.g., Pecher and Zwaan, 2005). In this
study we particularly focus on how cognition can modulate the
interaction between perception and action by assessing the role
of task instruction on automatic processes in stimulus–response
translation. This interaction is demonstrated in an empirical study
and further explained by simulations using a connectionist model
(HiTEC, Haazebroek et al., submitted). We first describe bilateral
interactions between perception, cognition, and action and subse-
quently focus on the influence of task context on the interaction
between perception and action.

INTERACTIONS BETWEEN PERCEPTION, COGNITION, AND ACTION
The interaction between perception and cognition can be demon-
strated by so-called spatial congruency effects. Several studies have

found interactions between the meaning of words and the spatial
position of those words on the computer screen. For example,
people respond faster to a word such as helicopter or stork when
it is presented at the top of the computer screen than when it is
presented at the bottom of the screen (Šetic and Domijan, 2007).
Other studies showed that the spatial meaning of a word may
attract attention to a particular location on the screen (e.g., Estes
et al., 2008; Zanolie et al., 2012). Spatial congruency effects are also
found with words referring to abstract concepts that are metaphor-
ically connected to spatial locations, such as power (Schubert,
2005; Zanolie et al., 2012), valence (Meier and Robinson, 2004),
divinity (Meier et al., 2007), or magnitude (Fischer et al., 2003;
Pecher and Boot, 2011), but see Lakens (2012) for an alterna-
tive explanation, based on polarity correspondence. Furthermore,
studies have shown that perceiving motion in a particular direc-
tion interacts with the processing of sentences or words describing
motion in the same direction (e.g., Kaschak et al., 2005; Meteyard
et al., 2007, 2008).

Likewise, spatial congruency effects also occur in the interac-
tion between cognition and action. For example, participants are
faster to respond to a sentence when the direction of the response
matches the direction of the action described in the sentence. This
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so-called action compatibility effect (see Zwaan and Yaxley, 2003;
Zwaan et al., 2012) has been found with different kinds of move-
ment, such as moving the hand toward or away from the body
(Glenberg and Kaschak, 2002) and rotating the hand (Zwaan and
Taylor, 2006). These results are taken as evidence that the repre-
sentations underlying conceptual processing partially overlap with
the representations underlying the preparation and execution of
action.

Finally, spatial congruency effects occur in the interaction
between perception and action. Much research has been devoted to
stimulus–response congruency (SRC) effects; the canonical exam-
ple being the Simon effect (Simon and Rudell, 1967; Hommel,
2011). In the typical Simon task, stimuli vary on a spatial dimen-
sion (e.g., randomly appearing on the left or right) and on a non-
spatial dimension (e.g., having different colors). Participants have
to respond to the non-spatial stimulus feature by performing a spa-
tially defined response (e.g., pressing a left or right key). Although
the location of the stimulus is irrelevant for the response choice, it
nevertheless influences the response time and accuracy, suggesting
interaction between stimulus perception and response planning.
Participants respond faster (and more accurately) when the stimu-
lus location is congruent with the response location than when the
stimulus location is incongruent with the response location. The
Simon effect has been replicated numerous times and has been
used frequently as a methodological tool to investigate perception,
action, and cognitive control (for an overview, see Hommel, 2011).

INFLUENCE OF COGNITIVE CONTROL ON THE INTERPLAY BETWEEN
PERCEPTION AND ACTION
To account for SRC effects, traditional cognitive theories, and
computational models of stimulus–response translation typically
assume that: (1) responses are represented by spatial codes (e.g.,
Wallace, 1971), (2) attending to a stimulus automatically produces
a spatial stimulus code, and (3) the outcome of a comparison
between the spatial stimulus code and the spatial response code
produces the compatibility effect. Crucially this comparison is
assumed to occur automatically and arise from the fact that stimuli
and responses are similar (e.g., have dimensional overlap, Korn-
blum et al., 1990, 1999; but see Proctor and Lu, 1999; Tagliabue
et al., 2000 for accounts based on over-learning). Indeed, in typi-
cal computational models of SRC effects, such as the Simon effect,
stimuli are represented in terms of non-spatial task-relevant codes
(e.g., “red shape” and “blue shape”) and spatial task-irrelevant
codes (e.g., “left shape” and “right shape”), and responses are also
represented in terms of spatial codes (e.g., “left key” and “right
key”). Stimulus codes and response codes are connected using two
routes (e.g., Kornblum et al., 1990; De Jong et al., 1994; Zorzi and
Umiltà, 1995). A direct route connects the spatial stimulus codes
to the corresponding spatial response codes, which is assumed to
reflect the automatic process. The task instruction (e.g., “when
you see a red shape, press the left key”) is implemented as a soft-
wired connection from the non-spatial stimulus code (e.g., “red
shape”) to a spatial response code (e.g., “left key”), following the
task instruction. This is assumed to reflect the controlled process.
Now, when a compatible stimulus is presented (e.g., a red shape
presented on the left), both the hard-wired spatial connections
and the soft-wired task instruction-based connections contribute

to a speedy activation of the correct response code. Conversely,
when an incompatible stimulus is presented (e.g., a red shape
presented on the right), the direct route activates the incorrect
response. The controlled route, however, activates the response
determined by the task instruction, which eventually wins the
competition. As a result, processing incompatible stimuli results in
longer reaction times than processing compatible stimuli. In sum,
the stimulus–response congruency effect arises from the inter-
play between the direct route, reflecting automatic comparison
between spatial stimulus and response codes, and the controlled
route, reflecting the task instructions.

However, the various spatial congruency effects mentioned in
Section “Interactions Between Perception, Cognition, and Action”
also suggest an interaction between cognition and perception and
between cognition and action. Hence, it is to be expected that
the (cognitive) task set may influence the automatic translation
from spatial stimulus codes to spatial response codes. Indeed,
various studies have demonstrated that SRC effects are strongly
influenced by the task. For instance, Riggio et al. (1986) reported
that when participants responded with sticks that were either par-
allel or crossed, the Simon effect was found to relate to the stick
end position, not to the hands holding the sticks. In a study by
Guiard (1983), participants had to respond with a steering wheel.
Their results suggest that not the position of the hands but the
steering direction (as in a car) determines the Simon effect, indi-
cating an even more abstract notion of left or right responses. It is
this task- and intention-dependent left-ness or right-ness, rather
than the actual physical location of a response, that seems to inter-
act with the spatial location of the stimulus and thereby yields
the Simon effect – an argument that can also be made for other
stimulus–response effects (Hommel, 2000).

In a study by Hommel (1993), the role of task instruction was
assessed empirically. Hommel had participants responding with
left and right keypresses to the high vs. low pitch of tones, respec-
tively. As usual in a Simon task, the tones randomly appeared
on the left or right side. Importantly, when a key was pressed a
light flashed on the opposite side of the keypress, which allowed
instructing participants in two different ways: one group of partic-
ipants was instructed to “press the left/right key” in response to the
pitch of the tone, whereas another group was instructed to “flash
the right/left light.” Given the wiring of lights to response keys, all
participants carried out exactly the same movements in response
to the same stimuli, but they did so for different reasons: one group
in order to press the keys and the other in order to flash the lights.
Whereas the Key group showed a standard Simon effect with faster
responses when the tone location and key location corresponded,
the Light group showed the opposite effect: faster responses when
the tone location and light location corresponded. The fact that the
irrelevant stimulus locations had an effect at all suggests that stim-
ulus locations were processed and cognitively coded, and that they
interacted with spatial response codes. However, the observation
that the impact of this interaction on behavior was determined by
the instruction and, thus, by the goal representation this instruc-
tion must have established, suggests that the interplay between
perception and action is controlled by task goals.

Addressing the role of task goals in SRC, Ansorge and Wühr
(2001) formulated the response-discrimination hypothesis that
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states that response representations are not automatically formed,
but rather top-down controlled. Only spatial features that dis-
criminate between alternative responses are represented and thus
give rise to a Simon effect. This resonates with the conclusions in
a general review by Proctor and Vu (2006) that the Simon effect
is not resulting from an automatic activation of a corresponding
response by means of a hard-wired (e.g., Kornblum et al., 1990) or
over-learned (e.g., Umilta and Zorzi, 1997) route; rather the task
defines S–R associations that mediate this responding.

HiTEC
Although it is clear that task context influences SRC, and sev-
eral hypotheses have been suggested, an overarching framework
that connects the different findings and explains computation-
ally how perception, action, and cognition interact in terms of
neurally plausible representations and processes is still lacking. The
development of computational models is mentioned as one of the
main challenges for the field of embodied and grounded cogni-
tion (Barsalou, 2008, 2010; Borghi and Pecher, 2011; Pezzulo et al.,
2011).

To address this challenge, we developed HiTEC, a connectionist
computational cognitive model that aims at capturing the interac-
tion between perception and action in terms of neurally plausible
representations and processes, and the way this interaction is medi-
ated by cognitive control (Haazebroek et al., 2011, submitted).
HiTEC is meant to be a connectionist model that is plausible in
terms of neural processing properties and global cortical connec-
tivity. HiTEC enables simulation of human perception and action
control, based on the principles and assumptions of the Theory of
Event Coding (TEC; Hommel et al., 2001).

Theory of event coding is a general theoretical framework that
addresses how perceived events (i.e., stimuli) and produced events
(i.e., actions) are cognitively represented and how their representa-
tions interact to generate perceptions and action plans. According
to TEC, stimuli, and actions are represented in a common rep-
resentational format, using the same feature codes. These codes
refer to the distal features of objects and events in the environ-
ment, such as shape, size, distance, and location, rather than the
proximal features that are registered by the senses. For example, a
stimulus presented on the left and an action performed on the left
both activate the same distal code representing“left.”It is theorized
(Hommel et al., 2001) that feature codes emerge from regularities
in sensorimotor experience and that they can also be activated
conceptually (e.g., by means of verbal labels, Hommel and Elsner,
2009). When a stimulus (or action–effect) is registered, it is rep-
resented by sensory codes that in turn activate associated distal
feature codes.

Theory of event coding stresses that perception and action are
flexible; that is, they are tuned to the current context and are subject
to cognitive control (Hommel et al., 2001). Codes are “intention-
ally weighted”; the strength of their activation depends on the task
context (Memelink and Hommel, 2012). Feature dimensions that
are relevant for the task at hand are weighted more strongly than
irrelevant dimensions. For example, if the task is to grasp an object,
feature dimensions that are relevant for grasping (such as shape,
size, location, and orientation) will be enhanced, so that object
features on these dimensions have more influence on processing

than feature dimensions that are irrelevant for grasping (e.g., color
or sound; Fagioli et al., 2007).

Importantly for the present study, intentional weighting can
also affect the coding of response representations. In Hommel
(1993) it can be argued that the task set results in stronger weight-
ing of key vs. light location, depending on the instruction. One
could ask, however, whether this implies weighting of feature
dimensions. Indeed, on closer examination, both the key and the
light location are represented by the same spatial feature dimen-
sion (i.e., left–right). Therefore one could argue that not feature
dimensions, rather the respective sensory dimensions are selec-
tively enhanced by top-down task influences. In other words, the
task instruction determines whether a participant attends to either
the (visual) light locations or the (haptic) key locations. Subse-
quently, the attended locations get encoded on the single spatial
left–right feature dimension. The fact that this same left–right fea-
ture dimension is also used to encode the stimulus location forms
the basis of the observed SRC effects.

AIM OF THE CURRENT STUDY
In line with the above interpretation of the results by Hommel
(1993), Memelink and Hommel (2005) demonstrated that mere
task instruction may not be sufficient to affect action coding if the
manipulation does not change the task goal. The question then
arises: what constitutes a task goal? Does one need to attend to
different objects in the environment to selectively enhance sen-
sory coding? Or does the intentional weighting principle apply
to more abstract feature codes as well? In the present study we
assess the influence of task instruction on automatic processes in
stimulus–to–response translation at the feature level.

Since our overall goal is an overarching framework of the inter-
action between perception and action and cognitive control, the
aim of the present study was twofold. First, we were interested to
see whether task instruction can change how participants encode
a particular movement at the feature level. And, second, we were
interested to see whether the outcomes can be accounted for by
means of a HiTEC simulation of the task – which could clarify
computationally a how task instruction modulates the interplay
between perception and action.

In the design of the task there are two important criteria to take
into account: (1) the experimental set up needs to employ a single
object and a single sensory dimension which can be encoded in two
different feature dimensions, based on the task instruction. In this
way, we can rule out the role of purely object based attention; (2)
the experimental set up needs to use a task in which two differ-
ent interpretations of the same ambiguous movement are – to a
certain extent and in the eyes of the participant – equally intuitive
and applicable to the observed (sensory) effects of the physical
movements. Otherwise, if participants can easily recode the vari-
ations in these dimensions into a single intuitive dimension, they
will do so; the influence of task instruction will then disappear (cf.,
Memelink and Hommel, 2005).

With these criteria in mind we opted for a relatively natural
scenario rather than responding by pressing keys (see Wang et al.,
2007; Yamaguchi and Proctor, 2011 for similar approaches). In a
natural scenario – we hypothesized – participants would be more
strongly compelled to adhere to the action coding specified by
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the task instruction. In the present study, participants stood on
a Wii balance board and were instructed to imagine standing
on either a snowboard or a pair of skis. They had to respond
to stimuli by leaning sideways. In the ski condition, this lateral
movement was presented as moving the skis to the “left ” or “right,”
whereas in the snowboard condition, it was presented as mov-
ing the snowboard “backward” or “forward.” In performing the
task, participants could draw on their own motor experience if
they had any experience with skiing or snowboarding. Partici-
pants who had never skied or snowboarded could still form a
mental representation of what it means to be skiing or snowboard-
ing, by combining elements from partial or similar experiences
(Barsalou, 2008; Taylor and Zwaan, 2009). For example, they could
draw on visual experience (e.g., watching snowboarders on TV),
and combine this with related motor experience (e.g., surfing or
skateboarding).

In the experiment, the Wii balance board was oriented diag-
onally toward the screen displaying the stimuli (Figure 1). The
critical stimuli consisted of colored arrows pointing in one of four
directions (backward, forward, left, or right). The study used a
between-subjects design; participants were either instructed to
imagine standing on a pair of skis or on a snowboard, and to
respond to the stimulus color by leaning sideways. Given the diago-
nal orientation of the balance board, the responses simultaneously
varied on the left–right dimension and on the forward–backward
dimension. We expected that the weighting of the (feature) dimen-
sions would depend on the instruction given to the participant. A
skier stands in the same direction as her skis. When she leans to the
left or right, this causes the skis to turn into the respective direc-
tion. Therefore, participants in the ski condition would encode
the lateral leaning movements as “left” and “right.” In contrast, a
snowboarder stands on a snowboard perpendicular to its direction
of movement. When she leans sideways, the snowboard will slide
forward or backward. As a result, we expected that participants in

the snowboard condition would not only encode the movements
as “left” and “right,” but also as “forward” or “backward.” There-
fore, we expected a forward–backward congruency effect to occur
in the snowboard condition, but not in the ski condition.

In the next section we describe the methods of the behavioral
experiment. We continue with presenting the results, followed by a
HiTEC simulation of the study. Finally, we discuss the implications
of both our empirical findings and simulation results.

MATERIAL AND METHODS
PARTICIPANTS
A total of 83 Dutch undergraduate psychology students from Lei-
den University (65 women, 18 men) took part in the experiment.
In return for their participation they received course credits or a
monetary reward of EUR 4.50. Mean age of the participants was
19.8 (SD 2.3).

APPARATUS AND STIMULI
The instructions and stimuli were presented on a television moni-
tor with a diameter of 107 cm and a refresh rate of 60 Hz. E-Prime
software was used to present the stimuli. Stimuli were blue or
red symbols, consisting of one direction-neutral stimulus and
arrows pointing in one of four different directions; left, right, for-
ward, or backward (Figure 2). On screen, each stimulus measured
approximately 30 cm× 30 cm.

Participants stood on a Wii balance board (51 cm long× 32 cm
wide× 5 cm high), which was placed diagonally, at an angle of 45˚
or−45˚, in front of the monitor.

In order to be able to face the monitor, participants who were
positioned at the 45˚ angle always had their left foot forward (i.e.,
closest to the monitor), and participants at the −45˚ angle always
had their right foot forward. Thus, the participant’s position with
respect to the computer screen was determined by the orientation
of the balance board.

R
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FIGURE 1 | Setup of the experiment.
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FIGURE 2 | Experimental stimuli. Arrows pointing forward, backward, left,
right, and direction-neutral stimulus.

The distance between the monitor and the center of the bal-
ance board was 200 cm (Figure 1). The orientation of the balance
board was counterbalanced across participants. Half of the partic-
ipants stood with their left foot forward, the other half stood with
their right foot forward. The participant’s weight distribution on
the left–right axis and front–back axis of the balance board was
recorded at a frequency of 100 Hz. This was done by custom-made
software that polls the sensor values of the balance board, using a
Bluetooth connection. To respond to a stimulus, participants had
to lean sideways far enough to exceed a predefined threshold on
the left–right axis of the balance board. When this threshold was
exceeded, the response time and accuracy of the response were
logged.

PROCEDURE
The complete experiment lasted approximately 30 min. Upon
arrival to the lab, participants were randomly assigned to one
of eight counterbalance versions (see Table 1), defined by the
instruction (snowboard or ski), the orientation of the bal-
ance board (45˚ or −45˚), and the stimulus–response mapping
(red–left/blue–right or red–right/blue–left). Participants in the
snowboard condition received the following instruction: “Imag-
ine that you’re standing on a snowboard, which you can move
forward or backward by leaning on your front or back leg,”
whereas participants in the ski condition received the alterna-
tive instruction: “Imagine that you’re standing on skis, which
you can move to the left or right by leaning on your left or
right leg.” To enhance the context of the task, an illustration
of a skier, or a snowboarder was presented, standing in the
same position as the participant on the balance board (see
Figure 3).

The instruction was followed by a practice block, which con-
tained 24 trials. Each practice trial started with the presentation
of the sentence “Take the start position” for 1000 ms. Next, the
instruction to lean into a particular direction [e.g., “Move the skis
to the left (left leg)” or “Move the snowboard forward (front leg)”]
was presented until the participant responded by leaning into
the respective direction. In the snowboard condition, the direc-
tions were “backward” or “forward,” whereas in the ski condition
the directions were “left ” or “right.” To enhance the encoding of
the movements in the appropriate dimension, participants were
instructed to mention out loud the direction in which they had
to lean. Following a correct response, the word “correct ” was pre-
sented for 1000 ms. Following a response that was incorrect or

Table 1 | Overview of the eight different counterbalance versions of

the experiment.

Task Position Instruction

Ski 45˚ (Left foot

forward)

If the image is blue, lean to the left
If the image is red, lean to the right

If the image is blue, lean to the right

If the image is red, lean to the left

−45˚(Right foot

forward)

If the image is blue, lean to the left
If the image is red, lean to the right

If the image is blue, lean to the right

If the image is red, lean to the left

Snowboard 45˚ (Left foot

forward)

If the image is blue, lean forward
If the image is red, lean backward

If the image is blue, lean backward

If the image is red, lean forward

−45˚(Right foot

forward)

If the image is blue, lean forward
If the image is red, lean backward

If the image is blue, lean backward

If the image is red, lean forward

too slow (more than 5000 ms), the word “error” or “too slow” was
presented for 1000 ms.

After completing the practice trials, participants received the
instruction for the experimental trials. They were instructed to
respond to the stimulus color by leaning into a particular direc-
tion. In the snowboard condition, participants had to respond to
red or blue stimuli by leaning forward or backward (e.g., “If the
image is red, lean forward”). In the ski condition, participants had
to respond to red or blue stimuli by leaning to the left or right (e.g.,
“If the image is red, lean to the left ”). The actual mapping of color
to direction was counterbalanced across participants. In addition,
participants were urged to respond as quickly and accurately as
possible.

The instruction was supported by the illustration of the skier
or snowboarder, in which the two skis or the two sides of the
snowboard were colored in the corresponding stimulus color (for
example, a skier with a red left ski and a blue right ski, see Figure 3).

Each trial was either neutral (the neutral shape), left–right
congruent (left- or right-pointing arrow,corresponding to the hor-
izontal direction of the response), left–right incongruent (left- or
right-pointing arrow, opposite to the horizontal direction of the
response), forward–backward congruent (forward- or backward-
pointing arrow, corresponding to the forward–backward direction
of the response), or forward–backward incongruent (forward-
or backward-pointing arrow, opposite to the forward–backward
direction of the response).

The experiment was divided into four blocks with 50 trials each.
Since there were 10 different stimuli (two colors; red and blue, and
five orientations; backward, forward, left, right, and neutral), each
stimulus was repeated five times during each block. Stimuli were
presented in random order. A trial started when the participant
had taken the start position and his/her balance was centered on
the Wii balance board. After 500 ms, a black fixation cross was pre-
sented for 1000 ms, followed by the experimental stimulus. The
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A B

FIGURE 3 | Illustrations of (A) skier and (B) snowboarder used during instruction.

stimulus remained on the screen until the participant’s response
was recorded or until 5000 ms had elapsed. If the response was
incorrect or too slow, a feedback screen was presented for 2000 ms,
displaying the word “error” or “too slow.” If the response was cor-
rect, no feedback was given. After completing a trial, participants
had to return their balance to the center of the balance board.
Following each block of 50 trials, there was a short break of 10 s,
during which the instruction was repeated. The instruction was
visually supported by the same illustration of the snowboarder or
skier that had been shown in the initial experimental instruction
(Figure 3).

After completing the experimental trials, participants indicated
whether they had any experience with skiing or snowboarding.
Experienced snowboarders also indicated whether they preferred
to snowboard with their left foot forward or their right foot
forward.

RESULTS
The data from eight participants were discarded because they
had an overall accuracy level lower than 0.70. For the remain-
ing participants (38 in the Ski condition and 37 in the Snowboard
condition) we computed mean reaction times and accuracy for
the responses. Incorrect responses (7.8%) were excluded from
the reaction time analysis. Furthermore, based on Tukey’s cri-
terion, reaction times below 415 ms and above 1590 ms (5.3%)
were also discarded. Mean trimmed reaction times and error
rates are presented in Table 2. The reaction times were ana-
lyzed with a 2× 2× 2 repeated measures ANOVA, with dimension
(backward–forward vs. left–right) and congruency (congruent vs.
incongruent) as within-subject variables, and instruction (ski vs.
snowboard) as between-subject variable.

The majority of participants (27 in the ski group, 18 in the
snowboard group) had no experience with snowboarding or

Table 2 | Mean response times (ms) and standard deviations for the

different trials in the two instruction conditions.

Instruction Dimension Congruent Incongruent Effect (ms)

Ski Left–right 970 (154.6) 1056 (179.8) 84

Forward–backward 1006 (159.1) 1011 (169.7) 5

Snowboard Left–right 922 (134.5) 981 (153.4) 59

Forward–backward 950 (120.3) 966 (134.0) 16

skiing, 14 participants had only ski experience (6 in the ski group,
8 in the snowboard group), 5 participants had only snowboard
experience (2 in the ski group, 3 in the snowboard group), and 11
participants had both ski and snowboard experience (3 in the ski
group, 8 in the snowboard group). Because of the small number
of participants in some of the groups, we ignored this factor in the
analysis.

There was a main effect of congruency, with congruent trials
being faster than incongruent trials, F(1,73)= 108.4, p < 0.001,
η2

p = 0.60. In addition, there was a significant interaction between

congruency and dimension, F(1,73)= 72.5, p < 0.001, η2
p = 0.50.

The congruency effect was larger for the left–right dimension
than for the backward–forward dimension. This finding is in line
with the left–right prevalence effect found in other studies (e.g.,
Nicoletti and Umiltà, 1984, 1985; Nicoletti et al., 1988). Different
accounts are given for this effect (see e.g., Hommel, 1996; Proc-
tor et al., 2003; Rubichi et al., 2005). We will turn to this matter
in the discussion section. Most interestingly, there was a signifi-
cant three-way interaction between congruency, dimension, and
task instruction, F(1,73)= 7.1, p= 0.01, η2

p = 0.09. On the left–
right dimension, the congruency effect was significantly larger in
the ski condition than in the snowboard condition, F(1,73)= 4.5,
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p= 0.04, η2
p = 0.60. The opposite result appeared on the front–

back dimension; there was a significant congruency effect in the
snowboard condition, t (36)= 2.4, p= 0.02, but not in the ski con-
dition, t (37)= 1.0, p= 0.33. Although responses in the snowboard
condition appeared to be faster in the snowboard condition than
in the ski condition, there was no significant main effect of task,
F(1,73)= 2.7, p= 0.11, η2

p = 0.03, because the between-subject
differences were quite large.

Concluding, significant spatial congruency effects were found
both in the left–right dimension and in the forward–backward
dimension. Although the instructions did not cause a complete
switch of the congruency effects, they modulated the relative size of
the effects. On the left–right dimension, the effect was significantly
larger in the ski condition than in the snowboard condition. On the
forward–backward dimension, the effect was larger in the snow-
board condition than in the ski condition. These results suggest
that participants in the ski condition may have encoded the move-
ments predominantly as “left” and “right,” whereas participants
in the snowboard condition may have encoded the movements
also as “forward” and “backward.” Before discussing our results in
more detail, we will first present the HiTEC model and explain
how this model can account for our findings.

HiTEC SIMULATION
The experiment was simulated using the HiTEC connectionist
model (Haazebroek et al., submitted) in order to explain the results
presented above. More specifically, we aimed to simulate the way in
which the task context modulates the interaction between stimulus
perception and response planning. HiTEC is being developed to
computationally specify the mechanisms proposed in TEC (Hom-
mel et al., 2001) in terms of neurally plausible representations and
connections. It is the aim to validate TEC’s principles and assump-
tions by means of simulations of particular empirical studies using
specific instances of HiTEC (Haazebroek et al., 2009, 2010). In this
section we first describe the basic principles of connectionist mod-
eling and discuss global cortical connectivity. We then proceed to
discuss HiTEC’s general structure and relate this to TECs main
assumptions. Finally, we discuss the specific simulation set up for
the current study, the simulation results, and the model dynam-
ics in order to account for the empirical findings from Section
“Results.”

CONNECTIONIST MODELING AND CORTICAL CONNECTIVITY
In order to devise a neurally plausible model, it is important
to consider both representations and patterns of connectivity in
the brain. Regarding the former, the primate cortex is composed
of a vast amount of spiking neuron cells. The local interactions
between these neurons are largely random, but on a group level –
a neuron population – the global population activity (i.e., mean
spike frequency) can be considered deterministic (Wilson and
Cowan, 1972). That is, mean activation depends on various inputs
and the decay of the neuron population (see Figure 4A for a visual
illustration of neuron populations and their inputs).

As we consider a neuron population the basic unit, we can
model these neurodynamics with an interactive activation con-
nectionist network (Rumelhart et al., 1986) of units and connec-
tions. The propagation of activation of a unit is described by the

following equation:

Ai (t + 1) = (1− da)× Ai (t )+ (1− Ai (t ))

× (Exci + TDi +Noisei)+ Inh i × Ai (t ) (1)

This equation states that the activation of unit i is determined
by its current value, a decay rate da (default value of 0.1 in current
simulations), excitatory input Exci, top-down input Tdi, lateral
inhibitory input Inhi, and background noise input Noisei (stan-
dard Gaussian random additive noise with mean: 0.025, and SD
0.015) The excitatory input is either external stimulation (0.6 in
current simulations) or excitatory input originating from con-
nected feedforward units, which is computed according to the
following equation:

Exci =
∑

k

w+k F (Ak (t )) (2)

This equation states that the excitatory input consists of the
weighted sum of the outputs of all connected feedforward units.
Here, w+ are the positive weights of the connections from unit
k to unit i. The output of a unit is a non-linear function of its
activation value using the following function with parameters na
(4.0 in current simulations) and qa (0.9 in current simulations).

F (Ai) =
Ana

i(
qa
)na
+ Ana

i

(3)

Top-down input to a unit originates from units “later” or
“higher” in the processing flow and are considered to only enhance
activation. This is realized by means of the following computation
of top-down input:

TDi =
∑

k

w+k F (Ak (t ))×
max (Ai (t ) × (1− da)−VT, 0)

1−VT

(4)
Here, da is the same activation decay rate (0.1) as in Eq. 1 and

VT (0.5 in current simulations) is a voltage threshold (see also
Tononi et al., 1992). When unit i has an activation level higher
than this threshold, top-down input from connected units is taken
into account and rescaled in proportion to the voltage threshold.
Conversely, if the unit’s scaled activation level is lower than the
voltage threshold, this input is discarded.

Finally, inhibition is computed using paired inhibitory units
(see also Deco et al., 2002). Each unit has a paired inhibitory unit
that receives excitation from the (excitatory) unit and sends inhi-
bition (through negative weights) to (excitatory) units within the
same map (i.e., lateral inhibition). This is computed using the
following equation:

Inhi =
∑

k

w−k F (Ak (t )) (5)

Here, k denotes the inhibitory paired unit belonging to any
other unit than unit i in the map and w− are the negative con-
nection weights (−0.75 in current simulations). The activation of
inhibitory units is updated in a similar fashion as the excitatory
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FIGURE 4 | Neurodynamical modeling approach, with (A) cortical map with neuron populations with various inputs (TD, top down; Inh, lateral
inhibition; Exc, excitatory input); (B) tentative locations of various cortical maps in the primate brain with sensory maps in sensory regions, task
control maps in the frontal lobe, motor maps in motor area, and intermediate feature maps mediating between lower and higher region maps.

units, but their input can only be excitatory and originating from
the paired excitatory units. Note that we do not depict inhibitory
units in any model diagram for clarity reasons and that by “code”
we always refer to the excitatory unit. In our current simulations
the connection weight from an excitatory unit to its paired negative
unit is 1.25.

Weights between units are considered to be able to change over
time as a result of learning. The weight change depends on the
level of activation of both units during learning following Hebbian
learning. Weight (bound to vary between 0.0 and 1.0) learning is
governed by the following equation:

w jk (t + 1) = (1− dw )× wjk (t )+ LR × Aj (t ) × Ak (t )

×
(
1− wjk (t )

)
(6)

In these equations, wjk is the weight from unit j to unit k, the dw

weight decay rate (0.0005 in current simulations) ensures that only
repeated co-activations result in stable weight learning, LR (0.1 in
current simulations) denotes the learning rate (i.e., the magnitude
of the change in weights for each learning trial), Aj(t ) is a value
based on the activation of feature code unit j, Ak(t ) is a value based
on the activation of motor code unit k.

In sum, these modeling equations and parameters allow for
a biologically plausible simulation of activation propagation
through a network of units. Higher decay rates make units decay
faster; lower decay rates keep units very active for a longer period of
time. Higher input values for external input and stronger weights
between units result in faster activation propagation. Higher volt-
age thresholds make unit activation to a lesser extent enhanced
by top-down input; conversely, lower voltage thresholds lead to
earlier and stronger influence of top-down modulation on unit
activation. Stronger weights between excitatory and inhibitory
units strengthen the lateral inhibition mechanism. As a result,
they reduce the time required to settle the competition between
the units within a shared map, after which only one unit remains
strongly activated. Lower weights, conversely, lengthen this time
to convergence.

With this basic connectionist machinery in place we can turn to
(global) cortical patterns of connectivity. The neurons in primate
cortex are organized in numerous interconnected cortical maps
(see Figure 4B). This allows the brain to encode perceived objects
in a distributed fashion. That is, different features are processed
and represented across different cortical maps (e.g., DeYoe and
Van Essen, 1988), coding for different perceptual modalities (e.g.,
visual, auditory, tactile, proprioceptive), and different dimensions
within each modality (e.g., visual color and shape, auditory loca-
tionn, and pitch). Each sensory cortical map contains neurons that
are responsive to specific sensory features (e.g., a specific color or
a specific visual location). Sensory representations are known to
have stronger decay than higher level representations; in simu-
lations, this is typically reflected by a stronger decay rate (0.2 in
current simulations) for sensory code units than for other units
(0.1 default decay rate). Cortical maps in the motor cortex contain
neurons that code for more or less specific movements (e.g., the
muscle contractions that produce the movement of the hand press-
ing a certain key, or more complex movement such as shifting one’s
weight to the right). Higher up in the processing stream there are
cortical maps containing neurons that are receptive to stimulation
from different modalities. In effect, they are considered to integrate
information from different senses and modalities. Finally, neurons
in the prefrontal cortex are involved in task-generic cognitive con-
trol (Duncan and Owen,2000). These levels of representation form
the basis of the HiTEC model.

HiTEC MODEL
Now, taking this general cortical layering, connectivity, and
dynamics, the question arises: how are these connectionist network
units interconnected in order to yield behavior that is typically
associated with processes like stimulus perception, response selec-
tion, and response planning? To this end, we present the HiTEC
connectionist model, based on TEC’s main assumptions. HiTEC’s
general structure contains sensory maps, feature maps, a task map,
and a motor map, as depicted in Figure 5. Each map resembles a
cortical map and contains codes implemented as connectionist
network units as described above.
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FIGURE 5 | HiTEC model of the balance board task. Solid lines depict fixed
connections, dashed lines are connections that are learned during
action–effect learning. Depicted is the model in snowboard instruction
condition, where the left leg is the front leg, and where a red stimulus

requires a forward response (and a blue stimulus a backward response). Note
that “forward” and “backward” feature codes are abbreviated as “FW” and
“BW” and that “L/F” denotes the ambiguous left/forward sensory code and
“R/B” the right/backward sensory code.

Note that Figure 5 shows only those sensory maps that
are relevant for modeling the current experiment: visual color,
visual shape, and proprioceptive direction. However, other spe-
cific instances of the model may include other sensory maps as
well (e.g., auditory maps). Although motor codes could also be
organized in multiple maps, in the present version of HiTEC, we
consider only one basic motor map with a set of motor codes.

Theory of event coding’s notion of feature codes (Hommel
et al., 2001) is captured at the feature level by codes that are con-
nected to and thus grounded in both sensory codes and motor
codes. Crucially, the same (distal) feature code (e.g., “left”) can
be connected to multiple sensory codes (e.g., “left proprioceptive
direction” and “left visual shape”). Thus, information from differ-
ent sensory modalities and dimensions is combined in one feature
code representation. It is assumed that feature codes arise from
regularities in sensorimotor experience, presumably by detect-
ing co-occurrences of sensory features. The distal feature “left,”
for example, could arise from perceptual experience of numerous
objects that were visible and audible on the left. Future encoun-
ters of objects audible on the left activate the “left” feature code

which – by means of its connections to both “left auditory loca-
tion” and “left visual location” – will enhance the processing of
visual left locations. In other words, hearing something on the left
will result in expecting to see something on the left as well, which
seems to be quite useful, for example when visual sensory input
is degraded. In the present HiTEC model, for current simulation
purposes, we assume that the feature codes (and their connections
to sensory codes) already exist.

Finally, the task level contains generic task control codes that
reflect alternative stimulus–response combinations resulting from
the task context. Different task codes reflect different response
choice options within the task context (i.e., the typical “if X then
do Y ” task rules). Task codes connect to feature codes only, both
the feature codes that represent stimuli and the feature codes that
represent responses, in close correspondence with the current task
context. For the current study the appropriate task codes, fea-
ture codes, and their connections are depicted in Figure 5 (i.e.,
snowboard condition).

In line with TEC, responses are encoded in terms of their per-
ceivable effects. This assumption is derived from the ideomotor
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theory (Hommel, 2010, 2013), which presumes that when an
action is executed, the motor pattern is automatically associated
to the perceptual input representing the effects of the action in
the distal environment. For example, a novice snowboarder learns
that by shifting her weight laterally, she can control the forward
movement of her snowboard. She may learn that her snowboard
slides forward when she leans to the left, and that it slides backward
when she leans to the right (the precise mapping depends on the
snowboarder’s position on her board). Thus, when she leans to the
left and moves forward as a result, the action is not only perceived
and represented as“left,” but also as“forward.”After learning these
action–effect associations, the snowboarder can plan and control
her movements by anticipating their perceptual effects; that is:
(re-)activating the motor patterns by intentionally (re-)activating
the associated feature codes. Thus, when an expert snowboarder
intends to move “forward,” she will automatically shift her weight
into the appropriate direction.

Note that the basic dynamics of connectionist modeling used
in HiTEC resembles those used in typical connectionist network
models (PDP models, e.g., Rumelhart et al., 1986). However, here,
input from feedforward and feedback connections is combined,
resulting in activation flowing back and forth between units on
various levels of coding. This sets the type of modeling apart
from – for example – various feedforward PDP models of auto-
maticity (e.g., Cohen et al., 1990; Zorzi and Umiltà, 1995). In
addition, codes within the same map inhibit each other. Together,
this results in a global competition mechanism in which all codes
participate, from the first processing cycle to the last.

SIMULATING BEHAVIORAL STUDIES
Using HiTEC, specific behavioral studies can be simulated. In
behavioral studies, participants typically perceive a stimulus and
select and plan an action response. In general, a stimulus is pre-
sented to the HiTEC model by applying excitatory input to its
sensory codes. After a number of cycles of internal processing
a motor code becomes highly activated. When this motor code
activation exceeds the set response threshold, this response is con-
sidered to be produced. Codes and their connections reflect both
prior experience and task instructions. By measuring the number
of cycles necessary to produce a motor response in various con-
ditions, reaction time can be computed and compared to human
data. More importantly, however, the internal dynamics of the
model can shed light on the computational principles underlying
both the simulation and the empirical results.

In behavioral experiments, participants typically receive a ver-
bal instruction of the task. In HiTEC, a verbal task instruction is
internalized as connections between feature codes (cf., in humans
presumably using verbal labels, Hommel and Elsner, 2009) and
generic task codes. Due to the mutual inhibitory links between
these task codes, they will compete with each other during the
task. Currently, the connections between feature codes and task
codes are systematically set by hand in close correspondence with
the task instruction.

Connections between feature codes and motor codes are explic-
itly learned, following the general set up of action–effect learning
paradigms (e.g., Elsner and Hommel, 2001): at first, a random
motor code is activated, comparable to the spontaneous motor

babbling behavior of newborns. This leads to a change in the
environment (e.g., the left hand suddenly touches an object) that
is registered by sensory codes. Activation propagates from sen-
sory codes toward feature codes. Subsequently, associations are
learned between the active feature codes and the active motor
code using the Hebbian learning equation described in Section
“Connectionist Modeling and Cortical Connectivity.” Once asso-
ciations between motor codes and feature codes exist, they can
be used to select and plan actions. Planning an action is realized
by activating the feature codes that correspond to its perceptual
effects and by propagating their activation toward the associated
motor codes. Initially, multiple motor codes may become active as
they typically fan out associations to multiple feature codes. How-
ever, some motor codes will have more associated features and
some of the associations between motor codes and feature codes
may be stronger than others resulting in variations in dynamics.
In time, the network will converge toward a state where only one
motor code is strongly activated, which leads to the selection of
that motor action.

When a stimulus in an experimental trial is presented, the
corresponding sensory codes are activated. Activation gradually
propagates toward the associated feature codes and toward those
task codes that were associated during task preparation. Conse-
quently, activation is propagated to feature codes that correspond
to (perceptual effects of) responses and finally toward motor codes
(that were associated during action–effect learning).

Note that all codes are involved from stimulus onset and gradu-
ally activate each other; as a result competition takes place between
feature codes, between task codes, and between motor codes,
simultaneously. Once any one of the motor codes is activated
strongly enough, it leads to the execution of the respective motor
response to the presented stimulus. In our simulations, this marks
the end of a trial.

In general, the passing of activation between codes along their
connections is iterated for a number of cycles, which allows for the
simulation of reaction time (i.e., number of cycles from stimulus
onset to response selection) until the activation level of any one
of the motor code reaches a set threshold value (0.6 in current
simulations).

MODELING THE CURRENT EMPIRICAL STUDY
The current study involves colored arrow-shaped stimuli and
responses that require a participant to move his/her balance to
a certain direction (left/forward and right/backward). In order to
be able to register these sensations, the HiTEC model is equipped
with sensory maps for color, shape, and proprioceptive direction.
In addition, two movements are included in the motor map. We
could have included more sensory maps or motor codes, but these
would not be activated by any stimulus in the current study. For
clarity reasons, we restricted the model to relevant codes only.

The task context includes instructions for responding to the
stimulus color (“red” or “blue”), by moving either “left ” vs.
“right ” or “forward” vs. “backward,” depending on the instruc-
tion group. We have included feature codes for these terms and
have connected these codes to task codes appropriately. For each
simulated subject, there are only two task rules to choose from,
reflected by the two task codes in the task map. Figure 5 depicts
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the codes and connectivity for a simulated subject in the snow-
board condition who was instructed to respond to red stimuli
by moving forward, and to blue stimuli by moving backward, as
can be seen by the connections between feature codes and task
codes.

As illustrated in Figure 5, sensory codes are connected to fea-
ture codes (feedforward weight 0.4, feedback weight 3.0). Stimulus
related feature codes are connected to task codes (feedforward
weight 1.5, feedback weight 0.2) and task codes to response related
feature codes (feedforward weight 1.5, feedback weight 0.2) allow-
ing activation to propagate from sensory codes to stimulus related
feature codes to task codes to response related feature codes. Con-
nections between feature codes and motor codes are explicitly
learned. Importantly, in the current simulation, we have taken into
account that the cognitive system has more experience with coding
for“left”and“right” than is the case for“forward”and“backward.”
In the model this is realized by setting the weights from sensory
codes toward “forward” and “backward” slightly lower (0.3 rather
than 0.4).

Note that the sensory codes for proprioceptive direction (i.e.,
proprioceptive map in Figure 5) are not considered “left” vs.
“right” or “forward” vs. “backward” by themselves. They repre-
sent two ambiguous sensations that can activate feature codes in
both feature dimensions. We shall see that task context (i.e., the
connections between feature codes and task codes, in close corre-
spondence with the task instruction) determines to what extent
this sensation is perceived as “left” vs. “right” or “forward” vs.
“backward.”

The HiTEC simulation of the current empirical study consists
of 40 simulated subjects in the ski condition and 40 simulated sub-
jects in the snowboard condition. For each simulated subject, first
the instruction is internalized by setting its task code–feature code
connections appropriately; then, during 20 training trials feature
code–motor code connections are learned, and finally, 20 repeti-
tions of the 10 experimental trials (i.e., 2 colors× 5 shapes) are
performed. This corresponds to the design of the empirical study
as discussed in Section “Material and Methods.” Each individual
simulated subject has its own random noise resulting in subtle
individual differences in processing and in variance in behavior
(i.e., varying reaction times) as is the case with individual human
participants.

SIMULATION RESULTS
Table 3 shows the average number of cycles from stimulus onset
until response selection for both instruction conditions and both
congruency levels. As accuracy was 1.0 for all simulated subjects,
it was not regarded in the analysis. The three-way interaction
between congruency, dimension, and task instruction found in
the experiment was replicated in the simulation, as depicted in
Figure 6. The left–right congruency effect was larger in the ski
condition, whereas the forward–backward congruency effect was
larger in the ski condition. We now explain how these results arose
in the simulation by discussing the model dynamics in more detail.

Not that the HiTEC simulation only covers a part of the entire
process of stimulus to response production in humans. The actual
movements, for example, are included in the empirical reaction
times (Table 2) but are not part of the simulation reaction times

Table 3 | Average number of processing cycles from stimulus onset

until stimulus selection in the HiTEC model, based on all 80 simulated

subjects.

Instruction Dimension Congruent Incongruent Effect

Ski Left–right 14.7 29.2 14

Forward–backward 17.1 18.0 0.9

Snowboard Left–right 15.6 27.0 11.4

Forward–backward 15.7 21.0 5.3

(Table 3). This results in larger relative effect sizes in the simulation
results as compared to the empirical data.

MODEL DYNAMICS DURING SIMULATION
Although the stimuli and responses are equal for both instruction
groups, the congruency effects differ. These differences between
the groups are the result of several dynamics of the model, as we
will now explain.

The task instruction is reflected by connections between task
codes and feature codes. These connections are bidirectional. As a
consequence, activating a feature code will activate each connected
task code, which on its turn will activate or enhance all connected
feature codes, including the feature code that activated the task
code in the first place (i.e., recurrent connectivity). This means
that the mere fact of being connected to a task code will further
enhance the activation of a feature code. For the ski instruction
group, this means that “left” and “right” feature codes receive this
enhancement, for the snowboard group this is the case for the
“forward” and “backward” feature codes.

Crucially, this selective enhancement is already at play dur-
ing the learning trials. When a motor code is activated during a
learning trial, and its effects are presented to the model, the mere
connections between feature codes and task codes will enhance
either the “Left” and “Right” feature codes (in the ski condition)
or the “Forward” and “Backward” feature codes (in the snowboard
condition) and thereby determine the coding of the ambiguous
sensation. When the action–effect produced by “M1” is presented
(i.e., activating the “L/F” proprioceptive code) this results in a
slightly higher activation for the “Left” feature code in the ski con-
dition and a slightly higher activation for the “Forward” feature
code in the snowboard condition, as shown in Figures 7A,B. When
the action–effect produced by“M2”is presented (i.e., activating the
“R/B” proprioceptive code), this works in similar fashion.

During the 20 learning trials, this minimal difference in feature
code activation results in pronounced differences in the weights
learned (see Figures 7C,D) and prepares the model for the exper-
imental trials. Note that in the ski condition, the weights between
the “Left”/“Right” feature codes and motor codes are strong and
the weights between the “Forward”/“Backward” feature codes and
motor codes are rather moderate (Figure 7C). This is due to both
the connections between the task codes and the “Left”/“Right”
feature codes and the stronger connections between sensory codes
and the “Left”/“Right” feature codes (as compared to the con-
nections between sensory codes and the “Forward”/“Backward”
feature codes). In the snowboard condition, the weights between

www.frontiersin.org May 2013 | Volume 4 | Article 247 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Cognitive_Science/archive


Haazebroek et al. Task goals mediate perception–action interaction

FIGURE 6 | Comparison between human data (left) and simulation results (right). Lines depict the effect sizes for both instruction groups (ski and
snowboard) and both congruency dimensions (left–right and forward–backward).

the “Left”/“Right” feature codes and the motor codes are roughly
equally strong as the weights between the “Forward”/“Backward”
feature codes and the motor codes (Figure 7D). This is due to
the “Forward”/“Backward” feature codes being connected to the
task codes, resulting in top-down enhancement of these feature
codes. At the same time, the “Left”/“Right” feature codes receive
more excitatory input due to their stronger connections with the
sensory codes.

During the subsequent experimental trials, the model is set to
respond to stimulus color and automatically takes stimulus direc-
tion into account (stimulus–response congruency, SRC). This is
a result from the fact that the model codes for responses and
stimuli using common spatial feature codes. In the ski condi-
tion, the feature codes “Left” and “Right” are used to encode the
responses. When perceiving a horizontal arrow stimulus, however,
“Left” and “Right” are also used to encode this stimulus. When a
congruent stimulus is presented, the corresponding feature code
is already activated to encode this stimulus and therefore speeds
up the encoding of the response. When an incongruent stimulus is
shown, the wrong feature code is activated which slows down the
activation – by means of lateral inhibition – of the correct response
feature. This results in longer reaction times for incongruent than
for congruent stimuli.

Now, the overlap between feature codes of stimulus and
response obviously depends on the spatial coding of the response.
As a result of task instruction and subsequent action–effect learn-
ing, this is different for the ski group and snowboard group. We
now describe in detail the dynamics of the model during the exper-
imental trials in both ski and snowboard conditions and for each
type of stimulus (left–right congruent and incongruent, forward–
backward congruent and incongruent) as depicted in the panels
of Figure 8.

In panel A, a red left arrow stimulus is presented to the model
in the ski condition, resulting in an initial increase of activation
of “Red” and “Left” feature codes. In line with the ski task set,
activation propagates from “Red” to a task code and to the “Left”
feature code. This overlap results in a fast increase of activation
of the “Left” feature code. In the ski condition the “Left” feature
code is strongly connected to “M1,” resulting in fast activation
propagation toward motorcode “M1” and fast action selection.
This explains the relatively shorter reaction times for the left–right
congruent trials in the ski condition.

In panel B, a red left arrow stimulus is presented to the model in
the snowboard condition, resulting in an initial increase of activa-
tion of “Red” and “Left” feature codes. In line with the snowboard
task set, activation propagates from “Red” to a task code and to the
“Forward” feature code; hence the subsequent increase in activa-
tion of the “Forward” feature code. In the snowboard condition,
“Left,” “Right” and “Forward” and “Backward” feature codes are
strongly connected to the motor codes (as depicted in Figure 7B).
Thus, both “Left” and “Forward” now propagate activation toward
motor code “M1” resulting in fast action selection. This explains
the relatively shorter reaction times for the left–right congruent
stimulus trials in the snowboard condition.

In panel C, a red right arrow is presented to the model in the
ski condition, resulting in initial increase of activation of “Red”
and “Right” feature codes. In line with the ski task set, activation
propagates from “Red” to a task code and to the “Left” feature
code; hence the subsequent increase in activation of the “Left” fea-
ture code. Now, both “Left” and “Right” feature codes are active
and highly competing. They are both strongly connected to dif-
ferent motor codes that both receive activation and also compete
with each other. This competition takes time and lengthens the
trial.
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FIGURE 7 | HiTEC simulation graphs of one simulated subject in
the ski condition (A,C) and one simulated subject in the
snowboard condition (B,D) during learning trials. (A,B) Show code
activations resulting from the perception of the ambiguous
action–effect (balance toward “left”/“forward”). Due to differences in
task code–feature code wiring there is difference in recurrency and

therefore slight differences in code activation (“left” vs. “forward”) in
the two instruction conditions. In the (C,D), that show the weight
strength of a selection of feature code–motor code connections during
all learning trials, it is clear that during the learning trials this difference
in code activation accumulates to a substantial difference in the learned
action–effect weights.

In panel D, a red right arrow is presented to the model in the
snowboard condition, resulting in initial increase of activation of
“Red” and “Right” feature codes. In line with the snowboard task
set, activation propagates from “Red” to a task code and to the
“Forward” feature code, hence the subsequent increase in activa-
tion of the “Forward” feature code. Now, the “Forward” feature
code is strongly connected to the M1 motor code, the motor code
to be selected. The “Right” feature code, however, is (even more)
strongly connected to the “M2” motor code. As both “Forward”
and “Right” feature codes are highly activated and propagate acti-
vation to both motor codes, it takes longer for the system to settle
this competition. This explains the relatively longer reaction times
for the left–right incongruent stimulus trials in the snowboard
condition.

In panel E, a red forward arrow is presented to the model in the
ski condition, resulting in an initial increase of activation of “Red”
and“Forward”feature codes. In line with the ski task set, activation
propagates from“Red”to a task code and to the“Left” feature code;
hence the subsequent increase in activation of the “Left” feature
code. Now, in the ski condition the “Left” feature code is strongly
connected to the “M1” motor code, the motor code to be selected.

The “Forward” feature code, however, is very weakly connected to
the “M1” motor code. Thus the activation mainly propagates from
the “Left” feature code toward the “M1” motor code resulting in
a speedy selection of the “M1” motor code, whereas the activa-
tion of the “Forward” feature code has minimal influence. This
explains the unaffected reaction times for the forward–backward
congruent stimulus trials in the snowboard condition.

In panel F, a red forward arrow is presented to the model in the
snowboard condition, resulting in an initial increase of activation
of “Red” and “Forward” feature codes. In line with the snowboard
task set, activation propagates from “Red” to a task code and to
the “Forward” feature code. This overlap results in fast increase
of “Forward” feature code activation. In the snowboard condition
the“Forward”feature code is strongly connected to“M1,”resulting
in fast activation propagation toward “M1” and fast action selec-
tion. This explains the relatively shorter reaction times for the
forward–backward congruent trials in the snowboard condition.

In panel G, a red backward arrow is presented to the model
in the ski condition, resulting in an initial increase of activation
of “Red” and “Backward” feature codes. In line with the ski task
set, activation propagates from “Red” to a task code and to the
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FIGURE 8 | HiTEC Simulation graphs of ski condition (A,C,E,G) and
snowboard condition (B,D,F,H) during the experimental trials. All panels
show code activations of some of the feature codes and a motor code (M1)
during the cycles of a single trial. Solid black lines denote the activation of the
“Red” feature code, solid gray lines denote the activation of the “M1” motor
code, dashed lined the activation of the “Left” and “Right” feature codes and

dotted lines the activation of “Forward” and “Backward” feature codes. Trials
start with stimulus presentations, hence the fast increase of feature codes
that are connected to the sensory codes activated by stimulus presentation.
Trials end when a motor code (in these trials motor code M1) reaches the
response threshold of 0.6. See text for further explanations of the dynamics
leading to action selection.
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“Left” feature code, hence the subsequent increase in activation of
the “Left” feature code. Now, in the ski condition the “Left” feature
code is strongly connected to the“M1”motor code, the motor code
to be selected. The “Backward” feature code is connected to the
“M2” motor code, introducing competition. However, in the ski
condition this latter connection is very weak. Thus the activation
mainly propagates from the “Left” feature code toward the “M1”
motor code resulting in a speedy selection of the“M1”motor code,
whereas the activation of the “Backward” feature code has mini-
mal influence. This explains the unaffected reaction times for the
forward–backward incongruent stimulus trials in the snowboard
condition.

In panel H, a red backward arrow is presented to the model in
the snowboard condition, resulting in an initial increase of activa-
tion of “Red” and “Backward” feature codes. In line with the snow-
board task set, activation propagates from “Red” to a task code and
to the “Forward” feature code. Now, both “Forward” and “Back-
ward”feature codes are active and highly competing. They are both
strongly connected to different motor codes that also compete.
This competition takes time and lengthens the trial, explaining
the relatively longer reaction times for the forward–backward
incongruent stimulus trials in the snowboard condition.

In sum, the stronger connections between sensory codes and
the “Left”/“Right” feature codes (as compared to the weaker con-
nections between sensory codes and the “Forward”/“Backward”
feature codes) together with the differences in mere connectivity
between feature codes and task codes – which results from different
task instructions – yield a pattern of left–right and forward–
backward SRC effects that is comparable to the findings from the
empirical study.

DISCUSSION
The Simon effect is known as a particularly robust effect. The
empirical study presented here uses a two-dimensional Simon task
with two groups of participants who only differ in the instruction
(i.e., ski vs. snowboard) they received. And yet, the presence and
size of the Simon effect is strongly dependent on the instruction:
the left–right congruency effect is larger in the ski condition than
in the snowboard condition, while the forward–backward effect
only appears in the snowboard condition. Obviously, then, the
task instruction moderates the internal translation process from
stimulus to response.

Using the TEC, these results could be explained in terms of
feature code overlap and intentional weighting: the task context
modulates to what extent a feature dimension (i.e., forward–
backward or left–right) is used for response coding. Since these
feature codes are used both for stimulus encoding and response
planning, this results in either facilitation or interference, yielding
a stimulus–response congruency (SRC) effect. Simulations using
the HiTEC model show how this result may emerge. Task instruc-
tion is implemented as connections between feature codes and task
codes, closely following the verbal instructions. This mere connec-
tivity automatically results in specific recurrency that selectively
enhances either the “Left” vs. “Right” or the “Forward” vs. “Back-
ward” feature codes when perceiving action–effects. This leads to
differences in action–effect weight learning and subsequently in
how a response is encoded. These differences in response coding,

in turn, influence the degree in which the feature codes repre-
senting stimuli and responses overlap, giving rise to different SRC
effects across conditions.

The data from the empirical study and the results from the
simulation clearly show a stronger congruency effect for the left–
right dimension than for the forward–backward dimension (see
Figure 6, depicted effect sizes are listed in Tables 2 and 3). As men-
tioned in Section “Results,” the asymmetry in the empirical data is
in line with the left–right prevalence effect found in other studies
(e.g., Nicoletti and Umiltà, 1984, 1985; Nicoletti et al., 1988). In the
current study, we hypothesize that the use of left and right feet –
for both left–right and forward–backward responses – may have
yielded this prevalence effect (cf. Hommel, 1996). In more general
terms, it could be argued (Rubichi et al., 2005) that the right–
left discrimination is over-learned and produces faster processing
than discriminations on other dimensions. In the model, the left–
right dimension was enhanced by strengthening the connection
between the sensory codes and feature codes (0.4 for connections
to “Left”/“Right,” 0.3 connections to for “Forward”/“Backward”).
This resulted in a left–right prevalence effect, similar to the effect
found in the empirical data.

RELATED WORK
Our findings are in line with earlier work on the impact of instruc-
tions (Hommel, 1993) and otherwise induced task-relevance of
stimulus and response dimensions (Memelink and Hommel,
2005) on the Simon effect. Indeed, the effect of task goals on
the interaction between perception and action in this study can be
ascribed to the basic principle of intentional weighting (Memelink
and Hommel,2012). It should be noted,however, that although the
current study shows strong resemblance to the experiment con-
ducted by Hommel (1993), the studies differ in how intentional
weighting is assumed to be at play. In Hommel (1993), different
aspects of the action–effect (i.e., light vs. key) contributed selec-
tively to the same feature dimension (i.e., left–right) depending on
the task instruction. Describing that task in terms of ”key press-
ing ” focused the (spatial) attention on the keys and increased the
contribution of key location to the left–right dimension, whereas
describing it in terms of ”light switching ” focused attention on the
lights and increased the contribution of light location to the left–
right dimension. Subsequently, the stimuli were encoded using
this same left–right dimension. This resulted in either facilitation
or interference yielding the observed SRC effect. This is fully in
line with HiTEC logic, and it has been successfully replicated in
HiTEC (Haazebroek et al., submitted).

In contrast, in the current study, a single sensory dimension (i.e.,
proprioceptive balance) was assumed to map onto two distinct
feature dimensions (i.e., left–right and forward–backward). Here,
task instruction modulated the relative weighting of these two fea-
ture dimensions in the coding of the response. Subsequently, left
vs. right directed stimuli were encoded using the left–right fea-
ture dimension and forward vs. backward directed stimuli were
encoded using the forward–backward feature dimension. The rel-
ative weighting of these feature dimensions – modulated by task
instruction – determined the relative sizes of the left–right SRC
effects and forward–backward SRC effects, as observed in both
the empirical data and simulation results. Indeed, the present
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empirical study and simulation results demonstrate that inten-
tional weighting is not limited to weighting sensory dimensions,
as demonstrated by Hommel (1993) and simulated by Haazebroek
et al. (submitted), but also extends to weighting abstract feature
dimensions.

Yamaguchi and Proctor (2011) also found that the SRC effect
depends on the attentional demands of the task. In their study
participants controlled a simulated aircraft. A response yielded
action–effects on multiple dimensions: movement of the aircraft,
movement of the horizon and the physical joystick movement. In
this study, SRC effects depended on whether the (visual) empha-
sis was on the orientation of the aircraft (i.e., aircraft tilt, fixed
horizon) or of the horizon (i.e., fixed aircraft, horizon tilt), which
resonates well with our findings. Their work on a multidimen-
sional vector model of SRC (Yamaguchi and Proctor, 2012) also
addresses the issue of task context in the Simon task. They math-
ematically model the S–R vector space and treat stimulus features
and response features in similar fashion, which is completely in line
with our HiTEC model. HiTEC, however, is not aimed at mathe-
matical minimalism, rather at biological plausibility: connection-
ist codes with activation dynamics that approximate biological
neuron populations, bi-directional connections, and within-layer
lateral inhibition.

At first sight, the general architecture of HiTEC, a model of
codes, and connections, is in line with existing models (e.g., Zorzi
and Umiltà, 1995; Kornblum et al., 1999), but there are some cru-
cial differences to be noted: in HiTEC: (1) responses are coded as
motor codes which are associated with feature codes as a result
of learning rather than as a fixed connotation; (2) compatibility
effects arise from the fact that the same feature codes are used to
represent stimuli and responses at the feature level, rather than
assuming spatial similarity between stimuli and responses; (3) in
line with the response-discrimination hypothesis (Ansorge and
Wühr, 2001), the task instruction determines the response coding
and thus influences SRC.

Moreover, the model is compatible with the main claims
of embodied cognition theories. In fact, HiTEC’s concepts are
entirely grounded in sensorimotor experience and even the
grounding process itself is explicitly modeled. In line with TEC
(Hommel et al., 2001), feature codes are assumed to be extracted
from regularities in prior sensorimotor experience and can only
exist by virtue of their connections to sensory codes. In the cur-
rent simulation, the model contains feature codes that link to
lower level sensory codes. In the same vein, feature codes link
to motor codes. In our modeling we explicitly show how these
associations are strengthened: through sensorimotor experience.
Connections to sensory codes are grounded in regularities in
sensory input; connections to motor codes are grounded in regu-
larities in action–effects that follow motor code activation. In our
model, task codes are fully generic and recruited when needed.
They themselves are meaningless but only function as relay nodes
when processing information from (stimulus) perception to action
(effect) planning, and vice versa.

The fact that the translation from perception to action
involves feature codes that are necessarily grounded in sensori-
motor experience is, in HiTEC modeling, the main reason why
stimulus–response congruency occurs: the model cannot perceive

stimuli or plan actions without using these grounded feature
codes. The feature codes used for perceiving stimuli and those
used for planning actions (i.e., by anticipating and representing
action–effects) are grounded in the same perceptual world (Prinz,
1992) and are therefore prone to overlap. When perception of
a particular stimulus and the planning of a particular response
involve the same feature code, this code overlap results in either
facilitation or interference (Hommel, 2004). This is the foundation
of the observed SRC effect (for a more elaborate discussion and
application to a variety of SRC paradigms, see also Haazebroek
et al., submitted).

By the same token, processing a task instruction is assumed to
activate these feature codes grounded in sensorimotor experience.
Implementing a – in principle abstract – task set automatically
wires the feature codes into a stimulus–to–response processing
pathway. The fact that these feature codes also represent (prior)
sensorimotor experience (i.e., by virtue of their connections to
sensory codes) allows the task instruction to modulate subsequent
sensorimotor processing (i.e., by top–down enhancing feature
codes and therefore sensory codes), even on the automatic level
of SRC.

HiTEC is also compatible with the idea that concepts are
flexible and context-dependent. According to the embodied cog-
nition view, concepts are learned from recurrent sensorimotor
experiences. During those experiences, the patterns of activity in
sensory-motor brain areas are captured and stored in memory to
form elaborated, multimodal knowledge structures, called simu-
lators. Representation is achieved by reactivating a subset of this
stored knowledge to construct a specific simulation. The exact
content of a particular simulation depends on the individual’s
experience with the simulated concept, as well as on situational
factors such as current goals and task demands (Barsalou, 1982,
1993; van Dantzig et al., 2011). This flexibility is strongly reflected
in HiTEC. For example, in the current simulation, the task instruc-
tion influenced how an ambiguous movement was encoded and
represented in the model. Similarly, the context or task instruction
could influence which features or feature dimensions of a stimulus
are most relevant, and thereby enhance the processing of these fea-
tures or dimensions (the intentional weighting principle). Indeed,
several recent studies have shown that spatial congruency effects
only occur when participants perform a task that emphasizes the
relevant conceptual dimension of a stimulus. For example, Schu-
bert (2005) found that spatial congruency between power and
vertical position only occurred when participants made power
judgments of words such as “king” or “servant,” but not when they
judged the valence of these stimuli. Similarly, Zanolie and Pecher
(under review) found a spatial congruency effect between num-
ber size and horizontal position when participants processed the
magnitude of numbers, but not when they simply viewed the num-
bers or judged whether the numbers were even or uneven. Similar
results were obtained by Santiago et al. (2012), who showed that
conceptual congruency effects only appeared when participants
attended to the relevant conceptual dimension, either through task
instruction or by means of exogenous attentional cueing.

To conclude, perception, cognition, and action interact by using
common representations. Many studies and theoretical accounts
focus on bilateral interactions between perception–cognition,
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action–cognition, and perception–action. In this paper, we have
shown that the interaction between perception and action is
strongly influenced by cognition (i.e., task instruction). Cogni-
tion, in turn, is based on prior sensorimotor experience, and is
therefore grounded in perception and action. In addition to our
empirical findings on a two-dimensional Simon task we set out
to provide an overarching framework that connects various find-
ings and explains computationally how perception, action, and

cognition interact. We hope that the combination of our empirical
work and the computational model contribute to a better under-
standing of the complex interaction between perception, action,
and cognition.
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