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Referring expression generation (REG) presents the converse problem to visual search:
given a scene and a specified target, how does one generate a description which
would allow somebody else to quickly and accurately locate the target? Previous work
in psycholinguistics and natural language processing has failed to find an important
and integrated role for vision in this task. That previous work, which relies largely on
simple scenes, tends to treat vision as a pre-process for extracting feature categories
that are relevant to disambiguation. However, the visual search literature suggests that
some descriptions are better than others at enabling listeners to search efficiently within
complex stimuli. This paper presents a study testing whether participants are sensitive
to visual features that allow them to compose such “good” descriptions. Our results
show that visual properties (salience, clutter, area, and distance) influence REG for targets
embedded in images from the Where’s Wally? books. Referring expressions for large
targets are shorter than those for smaller targets, and expressions about targets in
highly cluttered scenes use more words. We also find that participants are more likely to
mention non-target landmarks that are large, salient, and in close proximity to the target.
These findings identify a key role for visual salience in language production decisions and
highlight the importance of scene complexity for REG.
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INTRODUCTION
Cognitive science research in the domains of vision and language
faces similar challenges for modeling the way people use and inte-
grate information. For modeling people’s interpretation of visual
scenes and for accounting for their linguistic descriptions of such
scenes, both fields must address the ways that local cues are inte-
grated with larger contextual cues and the ways that different tasks
guide people’s strategies.

Despite these seemingly interlinked problem domains, vision
and language have largely been studied as separate fields. Where
intersections do occur, there is evidence that the way viewers
make sense of a visual scene does indeed guide the language
they use to describe it – visual information influences which
objects speakers identify as important enough to mention and
how they characterize the relationships between those objects
(Coco and Keller, 2012; Clarke et al., submitted). Likewise, lan-
guage itself acts as a strong gaze cue – listeners’ eye move-
ments in psycholinguistic eye-tracking experiments reflect their
real-time language comprehension (Tanenhaus et al., 1995).
Existing studies at the vision ∼ language interface have suc-
ceeded in incorporating complex visual stimuli or complex lin-
guistic tasks, but rarely both, and the conclusions from that
previous work have assigned a limited role to vision in lan-
guage production. This paper considers the question of how
the language people produce in a complex referential task
is influenced by the properties of a complex visual scene.
Specifically, participants in our study were asked to describe

individuals in illustrated crowd scenes; we then test whether the
elicited descriptions reflect the visual properties of the targets
themselves and of the complex scenes in which those targets
appear.

In order to generate a natural and contextually appropri-
ate description of a target object, a speaker must identify
what properties of that object are relevant in context and what
kinds of descriptions would help a listener identify that object.
Understanding what people do in such tasks provides clues for
improving natural language processing (NLP) systems which gen-
erate such descriptions automatically (Viethen and Dale, 2006;
Krahmer and van Deemter, 2012). This task, in which a person or
NLP system builds a linguistic expression to pick out a particular
object in context, fits under the interdisciplinary (psycholinguis-
tics and NLP) domain of Referring Expression Generation (REG).
In order to create an appropriate description, the viewer must
gather perceptual information and then compose an expression
that adheres to a set of linguistic constraints. This can be thought
of as the converse problem to visual search, in which an observer
is given a description of the target and then has to locate it within
a visual scene.

As will be expanded on in the background sections on REG
and visual perception, previous work has primarily focused on
models of linguistic complexity or visual complexity but not both.
Vision studies have kept the language task simple (“Describe what
you see” or even just “Look at this scene”) and analyze effects from
factors such as visual salience and display time (see Figure 1; and
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FIGURE 1 | Visually complex stimuli from a simple linguistic task

(“Name as many objects as you can”; Clarke et al., submitted).

FIGURE 2 | Visually simple stimuli from a complex linguistic task

(“Describe the object the arrow is pointing to”; Viethen and Dale,

2008).

also Fei-Fei et al., 2007). On the other hand, REG studies have
kept visual stimuli simple by using a small number of objects
or a restricted number of feature dimensions while analyzing a
more complex task (“Describe the highlighted object such that a
listener could figure out which object you intended”), with the
goal of evaluating the visual properties that people mention in
distinguishing objects from one another (see Figure 2).

An open question is how the conclusions from such studies
will scale. Given recent REG work which has concluded that the
role for visual properties in complex REG tasks is small (Beun
and Cremers, 1998; Viethen et al., 2011), we propose a study that
uses visual scenes that approximate the detail and complexity of
natural scenes. Building on evidence of differential performance
in visual tasks when more abstract stimuli are used (Tatler and
Melcher, 2007), our use of more complex scenes may provide a

window into a very different relationship between language and
vision than has previously been reported.

In our study, we investigate the role of perception in REG using
images from the children’s book Where’s Wally, published in the
US as Where’s Waldo. These images are an order of magnitude
more complex than the arrays of geometric objects typically used
in referring expression and visual search studies, with images
containing many dozens of objects and people. In our task,
viewers produce a description of one highlighted target in each
scene. We demonstrate an important role for visual salience (Toet,
2011) in determining which landmarks (objects other than the
target) viewers choose to mention and how long a description they
construct. We find that the length of viewer description reflects the
size and salience of the target itself: for smaller targets, participants
write longer descriptions of how to find the target (more words,
more landmarks); the descriptions of the targets themselves are
shorter for smaller and less salient targets (fewer target properties).
We also find that the probability that an object in the scene will
be chosen as a landmark reflects its own size and salience as well
as its proximity to the target: large, salient landmarks are more
likely to be mentioned, even at longer distances from the target.

REFERRING EXPRESSION GENERATION
Early work in REG focused on the balance between brevity and
descriptive adequacy – how to construct minimalist expressions
that uniquely pick out the intended referent (Dale and Reiter,
1995; Krahmer and van Deemter, 2012). To describe the marked
object in Figure 2, a minimalist and unambiguous expression
would be one like “the small sphere.” However, it has become
apparent that people do not generate minimalist expressions,
instead favoring overspecification. For example, the inclusion of
color terms is common even when color is not a disambiguating
feature (Pechmann, 2009). To explain this pattern of overspecifi-
cation, Pechmann proposed the Incremental Algorithm: speakers
start producing a referring expression before they have processed
sufficient information about the visual scene to know whether a
particular feature of an object will disambiguate that object from
others. Mitchell et al. (in press) give an extension, the Visible
Objects Algorithm (VOA), which scans for potential distractor
objects one-by-one and stochastically adds distinguishing char-
acteristics to the description to rule those other objects out; the
chance of adding additional information declines as the descrip-
tion lengthens. This makes explicit the assumption that speakers
produce the expression at the same time as they visually scan the
scene and that later-found distractors are less likely to matter.
However Mitchell et al.’s (in press) algorithm scans objects in an
arbitrary order, without reference to their visual characteristics.

The Incremental Algorithm and VOA fit within a larger psy-
cholinguistics literature on audience design and common ground
(Clark and Wilkes-Gibbs, 1986; Horton and Keysar, 1996; Sedivy,
2003; Brown-Schmidt and Tanenhaus, 2008). Studies in that area
have documented speakers’ tradeoff between listener-sensitive
resource-intensive REG strategies, which take into account lis-
tener knowledge, and egocentric resource-light strategies which
rely on what is visible or salient to the speaker.

Given that speakers overspecify, REG algorithms are faced with
the questions of what a natural-sounding referring expression
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should contain and how long the expression should be. For exam-
ple, do speakers focus on the target object itself or do they recruit
other objects in relational descriptions in order to convey how to
find the target in the larger picture? As we will show in our study,
as the salience of the target object decreases, participants include
more descriptions of other objects which they use as landmarks.
For example, although the character Wally in each Where’s Wally
image is unique, an unambiguous description of him (“the guy
with the red hat and the black-and-white striped shirt”) is insuffi-
cient to help a listener pick out the intended referent. Rather, what
participants rely on are visual properties of the scene that can be
referenced in the description of how to find the intended referent.
The next section reviews research that has explicitly asked how
visual properties influence speakers’ referring expressions, and we
point to the limitations with using small-scale visual scenes to
answer that question.

INFLUENCE OF VISUAL PROPERTIES IN REG
While the information viewers use in describing a scene must evi-
dently depend on what they see, previous studies have generally
found that visual features are only weak predictors of what peo-
ple tend to say. Beun and Cremers (1998) hypothesize that salient
targets will be given reduced descriptions, but due to dataset size,
they do not find a significant effect. Viethen et al. (2011) show that
participants describing a path through an environment delim-
ited by groups of small colored objects (Louwerse et al., 2007) do
not appear to take into account potential visual distractors when
deciding what to say. This is true even in their initial references,
i.e., before any referring expression has been introduced which
they might be able to reuse. Viethen et al. (2011) speculate that
this puzzling failure to find an effect of visual features in an explic-
itly visual task is due to the simple map task stimuli they used, in
which perhaps “the complex mechanisms we think are required
for REG more generally are simply not required” (p. 51).

Attempts to elicit relational descriptions using scenes with tar-
get objects and a set of potential landmarks have had mixed
results. Viethen and Dale (2008) do find an effect of landmark
salience, but in scenes with only three objects. In a more complex
study of seven-object scenes (Viethen and Dale, 2011), only 13.4%
of their elicited descriptions included landmarks. Moreover, they
report no significant effect of landmark size (a major contributor
to visual salience) on whether a landmark is mentioned.

Kelleher et al. (2005) propose a generation algorithm that
incorporates visual salience and report that participants inter-
preted the resulting descriptions more easily when visual salience
is taken into account. This result suggests an important role for
visual perception, but cannot be taken as closing the issue. It is a
perception study rather than a production study – it demonstrates
what listeners would prefer speakers to do, rather than what they
actually do. Additionally, the model of visual salience involves
only two factors: an object’s size and its distance to the center of
the screen. Other contributing factors, like contrastive color or
texture, are not measured. Nor is task relevance; the model treats
the visual salience of each object in the scene as fixed, regardless
of what target object is being described. In contrast, our results
suggest that visual salience and relevance to a particular target
interact in determining which landmarks to use in a description.

In other words, while we know visual processing is tightly inte-
grated with perception (Sedivy et al., 1999, among others), it has
been difficult to demonstrate its influence on production, at least
via closely controlled studies of simple visual scenes. One possi-
ble explanation, as quoted from Viethen et al. (2011) above, is that
this shows a methodological limitation of these studies. The alter-
native is that production involves fundamentally different visual
mechanisms from perception.

This limited role for visual salience in production is the con-
clusion of a recent study (Gatt et al., 2012). While listeners appear
to resolve referring expressions via a fast search which is sensi-
tive to visual salience (Itti and Koch, 2000), Gatt et al. argue that
speakers do not avail themselves of such cues during production.
Instead, speakers perform an exhaustive scan of the objects in the
scene before attempting to generate an unambiguous expression.
In their study, participants identified a single target object (for
example, an airplane) from a field of between 2 and 16 distractors
(also airplanes, but differing in either size or color). Participants
took longer to begin speaking when the number of distractors was
larger, and the relationship was roughly linear. In other words,
their speakers were not using an efficient visual search strategy
based on salience to check whether a candidate description (“a
large blue airplane”) sufficiently identifies the target.

Again, this REG result is puzzling in light of the extensive
literature on perception (Eckstein, 2011; Wolfe, 2012), which
shows that visual search is sensitive to visually salient features
and because search and generation are in some sense converse
problems – one dealing with perception, the other with produc-
tion. Perceptual visual search is indeed efficient, at least for targets
which contrast in certain ways with their environments (“pop-
out”), and there are good models of the features which facilitate
this (e.g., Guided Search; Wolfe, 1994).

We suspect that Gatt et al.’s result may reflect the types of
images involved and will not necessarily generalize to more com-
plex scenes. First, performing an exhaustive scan of a complex
scene with hundreds or thousands of potential landmarks is pro-
hibitively time-consuming. Secondly, the resulting descriptions,
while guaranteed to be unambiguous, might refer to objects that
listeners would nonetheless have great difficulty in finding. Lastly,
the existence of completely separate visual mechanisms for per-
ception and production (as opposed to for different types of
scene) seems cognitively implausible. Although our study cannot
rule out their proposal, it at least aims to establish an important
role for visual salience in production as well as perception when
the images involved are sufficiently complex.

VISUAL SEARCH AND VISUAL SALIENCE
Models of visual salience can be thought of as modeling two
related mechanisms: low-level perceptual factors that render
image regions more or less apparent, and the effect that these
have on visual attention. Low-level models assign scores to pix-
els, or regions within a scene, that reflect their visual salience:
how well they stand out from their surroundings. Over the past
decade many different salience models have been developed by
researchers in psychology, computer vision and robotics (see Toet,
2011 for a review). Most of these models typically consider low-
level features such as contrast, orientation and color, and use
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center-surround operations to compare the statistics of image fea-
tures at a given location to the statistics in the surrounding area.
These different measures have then been used by cognitive scien-
tists who are interested in the relationship between bottom-up
salience and top-down mechanisms in vision. For example, to
what extent can visual salience explain the distribution of fixation
locations during scene viewing (Itti and Koch, 2000; Einhauser
et al., 2008)? While multiple studies have found a statistically sig-
nificant effect of visual salience, these effects are often relatively
weak and there are many potential confounds such as the central
bias (Tatler, 2007) and correlations between objects and salient
regions (Einhauser et al., 2008). In the experiments described
below, we investigate whether visual salience has an effect beyond
simply attracting fixations.

A related field is that of visual search. In this paradigm, par-
ticipants are presented with a stimulus and asked to decide, as
quickly and accurately as they can, whether a pre-specified tar-
get is present or not. Stimuli typically consist of an array of
shapes (although targets embedded within photographic stimuli
are also used) and the challenge to researchers is to understand
how the number of search items influences the difficulty of the
task. The dominant theory is Guided Search (Wolfe, 1994) in
which bottom-up (visual salience) information is combined with
top-down knowledge of the target’s features in order to create
a ranking of items which is then used to guide the deployment
of visual attention. This framework succeeds in explaining how
viewers search efficiently for targets that are identifiable by a sin-
gle unique feature (the “pop-out” effect), while targets that are
defined by a combination of feature characteristics are harder to
find and typically require a serial search through the stimulus.

When more naturalistic stimuli are used in visual search stud-
ies, there is no longer a simple way to represent the number of
search items in the display. Instead, visual clutter (Rosenholtz
et al., 2007) has been suggested as a proxy, and the amount of
clutter in a scene has been shown to correlate with the reaction
times for finding a target (Henderson et al., 2009; Asher et al.,
2013). Therefore we would also expect that the degree of visual
clutter might influence language production, with longer descrip-
tions being generated for targets in more cluttered scenes. We also
expect clutter to influence which landmarks are selected. In par-
ticular, all objects (including potential landmarks) in cluttered
scenes are expected to be harder to find, so we expect salience and
area to confer more of an advantage.

The Where’s Wally images used in this study are certainly
a favorable environment to find such effects. The Wally series
is designed as a visual search game for children. The scenes are
deliberatelycluttered and contain largenumbersofsimilar-looking
people as well as more and less salient objects; in some sense
they represent the other extreme to the simplistic scenes used in
previous work. Results on such images certainly leave open a range
of intermediate visual complexity in which salience effects might
be weaker and harder to detect. But we would argue that the real
world looks more complex than Figure 2. For example, over
the 100 photographs used in Clarke et al.’s (submitted) object
naming study, subjects were asked to look at each image, then
look away and list all the objects they could recall. When the lists
given by 24 subjects are reconciled, they contain a median of 26

objects per image. Spain and Perona (2010) perform a similar
naming experiment, but ask 5 human subjects per image to name
10 objects each, while looking at the scene. They find between
16 and 40 objects per image (median 24). The Wally images may
represent the upper range of complexity in which humans must
compose descriptions, but they are probably no worse than the
scenes we expect people to encounter on a day-to-day basis.

MATERIALS AND METHODS
DATA COLLECTION
A collection of 28 images taken from the Where’s Wally picture
books (Handford, 1987, 1988, 1993) were used as stimuli.
These images depict crowded scenes and contain many cartoon
people. Sixteen of these people were selected as targets by 

× 4 grid over the scene and selecting the closest 

Participants (N = 155) were recruited via Amazon Mechanical
Turk, a crowd-sourced marketplace (Munro et al., 2010).
Participants were asked to give their informed consent, and then
they proceeded to a website that presented the Wally scenes and
collected referring expressions for each target. Each participant’s
session consisted of two phases. First, a training phase used a
search task to introduce participants to the concept of a refer-
ring expression. In training phase trials (n = 2), participants were
given a description and asked to find the described target in
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placing a 4
person to each intersection.

a scene. The goal was to demonstrate the difference between a
helpful and an unhelpful description for locating a target. The
training descriptions had been collected during a pilot study,
and we selected one unambiguous (helpful) description, and one
ambiguous (unhelpful) description. This was done in order to
show participants what makes a useful referring expression while
avoiding explicit instructions (Bard et al., 2009). Following the
training, participants proceeded to the main task. In each main
task trial (n = 28), participants saw a scene with a bounding box
around a target, and they were asked to write a referring expres-
sion for that target. Each participant saw each scene only once,
and the 16 targets in each scene were described by 6–12 different
participants.

There was no time limit for either phase of the experiment.
Participants took around 5 minutes on average to complete
the task and were paid 40 cents. Data from three participants
was excluded: two participants completed the task twice and a
third participant returned a series of one-word referring expres-
sions. The remaining 152 participants produced a dataset of 4256
descriptions. Of that larger dataset, the results reported here use
11 of the 28 scenes; this represents the subset of the data for which
we have completed annotations and consists of 1672 descriptions
(152 participants × 11 trials) over 176 targets (11 scenes × 16
targets).

ANNOTATION
We annotated the elicited referring expressions to indicate which
objects in the image were mentioned, which words in each expres-
sion referred to each object, and how the object references related
to one another. Sample annotations are shown in examples 

< > tags describe the target . (1) and (2). Words in 
Example (1) shows the annotated referring expression for  an

TARG
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ing boxes (or for very large non-rectangular objects, bounding
polygons). We did not distinguish references to geometrical parts
of an object (“the left side of the track”) from references to the
whole object, nor did we create separate boxes for small items that
people wear or carry, or for architectural details of buildings (so
“the boy in the yellow shirt” is treated as a single object). A few
bounding boxes indicate groups of objects mentioned as a unit
(“the three men”).

We marked the words in each expression which referred to
or described each object and linked them to their corresponding
bounding box. Words referring to the target were annotated with
targ tags. When a reference to an object was used as a landmark in
a relative description of another object (“the man just to the left
of the burning hut”), we annotated it with an lmark ltag and indi-
cated what object it was helping to locate. Objects mentioned
without reference to another object (“find the X,” “there’s an
X”) were given an est tag (establish). When an expression picked
out an individual without explicitly mentioning it, we created an
empty phrase referring to it (so in example (2

of the ball”).
We validated our annotation scheme by independently anno-

tating the elicited expressions for several targets in one image,
then reconciling our results and updating the annotation guide-
lines. The authors of this paper contributed to the annotation of
the referring expressions from 10 scenes, and the expressions from
one additional scene were annotated by a paid annotator.

VISUAL FEATURES
For each scene, we assessed the salience of our annotated land-
marks and targets, and the clutter of the scene as a whole. One
complicating factor is that most salience models are based on
the construction of a pixel-by-pixel salience map, and therefore
they do not explicitly consider an object’s area to be a contribut-
ing factor to how salient it is. Indeed, many salience models tend
to undervalue large objects, as they contain large homogeneous
regions. However, area is a basic visual property that should be
considered in any common sense definition of what makes an
object more or less salient, and therefore we will also include the
square root of the area of a landmark’s bounding box as a visual
feature along with the pixel-based salience score (below). There is
a significant correlation between them, r = 0.38.

To compute salience scores, we use the bottom-up component
of Torralba et al.’s (2006) model, which defines a salience map S
(x, y) as:

S(x, y) = 1

p(L(x, y)|G)
(1)

where L and G are the local and global feature distributions
extracted from a bank of filters (Simoncelli, 1995). The visual
salience of targets and landmarks in our images is defined as being

If it was unclear which object was the main object of the description and
which the landmark, we preferred to make the target the main object. Then
any landmarks that were directly relative to the target, and so on. This is
because the participant’s task was to refer to the target; other objects were
presumably introduced to help locate it and not vice versa.
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easy stimulus; a  single landmark (the burning hut, indiated 
by the REL attribute) is used localize the target. Example (2) 
shows the expression for a harder stimulus; two landmarks (the
umbrella and ball) are introduced with the word "find""  “ ” and  
marked with < EST> < > tags,  and the  ball is then used to localize
the target. Objects in the image were labeled with bound-

1

1

), “below and to
the left” is annotated like “below and to the left

Example (1)

The <TARG> man </TARG> just to the left of
the <LMARK REL="TARG" OBJ="IMGID"> burning
hut </LMARK> <TARG> holding a torch and a
sword </TARG>.

Example (2)

Find <EST OBJ="IMGID1"> the red and
white umbrella </EST>. Then find <EST
OBJ="IMGID2"> the blue and white beach
ball </EST>. Below and to the left <LMARK
OBJ="IMGID2" REL="TARG"/> is <TARG> a
dark skinned woman with a red bathing suit
</TARG>.

the maximum over the pixels within the relevant bounding box.
Salience was predicted to guide participants’ choices regarding
landmark selection and description length.

We measure the distance between each proposed landmark
and the search target, computed between the closest points on
their respective bounding boxes. Nearby objects were predicted to
be better candidates for landmark mention. Finally, we also con-
sider the visual clutter (feature congestion) of the scene, a measure
that is related to the variability of features (color, orientation, and
luminance) in a local neighborhood. Full details on measuring
visual clutter can be found in Rosenholtz et al. (2007).

DATA TRANSFORMATIONS
The distributions of area and distance values in the dataset are
skewed to the right. This is especially true for area; the dataset
contains a few very large landmarks, while objects a correspond-
ing number of deviations below the mean would have to have
negative values. To counter this, we transform the values non-
linearly. We use

√
area rather than area. This transformation is

appropriate for several reasons (Gelman and Hill, 2007, p. 65):
it makes the distribution less skewed (by visual inspection; see
Figure 5; nonetheless, some outliers remain), it improves linear
correlation with landmark choice, and it has a natural geometric
interpretation as the width of a square bounding box. We use
log(1 + distance) rather than distance and replace transformed
values greater than 5.1 (beyond which no landmarks are ever
selected, Figure 5) with 5.1; again, this makes the distribution rel-
atively symmetric and yields an acceptable linear correlation with
the output variable.

2

We also investigated log (l + area), but the linear correlation with landmark
choice is not as strong.

2
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ANALYSIS 1: LENGTH OF EXPRESSIONS
There is a wide range in the length of the referring expressions
in our dataset: between 1 and 104 words. As predicted, this
variation appears to reflect the visual complexity of the scene
(Figure 3): we find a correlation between the median length of
referring expressions for targets in a scene and visual clutter
(Spearman’s rank correlation coefficient: p = 0.45, p = 0.02).
We also see that the nature of referring expressions change as they
get longer: short expressions typically only reference the target
object, with an increasing number of landmarks being mentioned
as the descriptions get longer (Figure 4).

We model the length of expressions with both scene-level
visual information (clutter) as well as object-level information
(salience, area). We use these visual features to predict three out-
comes: the total number of words in a description, the proportion
of words referencing the target, and the number of landmarks
mentioned. For the number of words and number of land-
marks, we use linear mixed-effects models with a poisson linking

Because this analysis relies only on the total number of words, regardless
of what they describe, we perform the analysis on all 28 scenes. On the 11
annotated images, we obtain a similar result (p = 0.47) but with less power
(p = 0.14).

Although the number of words devoted to targets decreases as a proportion
of the total as expressions lengthen, the absolute number of words devoted to
targets increases.

function to model the count values. For the proportion of words
referencing the target, we use a logistic mixed-effects model. All
models contained factors for the salience and square root area of
the target, the visual clutter of the scene, and interactions among
those three factors.

Models were fit using the lmer function of the R pack-
age lme4 (Bates et al., 2011), with random intercepts for both
participants and target and random slopes (fully crossed) for
participants. These models estimate the size and direction of
main effects and their interactions while simultaneously includ-
ing baselines for individual participants and targets. We report the
coefficient estimates, standard error, t-value, and MCMC-derived
p-values (Baayen et al., 2008). All predictors were centered so that
the main effects remain interpretable.

FIGURE 3| The median length of referring expressions for targets

within an image varies with scene type (computed on all 28 images).

FIGURE 4| Longer referring expressions have proportionally fewer

words describing the target (top plot shows median and quartiles) and

proportionally more words describing other objects (bottom plot

shows median and quartiles).
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3

4

3

4

For the overall number of words in the description, there
was a main effect of area and marginal effects of salience and
visual clutter (Table 1): descriptions were shorter for targets with
larger area (β = −0.04) and greater salience (β = −0.03) and
longer for targets in scenes with high clutter scores (β = 0.03). A
marginal area × salience interaction indicated that these two neg-
ative effects are not quite additive, with a slightly reduced effect
when both are large (β = 0.02). None of the other interactions
reached significance.

For the proportion of words referencing the target itself, there
were main effects of area and salience (Table 2). Target descrip-
tions were longer for those targets with larger area (β = 0.25)
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Table 1 | Results of mixed-effects model for predicting number of

overall words in a description.

β SE t-value p-value

Area −0.04 0.02 −2.29 <0.05

Salience −0.03 0.02 −1.76 0.08

Clutter 0.03 0.02 1.74 0.08

Area × sal 0.02 0.01 1.78 0.08

Area × clutter −0.02 0.02 −0.92 0.36

Sal × clutter 0.01 0.02 0.76 0.45

Area × sal × clutter −0.01 0.02 −0.27 0.79

Bolding indicates main effects or interactions that reached significance.

Table 2 | Results of mixed-effects model for predicting proportion of

words referencing the target in a description.

β SE z-value p-value

Area 0.25 0.05 5.11 <0.001

Salience 0.20 0.05 4.25 <0.05

Clutter −0.02 0.04 −0.52 0.60

Area × sal −0.11 0.04 −2.78 <0.01

Area × clutter 0.02 0.05 0.34 0.73

Sal × clutter 0.02 0.06 0.45 0.65

Area × Sal × clutter −0.04 0.05 −0.57 0.57

Bolding indicates main effects or interactions that reached significance.

and greater salience (β = 0.20). There was no effect of clutter and
the only interaction to reach significance was again the area ×
salience interaction, whereby the overall effect of these two factors
is reduced when both are large (β = −0.11).

For the number of landmarks included in the description,
there were likewise effects of area and salience (Table 3). The
number of landmarks mentioned decreased for targets with larger
area (β = −0.14) and greater salience (β = −0.12). Again, area
and salience interact (β = 0.07). Neither clutter nor any of the
other interactions reached significance.

ANALYSIS 2: CHOICE OF LANDMARKS
The effects of an individual landmark’s features on the probabil-
ity of that landmark being chosen in an expression are shown
in Figure 5. To measure the effect of visual properties on the

Table 3 | Results of mixed-effects model for predicting number of

landmarks included in a description.

β SE z-value p-value

Area −0.14 0.03 −4.01 <0.001

Salience −0.12 0.04 −3.50 <0.001

Clutter 0.00 0.03 −0.13 0.89

Area × Sal 0.07 0.03 2.40 <0.05

Area × Clutter −0.01 0.03 −0.25 0.80

Sal × Clutter −0.05 0.04 −1.25 0.21

Area × Sal × Clutter −0.02 0.04 −0.56 0.58

Bolding indicates main effects or interactions that reached significance.

choice to mention a particular landmark in a referring expression,
we modeled the binary outcome of mention for each land-
mark in each description using a mixed-effects logistic regres-
sion. The model contained factors for the salience and square
root area of the landmark, the distance between the landmark

and the target, the visual clutter of the scene, and interac-
tions among those four factors. Random participant-specific and
target-specific intercepts and slopes were included (slopes were
not crossed, due to the number of parameters to estimate and
problems with model convergence). For this model, all objects
in a scene were included, meaning that the mention outcome
was 0 for most landmarks relative to most targets, since only
a few landmarks were near enough or large/salient enough to
merit mention. The set of ‘all objects’ consisted of every object
that was mentioned in at least one referring expression in the
dataset.

Again, we used the lmer function of the R package lme4.
We report the coefficient estimates, standard error, and p-values
based on the Wald Z statistic (Agresti, 2002). All predictors were
centered.

The results (Table 4) show main effects of area, distance, and
crucially visual salience: a landmark is more likely to be men-
tioned the larger it is (area: β = 0.57) and the more salient it is
(salience: β = 0.25); it is less likely to be mentioned the farther
it is from the target (distance: β = −0.99). The positive effect
of area was stronger in more cluttered scenes (area × clutter:
β = 0.20) and at greater distances (area × distance: β = 0.21),
and this interaction with distance was stronger in more clut-
tered scenes (area × distance × clutter: β = 0.11). Again area
and salience interact, reducing their overall effect when both
are large (area × sal: β = −0.22), though this is less apparent
in more cluttered scenes (area × salience × clutter interaction:
β = −0.19) and at greater distances (area × salience × distance
interaction: β = −0.09). Finally, the 4-way interaction was signif-
icant (area × salience × distance × clutter: β = −0.05), meaning
that more distant, larger salient objects are less likely to be selected
in cluttered scenes.

DISCUSSION
These results demonstrate that participants’ production of refer-
ring expressions is affected by their perception of visual salience
and clutter. As stated above, we agree with Viethen et al. (2011)
that previous studies failed to show such clear effects because their
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FIGURE 5| The effect of each feature on the conditional probability of

naming a given object: (A) distance, (B) area, (C) salience. These figures
were generated by dividing each feature range into 5% quantiles, and plotting

the probability of mentioning a landmark from that quantile. Binomial
distributions were then fitted to provide confidence intervals. The dotted line
shows an estimate of the prior probability of selecting a landmark.

stimuli were too simple. The fact that cluttered scenes correlate
with longer referring expressions overall and that the effect of
landmark size on landmark selection is greater in cluttered scenes
suggests that it is indeed the visual complexity of these scenes
that renders an object’s visual properties important. The beach
scene
human figures which are generally poor choices as landmarks,
since most of them are no easier to find than the targets.
Objects like the red and white umbrella, however, “pop-out” of
the scene, facilitating efficient visual search.

Of course, salience is not the only driving force behind land-
mark selection. Participants might select landmarks with lower
computed salience for a variety of reasons. In some cases, these
landmarks appear to be intended as confirmation that the right
object has been found, rather than an aid in finding the object to
begin with. In others, their attention might be strongly directed
toward the region around the target, so that objects appear per-
ceptually salient to them despite not being visually salient to an
observer who is unaware of the target’s location. Such task-based
effects on gaze and attentional allocation are known from other
studies (Land et al., 1999).

This raises the further question of how closely our computa-
tional salience prediction algorithm corresponds to actual human
perception. Certainly it contributes something more than sim-
ple area and centrality (the model of salience implemented in
Kelleher et al., 2005). We are currently performing visual search
experiments in which participants are asked to find the targets
and landmarks used in this study given non-linguistic instruc-
tions in the form of thumbnail images. This should help us decide
how well the Torralba et al. (2006) system is predicting what par-
ticipants actually see when they look at a scene. If it is doing a

Table 4 | Results of mixed-effects model for predicting whether a

landmark would be included in a description.

β SE p-value

Lmark Area 0.57 0.05 <0.001

Lmark Salience 0.25 0.11 <0.05

Dist to targ −0.99 0.05 <0.001

Clutter 0.11 0.07 0.10

Area × Sal −0.22 0.04 <0.001

Area × Dist 0.21 0.03 <0.001

Area × Clutter 0.20 0.05 <0.001

Sal × Dist 0.04 0.03 0.23

Sal × Clutter −0.03 0.11 0.78

Dist × Clutter 0.05 0.05 0.31

Area × Sal × Dist −0.09 0.02 <0.001

Area × Sal × Clut −0.19 0.03 <0.001

Area × Dist × Clut 0.11 0.03 <0.001

Sal × Dist × Clut 0.00 0.03 0.99

Area × Sal × Dist × Clut −0.05 0.02 <0.05

Bolding indicates main effects or interactions that reached significance.

relatively good job, many landmarks that appear non-salient may
have been selected due to task effects; otherwise, they may in fact
be salient in ways unrepresented by the model.

While we have shown that salience has an effect on referring
expression production, a critical question remains: do speakers
choose to talk about salient objects in order to save themselves
visual work, or do they perform a relatively comprehensive scan,
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but prefer to talk about objects that will be easier for listeners to
find? In other words, is the observed effect driven by participant
efficiency, or is it a case of “audience design” in which speakers try
to make listeners’ tasks efficient? REG models like the incremental
algorithm of Pechmann (2009) would predict speaker efficiency
effects, while minimal-description (Gricean) models like Dale
and Reiter (1995) predict audience design.

The current study is insufficient to resolve this question.
Although a negative finding (that visual salience had no effect)
would have been fatal for the incremental model, the minimal-
description model can incorporate visual salience (as in Kelleher
et al., 2005) by modifying its utility function to prefer descriptions
that are visually efficient rather than simply short. The models do
make differing predictions about real-time processing, however.
The incremental algorithm suggests speakers select landmarks
by rapidly scanning near the target for visually salient objects.
Minimalist models predict that the speaker makes a slower and
more exhaustive scan to build a list of potential landmarks, then
selects among them according to the utility function. The reaction
time study of Gatt et al. (2012) found support for the mini-
malist model, but on visual stimuli of the type for which visual
salience typically has little effect on REG. We conjecture that the
results might be different on our stimuli, and intend to test this
hypothesis in the future.

Beyond REG, our results also contribute to the ongoing debate
surrounding the importance of salience in visual perception. Since
the introduction of computational salience models, vision scien-
tists have been able to test predictions from these models and
compare them to the distributions of fixations obtained during
eye-tracking studies. Specifically, the majority of this work has
centered around the question of whether bottom-up salience can
provide a robust explanation for the distribution of fixation loca-
tions during a variety of tasks such as free-viewing, visual search,
and scene memorization. Furthermore, bottom-up salience is fre-
quently taken as a benchmark to evaluate other factors against.
For example, Tatler (2007) shows that there is a considerable bias
toward fixating the center of an image; Einhauser et al. (2008)
argue that people prefer to look at objects rather than low-level
salient regions. Similarly, Nuthmann and Henderson (2010) argue
that fixations are directed to the center of objects rather than
salient regions; Torralba et al. (2006) show that a contextual map
of where the target is likely to appear outperforms bottom-up
salience in the prediction of fixation locations during visual search.

The work presented here shows that low-level visual salience
plays an important role even in higher-level task-driven cogni-
tive behavior. However, results like these suggest that a more
object-centric model of visual attention might do even better.

Our results support the idea of a close connection between vision
and language, where relatively low-level mechanisms on one side
can influence the other. We hope that further study of tasks like
REG can reveal more about this interface and what kinds of
information pass through it.

This study shows a clear effect of visual properties on the
production of referring expressions, both in length and in compo-
sition. This conclusion may seem obvious – surely the complexity
of the image people are looking at should affect what they say.
But nonetheless, over a decade of research has failed to mean-
ingfully establish it, producing instead a confusing array of weak
results and failures to find significance. Moreover, this gap in
the research record has had significant influence on the models
proposed for REG. Psychological models like Gatt et al. (2012)
propose a relatively limited role for vision in REG, which they
treat as a pre-process reducing a visual scene to an unordered list
of objects and assigning each one a set of categorical features.
Computational models of REG similarly pay little attention to
the perceptual underpinnings of vision – neither minimalist nor
incremental models have gone beyond Kelleher et al.’s (2005) sim-
plistic use of area as a proxy for visual salience. Without a clear
demonstration of what kind of images are necessary to produce
salience and clutter effects and how influential they can be, there
is no motivation to incorporate such features into these models.

This paper should serve as to correct such views. For suffi-
ciently complex images, visual features do matter, and the coef-
ficients in our models make explicit predictions about how much
a particular degree of corpus-wide variation in visual salience is
expected to influence the results. In order to generalize to the
full range of human performance, we argue that future mod-
els of REG should incorporate up-to-date models of low-level
perception from the vision literature. Their performance should
be evaluated on complex images with hundreds of objects, each
differing in salience, as well as the arrays of ten or twenty similar-
looking objects used in previous work. Finally, vision scientists
working on salience should consider their models to be more than
simple fixation predictors; visual salience has high-level cognitive
effects which surface even in simple experiments.
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