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The current study aims to answer two main questions. First, is there a difference between
the representations of the numerical and the physical properties of visually presented
numbers? Second, can the relevancy of the dimension change its representation? In a
numerical Stroop task, participants were asked to indicate either the physically or the
numerically larger value of two digits. The ratio between the physical sizes and the
numerical values changed orthogonally from 0.1 (the largest difference) to 0.8. Reaction
times (RT) were plotted as a function of both physical and numerical ratios. Trend analysis
revealed that while the numerical dimension followed Weber’s law regardless of task
demands, the physical ratio deviated from linearity. Our results suggest that discrete and
continuous magnitudes are represented by different yet interactive systems rather than
by a shared representation.
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INTRODUCTION
By a very early age, we estimate and compare discrete (number of
items in a group) and continuous (brightness, loudness, size, etc.)
magnitudes. This ability is important for survival across species.
Honeybees distinguish between flowers by “counting” the num-
bers of petals (Leppik, 1956), lions assess the number of their
opponents by listening to their roars, and act accordingly in order
to survive (McComb et al., 1994). There are many other examples
[e.g., fish (Agrillo et al., 2008); birds (Koehler, 1951); avian (Lyon,
2003); amphibians (Uller et al., 2003)].

How different magnitudes are represented and processed is
one of the pressing questions in numerical cognition literature. A
recent theory—the approximate number system (ANS) (Cantlon
et al., 2009)—emphasizes the commonalities between discrete
and continuous magnitudes (numbers, numerosity, time, phys-
ical size, brightness, etc.) and suggests that all these magnitudes
are processed by a common algorithm. One of the hallmarks of
the ANS is that performance in comparative judgments of the
investigated magnitudes is best described by Weber’s law. Namely,
the ability to discriminate between two magnitudes depends on
the ratio between them (the ratio effect). This ratio dependency
is also the distinguishing feature of core system 1 suggested by
Feigenson et al. (2004). Core system 1 is a system that represents
approximate numerical magnitudes independently from non-
numerical properties. Note, however, that core system 1 relates
only to non-symbolic quantities. Walsh (2003) suggested that all
magnitudes, in all modalities, are represented in the same region
in the brain—the parietal lobe. Moreover, he argues that since
they are all needed to allow us to physically interact with the

environment, the purpose of all magnitude processing is to guide
motor actions.

Numbers are special magnitudes; they are symbols of size. No
other species has developed this kind of representation. Dehaene
and Akhavein (1995) suggested that numbers are a type of spe-
cial language. According to this view, we share with other animals
the “number sense”—a system that enables us to crudely esti-
mate quantities. Alongside the “number sense,” which allows for
an approximate representation of numbers, exists a symbolic
representation in the form of numbers that enables us to accu-
rately represent magnitudes. Several findings support that claim.
Studies conducted with adults from secluded Amazonian tribes
with a very limited numerical lexicon revealed that the repre-
sentation of magnitudes is less accurate than that of participants
from the West of the same age (Gordon, 2004; Pica et al., 2004).
However, other cultural differences may contribute to these dif-
ferences; in cultures with a limited numerical lexicon, children
are not taught mathematics systematically—for example, they are
not exposed to linear representations of numbers (such as on a
ruler).

Izard and Dehaene’s (2008) study provides additional evi-
dence that the semantic meaning of numbers contributes to an
exact representation of magnitudes. In this study participants
were briefly exposed to arrays of dots and had to estimate their
numerosity. One group of participants was first introduced to a
standard array and told that it was made up of 30 dots. Magnitude
estimations made by this group were more accurate than the
group that was not introduced to a standard. The authors con-
cluded that the verbal numerical value given for the standard
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“calibrated” the mental number line. In order for that manip-
ulation to take effect, one must understand the meaning of the
number. For example, introducing a standard of 500 dots to a
child that can count only up to 100 does not create the same
calibration effect.

In light of these differences, Cohen Kadosh et al. (2005)
reviewed studies that searched for the commonalities and differ-
ences between numbers and other magnitudes, such as physical
size, time, and brightness. Behaviorally, a representation is con-
sidered to be shared among different magnitudes if these magni-
tudes are characterized by similar effects, specifically, the distance
and size effects. The distance effect was first discovered for num-
bers by Moyer and Landauer (1967). The authors presented adult
participants with pairs of numbers, different numerical distances
apart, and asked them to indicate the numerically larger num-
ber. The numerical distance was found to modulate reaction times
(RT). Namely, RT was faster as the distance between the numbers
grew (e.g., faster response for [2 8] than for [6 8])—the distance
effect. In addition, the size of the numbers affected RT; for a con-
stant distance, RT for two small numbers (e.g., 2 3) was faster than
for two large numbers (e.g., 7 8)—the size effect. Note that while
the distance effect alone explains a significant part of the vari-
ance, the ratio (i.e., smaller divided by larger magnitude) explains
more variance in number comparisons (Moyer and Landauer,
1967). Similar effects were found for comparison of physical sizes
such as line length, brightness, and angles (Cohen Kadosh et al.,
2005).

Another way to approach the question of shared representa-
tions is by looking at interactions when comparing two different
dimensions. In a study by Henik and Tzelgov (1982), participants
were presented with two digits and were asked to indicate the
larger number (with respect to either physical size or numeri-
cal value). In congruent trials, physically larger numbers were
also numerically larger (e.g., 4 2). In incongruent trials, phys-
ically larger numbers were numerically smaller (e.g., 4 2). In
neutral trials, only one dimension was manipulated. In a physi-
cal task, neutral trials included the same number in two different
physical sizes (e.g., 2 2), and in a numerical task, neutral trials
included two different numbers of the same physical size (e.g.,
2 4). Responses were influenced by the degree of congruency
between relevant and irrelevant dimensions (congruent trials
were faster than neutrals, and incongruent trials were the slow-
est), suggesting automatic processing of numerical values, even
when these values were irrelevant to the task: the size-congruity
effect. Moreover, manipulating the numerical distance had an
effect even when it was irrelevant to the task. Hence, numeri-
cal distances were automatically computed in this task and they
affected relevant judgment. The size-congruity effect was found
with other continuous magnitudes such as brightness (Cohen
Kadosh et al., 2008a) and the height of the number (Rubinsten
and Henik, 2005). According to Cohen Kadosh et al. (2005), the
size-congruity effect “suggests that different types of magnitude
tap the same magnitude mechanism” (p. 1283).

To summarize, in the current literature, the presence of size
and distance effects and the size-congruity effect in different
magnitudes is brought as evidence of a shared representation.
We propose that although comparative judgment of different

dimensions results in a ratio effect, there might be subtler
differences indicating that these magnitudes are processed by
different systems. We shall now explain that suggestion.

Some studies in numerical cognition literature have concluded
that ratio dependency is evidence of compliance with Weber’s law
(see Odic et al., 2013). However, Weber’s law is concerned with
linear ratio dependency. Thus, performance for a specific mag-
nitude might be described as ratio-dependent but non-linear.
Why is that distinction important? Plotting RT as a function of
the ratio between two magnitudes [smaller divided by larger; see
Cantlon and Brannon (2006)] suggests that for a fixed-size ratio
increment of X, RT will increase by a constant amount. Thus, the
difference between responses to ratios 0.2 and 0.3 is identical to
the difference between responses to ratios 0.7 and 0.8. Namely,
discriminability increases linearly, yielding a linear trend. In con-
trast, a non-linear ratio dependency, which can be described by
a power function (e.g., Y = axb + c with b > 1), would suggest
that RT does not change by a constant amount. RT increases,
non-linearly, with the similarity (of size, for example) between
the stimuli. For example, an increment from ratio 0.2 to 0.3 pro-
duces a lower increase in RT than an increment in size ratio from
0.7 to 0.8. This would imply that discriminability becomes more
difficult with increase in similarity.

THE CURRENT STUDY
In the current study, participants were presented with two num-
bers and were asked to choose either the physically or the numer-
ically larger number. The ratio between the magnitudes (smaller
divided by larger magnitude; for physical size or numerical value)
varied from 0.1 to 0.8, with 0.1 being the largest difference (e.g., 2

and 7 or 2 2), and 0.8 being the smallest difference (e.g., 6 and 8
or 2 2). Next, we plotted RT as a function of the magnitude ratio
for every task. In that way, we could examine more closely possi-
ble differences between performance in comparison of numerical
values and physical sizes. In Experiment 1, only one dimension
was manipulated [i.e., the neutral condition in a numerical Stroop
task as described in Henik and Tzelgov (1982)]. For every par-
ticipant and for every task, RT was plotted as a function of the
ratio between the to-be-compared magnitudes. These plots were
compared once to a power function (RT = axb + c) and once to
a linear function, and the fit values (r2) were recorded. If the fit to
the power function when b = 1 and the fit to the linear function
did not differ, it indicated that the trend was linear. However, if
the fit to the power function when b �= 1 was better than the fit to
the linear function, then the trend deviated from linearity. Note
that the exponent is not just one more free parameter that can
explain more variance, because if the trend is linear, the exponent
b = 1 would force the power function to be linear as well. Thus,
the exponent can only add to the explained variance if different
than 1.

Based on previous findings, we expected that performance in
the numerical task would be best described by Weber’s law; first,
Weber’s law has been suggested in studies that examined numer-
ical discrimination (Moyer and Landauer, 1967; Cantlon and
Brannon, 2006), and second, as suggested by Izard and Dehaene
(2008), the exact numerical values allow us to represent magni-
tudes more accurately. There is no dispute about the value of the
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number 3, or that the difference between 9 and 4 is exactly 5. This
is true for all the number pairs used here (i.e., numbers from 1 to
9). Thus, it is reasonable to believe that the level of difficulty will
increase with increase in similarity between the stimuli1.

Unlike the exact verbal representation of the difference
between two numbers (i.e., 3 and 5), we cannot tell the exact
physical size of the number 3 and we cannot tell the exact dif-
ference in size between 3 and 3. For that reason, we might expect
deviations from Weber’s law. In addition, representation of the
mental number line was found to be modulated by other factors,
such as attention. For example, Anobile et al. (2011) found that
under attentionally demanding conditions, an otherwise linear
mapping becomes compressed and non-linear. It is possible that
the verbal aspect of numbers has a similar effect on the repre-
sentation of their physical size. Accordingly, for the physical task,
we asked whether performance in the physical comparison task
would comply with Weber’s law or not.

In Experiment 2, both numerical and physical dimensions
were orthogonally manipulated to create congruent and incon-
gruent conditions [as described in Henik and Tzelgov (1982)].
RT was plotted as a function of both the physical and the numer-
ical magnitudes. Here we investigated if (and how) the relevancy
of the dimension influences performance. Assuming that phys-
ical and numerical magnitudes are processed by different sys-
tems/mechanisms and that numerical values are automatically
processed, we would expect that: (1) performance in the numer-
ical dimension would comply with Weber’s law regardless of task
demands; (2) when the physical dimension is relevant, perfor-
mance in the physical task might deviate from Weber’s law; and
(3) when the physical dimension is irrelevant (in the numerical
task), performance in the physical dimension might not devi-
ate from Weber’s law due to an interaction with a very accurate
numerical magnitude representation.

Questions regarding shared or separate representation of dif-
ferent magnitudes and the interactions between such representa-
tions are of great developmental interest. Odic et al. (2013) had
3- to 6-year-olds discriminate between quantities (numbers) or
the area of irregular shapes. They found that the acuity of area
discrimination was better than number discrimination. Namely,
participants were able to detect much smaller changes in area
than in numerosity. However, both area acuity and number acu-
ity showed a similar growth function throughout development.
Thus, the authors raised the possibility of similar yet separated
development for different magnitudes. Similarly, Lourenco and
Longo (2010) suggested that in early age, all magnitudes are repre-
sented by a shared system. However, with time, there is a division
of this system into subsystems that specialize in the processing

1“Exact representation” refers to a specific value that goes with the numerical
symbol (i.e., 3 represents exactly 3 items). This is in contrast to physical sizes,
such as length, that do not have verbal labels to represent them, and which
we can only estimate their exact size. Both exact and non-exact magnitudes
can be placed on a magnitude line, which is logarithmic with overlapping rep-
resentations. However, as suggested by Izard and Dehaene (2008), being able
to represent exact and not estimated size, might “calibrate” the mental num-
ber line. Namely, we still expect a ratio effect but this ratio effect might have
different manifestations (such as different exponents).

of specific magnitudes. Some theories suggest that understand-
ing non-symbolic number is the basis for understanding symbolic
numbers. Von Aster and Shalev (2007), for example, suggested a
4-step developmental model of numerical cognition. According
to this model, we are born with the ability to represent and
approximate the cardinality of magnitudes. This ability provides
the basic meaning of numbers (step 1). In step 2, the child learns
to associate quantity with number words, and in step 3, with the
Arabic numeral symbols. The association to Arabic symbols is a
precondition for the development of the mental number line (step
4). In step 4, ordinality is represented as a second (and acquired)
core system for numbers.

The current experiment provides a picture about the rep-
resentation of symbolic (numbers) and non-symbolic (physical
size) magnitudes (Experiment 1), and the interaction between
these representations (Experiment 2) in adults. This data and this
methodology can serve as a baseline for studies aiming to inves-
tigate representation of symbolic and non-symbolic sizes (and
an interaction between them) at different points in normal and
impaired development.

EXPERIMENT 1—UNI-DIMENSIONAL COMPARISONS
METHODS
Participants
Fourteen volunteers (11 females, 3 male, mean age: 23 years),
students from Ben-Gurion University of the Negev or Achva
Academic College, participated in the experiment for class credit.
All participants had intact or corrected vision and no learning
disabilities. Seven performed the physical task first and seven
performed the numerical task first.

Stimuli
Each stimulus was composed of two digits from 1 to 9. The
numbers (Courier New font) appeared in lime color on a black
background, each 1.75 cm from the center of a computer screen
(i.e., center of the number to center of the screen). The partici-
pants sat at a distance of about 50 cm from the screen. Numbers
(1–9) were paired to create eight numerical ratios (0.1–0.8). The
ratios were rounded to one digit after the decimal point (see
Table 1). Note that the ratio is a continuum. Thus, although
the ratios in every category may differ from pair to pair, all the
pairs with ratio 0.3, for example, are larger than 0.2 and smaller
than 0.4 [see similar design in Cantlon and Brannon (2006)]. For
example, to create the numerical ratio of 0.3, we used the pair
2 and 6 (2/6 = 0.3). Similarly, nine font sizes (12.5, 25, 37.5,
50, 62.5, 75, 87.5, 100, and 112.5) were paired in order to cre-
ate eight physical size ratios (0.1–0.8). The physical sizes were
adopted from Cohen Kadosh et al. (2008b)—Experiment 2. The
pairs of physical sizes we used are outlined in Table 2. For exam-
ple, to create the physical ratio of 0.5, we used the fonts 50 and
100 (50/100 = 0.5) or 25 and 62.5, or 37.5 and 75. The same sizes
were used for more than one physical ratio to avoid confounding
of size and ratio.

Experiment 1 included three physical blocks and three numer-
ical blocks. In the physical block, the same number appeared
twice in different physical sizes. In total, a physical block con-
tained 96 stimuli: 8 physical ratios (0.1–0.8) × 2 sides (larger
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Table 1 | Pairs of stimuli by numerical ratio.

Category ratio Ratio Large number Small number

0.1 0.11 9 1

0.13 8 1

0.14 7 1

0.2 0.20 5 1

0.22 9 2

0.25 4 1

0.25 8 2

0.3 0.33 3 1

0.33 6 2

0.33 9 3

0.4 0.40 5 2

0.43 7 3

0.44 9 4

0.5 0.50 2 1

0.50 4 2

0.50 6 3

0.50 8 4

0.6 0.60 5 3

0.63 8 5

0.67 3 2

0.67 6 4

0.67 9 6

0.7 0.71 7 5

0.75 4 3

0.75 8 6

0.8 0.80 5 4

0.83 6 5

0.86 7 6

Ratio, (small number/large number) with an accuracy of 2 decimal places.

number on left vs. on right) × 6 pairs of numbers. In the numeri-
cal block, different numbers appeared in the same physical size. In
total, a numerical block contained 96 stimuli: 8 numerical ratios
(0.1–0.8) × 2 sides (larger number on left vs. on right) × 6 pairs
of numbers. In both tasks, the specific pairs of numbers and their
specific physical sizes within a given ratio were randomly selected
for every participant.

Procedure
Participants were asked to decide, as quickly as possible while
avoiding errors, which of the two numbers was physically larger
(in the physical block), or numerically larger (in the numerical
block). They were asked to indicate their decision by pressing a
key (p or q) corresponding to the side of the larger number. Each
trial began with a central fixation point presented for 300 ms. Five
hundred ms after the elimination of the fixation point, a pair of
numbers appeared and remained in view until the participant
pressed a key. The next trial started 500 ms after response onset

Table 2 | Pairs of stimuli by physical ratio.

Category ratio Ratio Large font size Small font size

0.1 0.11 112.5 12.5

0.13 100 12.5

0.14 87.5 12.5

0.2 0.20 62.5 12.5

0.22 112.5 25

0.25 50 12.5

0.25 100 25

0.3 0.33 37.5 12.5

0.33 75 25

0.33 112.5 37.5

0.4 0.40 62.5 25

0.43 87.5 37.5

0.44 112.5 50

0.5 0.50 25 12.5

0.50 50 25

0.50 75 37.5

0.50 100 62.5

0.6 0.60 62.5 37.5

0.63 100 62.5

0.67 37.5 25

0.67 75 50

0.67 112.5 75

0.7 0.71 87.5 62.5

0.75 50 37.5

0.75 100 75

0.8 0.80 62.5 50

0.83 75 62.5

0.86 87.5 75

Ratio, (small size/large size) with an accuracy of 2 decimal places.

(see Figures 1A, 2A). For every task, instructions and six practice
trials were presented first, followed by three experimental blocks.
The stimuli within a block appeared in a random order.

Design
For each task there was a single independent variable of ratio
that had 8 possible values. The dependent measures were RT and
accuracy.

RESULTS
We calculated error rates and mean RT in milliseconds (ms) for
correct responses only, for every ratio (numerical and physical).
Very low (less than 150 ms) and very high (over 3000 ms) RTs
were excluded from the analysis (1 trial in the numerical task).
These mean RTs were subjected to a One-Way analysis of variance
(ANOVA) with ratio as an independent variable. The main effects
of numerical and physical ratios were significant [(F(7, 91) =
32.49, MSE = 465, p < 0.001, η2

p = 0.71) and (F(7, 91) = 18.92,
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FIGURE 1 | Neutral numerical task. (A) Procedure. (B) Results. Fitting the
data to a power function and a linear function was not significantly different.

FIGURE 2 | Neutral physical task. (A) Procedure. (B) Results. Fitting the
data to a power function resulted in higher fits than fitting to a linear
function.

MSE = 397, p < 0.001, η2
p = 0.59), respectively]. Namely, RT

increased with magnitude ratio. Accuracy for the numerical task
(mean = 0.97, SD = 0.16) and for the physical task (mean =
0.98, SD = 0.14) presented a similar pattern: for the numerical
task: F(7,91) = 25.7, MSE = 0.0003, p < 0.001, η2

p = 0.66, and
for the physical task: F(7, 91) = 13.84, MSE = 0.0004, p < 0.001,
η2

p = 0.52.

Exponents analyses
In order to investigate whether numerical and physical compar-
isons result in different functions, we plotted each participant’s
RT as a function of the magnitude ratio (i.e., physical ratio
or numerical ratio) and fitted the plots to a power function
(RT = axb + c) using the Matlab curve fitting tool. Then, the
exponent values were used as a dependent variable in a t-test for
dependent samples. Three participants were removed from this
analysis due to r2 that deviated from the average by more than
two statistical deviations. According to the results, the difference
between the exponents for physical comparisons and numeri-
cal comparisons was significant. Specifically, the exponent was
higher for the physical task (average exponent = 3.46, SD = 2.2)
than for the numerical task (average exponent = 1.44, SD = 0.75)
t(10) = 2.92, p < 0.05. A one-sample t-test revealed that while the
exponents in the physical task were significantly different than
one [t(10) = 3.4, p < 0.01], the exponents in the numerical task
were not significantly different than one [t(10) = 1.71, ns]. This
suggests that performance in the physical comparison task, but
not the numerical comparison task, deviated from linearity, thus
violating Weber’s law.

To further strengthen this suggestion, we fitted the data of
every participant in every task twice; once to a linear function
and once to a power function. We then used the fit values (r2)
as the dependent measures in t-tests for dependent samples. This
was done for each task separately. For the numerical task, there
was no significant difference between the fits of the two functions
(t < 1, ns). This was expected since in this task the exponent val-
ues calculated by the fitting process were close to one; this means
that, in practice, the exponential equation behaved as a linear one.
For the physical task, r2 values were higher when the data was
fitted to a power function than when fitted to a linear function
t(12) = 2.9, p = 0.01.

DISCUSSION
The results of Experiment 1 revealed a different relationship
between the RT and magnitude ratio for physical sizes and
numerical values and suggest that the two dimensions have differ-
ent representations. In the numerical task, performance complied
with Weber’s law. Namely, discriminability increased linearly. In
contrast, in the physical task RT did not change by a constant
amount, violating Weber’s law; rather, for a fixed increment in
size ratio, RT increased with the similarity between the stimuli,
although not linearly.

We suggest that the difference between the representations
(numerical and physical properties) might stem from the differ-
ent nature of the stimuli: numbers are a special kind of magni-
tude: they are discrete, countable, symbolic representations with
verbal labels. Physical sizes, on the other hand, are non-countable,
continuous magnitudes that one can only estimate. Thus, while
numbers are represented on a “mental number line” that complies
with Weber’s law, physical sizes may be represented on a more
general “mental magnitude line” that is noisier due to the nature
of continuous properties. Our data cannot determine between
the possibility of one mental magnitude line with different lev-
els of noise for different representations, or two separate systems:
one that represents numbers, and one that represents continuous
properties [similar to the suggestions of Odic et al. (2013) and
Lourenco and Longo (2010)].

The current study involved adults. It will be interesting to
use this design with children who are just starting to learn
the numerical symbols system; if our hypothesis is correct and
the linear representation is due to an exact verbal representa-
tion of numbers and the difference between them, then what
trend will children early in their formal education produce?
Studying this trend, and not only the existence of a ratio effect,
can be more informative and detect more subtle changes in
performance.

EXPERIMENT 2—NUMERICAL STROOP TASKS
Given the congruity effect and the difference between the repre-
sentations of symbolic and non-symbolic dimensions observed
in Experiment 1, it is interesting to ask what happens to
these representations in a numerical Stroop task, like the one
employed by Henik and Tzelgov (1982). Can the relevancy of a
dimension modulate mental representations? Can different rep-
resentations co-exist? The following experiment addresses these
questions.
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METHODS
Participants
Twenty volunteers (15 females, 5 males, mean age: 22.95 years),
students from Ben-Gurion University of the Negev or Achva
Academic College, participated in the experiment for class credit.
All participants had intact or corrected vision, and no learning
disabilities. Ten participants performed the physical task and 10
performed the numerical task.

Stimuli
The same physical sizes and numerical ratios of digits from
Experiment 1 were used here. The stimuli created two congruency
conditions: congruent or incongruent, as described by Henik and
Tzelgov (1982) (see Figure 3). Similar to Experiment 1, instead
of manipulating the distance between the numbers, we manipu-
lated the ratio of both dimensions. We used eight physical ratios
and eight numerical ratios. An experimental block (numerical
block as well as physical block) contained 256 stimuli: 2 condi-
tions (congruent, incongruent) × 8 physical ratios (0.1–0.8) × 8
numerical ratios (0.1–0.8) × 2 sides of presentation. The block
repeated 14 times, 7 times in a session. In every block, the specific
numbers and their absolute size were randomly selected.

Procedure
The procedure was similar to that of Experiment 1 except that
blocks included congruent and incongruent trials, as can be seen
in Figure 3. The experiment was completed in two sessions.

RESULTS
In the physical task, the average accuracy rate was 0.97 (SD =
0.17), and in the numerical task, the average accuracy rate was
0.95 (SD = 0.21). In both tasks, there was not enough variance to
analyze accuracy rates for the different conditions.

Mean RT in milliseconds was calculated for correct responses
only. Very high (over 3000 ms) and very low (under 150 ms) RTs
were eliminated from the analysis (3 trials—only in the numeri-
cal task). Mean RTs were subjected to a three-way ANOVA with
physical size ratio (0.1–0.8), numerical size ratio (0.1–0.8) and

FIGURE 3 | Procedure of Experiment 2. Trials in these blocks were either
congruent or incongruent.

congruity (congruent and incongruent) as independent variables.
Physical and numerical tasks were analyzed separately.

In the physical task, the three main effects were significant:
physical ratio, F(7, 63) = 103.12, MSE = 4472, p < 0.001, η2

p =
0.92; numerical ratio, F(7, 63) = 4.04, MSE = 398, p < 0.001,
η2

p = 0.31; and congruity, F(1, 9) = 64.88, MSE = 2560, p <

0.001, η2
p = 0.88. The effect of the physical and the numerical

ratios can be seen in Figures 4A,B; RT was the slowest when
the ratio between the physical magnitudes (the relevant dimen-
sion) was 0.8 (the smallest difference), and the ratio between
the numerical values (the irrelevant dimension) was 0.1 (the
largest difference). Physical ratio was found to influence con-
gruity [F(7, 63) = 18.8, MSE = 1374, p < 0.001, η2

p = 0.68] as

did numerical ratio [F(7, 63) = 6.4, MSE = 729, p < 0.001, η2
p =

0.42]. As can be seen in Figure 4C, the congruity effect was the
strongest when the ratio between the physical magnitudes was
0.8, and the ratio between the numerical values was 0.1. The triple
interaction between physical ratio, numerical ratio and congruity
was not significant [F(49, 441) = 1.2, ns, η2

p = 0.12].
In the numerical task, the three main effects were signif-

icant: physical ratio, F(7, 63) = 67.08, MSE = 1250, p < 0.001,
η2

p = 0.88; numerical ratio, F(7,63) = 113.15, MSE = 977, p <

0.001, η2
p = 0.93; and congruity, F(1, 9) = 78.11, MSE = 8795,

p < 0.001, η2
p = 0.9. The effect of the physical and the numeri-

cal ratios can be seen in Figures 5A,B; RT was the slowest when
the ratio between the numerical values (the relevant dimension)
was 0.8 (the smallest difference), and the ratio between the phys-
ical sizes (the irrelevant dimension) was 0.1 (the largest differ-
ence). Physical ratio was found to influence congruity [F(7, 63) =
19.61, MSE = 808, p < 0.001, η2

p = 0.69] as did numerical ratio

[F(7, 63) = 13.43, MSE = 410, p < 0.001, η2
p = 0.6]; this can be

seen in Figure 5C. The congruity effect was strongest when the
ratio between the numerical values was 0.8, and the ratio between
the physical sizes was 0.1. The triple interaction between phys-
ical ratio, numerical ratio and congruity was not significant
[F(49, 441) = 1.2, ns, η2

p = 0.12].

Trend analyses
Similar to the previous experiment, we fitted the data to two
functions:

RT = ax + cy + d. (1)

RT = axb + cy + d. (2)

In these functions, x represents the physical dimension (e.g.,
physical ratios from 0.1 to 0.8) and y represents the numerical
dimension (e.g., numerical ratios from 0.1 to 0.8); d indicates the
minimal RT; and b in function (2) is the exponent of the phys-
ical dimension. These functions are derived from the ANOVA
main effects for physical (x) and numerical (y) ratios. The absence
of a combined xy component in the functions reflects the lack
of interaction between these two dimensions. According to our
results from Experiment 1, function (1) is expected to give the
best fit according to Weber’s law (i.e., should fit to the results
of the numerical task of Experiment 2). On the other hand, the
best fit for the physical task of Experiment 2 should be function
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FIGURE 4 | Experiment 2: physical task results. Average RT (for
every participant in every condition) was plotted as a function of
both physical (x-axis) and numerical (y-axis) ratios. The color of the
surface represent RTs—blue is for the lowest RTs and red for the

highest RTs. Fit values for plots (A), (B), and (C) are higher than
the average of the fits based on individual participants. (D) Fits (r2)
when fitting the plots of the different conditions to function (1) or
function (2).

(2) since the numerical dimension was linear while the physi-
cal dimension deviated from linearity. Similar to Experiment 1,
we fitted the plot for every participant in every task (physical
or numerical) and every condition (congruent and incongruent)
and recorded the fit (r2) values (see Figures 4D, 5D). These fits
were then used as dependent variables in a two-way ANOVA, with
task as a between-subject variable and condition as within-subject
variable. For both the physical and numerical tasks, fits were
higher for function (2) [F(1, 18) = 38.1, MSE = 0.002, p < 0.001,
η2

p = 0.38]. The analysis also revealed a main effect for condition,
where fits were higher for incongruent than for congruent trials
[F(1, 18) = 45.6, MSE = 0.01, p < 0.001, η2

p = 0.72]. In addition,
a significant Two-Way interaction between task and condition was
found; the difference between the fits for the numerical task was
smaller than for the physical task [F(1, 18) = 5.97, MSE = 0.002,
p < 0.05, η2

p = 0.25].

GENERAL DISCUSSION
In the current study we took advantage of the fact that: (1) visu-
ally presented numbers have two dimensions of magnitude; and
(2) that numbers are processed automatically, to answer two main
questions. First, is there a difference between the representations
of numerical and physical magnitudes? Second, can the relevancy
of the dimension change its representation? To answer these ques-
tions, participants compared the physical size or the numerical

values of pairs of numbers. In Experiment 1, only one dimen-
sion was manipulated. In Experiment 2, both dimensions were
orthogonally manipulated to create congruent and incongruent
conditions.

In Experiment 1, we found that performance in the numerical
task fits the notion of Weber’s law, as predicted by the literature.
In contrast, performance in the physical task, though still ratio-
dependent, deviated from Weber’s law. This was evidenced by two
results. First, fits for power functions were higher than for linear
functions only in the physical task. Second, when fitting the plots
to an exponential function, the exponents obtained in the physical
task were significantly higher than those obtained in the numeri-
cal task. This pattern of results fits our suggestion that differences
exist between representations of numerical and physical magni-
tudes. We hypothesized that these differences could be attributed
to the exact verbal representation of numerical values in compar-
ison to the less accurate nature of physical sizes. However, more
research is necessary to confirm this hypothesis. One way to fur-
ther test this hypothesis is through a developmental study with
children in different stages of their familiarity with the numeri-
cal symbols systems. If our hypothesis is correct, plotting RT as a
function of the numerical ratio, and fitting this plot to a power
function, will yield an exponent greater than 1. This exponent
value will become similar to 1 when the child gains experience
with the numerical symbols system.
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FIGURE 5 | Experiment 2: numerical task results. Average RT (for
every participant in every condition) was plotted as a function of
both physical (x-axis) and numerical (y-axis) ratios. The color of the
surface represent RTs—blue is for the lowest RTs and red for the

highest RTs. Fit values for plots (A), (B), and (C) are higher than
the average of the fits based on individual participants. (D) Fits (r2)
when fitting the plots of the different conditions to function (1) or
function (2).

Our suggestion is in line with other findings in the litera-
ture connecting exact representation with magnitude representa-
tion. Whalen and colleagues (1999) presented participants with a
target number and asked them to press a key repeatedly (with-
out counting) until they believed that they reached the target
number. These results complied with the results of a similar
experiment with animals—the number of presses increased with
the target number, suggesting scalar variability (i.e., encoding
of magnitudes is noisy, and this noise increases proportion-
ally with magnitude) (Gallistel and Gelman, 2000). In a similar
design, participants had to reproduce time durations. The coef-
ficient of the variance (the ratio between the variability of the
estimation and its average) was higher for estimation of time
duration than for non-verbal counting. Duration of time is con-
tinuous, while key pressing is discrete. This may be related to
the change in the coefficient of variance in the two tasks. In a
similar study, Cordes et al. (2001) conducted a key-press exper-
iment with adults under conditions that required either counting
aloud or did not allow vocal or sub-vocal counting (i.e., allowed
only non-verbal counting). In the non-verbal counting condi-
tion, the authors found a power law relationship between the
target number and the average number of presses, suggesting that
alongside of the non-verbal counting mechanisms that we share
with other animals, there exists another representation for verbal
counting.

Additional evidence for the influence of semantic meaning on
the representation of the mental number line comes from line-
mapping experiments with children. Ebersbach et al. (2008) asked
children between the ages of 5- to 9-years old to map numbers
onto a number line. They found that the representation of the
mental number line was influenced by familiarity; mapping was
linear for familiar numbers and logarithmic for less familiar num-
bers. Similar results were obtained in a study by Siegler and Opfer
(2003). In this study, 7-year-olds or adults had to map numbers
onto a line from 0 to 100 or 0 to 1000. While both children and
adults revealed the same linear mapping for 0–100. Children, who
were unfamiliar with numbers above 100, mapped the numbers
logarithmically when they were beyond 100.

Experiment 2 included numerical and physical Stroop tasks.
Unlike previous studies, we had 8 physical and 8 numerical ratios,
and plotted RT as a function of both the physical and the numeri-
cal ratio. In that way, we were able to analyze differences in the
trends of the different dimensions. Our results suggested that
the representation of the physical dimension depends on task
demands; when the physical dimension was relevant its trend
was exponential, similar to the trend of the neutral task (in
Experiment 1). As a result, there was a large difference between
the fits to function (1) that assumes linearity for both physical
and numerical dimensions, and function (2) that allows deviation
from linearity for the physical dimension. Namely, fits were
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higher for function (2). In contrast, when the numerical dimen-
sion was relevant, there was a very small difference between the
fits to functions (1) and (2). This suggests that the trend of the
physical dimension shifted and became more “linear.”

We propose that this shift of exponents is due to an interaction
between the exact magnitude representations of the numerical
values with the estimated magnitude representation of physi-
cal continuous dimensions. Specifically, we suggest that when
participants were asked about the physical size of the numbers,
they activated a spontaneous mental magnitude line, which is
noisier and less organized than the exact number line (Izard
and Dehaene, 2008). The result of such spontaneous activa-
tion of the mental magnitude line representation is the devia-
tion from linearity, much as in the neutral task in Experiment
1. In contrast, when asked about the numerical value of the
numbers, participants activated an exact mental number line
representation. The physical sizes, in turn, could have been
mapped onto that line. To confirm our suggestion, one can
change the stimuli used in the experiment. For example, compare
two continuous magnitudes—brightness and area of squares.
According to our hypothesis, since both dimensions are con-
tinuous, their trend should be exponential, regardless of the
irrelevant dimensions. Since RT was faster and accuracy was
higher in the physical tasks, there is a possibility that the devia-
tion from linearity was a result of a floor effect in small ratios,
where the task was very easy to perform. This is a built-in lim-
itation: we found here that participants were much faster in
comparing sizes than comparing numbers, when comparing a
wide range of ratios. This alone provides important information
about the processing mechanism—something in the process-
ing of the physical size allows it to be faster and more accu-
rate, and to deviate from Weber’s law. If we try to artificially
encourage slower RT, it will no longer be comparable to the
discrete task.

Our experimental design and analysis provide a tool that
developmental studies in the field of numerical cognition can
benefit from for several reasons. First, changes throughout devel-
opment might be subtle. Using a wide range of ratios, instead of 2
or 3 ratios, and analyzing the function created when RT is plotted
as a function of magnitude ratio, might uncover differences that
would be missed in the commonly studied age × (2–3 points)
ratio interaction. The analysis of Experiment 1 can be used to
ask how different magnitudes are represented at different stages of
development. The analysis used in Experiment 2—analyzing the

effect of both physical and numerical ratios on performance—can
answer questions regarding an interaction between representation
of numbers and physical sizes at different ages.

In conclusion, in the current work we examined the ratio effect
in finer resolution compared with studies reported so far in order
to detect differences between representation of numerical values
and physical sizes. To the best of our knowledge, this is the first
work in numerical cognition to use the exponent as a dependent
variable and to investigate the combined influence of different
magnitude ratios on RT in a comparative judgment task.

Our results, coupled with the current literature, suggest that
numerical values and physical magnitudes have different repre-
sentations. This can be the result of two different yet interacting
core systems: a core system that represents continuous magni-
tudes, and a system that represents discrete magnitudes. These
systems are shared across species. The system for continuous mag-
nitudes is ratio-dependent but does not necessarily comply with
Weber’s law. Our pattern of results is in favor of a previous sug-
gestion that the system for processing continuous magnitudes
might be older than the system for processing discrete magni-
tudes (Cantlon et al., 2009; Henik et al., 2012), although further
research is needed to support this notion. An interaction between
symbolic processes (language) and a system for representation
of discrete magnitudes may explain the special and exact repre-
sentation of numbers, as supported by the developmental studies
mentioned above. The interaction between the continuous and
discrete representations is manifested in a change of trend of the
physical dimension when the numerical dimension is relevant;
activating the mental number line to resolve a numerical Stroop
task allows for a less exponential representation of the irrelevant
physical dimension. Note that the representation of continuous
magnitudes on a mental magnitude line has been less investigated,
and it is hard to hypothesize how some of the current mod-
els apply to continuous magnitudes. For example, Verguts et al.
(2005) suggested that the representation of different quantities
is described by a place-coding. It is hard to understand how the
concept of continuous magnitudes can be described by a place-
coding. Thus, more studies in the field are required to confirm
our suggestion.
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