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Numerical processing has been demonstrated to be closely associated with arithmetic
skills, however, our knowledge on the development of the relevant cognitive mechanisms
is limited. The present longitudinal study investigated the developmental trajectories
of numerical processing in 42 children with age-adequate arithmetic development and
41 children with dyscalculia over a 2-year period from beginning of Grade 2, when
children were 7; 6 years old, to beginning of Grade 4. A battery of numerical processing
tasks (dot enumeration, non-symbolic and symbolic comparison of one- and two-digit
numbers, physical comparison, number line estimation) was given five times during the
study (beginning and middle of each school year). Efficiency of numerical processing
was a very good indicator of development in numerical processing while within-task
effects remained largely constant and showed low long-term stability before middle of
Grade 3. Children with dyscalculia showed less efficient numerical processing reflected
in specifically prolonged response times. Importantly, they showed consistently larger
slopes for dot enumeration in the subitizing range, an untypically large compatibility
effect when processing two-digit numbers, and they were consistently less accurate in
placing numbers on a number line. Thus, we were able to identify parameters that can be
used in future research to characterize numerical processing in typical and dyscalculic
development. These parameters can also be helpful for identification of children who
struggle in their numerical development.
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Efficient processing of numbers and numerical sets in young chil-
dren has been found to predict later arithmetic skills (Mazzocco
and Thompson, 2005; Halberda and Feigenson, 2008; de Smedt
et al., 2009; Jordan et al., 2009, 2010; Geary, 2011). There is
also converging evidence that numerical processing is deficient
in individuals with dyscalculia, a severe and persistent disabil-
ity in learning arithmetic which can be highly selective, affecting
learners with normal intelligence (Butterworth et al., 2011). Basic
numerical processing has been proposed to constitute an innate
core mechanism which is evident in infants (Xu and Spelke, 2000;
Xu and Arriaga, 2007) and underlies all further developments
in number processing (Butterworth, 1999; Wilson and Dehaene,
2007; Dehaene, 2011).

Although an association between numerical processing and
arithmetic is clearly established, the construct of numerical pro-
cessing itself is still underspecified: First, various different tasks
(shortly described in the next section) have been used to investi-
gate how humans represent and process numbers and numerical
sets in their cognitive system. It is as yet unclear which tasks and
parameters are best suited to measure typical and atypical devel-
opmental trajectories within the domain of numerical processing.
Second, up to date, empirical evidence on the development of
basic numerical skills comes mostly from cross-sectional stud-
ies (Girelli et al., 2000; Holloway and Ansari, 2008; Landerl and

Kölle, 2009; Schleifer and Landerl, 2011). In the current study,
we repeatedly presented a battery of numerical processing tasks
to children with good and poor arithmetic skills during their
elementary school years (Grades 2–4), allowing a detailed view
on developmental processes. Before explicating the outline of the
current study in detail, we will give an overview of the tasks and
effects used by previous studies to assess numerical development.

In the dot enumeration paradigm, participants have to count
a limited number of dots (usually no more than 10) as quickly
as possible. The efficiency of counting procedures increases over
time (e.g., Jordan et al., 2006; Reeve et al., 2012). Enumeration
tasks induce a characteristic pattern of performance, indicat-
ing two distinct enumeration systems (Vetter et al., 2011): small
numerosities up to three or four are typically responded to
with high accuracy and speed. This process of rapid identifica-
tion of small dot numbers is termed subitizing. When counting
higher numerosities, reaction times and error rates rise with
increasing numerosity, indicating the execution of a sequential
counting procedure. In a recent cross-sectional study, Schleifer
and Landerl (2011) found adult-like subitizing performance in
11-year old, but not in younger children. Full competence in
sequential counting of larger dot arrays was only evident in 14-
year olds, while younger age groups performed at less proficient
levels. The only study that assessed dot counting performance
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longitudinally (7 assessments between the ages of 6 and 11 years)
also reported a consistent decrease of response times with increas-
ing age as well as a growing subitizing range (Reeve et al., 2012).
While 6-year-old children typically subitized two dots, they were
able to subitize three dots by the age of 9. A subitizing range of
four dots was not achieved throughout the study. Interestingly,
both, Reeve et al. (2012) as well as Schleifer and Landerl (2011)
found specific subitizing problems (steeper response time slopes)
in poor achievers, while in the counting range, responses were
generally slower, but the gradients of response time slopes were
similar across achievement groups. These findings suggest that
problems in subitizing may be a particularly useful marker of
dyscalculia (Butterworth, 1999).

Another simple experimental paradigm that is highly infor-
mative with respect to the cognitive representation of number is
number comparison. Individuals are asked to select the numer-
ically larger of two numbers or numerical sets (e.g., dot arrays).
The speed with which this decision is made depends on the
numerical distance between the two numerosities. The smaller
this distance, the slower (and less accurately) the decision is
made due to a larger internal overlap between the two internal
magnitude representations. The acuity of non-symbolic quantity
processing increases during development, allowing children to
discriminate similar numerical sets more precisely (Halberda and
Feigenson, 2008; Piazza et al., 2010). A symbolic distance effect
has been demonstrated even among kindergarteners (Sekuler and
Mierkiewicz, 1977). Acuity of non-symbolic quantity processing
in kindergarten was found to predict arithmetic competence at
age six (Mazzocco et al., 2011b) and interindividual differences
in the acuity of quantity processing were found to be directly
related to arithmetic competence (Libertus et al., 2011). Similarly,
Holloway and Ansari (2008) reported a relatively smaller sym-
bolic distance effect in higher grade levels and interpreted this
age-related decrease as continuing specification of the cognitive
representation of number. In line with this assumption, de Smedt
et al. (2009) demonstrated an association between the symbolic
distance effect and individual differences in math achievement
one year later: Children with a relatively smaller distance effect in
grade one had higher math scores in grade two. However, other
studies found a rather stable influence of numerical distance on
symbolic number comparison across different age or achievement
groups, accompanied by a general decrease in response times
(Girelli et al., 2000; Landerl and Kölle, 2009; Reeve et al., 2012).

Findings on symbolic and non-symbolic number comparison
in dyscalculia are mixed. There is evidence for specific problems
in non-symbolic magnitude comparison among dyscalculic indi-
viduals (Landerl et al., 2009; Piazza et al., 2010; Kucian et al., 2011;
Mazzocco et al., 2011a), however, in some studies the deficits
of dyscalculic individuals were limited to symbolic processing
of Arabic numbers and did not extend to non-symbolic magni-
tudes (Rousselle and Noël, 2007; Iuculano et al., 2008; Landerl
and Kölle, 2009). Based on this discrepancy, Rousselle and Noël
(2007) have suggested that the innate core system of analog mag-
nitude representations in itself may be intact in dyscalculia, but
cannot be efficiently accessed from symbolic representations of
numbers.

The number comparison paradigm has also been used to
investigate the automaticity of numerical processing. When

individuals are asked to decide which of two digits is physically
larger, numerical value interferes with their physical judgments.

Generally, incongruent items (e.g., 4 9) are responded to

more slowly than congruent items (e.g., 4 9; Girelli et al.,
2000; Landerl and Kölle, 2009; Bugden and Ansari, 2011). This
size-congruity effect indicates automatic processing of numbers
and requires a certain amount of experience. Cross-sectional
studies show interference between physical and numerical size
even in first grade (Rubinsten et al., 2002), while in other studies
it was not even found in fourth graders (Landerl et al., 2004).
Interindividual differences in the degree of automatization and
differences in task format make it difficult to compare findings
across age groups. A longitudinal design can control for such
differences. During development, the size-congruity effect can be
expected to become larger as a sign of increasing automatization
of numerical processing. Children with dyscalculia are likely to
show automatization of numerical processing to a lesser degree
or at least at a later developmental stage. Indeed, earlier studies
found no (Landerl and Kölle, 2009) or a reduced (Rubinsten and
Henik, 2006) size-congruity effect in children with dyscalculia.
However, Bugden and Ansari (2011) did not find a correlation
of the size-congruity effect with children’s arithmetic skills and
concluded that automatic processing of numbers is not related to
mathematical competence.

Number comparison paradigms with two-digit numbers have
been shown to induce a distance effect as well as a compati-
bility effect (Nuerk et al., 2004). Thus, response accuracy and
speed are generally lower when both tens and units are higher
in one number (e.g., 83_62, 8 > 6, and 3 > 2) than when tens
and units of the two numbers are incompatible (e.g., 82_63,
8 > 6, but 2 < 3). The compatibility effect indicates that multi-
digit numbers are not processed holistically, but require adequate
integration of the composite numerals and their place-value.
Acquisition of the place-value system of Arabic numbers is an
important step in the development of numerical competences
(Mann et al., 2012). Accordingly, first evidence indicates that the
compatibility effect is especially marked in young and unexperi-
enced children (Landerl and Kölle, 2009; Pixner et al., 2009) and
predicts later arithmetic skills (Moeller et al., 2011). Landerl and
Kölle (2009) provided first evidence that the integration of two-
digit numbers may pose a particular problem for children with
dyscalculia.

A dominant view of the cognitive representation of number
is the mental number line model, which postulates that internal
representations of numbers and quantities are organized spa-
tially from left to right (Dehaene, 2011). The formation of such
a mental number line constitutes a vital step in the develop-
ment of mathematical skills (Von Aster and Shalev, 2007). In
order to investigate the format of these mental representations,
children are asked to place particular numbers on lines with end-
points of 0 and 100, respectively, 0 and 1000. A standard finding
is that young children overestimate the numerical size of small
numbers, inducing a logarithmic number line function. With
increasing experience, children’s estimates become more realis-
tic, shifting the function from a logarithmic to a linear curve
(Siegler and Opfer, 2003; Siegler and Booth, 2004; Booth and
Siegler, 2006; Berteletti et al., 2010; but see Ebersbach et al.,
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2008; Moeller et al., 2009; Barth and Paladino, 2011 for dif-
ferent interpretations). Early competence in the number line
task predicts later arithmetic skills (Geary, 2011), and bene-
fits from number line trainings on children’s mental represen-
tation of number and their arithmetic competence have been
demonstrated (Siegler and Ramani, 2009; Kucian et al., 2011).
Children with dyscalculia have been found to be less precise in
their estimations and there is some indication that this is partly
due to a delay in the logarithmic-linear shift (Landerl et al.,
2009).

To sum up, a variation of different paradigms has been used
to investigate the development of the cognitive representation of
number. The general pattern is that the representational system of
numbers and numerosities becomes more precise and more effi-
cient during typical development, while this is not the case (at
least not to the same extent) in dyscalculic individuals. However,
integrating findings from different studies is often problematic
due to variations in methodology and sample selection criteria.
As most evidence on the development of numerical competen-
cies comes from cross-sectional studies, current knowledge on the
stability of task performance across time is scarce. Only Reeve
et al. (2012) report reasonable stability of dot enumeration and
symbolic number comparison. In latent cluster analyses, chil-
dren were categorized into slow, medium, and fast subgroups
based on their task-specific response times. Over seven assess-
ments carried out between the ages of 6 and 11 years, 69% of
a random sample of 159 children remained in the same cluster
subgroup and no child changed from the medium or fast groups
to the slow group. Still, this finding implies that almost one
third of the sample did change subgroup at least once. Ordinal
correlations of task-specific group membership at the different
assessment points were significant (with the exception of num-
ber comparison at the age of 6, which may have overstrained
some children), but mostly below 0.7 before the age of nine and a
half.

The current study also aimed at investigating developmen-
tal trajectories of numerical processing and their stability over a
longer time period. In order to get a broader picture of numeri-
cal development, we decided to use a range of standard numerical
tasks that are assumed to tap into different aspects of numeri-
cal cognition. As we were particularly interested in differences in
numerical development between children with typical arithmetic
development and children with dyscalculia, we started our study
at the end of grade 1 and selected participants based on their
maths performance after 1 year of formal teaching and during the
following 2 years. Children with typical arithmetic development
and children with marked and persistent problems in this domain
were followed longitudinally over a 2-year period and performed
the numerical task battery five times throughout the study.

In particular, our research questions were: (1) How do stan-
dard effects of numerical processing develop in children with
age-adequate arithmetic skills? (2) Are children with dyscalcu-
lia different from typically developing children in all numerical
processing tasks, or is there a dyscalculia-specific profile? (3) Is
the developmental trajectory of dyscalculia mostly delayed or are
there characteristic deficiencies that cannot be explained by a
general slowness in the acquisition of arithmetic skills? (4) How

stable is the development of numerical processing during the
elementary school years?

MATERIALS AND METHODS
DESIGN
The present longitudinal study investigated the development of
childrens’ numerical skills from the beginning of Grade 2 to the
beginning of Grade 4. Based on a screening at the end of Grade
1 and their performance during the study period, children were
allocated to a group with age-adequate and a group with atyp-
ically poor arithmetic development. Two times per school year
(October and March), children were individually tested with a
computerized battery of numerical tasks, resulting in five assess-
ment points altogether (t1–t5). Results from the screening period
at the end of Grade 1 and the first individual assessment two
months later at the beginning of Grade 2 are reported as one
assessment point (t1).

PARTICIPANTS
The 83 participants of the current analysis (42 children with age-
adequate arithmetic development and 41 children with dyscal-
culia) were selected as follows: during a screening period, a
classroom test of arithmetic (Haffner et al., 2005) was given to 505
children at the end of first grade attending 19 different elementary
schools in a south-western area of Germany. All children who per-
formed more than 1 SD below age expectations on this test were
invited for further assessment. For each child with poor arith-
metic skills, another child was randomly selected from the same
classroom who did not show any particular arithmetic problems
(test performance not more than 0.5 SDs below the age norm). In
order to rule out more general learning problems, the following
exclusion criteria were applied:

– performance more than 1 SD below the age norm on a stan-
dardized test of nonverbal IQ (CFT 1; Cattell et al., 1997).

– performance more than 1 SD below age norm on a test of verbal
short-term memory (German version of WISC IV digit span
forward and backwards, Petermann and Petermann, 2008).

– clinical diagnosis of ADHD or performance more than 1.5
SDs below age norm on a standardized attention test (KITAP,
Zimmermann et al., 2002) in order to avoid as far as possible
confounds from comorbid attentional deficits.

– performance more than 2 SDs below the age norm on a
standardized test of word reading (SLS 1–4, Mayringer and
Wimmer, 2003) administered at the beginning of Grade 2 in
order to avoid as far as possible confounds from comorbid
dyslexia. Current evidence (e.g., Landerl et al., 2009) suggests
that the cognitive deficits typically associated with dyslexia are
largely independent from numerical processing, therefore, we
decided to apply a rather conservative exclusion criterion for
reading deficits.

Altogether, 139 children were followed over the whole study
period. During the study period, the standardized test of arith-
metic (HRT 1–4, see below) was given three times, i.e., end
of Grade 1 and beginning of Grades 3 and 4. The two groups
reported here were selected from the full longitudinal sample
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based on the following criteria: Children with age-adequate arith-
metic development had to show at least average performance (not
more than 0.5 SD below age norms) in all three arithmetic assess-
ments. Children with dyscalculia showed persistent problems in
arithmetic during the whole study period. At t1, all children of
this group performed more than 1 SD below the age norm. At the
latter two assessment points, performance was never better than
0.5 SD below the age norm. Table 1 shows that at all three assess-
ment points, the average performance of the dyscalculia group
was markedly deficient with about 1.5 SDs below age norm1.

Table 1 | Participants’ details.

Typically developing Dyscalculic d

(n = 42) (n = 41)

Mean (SD) Mean (SD)

Percentage boys 57.10 39.00

Age (months) 91.42 (3.80) 90.07 (4.75)

Nonverbal IQ 115.57 (11.91) 101.93 (9.45) 1.08**

Verbal working memorya 11.02 (2.27) 9.83 (1.95) 0.54*

Attentionb 49.24 (4.29) 45.19 (3.42) 0.93**

Readingc 109, 69 (14.02) 90.37 (14.89) 1.11**

ARITHMETICb

T1 55.21 (7.76) 34.27 (5.32) 3.15**

T3 57.4 (6.5) 37.32 (4.95) 3.48**

T5 56.17 (6.22) 36.9 (4.72) 3.49**

ADDITIONd

T1 17.6 (3.39) 8.83 (3.03) 2.73**

T3 24.74 (3.8) 16.15 (2.74) 2.60**

T5 29.12 (3.05) 20.63 (3.48) 2.60**

SUBTRACTIONd

T1 16.48 (4.31) 7.54 (3.58) 2.26**

T3 24.67 (4.62) 13.61 (4.32) 2.07**

T5 28.83 (3.35) 18.41 (4.59) 2.65**

MULTIPLICATIONd

T3 20.29 (4.5) 11.24 (4.73) 1.96**

T5 25.17 (4.56) 15.32 (3.98) 2.30**

DIVISIONd

T3 18.07 (5.26) 6.98 (4.84) 2.20**

T5 24.93 (4.95) 12.32 (5.68) 2.37**

aStandard Score (M: 10 / SD: 3).
bt-Score (M: 50 / SD: 10).
cReading Quotient (M: 100 / SD: 15).
d Raw score (number of correct responses given in 2 min).
*p < 0.05; **p < 0.01.

1Ten children of the dyscalculia group performed more than 1.5 SDs
below norm on all three assessment points, four children’s performance
was more than 1.5 SDs below norm on two assessments of arithmetic
skills and 15 children performed more than 1.5 SDs below norm at
least once during the study period. Only seven children of the dyscal-
culia group showed persistent but somewhat milder arithmetic deficits
with performance lower than 1 SD below norm at the end of first
grade and lower than 0.5 SDs below norm at the later assessment
points.

TASKS
Standardized tests
Arithmetic. A standardized test of arithmetic skills, the sub-
tests of the subscale “arithmetic operations” of the Heidelberger
Rechentest (HRT 1–4) (Haffner et al., 2005), was given three
times during the project period (t1: end of Grade 1, t3: begin-
ning of Grade 3 and t5: beginning of Grade 4). At t1, children’s
competence in mental calculation (addition and subtraction) was
assessed by specific subtests requiring children to write down as
many correct answers as possible to a list of calculations (grad-
ually increasing in difficulty) within a time limit of 2 min. Two
further subtests had a slightly more complex format, but with
the same 2 min time restriction (e.g., “__ −2 = 6” – supply: “4”;
“9 + 1 __ 11” – supply “<”). At the later assessment points,
multiplication and division were also assessed by 2 min subtests.
The dependent measure was the number of correct responses
combined for all subtests.

Nonverbal IQ. The CFT1 (Cattell et al., 1997) was given at the
end of first Grade (t1). This test is based on Cattell’s Culture
Free Intelligence Test, Scale 1 (Cattell, 1950) and consists of five
subtests (Substitutions, Mazes, Classifications, Similarities, and
Matrices).

Working memory. The subtest digit span (forward and back-
wards) of the German version of the Wechsler Intelligence Scale
for Children (Petermann and Petermann, 2008) was given during
the screening period at the end of Grade 1.

Attention. A standardized computer-test battery assessing differ-
ent aspects of attention (Zimmermann et al., 2002) was carried
out in the middle of Grade 2 (t3). Five subtests measured chil-
dren’s alertness, attentional flexibility, distractibility, sustained
attention, and divided attention.

Reading. At t1, a standardized reading test (Mayringer and
Wimmer, 2003) was given in which children had to silently read
simple sentences and mark whether the content of the sentence
was right or wrong. The main criterion is reading speed, more
specifically the number of correctly marked sentences within a
time limit of 3 min.

Numerical processing
All numerical processing tasks were presented on notebooks run-
ning Presentation software. In all tasks, the background of the
screen was black and the items were presented in white color in
the middle of the screen. Participants were tested individually in
a quiet room in school.

Dot enumeration. Sets of randomly arranged dots ranging from
one to eight were presented which children had to enumerate
as quickly as possible. The response was given by simultane-
ously pressing the space button and pronouncing the number.
The experimenter recorded correctness. The key press initiated
a mask (block pattern) for 1500 ms which prevented counting
based on an after image of the dot display. The 48 trials (six
per dot number) were presented in a fixed pseudo-random order
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with the proviso that no dot number occurred twice in succession
(interstimulus-interval: 1120 ms).

Single digit comparison. Children were presented with 56 pairs
of digits and selected as quickly as possible the numerically larger
one by pressing the corresponding keyboard button. Numerical
distances ranged from 1 to 8 (16 trials for distance 1, ten trials
for distance 2–3, and four trials each for distances 4–8). Stimuli
were written in a 36-point Times New Roman font and pre-
sented in a randomized order, beginning with six practice trials
(interstimulus-interval: 560 ms).

Magnitude comparison. Two gray displays with different num-
bers of yellow squares appeared side by side on the screen and
children selected the numerically larger one as quickly as possible
by keypress response (see Figure 1). Displays presented between
20 and 72 squares, and numerical distances between the two dis-
plays ranged from eight to 25 squares. Relatively high numerosi-
ties ensured that children based their decisions on estimation and
not on verbal counting. The total surface areas in the two displays
were identical. Each display consisted of different square sizes to
avoid displays with larger numerosities systematically consisting
of smaller squares. After three practice trials with feedback, 72
test trials (four for each numerical distance) were presented in a
fixed pseudo-random order (interstimulus-interval: 300 ms).

Physical comparison. Here, children had to select the physically
larger of two Arabic digits while ignoring their numerical value. In

32 trials, physical and numerical size were congruent (e.g., 2 6),
in further 32 items physical and numerical size were incongruent

(e.g., 2 6), and 18 neutral items displayed the same digit twice in

different sizes (e.g., 2 2). Print sizes were a 48- and 24-point font.
After six practice trials, the items were presented in random order
(interstimulus-interval: 560 ms).

Comparison of two-digit numbers. Children were asked to select
the numerically larger of two two-digit numbers between 21 and
98. In 30 items, both decade and unit digit were larger in one
number (compatible items, e.g., 41 75), in further 30 items, the
decade digit was larger in one and the unit digit was larger in the
other number (incompatible items, e.g., 41 26). Overall distance
and problem size were matched between the two compatibility
conditions. All items had small numerical distance between the

FIGURE 1 | Example item of the magnitude comparison task (small

distance).

decade digits and large distance between the unit digits (e.g., 37
52) as previous evidence (Nuerk et al., 2004) suggested that a
compatibility effect was most likely to appear under these con-
ditions. Twenty neutral items only differing in the unit digit (e.g.,
61 68) were included in order to prevent children from basing
their decisions on the decade digits only. Items were presented in
a random sequence (interstimulus-interval: 560 ms).

Number line task. This task was adapted from Siegler and Opfer’s
(2003) number-to-position task. A number line (25 cm) was pre-
sented with the left end always labeled “0,”and the right end
labeled “100” for the first 24 items and “1000” for the next
24 items. Numbers in the lower range were overrepresented to
allow discrimination between logarithmic and linear functions.
An Arabic number appeared on top of the screen, and children
read it out loud. Transcoding errors (which were exceptional)
were corrected by the experimenter. Children indicated where the
number would fall on the line by pointing with a cotton bud.
The experimenter placed the cursor on this position and clicked
the mouse. The deviance from the precise position was calculated
in pixels (1 cm corresponded to 37.5 pixels). Each condition was
introduced by three practice items. At t1 (beginning of Grade 2),
only the number line 0–100 was given as the number line 0–1000
was considered too difficult.

RESULTS
ARITHMETIC PERFORMANCE
Table 1 presents for each of the three assessment points (end of
Grade 1, beginning of Grades 3 and 4) the overall test scores
for the two groups which constituted the selection criterion.
Table 1 also presents the raw scores for four of the arithmetic
subtests, representing the number of simple calculation problems
were answered correctly within two minutes. These subtest raw
scores indicate a dramatic difference between the two groups:
Dyscalculic children’s scores were consistently more than 2 SDs
below the number of items that were solved by children with
age-adequate development.

NONVERBAL INTELLIGENCE, VERBAL WORKING MEMORY,
ATTENTION, AND READING
Since low performance in any of these standardized tests was
used as an exclusion criterion, performance of all participants
was within average range. Still, average performance of the typ-
ically developing group was significantly better compared to the
dyscalculia group on each of these measures.

NUMERICAL PROCESSING
Reliability was very high for all response time based measures
(Cronbach’s Alpha ranging between 0.93 and 0.98 for RTs at
each assessment point) and sufficiently high for the two mental
number line conditions (between 0.72 and 0.90, all ps < 0.01).
Individual median reaction times were calculated for each child
in each condition. Only reaction times for correct responses were
considered, and reaction times lower than 200 ms and higher than
10000 ms were excluded. With the exception of the number line
task where mean deviance scores were analysed, the main depen-
dent variable used in statistical analysis was inverse efficiency (IE),
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which combines accuracy and speed of response into one measure
by dividing the adjusted median reaction times by the proportion
of correct responses (Bruyer and Brysbaert, 2011).

Statistical analysis of each task was achieved by ANOVAs
including all relevant within-task factors as well as assessment
point (t1–t5) as within-subjects factors and arithmetic level (typ-
ical vs. dyscalculic) as between-subjects factor. In case of vio-
lation of sphericity, Greenhouse-Geisser correction was applied.
Significant effects were followed up by paired comparisons under
Bonferroni correction. Stability of task performance across the
study period was examined by inspecting the correlational pat-
terns between the five assessment points.

EFFICIENCY OF NUMERICAL PROCESSING
First, we wanted to know whether the efficiency to process num-
bers developed specifically or whether it was mainly dependent
on increases in general processing speed. Figure 2 presents for
each assessment point children’s IE-scores in the neutral condi-
tion of the physical comparison task with the average IE-scores
in the digit comparison task. Although numbers are presented
in the physical comparison task, the neutral condition requires
a decision based on the physical size of two identical digits

(e.g., 2 2) and therefore provides a non-numerical control mea-
sure of children’s efficiency to perform forced-choice paradigms.
Response accuracy was close to ceiling in both conditions even at
t1 so that IE-scores mostly represented response times. Children
showed systematically higher IE-scores in the numerical con-
dition than in the physical condition, F(1, 80) = 458.65, p =
<0.01; η2 = 0.85, IES-scores decreased systematically over time,
F(2.81, 224.57) = 161.18, p < 0.01; η2 = 0.67 (all ps < 0.05) and
dyscalculic children showed generally higher IE-scores than typ-
ically developing children, F(1, 80) = 23.29, p < 0.01; η2 = 0.23.
Figure 2 shows that IE-scores of dyscalculic and typically develop-
ing children were similar in the non-numerical condition (all ps >

0.05). In the numerical condition, however, dyscalculic children
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showed clearly higher IE-scores than their typically developing
peers, resulting in a significant task × arithmetic level interac-
tion, F(1, 80) = 35.78, p < 0.01, η2 = 0.31. The interactions task
× assessment point and task × assessment × arithmetic level
were also reliable, F(2.94, 244.57) = 24.28, p < 0.01; η2 = 0.23,
and F(2.94, 234.85) = 0.4.95, p < 0.05.; η2 = 0.06. Post-hoc anal-
ysis indicated that the difference in IE-scores between the two
conditions decreased systematically over time among dyscalculic
children (all ps < 0.001 except t1 vs. t2 and t4 vs. t5 where
p = 0.07 and t3 vs. t4 and t5 where p > 0.1). The developmen-
tal change of these difference scores was smaller and not always
significant among the typically developing children (p < 0.05 for
t1 > t2, t4, t5, and t3 > t4, t5).

The stability of the efficiency of numerical processing across
the study period was confirmed by mostly moderate correlations
(ranging between 0.53 and 0.79, p < 0.001) among the difference
scores (numerical minus physical condition) at each assessment
point. The correlation between t1 and t4 appeared to be some-
what lower (0.23, p = 0.03) and the correlation between the two
final assessment points (t4 and t5) was particularly high (0.84).

DOT ENUMERATION
For each child, the best fitting regression lines were calculated
separately for the subitizing range (1–3) and the counting range
(5–7)2. The regression lines are presented in Figure 3.

Because of very obvious and expected differences between
IE-scores for subitizing and counting, intercepts and slopes for
these two numerical ranges were analysed separately. In the
subitizing range, the main effect of assessment point was signif-
icant for intercepts, F(3.07, 242.24) = 25.40, p < 0.01; η2 = 0.243,
while slopes remained largely constant across the study period,
F(3.07, 242.11) = 0.52, n.s.; η2 = 0.007. Interestingly, intercepts as
well as slopes turned out to be larger in the dyscalculic than
in the typically developing group, intercepts: F(1, 79) = 10.55,
p = 0.002; η2 = 0.12, slopes: F(1, 79) = 10.36, p < 0.01; η2 =
0.12. The interaction approached significance for intercepts,
F(3.07, 242.24) = 2.40, p = 0.067; η2 = 0.030, but not for slopes,
F(3.06, 242.11) = 0.98, n.s.; η2 = 0.012. Post-hoc analysis indicated
larger subitizing intercepts at t1 than at all later assessment points
for the dyscalculia group while the decrease in intercepts over
time was more systematic in the typically developing group (t1
> t2, t4, t5; t2 > t4, t5, t3 > t5).

In the counting range, the main effect of assessment point was
again significant for intercepts, F(2.27, 179.33) = 23.31, p < 0.05.;
η2 = 0.228 (post-hoc tests: t1 < t2, t3 < t4, t5, all ps < 0.06), but
not for slopes, F(1.68, 132.22) = 2.11, n.s.; η2 = 0.026. Intercepts
were significantly larger in the dyscalculia than in the typically
developing group, F(1, 79) = 34.05, p < 0.05.; η2 = 0.301. The
effect of arithmetic level was only of borderline significance for
the counting slopes: F(1, 79) = 3.86, p = 0.053; η2 = 0.047. No

2IE-scores for eight dots were excluded because previous studies (e.g., Trick
and Pylyshyn, 1993) demonstrated end effects for the enumeration of the
largest numerosity of a set. IE-scores for four dots were also excluded, as ear-
lier studies (Schleifer and Landerl, 2011; Reeve et al., 2012) suggested that in
this intermediate range, some children might still be able to subitize, while
others would already resort to their counting skills.
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assessment point × arithmetic level interactions were evident for
the counting range (Fs = 1.12 and 0.33, n.s.).

Low to medium range correlations were observed among the
intercepts of the first four assessment points for both, subitizing
(0.28, p = 0.011 to 0.67, p < 0.001) and counting (0.32, p =
0.003 to 0.64, p < 0.001). Stability was generally low for subitiz-
ing slopes across the first four assessment points, with corre-
lations in the moderate range (0.22–0.34, ps < 0.05, except
t1 and t3 with r = 0.15, n.s.). Counting slopes showed some
stability between t1 and t2 (0.28, p = 0.011), while no signif-
icant correlations were evident between t2, t3, and t4. Higher
stability for the dot counting task was found between t4 and
t5, with high correlations between the intercepts for subitizing
(0.78) and counting (0.80), as well as between the counting slopes

(0.90, all ps < 0.001). The correlation between the subitizing
slopes at t4 and t5 was in the medium range with r = 0.38,
p < 0.001.

SINGLE DIGIT COMPARISON3

In order to display the effect of numerical distance, the best fitting
regression line was calculated for each child. For intercepts, both
main effects were significant, assessment point: F(2.94, 235.41) =
87.47, p < 0.01; η2 = 0.55; arithmetic level: F(1, 80) = 37.00,
p < 0.01; η2 = 0.82. Figure 4 shows a continuous decrease of

3Due to unrealistic scores at t3, one dyscalculic child had to be excluded from
analysis of the digit comparison task.
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intercepts from t1 to t5 (t1, t2 > t3, t4, and t3 > t5; ps <

0.05). Most importantly, intercepts of the dyscalculia group were
consistently higher than those of the control group at each assess-
ment point (all ps < 0.01).

For slopes, the main effect of assessment point was significant,
F(2.96, 236.51) = 3.48, p < 0.05; η2 = 0.042, and the interaction
assessment point × arithmetic level approached significance:
F(2.96, 236.51) = 2.35, p = 0.074; η2 = 0.029. Visual inspection of
Figure 4 as well as post-hoc analysis indicated that this interaction
was driven by a group difference at t3 (p < 0.001), but not at the
other assessment points (all ps > 0.05).

Thus, although the overall efficiency of numerical processing
(represented by intercepts) showed a clear improvement across
the study period and a considerable developmental delay for the
dyscalculia group, we could not confirm earlier evidence from
cross-sectional studies (Holloway and Ansari, 2008; Landerl and
Kölle, 2009) reporting a decrease in numerical distance effect over
time. One could even argue that there was a relative increase of the
distance effect when taking the decrease in intercepts into con-
sideration. However, when this was examined in an additional
ANOVA where slopes divided by intercepts were subjected as
dependent measures, no significant effects remained.

Robust correlations ranging between 0.62 and 0.90 (all ps <

0.001) were observed between the intercepts of the five assess-
ment points. For slopes, however, a reasonable amount of stability
was only evident from t3 on (0.36, 0.52, and 0.64 for correlations
between t3 and t4, t3 and t5 and t4 and t5, respectively, all ps
< 0.001), while no significant correlations were found with the
earlier assessment points.

MAGNITUDE COMPARISON4

In order to investigate the non-symbolic distance effect the items
of this task were grouped into two distance levels: (1) small dis-
tance condition (differences between the two displays ranged
from 8 to 16) and (2) large distance condition (differences
between the two displays ranged from 17 to 25). From Figure 5,
it is obvious that all groups were faster in responding to large
distance items than to small distance items. In a 2 (distance)
× 5 (assessment point) × 2 (arithmetic level) ANOVA, the

4As the task design was not based on ratios between the two displays,
calculation of Weber fractions was not possible.

main effect of distance, F(1, 81) = 477.04, p < 0.01; η2 = 0.86,
was indeed highly reliable. The main effects of assessment point,
F(2.22, 179.68) = 81.97, p < 0.01; η2 = 0.50 was modified by a sig-
nificant interaction distance × assessment point, F(3.01, 243.82) =
19.58, p < 0.01; η2 = 0.20. Post-hoc analysis indicated significant
differences between all assessment points for small as well as large
distance items (ps < 0.01). The interaction was caused by a rel-
atively small decrease in IE-scores from t4 to t5 for items with a
large numerical distance.

Importantly, there was an effect of arithmetic level, F(1, 81) =
11.17, p = 0.03; η2 = 0.12, which did not interact with the
other factors, indicating that the dyscalculia group showed lower
performance over all, while the pattern of performance was
comparable throughout the study period. This was confirmed
in a final ANOVA calculating a relative distance effect as per-
cent increase of IE-scores in the small compared to the large
distance condition. In this analysis, only the main effect of assess-
ment point remained significant, F(3.31, 268.10) = 8.63, p < 0.01;
η2 = 0.10.

There were medium-sized correlations among IE-scores for
small as well as large distance items between t1 and t4 (ranging
from 0.38 to 0.56, all ps < 0.001) and high correlations between
t4 and t5 (0.95 for both, small and large distance items). For
the non-symbolic distance effect itself, only moderate correla-
tions were observed between t1 and the later assessment points (rs
between 0.20, p = 0.07, and 0.38, p < 0.001) and t3 and the later
assessment points (r = 0.21, p = 0.06 for t4 and 0.30, p = 0.007
for t5). High stability for the non-symbolic distance effect was
only achieved between the final two assessment points (r = 0.76,
p < 0.001).

PHYSICAL COMPARISON
Figure 6 shows a very systematic size congruity effect for both
typically developing and dyscalculic children. In a 3 (congruity)
× 5 (assessment point) × 2 (arithmetic level) ANOVA we found
significant main effects of congruity, F(1.96, 158.43) = 34.91, p <

0.01; η2 = 0.30, and assessment point, F(2.77, 224.53) = 79.11, p <

0.01; η2 = 0.48, but no difference between groups and no inter-
actions involving group. Post-hoc analyses showed significantly
lower IE-scores for congruent than for neutral items (facilitation
effect), and again lower IE-scores for neutral than for incongru-
ent items (interference effect) (ps < 0.01). IE-scores decreased
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systematically from t1 to t5 (all ps < 0.05). The only significant
interaction was found between congruity and assessment point:
F(5.61, 454.45) = 2.23, p = 0.043; η2 = 0.03. Pairwise contrasts
indicated a significant difference between t3 and t4 in the con-
gruent and the incongruent, but not in the neutral condition.

Thus, the interesting finding from this task was that even at the
earliest assessment point at the beginning of Grade 2, typically
developing and even dyscalculic children showed a significant
influence of the numerical value of two presented digits on their
non-numerical decision. In contrast to our expectation that the
size of the facilitation and interference effects should increase
with experience, these effects did not change much across the
whole period of the study, in spite of a general incease in pro-
cessing efficiency. In a final analysis, it was examined whether
there were relative differences in the facilitaion and interfer-
ence effect when these effects were expressed as % change of
IE-scores in relation to the neutral condition. Mostly because
variability between participants was high, none of the effects
remained significant.

Although there were moderate correlations among the first
four assessment points for IES-scores in each of the three con-
ditions (rs between 0.36 and 0.55, all ps < 0.001) and high
correlations between t4 and t5 (congruent: 0.96, neutral: 0.95,
incongruent: 0.96), the only correlations over time for the facil-
itation and the interference effect became evident between t4 and
t5 (0.71 and 0.73, p < 0.001).

COMPARISON OF TWO-DIGIT NUMBERS
This was the only task in our numerical processing battery for
which response accuracy was not close to ceiling and therefore
had a considerable impact on IE-scores. Especially at t1, both
groups showed considerable problems with the incompatible
condition with 73.73% correct for typically developing and only
50.57% correct for the dyscalculia group. Typically developing
children showed mean response accuracies above 90% for later
assessments of incompatible items and for compatible items
throughout. The dyscalculia group reached this high level of
performance only at t4 for incompatible items (88.20% correct)
and even in the compatible condition, only 87.37% of the items
were responded to correctly at t1. IE-scores, which integrate these
accuracy scores with children’s speed of response, are plotted in
Figure 7.

In a 2 (compatibility) × 5 (assessment point) × 2
(arithmetic level) ANOVA, all main effects were significant:
compatibility, F(1, 81) = 56.42, p < 0.01; η2 = 0.41, assessment
point, F(1.19, 96.20) = 59.15, p < 0.01; η2 = 0.42, arithmetic level,
F(1, 81) = 32.08, p < 0.01; η2 = 0.28. Overall, children had
higher IE-scores in the incompatible than in the compatible con-
dition. IE-scores decreased systematically during the study period
(t1 > t2, t3 > t4 > t5, all ps < 0.01), and children with dyscalculia
had higher IE-scores than typically developing children. In addi-
tion, all interactions were reliable, compatibility × assessment
point: F(1.15, 92.76) = 24.19, p < 0.01; η2 = 0.23, compatibility
× arithmetic level: F(1, 81) = 16.17, p < 0.01; η2 = 0.17, assess-
ment point × arithmetic level: F(1.19, 96.20) = 5.70, p < 0.05;
η2 = 0.07, compatibility × assessment point × arithmetic level:
F(1.145, 92.76) = 6.88, p < 0.01; η2 = 0.78.

In order to interpret this complex pattern of interactions
and to analyze the particular problems children face when
processing two-digit numbers, two additional ANOVAs were
calculated: First, we subjected the IE-scores for the easier con-
dition of compatible items to a 5 (assessment point) × 2
(arithmetic level) ANOVA. Both main effects were reliable,
assessment point: F(2.18, 176.20) = 61.38, p < 0.01; η2 = 0.43,
arithmetic level: F(1, 81) = 21.68, p < 0.01; η2 = 0.21, and the
two factors also interacted, F(2.18, 176.20) = 4.23, p < 0.05; η2 =
0.05. Post-hoc analysis indicated a systematic decrease of IE-scores
during the study period for the dyscalculic children (all ps = 0.001
except t1 vs. t2), while among typically developing children the
IE-score differences between adjacent assessment points were too
small to be reliable from t2 on (all ps < 0.06 except t2 vs. t3,
t3 vs. t4 and t4 vs. t5). The difference between the two groups
was significant at all assessment points except t1, which is obvi-
ously due to the high variability (especially among the dyscalculic
children).

The developmental trajectories of the compatibility effect were
analysed by subtracting IE-scores for compatible items from those
for incompatible items. This difference score was again sub-
jected to a 5 (assessment point) × 2 (arithmetic level) ANOVA.
Again, both main effects and the interaction were reliable, assess-
ment point: F(1.15, 92.76) = 24.19, p < 0.01; η2 = 0.21, arithmetic
level: F(1, 81) = 16.17, p < 0.01; η2 = 0.17, assessment point ×
arithmetic level: F(1.15, 92.76) = 6.88, p < 0.01; η2 = 0.08. As
evident from Figure 7, both groups showed an especially strong
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points.

compatibility effect at t1, but this effect was still significantly
larger (p < 0.01) for dyscalculic (4067) than for typically devel-
oping children (1246 ms). Among the typically developing chil-
dren the compatibility effect was relatively small and similar for
the later assessment points (t2: 163 ms; t3: 144 ms: t4: 71 ms,
t5: 55 ms). In the dyscalculia group, however, particular prob-
lems to integrate the tens and units of two-digit numbers were
still evident at t2: Their compatibility effect (789 ms) was signifi-
cantly larger compared to typically developing children at t2 and
larger than at the later assessment points (t3: 316 ms, p = 0.07;
t4: 200 ms, p = 0.019; t5: 185 ms, p = 0.013). Group differences
between typically developing and dyscalculic children were still
marked at the later assessment points, t3: p = 0.08; t4 and t5:
p < 0.05.

In summary, these longitudinal data clearly showed that effi-
cient processing of two-digit numbers develops slowly and poses
a particular challenge to children with dyscalculia. Correlations
of IE-scores for incompatible items were only moderate for t1
with later assessment points (between 0.32 and 0.34, p = 0.002)
and in the medium range for t2, t3, and t4 as well as for
compatible items among the first four assessment points (rs
between 0.48 and 0.77). Correlations were considerably higher
between t4 and t5 (0.95 and 0.91 for compatible and incom-
patible items, respectively). For the compatibility effect itself,
moderate correlations were found between t2 and t3 (r = 0.37,
p = 0.001), t3 and t4 (r = 0.24, p = 0.026). Once again, rea-
sonable stability was only evident between t4 and t5, r = 0.73,
p < 0.001.

NUMBER LINE TASK
Two separate ANOVAs with median deviance in pixel (see
Figure 8) as dependent variable were calculated for number lines
0–100 and 0–1000. For number line 0–100, assessment point as
well as arithmetic level showed reliable effects, F(2.18, 176.16) =
121.93, p < 0.01; η2 = 0.60, and F(1, 81) = 53.37, p < 0.01;
η2 = 0.38, which were modulated by a significant interaction,
F(2.18, 176.16) = 29.03, p < 0.01; η2 = 0.26. Children with dyscal-
culia showed higher deviance scores than their typically develop-
ing peers at all assessment points (all ps < 0.05), but this group
difference decreased across assessment points (effect sizes of 0.66,
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0.32, 0.46, 0.42, and 0.40 for t1–t5, respectively). Typically devel-
oping children’s performance improved significantly (ps < 0.01)
between t1 and t3/t4/t5, t2 and t4/t5, as well as t3/t4 and t5.
Dyscalculic children showed significant improvements between
all assessment points.

The 0–1000 number line condition (lower section of Figure 8)
was not given at t1 as it was assumed to be too difficult for
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children at the beginning of Grade 2. Once again, we found sig-
nificant main effects for assessment point, F(1.78, 140.89) = 61.17,
p < 0.01; η2 = 0.43 and arithmetic level as well as an interaction,
F(1, 81) = 30.94, p < 0.01; η2 = 0.28. Children with dyscalculia
showed significantly larger deviances from the correct response
than children with typical arithmetic development at all assess-
ment points (ps < 0.01). The interaction resulted from the
relatively high variability in t1 compared to later assessment
points. Among typically developing children, significant improve-
ments were observed between t2 and t5 as well as between all
later assessment points. Dyscalculic children showed significant
improvements between all four assessment points (all ps < 0.01).

In order to test earlier claims (Siegler and Booth, 2004) that
children’s mental number line progresses from a logarithmic to
a linear representation over time, we calculated both regression
lines separately for each child and each assessment point. No such
developmental change could be observed for the typically devel-
oping children for whom a linear fit (R2s between 0.88 and 0.99)
was found to describe children’s performance better than a log-
arithmic fit (R2s between 0.69 and 0.79) at all assessment points
and in both conditions (all ps < 0.01 in Wilcoxon signed-rank
tests). For the dyscalculia group, a logarithmic fit (R2 = 0.71)
seemed somewhat more adequate than a linear fit (R2 = 0.64,
p < 0.01) at t1 where only the number line 0–100 was given,
however, both fits were rather low. At all later assessment points,
a linear fit (R2s between 0.89 and 0.99) described dyscalculic
children’s performance clearly better than a logarithmic fit (R2s
between 0.70 and 0.76, all ps < 0.01).

Correlations between assessment points were moderate for
both conditions among the first four assessment points (rs
between 0.33 and 0.62, all ps < 0.005) and clearly higher between
t4 and t5 (0.97 and 0.99)

DISCUSSION
In this study, typically developing and dyscalculic children’s devel-
opment of numerical processing was followed from the beginning
of Grade 2 until the beginning of Grade 4. While most earlier
studies investigating basic numerical processing in elementary
school either compared different age groups cross-sectionally
or covered relatively short periods of development, the present
design allowed us to examine intra- as well as interindividual dif-
ferences in numerical processing during a 2-year period which
constitutes an important phase of arithmetic development. In
these elementary school years, the foundations of arithmetic like
place-value system, mental arithmetic, and written calculations
are taught and practiced in school. Numerical processing has
been demonstrated to be associated with these arithmetic skills
(Halberda and Feigenson, 2008; de Smedt et al., 2009; Jordan
et al., 2009; Geary, 2011), which is why it seemed particularly
interesting to focus on this developmental period. Another cru-
cial reason for the focus on these early school years was that
this is when problems in arithmetic development become obvi-
ous and dyscalculia is diagnosed. For the present purpose, we
selected groups of children who showed either age-adequate
or persistently poor arithmetic performance during the study
period. Marked and persistent problems in arithmetic in spite
of adequate general cognitive abilities are the central diagnostic

criterion of dyscalculia (e.g., World Health Organization, 2010).
It is as yet unclear which subcomponents of numerical process-
ing are central to arithmetic development, therefore we decided
to apply a battery of tasks that have been used before to assess
standard effects of symbolic as well as non-symbolic numerical
processing.

INDICATORS OF NUMERICAL DEVELOPMENT DURING ELEMENTARY
SCHOOL
A first finding was that all investigated effects of numerical pro-
cessing were evident as early as Grade 2 for both typically devel-
oping children and children with persistent arithmetic problems.
This is mostly consistent with earlier studies (e.g., Sekuler and
Mierkiewicz, 1977; Girelli et al., 2000; Landerl and Kölle, 2009;
Pixner et al., 2009; Reeve et al., 2012). It was, however, surpris-
ing for the physical comparison task. The size-congruity effect
requires a certain amount of experience-based automaticity in
numerical processing. It is influenced by certain task characteris-
tics (most importantly the difference in physical size between the
two presented digits, see Schwarz and Ischebeck, 2003) and earlier
studies already indicated that there is a good deal of variability in
when it appears. Importantly, in the current study, not only typ-
ically developing but also dyscalculic children showed sufficient
automaticity in numerical processing to produce facilitation and
interference effects even at the beginning of Grade 2. Together
with the finding that there was no increase of these effects over
time we confirmed Bugden and Ansari’s (2011) claim that auto-
matic processing of Arabic numerals is not directly related to
arithmetic skills.

Generally, efficiency of numerical processing turned out to be
a very good indicator of numerical development. Throughout the
study period, we observed a systematic increase in speed of pro-
cessing for numbers, which was larger than the general increase
in processing speed that is characteristic for child development
(Kail, 1991). Furthermore, the dyscalculia group showed persis-
tent deficiencies in the speed of processing which were specific
to numerical information and did not extend to non-numerical
comparisons.

While efficiency of numerical processing improved consis-
tently, many of the investigated within-task effects of numerical
processing remained largely constant across time, for both typi-
cally developing and dyscalculic children. More specifically, while
some earlier cross-sectional studies had suggested that the dis-
tance effect would decrease over time indicating an incremental
specification of the cognitive representation of number (Holloway
and Ansari, 2008; Landerl and Kölle, 2009), our longitudinal data
showed no such decrease, neither for the symbolic nor for the
non-symbolic comparison task. It might be argued that in rela-
tion to the decreasing intercepts, slopes that remain constant
across time in fact indicate a relative increase of the investi-
gated effect. In other words, when overall numerical processing
becomes more efficient during development, it could be expected
that within-task effects should decrease in accordance with inter-
cepts, while our evidence suggests that slopes did not change
much. However, even when within-task effects (slopes) were
expressed as changes of IE-scores relative to overall efficiency
of numerical processing (intercepts), no significant differences
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appeared across assessment points or arithmetic level, which con-
firms that the symbolic and non-symbolic distance effects did not
undergo marked changes during the study period. The most likely
explanation for this negative evidence is that within-task effects
were relatively small while intra- as well as interindividual vari-
ability of task performance was relatively high. Correspondingly,
stability was found to be low until middle of Grade 3.

STABILITY OF NUMERICAL PROCESSING
Although we found moderate to medium-range correlations
across assessment points for intercepts, correlations for experi-
mental effects were mostly non-significant. Only between the last
two assessment points of our study period, i.e., middle of Grade 3
and beginning of Grade 4, robust correlations were evident for
all measures. In summary, significant long-term stability could
be observed for the overall efficiency of numerical processing.
Yet, reasonable stability of within-task effects of numerical cog-
nition was only achieved toward the end of primary school, but
was found to be low in the early phases. Note that the 83 par-
ticipants of the present study were specifically selected because
their arithmetic competence showed a relatively steady develop-
ment over time. It is likely that stability of numerical processing is
even lower in the full sample of 139 children (including those who
showed a variable arithmetic profile) and in the general popula-
tion. Reeve et al. (2012) have recently reported reasonable stability
for a random sample across a 6-year period for dot enumera-
tion and symbolic number comparison. This analysis was also
mostly based on speed of response and limited to ordinal cor-
relations of group membership. Reeve et al.’s finding that 69%
of the sample remained in the identified “slow,” “medium,” and
“fast” groups implicates that almost one third of the participants
exhibited considerable variability in their numerical processing
development.

DYSCALCULIA
A main research question of the current study was whether the
numerical development of children with persisting arithmetic
problems is mostly delayed or whether it would be possible to
identify dyscalculia-specific anomalies in numerical cognition.
As already mentioned, the dyscalculic children showed serious
and pervasive deficiencies with respect to efficiency of numer-
ical processing. Importantly, these problems were not limited
to those tasks that required processing of symbolic represen-
tations of number, but were also evident for the magnitude
comparison task. Thus, the current data do not provide support
for Rousselle and Noël’s (2007) proposal of specific problems
to access numerical information from symbolic representations.
However, note again that although the dyscalculia sample per-
formed at a systematic lower level in the comparison paradigms,
they showed symbolic as well as non-symbolic distance effects
that were not significantly different from the typically develop-
ing children. Thus, we could not confirm Mussolin et al.’s (2010)
finding of stronger symbolic and non-symbolic distance effects in
dyscalculia. It is possible that problems to differentiate between
two numbers or quantities are more prominent for smaller dis-
tances due to higher numerical similarity. This might explain as
to why the Mussolin et al. study, which examined distances up

to only four, found a reliable difference that we did not detect.
Furthermore, their sample was somewhat older (10–11 years) and
smaller and may have performed more homogeneously than the
current sample. We can also not rule out that a ratio-based design
of magnitude comparison might have revealed lower acuity of
the approximate number system as it was reported before (see
Piazza et al., 2010). Based on the findings of the current repeated
assessment of the distance effect, we conclude that although
dyscalculic children have marked problems to access their numer-
ical cognition system efficiently, we did not find evidence for
abnormal cognitive representations of numerosities in symbolic
and non-symbolic comparison paradigms.

Anomalies were, however, evident in the dot enumeration
paradigm where the dyscalculia group showed not only larger
intercepts, but also persistently larger slopes in the subitizing
range. For the higher numbers of the counting range, group
differences in slopes were less marked. This evidence provides fur-
ther support for earlier claims of a particular subitizing problem
in dyscalculia (Moeller et al., 2011; Schleifer and Landerl, 2011;
Reeve et al., 2012). Butterworth (2010) has argued that subitiz-
ing may reflect an inborn capacity to quantify over sets which
provides the foundation for associating numbers with distinct
numerosities. Such an early deficit may well induce problems in
mapping between numbers and quantities and in the long run a
general inefficiency in numerical processing as it was observed in
the current data set. Over time, it would also induce a general
imprecision of numerical representations. This is exactly what
we found in the number line task: Over the whole study period,
dyscalculic children showed larger deviances from the precise
location of a number on a number line than children with typical
development of arithmetic skills. The number line task is partic-
ularly important in the current design as it was the only untimed
task in our numerical processing battery. The persistent deficit
in the dyscalculia sample shows that their numerical process-
ing problems are not limited to processing speed. Interestingly,
earlier claims of a developmental trajectory from an overrepre-
sentation of small numbers in the mental number line inducing
a logarithmic function to a linear representation (e.g., Booth and
Siegler, 2006), did not find support in the current data set (see
also Landerl et al., 2009).

An important aspect that has not yet been thoroughly inves-
tigated in dyscalculia is the acquisition of the place-value system
of the Arabic notational system. Our findings on processing of
two-digit numbers add to current evidence on young children’s
difficulties to integrate ten and unit numbers (Nuerk et al., 2004;
Pixner et al., 2009; Mann et al., 2011, 2012). In accordance with
Pixner et al. (2009) we found particularly poor performance at the
beginning of Grade 2, but rapid improvement in the competence
to process two-digit numbers for the typically developing group.
Dyscalculic children’s problems were clearly more pronounced
and persistent throughout the study period. At t1 they actually
chose the incorrect, smaller number in about half of the trials.
One might assume that they attempted to select the larger num-
ber based on the unit number which would induce systematically
wrong choices in the incompatible condition. However, the fact
that they chose the larger unit digit in about half of the items in
the incompatible condition (and therefore responded correctly)
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and even in about 15% of the compatible items (and therefore
responded incorrectly) speaks against such a strategy and rather
suggests that they were guessing. Note that in the German test-
language, tens and units are inversed in numberwords (21 is “one
and twenty”) which has been demonstrated to amplify children’s
problems to acquire the place-value system (Pixner et al., 2011).

IMPLICATIONS FOR FUTURE RESEARCH AND DYSCALCULIA
DIAGNOSIS
In summary, the current longitudinal data set shows that effi-
ciency of numerical processing is an important indicator of
numerical skills: Despite considerable improvements during the
elementary school years it remains persistently deficient in chil-
dren with dyscalculia. While significant stability was found
for speed, many of the investigated within-task effects were
of low stability and not subject to developmental processes.
Because of the low stability of these effects across time, they
do not seem appropriate for diagnostic tests of dyscalculia.
The most obvious criterion to identify children who strug-
gle with their numerical processing system is the efficiency
of numerical processing. It will be important to devise more
computerized tests enabling accurate measurement of response
times as this is the main indicator of efficiency of numerical
processing in simpler tasks like dot enumeration of number
comparison.

While the finding of a generally lower efficiency of numeri-
cal processing suggests a delayed rather than a deviant numerical
development in dyscalculia, the current study also helped to
identify parameters that go beyond the developmental delay per-
spective: The dyscalculia sample showed persistently larger slopes
in the subitizing range of dot enumeration, inaccurate numer-
ical estimation in the number line task and serious problems
to integrate the component numerals in multi-digit numbers.
Subitizing seems to have a strong biological basis (Vetter et al.,
2011) and may be a very early indicator of a faulty numerical pro-
cessing system, while both, the number line task and processing of
multi-digit numbers, develop as a consequence of education and
experience. While the focus of the current study was the devel-
opment of numerical processing in elementary school children
who already experience persistent problems in arithmetic, future
studies should concentrate on earlier phases of development in
order to identify the developmental trajectories of the relevant
parameters even before the problems in arithmetic arise.
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