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Sex categorization is a critical process in social perception. While psychologists have long
theorized that perceivers have distinct mental representations of men and women that
help them to achieve efficient sex categorizations, researchers have only recently begun
using reverse-correlation to visualize the content of these mental representations. The
present research addresses two issues concerning this relatively new methodological
tool. First, previous studies of reverse-correlation have focused almost exclusively on
perceivers’ mental representations of faces. Our study demonstrates that this technique
can also be used to visualize mental representations of sex-typed bodies. Second, most
studies of reverse-correlation have employed a relatively large number of trials (1000+) to
capture perceivers' mental representations of a given category. Our study demonstrated
that, at least for sex-typed representations of bodies, high quality reverse-correlation
images can be obtained with as few as 100 trials. Overall, our findings enhance knowledge
of reverse-correlation methodology in general and sex categorization in particular, providing
new information for researchers interested in using this technique to understand the

complex processes underlying social perception.
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People readily separate others into discrete categories (e.g.,
male/female, Black/White, gay/straight; Allport, 1954; Taylor
et al., 1978; Brewer, 1988), and these acts of categorization pro-
vide an efficient method of information processing that helps
perceivers navigate an otherwise infinitely complex social world
(Macrae and Bodenhausen, 2000). Of the many categoriza-
tions that perceivers make, biological sex (i.e., male/female) is
among the most critical (Fiske and Neuberg, 1990; Stangor et al.,
1992; Johnson et al., 2012). Indeed, event-related brain poten-
tials readily discriminate male from female targets within 200 ms
of visual exposure (Ito and Urland, 2003, 2005; Mouchetant-
Rostaing and Giard, 2003), and sex categorizations often emerge
before other important categorizations, including race (Stangor
et al., 1992). One reason that sex categorizations occur with
such remarkable efficiency is that they serve adaptive purposes,
allowing perceivers to detect potential mates (Maner et al,
2007) and interpersonal threats (Johnson et al., 2012) with
enough time to decide whether approach or avoidance is more
prudent.

How do perceivers achieve such expedient sex categorizations?
Prior research demonstrated that they utilize a variety of visually
salient characteristics. For instance, sexually dimorphic cues in
the face (Macrae and Martin, 2007; Freeman et al., 2008; Johnston
et al., 2010) continuously and dynamically influence social per-
ception to determine whether a person is categorized as male
or female (Schyns et al., 2002; Freeman et al., 2008; Freeman
and Ambady, 2011). Sexually dimorphic cues in the body also
influence sex categorizations (Johnson and Tassinary, 2005; Lick

etal., in press; Pollick et al., 2005; Aviezer et al., 2012). While these
sex-typed bodily cues are numerous, two in particular have gar-
nered recent empirical attention—body shape (waist-to-hip ratio;
Johnson and Tassinary, 2005, 2007; Johnson et al., 2012) and body
motion (gait pattern; Troje, 2002; Lick et al., in press; Pollick et al.,
2005; Johnson and Tassinary, 2007). These cues help perceivers
to accurately decode a person’s sex in the early moments of per-
son perception, but the precise ways in which perceivers expect
men’s and women’s bodies to differ remain relatively unclear. In
the current study, we explored reverse-correlation as a method
for clarifying the bodily cues that perceivers use to categorize
biological sex.

THE SOCIAL PERCEPTUAL INTERFACE: TARGET FEATURES
AND PERCEIVER KNOWLEDGE

Although important, targets’ visible features do not operate
in isolation to determine sex categorizations; perceivers also
bring pre-existing knowledge to the task of social perception.
Indeed, a burgeoning literature in social vision has revealed
that sex categorizations are biased by stereotype overlap with
other social categories, including race (Johnson et al., 2012),
sexual orientation (Johnson et al., 2007; Lick et al., in press),
and emotion (Hess et al., 2009; Johnson et al., 2011). These
biases reveal that perceivers’ beliefs about social groups alter
the sex categorizations they make (Freeman et al., 2012).
Thus, the conceptual match—or lack thereof—between a tar-
get’s features and a perceiver’s knowledge appears to guide sex
categorization.
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A growing body of evidence supports our contention
that perceivers match visible features of a stimulus to pre-
existing knowledge structures in order to reach a categoriza-
tion. According to prototype-matching theory, perceivers who
encounter a novel stimulus endeavor to match it to a pre-existing
category prototype (Rosch, 1973, 1998). Stimuli whose features
match a prototype are categorized fluently, while those whose fea-
tures do not match are categorized less fluently. Contemporary
face perception models propose that a similar visual matching
process underlies social categorization. Specifically, these mod-
els suggest that social categories are organized as “nodes” in
a multidimensional space (Valentine and Endo, 1992; see also
Corneille et al., 2007; Hugenberg et al., 2010). The nodes consist
of densely organized clusters of individual exemplars (e.g., Mom,
Grandma, Oprah Winfrey, Angelina Jolie) that characterize a cat-
egory (e.g., female), and perceivers are presumed to categorize
others by matching their features to an existing node. In support
of this theory, researchers have shown that targets are classified
more fluently when their features match the presumed mental
representation of a given category (Medin and Schaffer, 1978;
Cantor and Mischel, 1979; Basri, 1996; Hampton, 1998). Thus,
both classic and contemporary theories contend that social cate-
gorization relies on the match between a target’s visible features
and a perceiver’s pre-existing concept of a category.

REVERSE CORRELATION AS A TOOL FOR VISUALIZING
CATEGORY KNOWLEDGE
While theoretically compelling, it has been difficult to pinpoint
the features that characterize perceivers’ mental representations
of a given category. Indeed, because these representations are
mental constructs, researchers have traditionally relied on indi-
rect methods (e.g., the efficiency with which perceivers disam-
biguate group membership given a pre-defined set of visual
features) to draw inferences about their content. Recently, how-
ever, reverse-correlation has emerged as a data-driven method
that enables researchers to visualize perceivers’ mental represen-
tations of social categories (Todorov et al., 2011; Dotsch and
Todorov, 2012). In a common reverse-correlation paradigm, per-
ceivers identify the image from a pair that best depicts a particular
category (e.g., female). In reality, the images are derived from an
identical base image over which researchers have superimposed
random noise. Over the course of many trials, the average of the
chosen images is thought to approximate a perceiver’s mental rep-
resentation of the category in question. While the resulting images
do not necessarily reveal the prototype for a category (Mangini
and Biederman, 2004), they provide some indication of the salient
features that perceivers use to identify members of that category.
Since its recent introduction as a method of visualizing mental
representations of social categories, reverse-correlation has been
used to probe perceivers’ beliefs about the visual characteristics
of many different groups. For example, researchers have used
reverse-correlation to derive mental representations of sex cat-
egories (Mangini and Biederman, 2004; Nestor and Tarr, 2008;
Johnson et al., 2012), sexual orientations (Dotsch et al., 2011),
ethnic groups (Dotsch et al., 2011), emotions (Schyns et al.,
2009; Jack et al., 2012), personality traits (Todorov et al., 2011),
and even personal identities (Mangini and Biederman, 2004). In
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particularly striking demonstrations, researchers have extracted
representations of happy emotions from patterns of pure noise
(Gosselin and Schyns, 2003). This diverse and growing list of
studies indicates that reverse-correlation is a powerful method for
understanding the processes underlying social categorization.

Although reverse-correlation provides an elegant way for
researchers to pinpoint the visual cues guiding social perception,
the relatively limited use of this technique in sex categoriza-
tion research has restricted our knowledge in at least two ways.
First, previous research using reverse-correlation to understand
sex categorization has focused almost exclusively on mental repre-
sentations of faces. This early focus on the face is defensible, given
that faces are among the richest sources of social information in
one’s environment, providing both individuating and categori-
cal information (Hill et al., 1995; Farah et al., 1998; Zebrowitz
and Montepare, 2008; Hugenberg et al., 2010). However, the
communication of social identities is not restricted to faces. As
noted above, there is a growing recognition that the body pro-
vides potent cues that inform sex categorizations (Johnson and
Tassinary, 2005; Johnson et al., 2012). In fact, some have argued
that body perception may be even more important than face per-
ception, because it can occur at a distance that enables a perceiver
to avoid unwanted interactions with another person (Zebrowitz
and Collins, 1997; de Gelder, 2006; Sell et al., 2009). Despite the
importance of this topic, we still have relatively limited infor-
mation about perceivers’ mental representations of men’s and
women’s body shapes. One recent study provided initial evidence
that that reverse-correlation may provide useful insights on this
topic. Johnson et al. (2012) used reverse-correlation to deter-
mine whether perceivers hold extreme representations of men’s
and women’s bodies. By obtaining objective measurements of
waist-to-hip ratio from the classification images produced from
a reverse-correlation task, they demonstrated that perceivers’
mental representations of male and female bodies are indeed sex-
ually dimorphic and quite extreme. However, it remains unclear
whether perceivers’ mental representations of human bodies reli-
ably predict sex categorizations. Studies that test whether reverse-
correlation images of men’s and women’s bodies are subjectively
perceived to be highly gendered would help to clarify whether the
differences in waist-to-hip ratio from Johnson et al. (2012) are
perceptually meaningful to observers.

Second, previous research that has employed reverse-
correlation as a tool to understand social categorization is limited
because most studies have used large numbers of trials that may
become untenable except among the most committed research
participants. Indeed, many of the seminal studies in this area have
exceeded 700 trials (e.g., Dotsch et al., 2011), with others employ-
ing as many as 2000 (Jack et al., 2012), 8000 (Smith et al., 2005),
or even 20,000 trials (Nestor and Tarr, 2008). However, a growing
number of researchers have begun using fewer reverse-correlation
trials than their predecessors (e.g., 390 trials in Dotsch et al., 2008,
Study 1; 640 trials in Karremans et al., 2011), which suggests a
desire for more efficient methods. We are unaware of any pub-
lished studies that have systematically examined how the number
of classification trials affects the quality of the resulting images.
While many factors may affect researchers’ ability to obtain reli-
able content in reverse-correlation images (e.g., the base image,
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noise patterns, consensus in perceivers’ mental representations of
a given category), the ideal number of trials remains a crucial
methodological question that will become increasingly important
as researchers begin to employ reverse-correlation more widely. It
is possible that the quality of classification images improves lin-
early as a function of the number of trials, but it is also possible
that quality improves in a non-linear fashion, such that early trials
achieve sufficient quality and additional trials provide relatively
minor improvements. Understanding the association between
number of trials and image quality will enable future researchers
to maximize the efficiency of reverse-correlation protocols.

THE CURRENT RESEARCH

Mindful of these limitations, we designed the current study
with two aims—one conceptual and one methodological. First,
we aimed to extend recent work by testing whether reverse-
correlation methods provide reliably sex-typed body images
that are perceptually meaningful to observers. In particular,
we explored subjective perceptions of men’s and women’s bodies
drawn from individual perceivers, offering new information about
the validity of this technique for understanding sex categoriza-
tion. Second, we aimed to provide the first systematic test of how
the accrual of trials in reverse-correlation tasks affects the quality
and clarity of the resulting classification images. Specifically, we
examined the subjective quality of reverse-correlation images
created with varying numbers of trials. Although our conclu-
sions may be specific to mental representations of bodies derived
using the specific methods described here, our approach will
provide an empirically informed foundation and an analytic
framework for future researchers to test the ideal number of
reverse-correlation trials in their own domains of study.

METHODS

Our study involved two phases of data collection—(1) a clas-
sification phase during which participants completed a reverse-
correlation task from which we derived their mental representa-
tions of sex-typed bodies, and (2) a rating phase during which
a separate group of participants evaluated the images created
during the classification phase in terms of their quality and sex

typicality.

CLASSIFICATION PHASE

In the classification phase, 36 undergraduates from the University
of California, Los Angeles (23 women, 11 men, 2 unreported)
participated in exchange for course credit or $10.

We began by creating an anthropometrically gender-neutral
base image of a body facing backward with arms outstretched and
legs in a wide stance [waist-to-hip ratio = 0.8049; 512 x 512 pix-
els; smoothed with a Gaussian filter at 10 x 10 pixels; root mean
square (image contrast) = 0.1389; see Figure 1]. Then, using
MATLAB (TheMathWorks, 2010) scripts from prior research
(Dotsch et al., 2008), we created 700 pairs of images by adding
or subtracting randomly generated noise (512 x 512 pixels) from
the base. The noise patterns consisted of 60 sinusoids: 6 orienta-
tions (0°, 30°, 60°, 90°, 120°, and 150°) x 5 spatial scales (1, 2,
4, 8, and 16 sinusoid patches), each of which spanned 2 cycles
per patch (0, /2), with random contrasts. We weighted the noise
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patterns at 0.525 before superimposing them over the smoothed
base image.

We used customized experimental software to present each
stimulus pair side-by-side in a random order. In each trial, par-
ticipants identified the image that best represented a woman’s
body using keys labeled left and right (see Figure2). Most par-
ticipants completed all 700 trials, though 2 stopped the study
prior to completion. Of those who stopped prior to completion,
one participant completed 572 trials and the other completed 672
trials.

At the end of the classification phase, we created composite
female and not-female classification images for each participant

FIGURE 1 | Sample classification images including the original
anthropometrically gender-neutral body stimulus (A), as well as group
averages for female (left) and not-female (right) bodies derived from
100 trials (B), 300 trials (C), 500 trials (D), and 700 trials (E).
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FIGURE 2 | Association between Classification Image Sex and
Perceived Sex as a function of Trial Condition. *Indicates a significant
contrast involving the effect of Classification Image Sex on Perceived Sex
across trial conditions after applying the Sidak correction for multiple
comparisons.
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by averaging the noise patterns of the selected and unselected
images, respectively. Previous research has suggested that in
some circumstances, classification images based on the unselected
stimuli might represent the opposite of a binary social category
(Dotsch and Todorov, 2012). For example, Johnson et al. (2012)
found that the images not selected as female approximated male
body shapes. Because sex is a binary trait, we inferred that images
the current participants did not choose as representative of a
female body were “not-female”—that is, morphologically male.
While this assumption was reasonable given the binary nature
of the category we explored (indeed, see results), it is impor-
tant to recognize that the unselected images in a two-alternative
forced-choice design may be less meaningful for continuous
social dimensions (e.g., attractiveness, emotion).

We created multiple classification images for each participant,
with separate female and not-female images derived from the first
100, 300, 500, and 700 completed trials. This resulted in eight
total classification images per participant (288 images total; see
Figure 1). For participants who did not complete all 700 trials,
we used the maximum number of completed trials for the final
category.

RATING PHASE

In the rating phase, Internet users from Amazon Mechanical Turk
evaluated the images created from the first 100, 300, 500, or 700
trials of the classification phase. We aimed to recruit 100 par-
ticipants per trial condition for a total of 400 participants. Nine
hundred eighty-six participants began the study; 369 completed
it Participants who completed demographic questions were
30.46 years old on average (SD = 9.05), and they were diverse in
terms of their sex (225 male, 139 female, 5 unreported), race (263
Asian, 76 White, 15 Biracial/Other, 10 Black, 4 Hispanic/Latino, 1
unreported), and sexual orientation (268 straight, 65 bisexual, 26
unsure, 8 lesbian/gay, 2 unreported).

After providing consent, participants were redirected to the
survey-hosting website Qualtrics, where they were randomly
assigned to evaluate one set of images (100-, 300-, 500-, or
700-trial images) produced during the Classification Phase. The
images were presented individually at 512 x 512 pixels until par-
ticipants rendered each judgment, which they made in three
counterbalanced blocks. In the categorization block, participants
provided basic social judgments of each image, including sex
(male, female), gender (1 = Extremely masculine to 9 = Extremely
feminine), how confident they were in these judgments (1 = Not
at all confident to 9 = Very confident), how difficult it was to
make these judgments (I = Not at all difficult to 9 = Very diffi-
cult), and how surprised they would be if the person in the image
were actually of the opposite sex than they guessed (I = Not at
all surprised to 9 = Very surprised). In the clarity block, partici-
pants rated the quality of each image across four 9-point scales

'Due to a coding error, our recruitment text indicated that the study would
require 20 min when it actually required about an hour. Many partici-
pants elected to terminate the study after 20 min, which resulted in a high
dropout rate. Because block order was fully counterbalanced, we assumed that
responses were missing at random. Indeed, results were mostly unchanged
when excluding participants with incomplete data. Instances in which exclud-
ing participants with incomplete data affected significance levels are noted,
but all other results pertain to the full dataset.
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(I = Not at all clear to 9 = Very clear; 1 = Not at all fuzzy to
9 = Very fuzzy; 1 = Not at all pixilated to 9 = Very pixilated,
1 = Not at all high definition to 9 = Very high definition). In
the distinctiveness block, participants saw side-by-side pairs of
female and not-female images created during the Classification
Phase and rated how distinct they appeared (1 = Not at all differ-
ent to 9 = Very different) and how easy it was to tell them apart
(1 = Very difficult to 9 = Very easy). The images were presented
in random order within each block, and the order of blocks was
fully counterbalanced across participants. After the rating tasks,
participants completed the importance subscale of the Gender
Self-Esteem Scale (Luhtanen and Crocker, 1992), which assessed
the centrality of gender to their self-concept across four items
(e.g., “Being a man/woman is an important part of my self-
image”). Finally, participants provided demographic information
before being debriefed.

RESULTS

Our primary aims were: (1) to test whether reverse-correlation
yields reliably sex-typed images of men’s and women’s body
shapes, and (2) to explore associations between the number of tri-
als used to create the images and subsequent image quality. Below,
we address each of these aims in turn.

We created composite scales for the three items assessing Ease
of Judgments (confidence, difficulty of categorization, surprise by
incorrect categorization), the four items assessing Image Quality
(clarity, fuzziness, pixilation, high-definition), and the two items
assessing Distinctiveness (different, easy to tell apart). We assessed
the reliability of each composite in two ways. First, we com-
puted coefficient alpha from the residual variance/covariance
matrix after accounting for random intercepts across both partic-
ipants and stimuli for the variables in each composite. Using this
method, alpha exceeded 0.61 for all scales. Second, we fit a one-
factor model for each composite using a Bayesian estimator, again
accounting for random intercepts across both participants and
stimuli. Because these analyses were based on Bayesian estimates,
we could not directly assess model fit, but we noted that all of
the individual factor loadings were highly significant (p < 0.001),
suggesting that the items in each composite contributed to a
single latent factor. We also created a composite score for the gen-
der identification scale (Luhtanen and Crocker, 1992). Because
responses to this scale were not multilevel, we assessed reliability
with traditional methods: Coefficient alpha was 0.53, and again,
all of the items loaded significantly onto a single factor. Thus,
all of our composite measures had modest reliability, perhaps
because there were relatively few items in each scale. The fact that
the items in each scale loaded onto a single latent factor provided
rationale for using composite scores in our analyses.

Prior to conducting analyses, we effect-coded the
categorical  predictors  including  Classification  Image
Sex, Perceived Sex, Perceiver Sex, and Perceiver Sexual

Orientation (—0.5 = not female, 0.5 = female; —0.5 = male,
0.5 = female; —0.5 = straight, 0.5 = lesbian/gay/bisexual), we
dummy-coded Perceiver Race (White as reference category),
and we coded Number of Trials as multi-categorical. We
mean-centered continuous predictors (e.g., Perceived Gender—
masculine/feminine, Perceiver Gender Identification, Perceiver
Age).

Frontiers in Psychology | Perception Science

July 2013 | Volume 4 | Article 476 | 4


http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive

Lick et al.

Because participants provided multiple judgments of multiple
stimuli, we tested our hypotheses using generalized estimat-
ing equations (Zeger and Liang, 1986), which are multilevel
regression models that allow for accurate prediction of both
dichotomous and continuous variables while accounting for
within-subject dependencies in data. For all models, we report
unstandardized regression coefficients and Wald zs. To test
the robustness of our effects, we also tested models includ-
ing Perceiver Age, Race, Sex, Sexual Orientation, and Gender
Identification as covariates. The inclusion of these covariates did
not change the pattern or significance of any result; therefore,
we report the models without them. Instances in which remov-
ing incomplete responses affected significance levels are noted;
all other results pertain to the full dataset, including participants
with missing data.

REVERSE CORRELATION AND SEX-TYPED BODY IMAGES

We first tested whether the reverse-correlation method yielded
reliably sex-typed images of men’s and women’s bodies, regardless
of the number of trials used to create the images. We approached
this question in several ways. First, we sought to establish that
perceivers’ sex categorizations reflected the decision rules used
to generate the classification images. To do so, we regressed
Perceived Sex (male, female) onto Classification Image Sex (not-
female, female), which revealed that perceivers categorized the
bodies in the expected directions, B = 1.8322, SE = 0.0579, z =
31.63, p < 0.0001, OR = 6.2476. That is, perceivers tended to
categorize female classification images as women (62.20% of the
time) and not-female classification images as men (79.06% of
the time). Intriguingly, perceivers were better at categorizing not-
female bodies as male than categorizing female bodies as female.
While not a primary focus of the current study, this finding repli-
cates recent research demonstrating a marked male categorization
bias in social perception (Johnson et al., 2012): In general, per-
ceivers are more likely to categorize bodies as male than female,
perhaps to avoid unwanted interactions with potential preda-
tors. This bias may have led to a higher rate of correct male
categorizations in the current study.

In a parallel analysis, we regressed Perceived Gender onto
Classification Image Sex. Again, perceivers judged target gender
in the expected directions, B = 1.6869, SE = 0.0675, z = 25.01,
p < 0.0001, rating female classification images as relatively femi-
nine (M = 5.59, SD = 2.33) and not-female classification images
as relatively masculine (M = 3.91, SD = 2.20) on a scale with a
midpoint of 5. Finally, we explored the distinctiveness of each pair
of female and not-female bodies. Mean ratings for Distinctiveness
(M =11.63, SD = 2.80) were significantly above the midpoint
of the scale (i.e., 10), f(564) = 9.5526, p < 0.0001, indicating that
the female and not-female classification images were perceptually
distinct.

Next, we employed a signal detection analysis (Stanislaw and
Todorov, 1999) to test whether classification images provided
sufficiently sex-typed visual information to afford perceptual
sensitivity among observers. We coded correct female categoriza-
tions (i.e., categorizing a female classification image as female)
as hits and correct male categorizations (i.e., categorizing a
not-female classification image as male) as correct rejections,
computing sensitivity (d’) with standard algorithms. Overall,
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d’ was significantly greater than 0 (M = 0.9113, SD = 0.7828),
te04) = 28.6362, p < 0.0001, suggesting that the classification
images contained sufficiently sex-typed bodily cues to compel
accurate sex categorizations.

Collectively, these results indicate that the reverse-correlation
technique used here yielded reliably sex-typed images of men’s
and women’s body shapes. Based upon subjective ratings from
independent perceivers, we found that female classification
images were indeed categorized as female and perceived to be
feminine. Not-female classification images were categorized as
male and perceived to be masculine. Furthermore, perceivers
rated pairs of female and not-female images as visually distinct.
Thus, although our instructions prompted participants to iden-
tify the image that best depicted a woman with no mention of the
category male, the unselected stimuli were reliably male-typed.
Finally, a signal detection analysis revealed that the classification
images provided sufficient visual cues to foster perceptual sen-
sitivity in perceivers’ sex categorizations. Although our findings
cannot speak to absolute differences in the classification images
of female and not-female bodies, in conjunction with recent data
showing that mental images of men’s and women’s bodies dif-
fer objectively in waist-to-hip ratio (Johnson et al., 2012), they
demonstrate that reverse-correlation yields perceptually mean-
ingful and sexually differentiated images of men’s and women’s
body shapes.

NUMBER OF TRIALS AND CLASSIFICATION IMAGE QUALITY

We next tested whether and how the number of reverse-
correlation trials affected the quality of the resulting classification
images. Specifically, we explored each dependent variable as a
function of Number of Trials, which we treated as four-level cat-
egorical variable (100, 300, 500, 700 trials). Because Number of
Trials was a multi-categorical variable, we used Type 3 tests of
fixed effects to determine the significance of all interactions. We
first examined the sex typicality of classification images across
trial conditions—that is, whether participants reliably differen-
tiated the female from not-female images created with differ-
ing numbers of trials. To do so, we regressed Perceived Sex
onto Classification Image Sex separately for each trial condi-
tion. Results indicated that participants reliably categorized image
sex in the expected direction for all conditions (see Table 1 for
regression parameters and odds ratios). That is, classification
images were reliably sex-typed after as few as 100 trials, and they
remained so for images created with 300, 500, and 700 trials.

We anticipated that the sex-typicality of the images might
improve as the number of trials increased. To directly compare
the sex-typicality of the images across conditions, we regressed
Perceived Sex onto Number of Trials, Classification Image Sex,

Table 1 | GEE coefficients for regression of Perceived Sex onto
Classification Image Sex for each trial condition.

B SE z OR P
100 Trials 1.2397 0.0996 12.44 3.4546 <0.0001
300 Trials 1.9496 0.1152 16.93 7.0259 <0.0001
500 Trials 2.0283 0.1296 15.65 7.6012 <0.0001
700 Trials 2.1385 0.1064 20.09 8.4867 <0.0001
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and their interaction. The two-way interaction was highly signifi-
cant, X2(3) = 38.29, p < 0.0001. To decompose this interaction,
we examined pairwise comparisons between all of the individ-
ual trial conditions after employing a Sidak correction (corrected
a = 0.05/36 total comparisons = 0.0014). Results indicated that
the association between Classification Image Sex and Perceived
Sex (i.e., the tendency to rate female images as female and not-
female images as male) was significantly stronger in the 300- (B =
0.7102, SE = 0.1522, z = 4.67, p < 0.0001), 500- (B = 0.7895,
SE = 0.1635, z =4.83, p < 0.0001), and 700-trial conditions
(B =0.8998, SE = 0.1458, z = 6.17, p < 0.0001) relative to the
100-trial condition; none of the other contrasts were statistically
significant (Figure 2).

We also conducted a signal detection analysis to examine the
extent to which each trial condition yielded classification images
with visually compelling cues to the target’s sex. As before, we
coded correct female categorizations (i.e., categorizing a female
classification image as female) as hits and correct male cate-
gorizations (i.e., categorizing a not-female classification image
as male) as correct rejections to compute sensitivity (d’) with
standard algorithms. We then subjected d’ values to a one-way
ANOVA with Number of Trials (100, 300, 500, 700) as a between-
subjects factor. Results indicated that perceptual sensitivity var-
ied significantly across trial conditions, F(3, 601y = 8.8609, p <
0.0001, nf, = 0.0424 (Table2). Pairwise comparisons revealed
higher sensitivity for classification images created with 300 tri-
als (B = 0.3349, SE = 0.0909, z = 3.68, p = 0.0002), 500 trials
(B =0.3556, SE = 0.0963, z = 3.69, p = 0.0002), and 700 tri-
als (B = 0.4045, SE = 0.0851, z = 4.76, p < 0.0001) relative to
those created with 100 trials; none of the other contrasts were
statistically significant.

Next, we regressed Perceived Gender onto Classification Image
Sex separately in each trial condition. Similar to the results
for Perceived Sex, participants judged gender in the expected
direction (i.e., female bodies as feminine, not-female bodies as
masculine) for all conditions (Table 3). These results provide
further evidence that the classification images were reliably sex-
typed after as few as 100 trials. To directly compare differences
in the magnitude of this effect across condition, we regressed
Perceived Gender onto Number of Trials, Classification Image
Sex, and their interaction. Again, the two-way interaction was
highly significant, X*(3) = 35.71, p < 0.0001. The association
between Classification Image Sex and Perceived Gender (i.e., the
tendency to rate female images as feminine and not-female images
as masculine) was stronger in the 300- (B = 0.7879, SE = 0.1738,
z=4.53, p < 0.0001), 500- (B = 0.8093, SE = 0.1889, z = 4.28,
p < 0.0001), and 700-trial conditions (B = 0.8987, SE = 0.1582,
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z =5.68, p < 0.0001) than in the 100-trial condition; none of the
other contrasts were statistically significant (Figure 3)>.

Next, we examined how image quality varied across trials.
First, we regressed Ease of Judgments onto Number of Trials,
which revealed a significant effect across conditions, X*(3) =
8.65, p = 0.0343. Pairwise comparisons revealed that perceivers

2When removing Rating Phase participants with incomplete data and
Classification Phase participants with fewer than 700 trials, the 100-trial and
500-trial conditions were no longer significantly different in gender-typicality
after the Sidak correction (p = 0.0050). However, statistical trends were in the
same direction as those reported.

3When removing Rating Phase participants with incomplete data and
Classification Phase participants with fewer than 700 trials, Ease of Judgments
varied marginally across conditions, X?(3) = 7.34, p=0.0618, with no
significant pairwise comparisons after the Sidak correction (ps > 0.01).
However, statistical trends were in the same direction as those reported.

Table 3 | GEE coefficients for regression of Perceived Gender onto
Classification Image Sex for each trial condition.

B SE z P
100 Trials 1.0575 0.1028 10.29 <0.0001
300 Trials 1.8543 0.1402 13.16 <0.0001
500 Trials 1.8667 0.1585 11.78 <0.0001
700 Trials 1.9560 0.1202 16.27 <0.0001
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FIGURE 3 | Association between Classification Image Sex and
Perceived Gender as a function of trial condition. *Indicates a significant
difference after applying the Sidak correction for multiple comparisons.

Table 2 | Parameters for signal detection analyses.

Hit (%) Miss (%) C.R. (%)
100 Trials 55.3902 44.6098 73.56114
300 Trials 63.0319 36.9681 80.3688
500 Trials 65.0083 34.9917 80.3240
700 Trials 65.1655 34.8445 81.7999
Overall 62.2014 37.7986 70.0625

FA. (%) d’ t P

26.4886 0.6359 9.4855 <0.0001
19.6312 0.9708 15.6944 <0.0001
19.6790 0.9915 14.2423 <0.0001
18.2001 1.0404 19.7117 <0.0001
20.0938 0.9113 28.6362 <0.0001
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rated images created from 300 trials (B = 0.8159, SE = 0.3926,
z=12.08, p =0.0377) and 700 trials (B = 1.1374, SE = 0.3914,
z=2.90, p=0.0037) as easier to judge than images created
from 100 trials, though these differences were not significant
after the Sidak correction (Figure4). We also regressed Clarity
onto Number of Trials, revealing that Clarity ratings did not
differ significantly across conditions, X?(3) = 5.31, p = 0.1507.
Finally, we regressed Distinctiveness onto Number of Trials,
revealing a significant effect of condition, X?(3) = 9.50, p =
0.0233. Perceivers rated images as more distinct in the 300- (B =
0.7662, SE = 0.3311, z = 2.31, p = 0.0206), 500- (B = 0.6489,
SE = 0.3422, z=1.90, p = 0.0579), and 700-trial conditions
(B =0.9071, SE = 0.3055, z = 2.97, p = 0.0030) relative to the
100-trial condition, though again, these differences were not
significant after the Sidak correction (Figure 5)*.

In summary, reverse-correlation images of human bodies
became reliably more sex-typed as the number of trials used to
create the images increased. The images were also perceived to
be of somewhat higher quality as the number of classification
trials increased, though this trend was more evident for some
measures of quality (e.g., perceived distinctiveness) than others
(e.g., clarity). Importantly, the association between number of tri-
als and image quality appeared to be non-linear: Our findings
indicated a sharp increase in quality from 100 to 300 trials, but
few notable improvements thereafter (see Figures 3—-5). Thus, for
mental images of men’s and women’s bodies created using the
two-alternative forced-choice method described here, 300 trials
may strike the ideal balance between participant effort and image
quality.

DISCUSSION
Reverse-correlation has emerged as a powerful data-driven
method for visualizing the cues that perceivers use to make social

4When removing Rating Phase participants with incomplete data and
Classification Phase participants with fewer than 700 trials, none of the
Distinctiveness pairwise comparisons were significant after the Sidak cor-
rection (ps > 0.01). Statistical trends were in the same direction as those
reported.
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categorizations (Todorov et al., 2011; Dotsch and Todorov, 2012).
The current study contributed two pieces of information to this
growing literature. First, we found that reverse-correlation yields
subjectively sex-typed images of men’s and women’s bodies, pro-
viding some of the first evidence that reverse-correlation is a valid
method for assessing mental representations of human bodies.
Second, we found that as few as 100 trials are sufficient to achieve
high-quality images that reliably signal sex category information
to naive observers, though there were notable improvements in
image quality from 100 to 300 trials.

Our finding that reverse-correlation images of men’s and
women’s bodies were reliably sex-typed and categorically dis-
tinct have broad implications for understanding sex categoriza-
tion. While most previous studies of social perception have
used reverse-correlation to study perceivers’ visual representa-
tions of faces, there is growing recognition that the body also
provides important cues to sex category membership (Johnson
and Tassinary, 2005; Johnson et al., 2012; Lick et al., in press). Our
studies provide the first demonstration that body images derived
from reverse-correlation techniques reliably signal biological sex
to naive observers. Indeed, perceivers in the current study tended
to categorize female classification images as women and rate them
as feminine, and they tended to categorize not-female classifica-
tion images as men and rate them as masculine. Furthermore,
perceivers rated pairs of female and not-female classification
images as visually distinct from one another. While these findings
do not pinpoint objective differences in these images, previous
work from our lab showed that classification images of men
and women derived from reverse-correlation methods vary con-
sistently in their waist-to-hip ratio (Johnson et al., 2012). We
suspect that mental representations of men’s and women’s bodies
may also vary along other morphological dimensions, including
frame size (i.e., women being physically smaller than men) and
bicep size (i.e., women having smaller arms than men), and
it would be useful for future researchers to explore these fac-
tors systematically. For now, our data indicate more generally
that reverse-correlation is a useful method for understanding
the bodily cues that perceivers use to make sex categorizations.
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FIGURE 4 | Ease of Judgments for classification images as a function
of trial condition.
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FIGURE 5 | Distinctiveness of female and not-female classification
images as a function of trial condition.
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Furthermore, our finding that a relatively small number
of trials yields high quality classification images of bodies
has methodological implications for other researchers employ-
ing reverse-correlation techniques. While previous studies have
found robust effects using a large number of reverse-correlation
trials, it has remained unclear whether so many trials are neces-
sary. Here, we found that classification images created from even
the first 100 reverse-correlation trials were reliably sex-typed,
and although image quality increased as the number of trials
increased, this trend was not monotonic. Instead, we noted signif-
icant improvement in image quality from 100 trials to 300 trials,
but relatively inconsequential improvements thereafter. These
findings suggest that researchers may be able to use fewer tri-
als than have been typical in previous reverse-correlation studies
without compromising the quality or distinctiveness of the result-
ing images. In fact, at least for the bodily images created using
the specific reverse-correlation methods described here, the num-
ber of trials necessary to derive maximally sex-typed images is
certainly fewer than 700, and closer to 300.

While our findings suggest that reliable classification images can
emerge from relatively few reverse-correlation trials, it is impor-
tant to note that this parametric conclusion may only apply to
sex-typed mental representations of bodies obtained using the
specific technique described above. It remains possible that the
number of trials required to obtain reliable classification images of
faces differs from the number of trials required for bodies. Indeed,
the sinusoid noise patterns used in this study may be especially
effective at varying stimulus features with low spatial frequencies
(e.g., bodies). These noise patterns might not be as effective at
varying stimulus features at high spatial frequencies (e.g., faces),
which suggests that more trials might be necessary to visualize
those features. Furthermore, sex-typed body representations may
be somewhat unidimensional, varying primarily in shape, while
facial representations vary in myriad ways (shape, texture, pig-
mentation). More trials may be necessary to accurately model
complex mental representations of human faces relative to bodies.

Other methodological considerations are also likely to affect
the association between number of trials and classification image
quality. For instance, we used pre-generated noise patterns to
create a set of body images that were presented to all par-
ticipants. Thus, the individual images that participants judged
during the classification phase contained less variation than in
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some previously published work, so our findings may provide a
conservative estimate of the number of trials necessary for obtain-
ing high-quality mental representations of sex-typed bodies. Also,
we used the unselected images in a two-alternative forced-choice
design to derive not-female images. While previous research has
suggested that the unselected images might approximate the
opposite dimension of a binary category (e.g., not-female bodies
approximate male body shapes; Johnson et al., 2012), and while
participants in our study reliably categorized female images as
female and not-female images as male, the number of trials nec-
essary for reliably sex-typed classification images might vary if
participants were to complete separate reverse-correlation tasks
for male and female bodies. Collectively, these limitations lead
us to caution researchers from inferring that 300 trials are ideal
for all reverse-correlation paradigms. Nevertheless, the analytic
strategy developed here is likely to provide a useful framework
for others interested in examining the number of trials necessary
to obtain reliable reverse-correlation images using different tech-
niques (e.g., Gaussian white noise), stimuli (e.g., faces), and social
categories (e.g., race).

In conclusion, people’s tendency to efficiently process others
on the basis of their social category memberships has inspired
the development of novel reverse-correlation techniques to bet-
ter understand the processes driving those categorizations. Until
recently, however, most researchers have used reverse-correlation
techniques to study perceivers’ mental representations of faces.
The current findings extend this method to bodies, demonstrat-
ing that as few as 100 trials provide a meaningful glimpse into
the visual cues that characterize perceivers’ beliefs about men’s
and women’s body shapes. These insights will provide important
foundations as reverse-correlation becomes a common method
for studying the cues that people use to categorize others, espe-
cially with regard to their sex category memberships.
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