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Our understanding of the mechanisms and neural substrates underlying visual recognition
has made considerable progress over the past 30 years. During this period, accumulating
evidence has led many scientists to conclude that objects and faces are recognised
in fundamentally distinct ways, and in fundamentally distinct cortical areas. In the
psychological literature, in particular, this dissociation has led to a palpable disconnect
between theories of how we process and represent the two classes of object. This
paper follows a trend in part of the recognition literature to try to reconcile what we
know about these two forms of recognition by considering the effects of learning. Taking
a widely accepted, self-organizing model of object recognition, this paper explains how
such a system is affected by repeated exposure to specific stimulus classes. In so doing,
it explains how many aspects of recognition generally regarded as unusual to faces
(holistic processing, configural processing, sensitivity to inversion, the other-race effect,
the prototype effect, etc.) are emergent properties of category-specific learning within
such a system. Overall, the paper describes how a single model of recognition learning
can and does produce the seemingly very different types of representation associated
with faces and objects.
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INTRODUCTION
Our ability to recognize and analyze objects forms an essential
part of our everyday life, and is something we achieve rapidly,
accurately, and seemingly effortlessly. However, the apparent ease
with which we accomplish this recognition is deceptive. This is
perhaps nowhere more apparent than in the case of face recogni-
tion. Recognition across possible views of faces is hard, because
faces change their shape as they rotate (profile, frontal view),
they self-occlude (nose), they are non-rigid (expressions), they
change over time (facial hair, aging), and very similar distrac-
tors exist (other faces). Understanding how humans achieve facial
recognition is not only of interest to neuroscientists, but also
to researchers from across the field of artificial vision, such as
engineers involved in anything from robotics, border security,
computer access, to camera phones. Given the task’s complex-
ity, one might think that scientists interested in unraveling the
mysteries of visual processing in the human brain would do
well to concentrate their efforts on more tractable issues first.
However, in practice, visual recognition has proven a highly prof-
itable model for the study of both visual processing and learning
in humans because its goals are well defined. It has allowed scien-
tists to probe both human and animal cortex in search of neurons
which demonstrate the appropriate abstraction of visual infor-
mation. Work of this kind has been central to the development
of the two-stream hypothesis of vision (Ungerleider and Haxby,
1994), and has helped fuel debates about regional specialization
in cortex, as well as the relative contributions of genetics and our
environment to the behavior of neural systems.

Although outperformed by machines in some recognition
tasks in recent years (O’Toole et al., 2007; Tan et al., 2013), our
visual system appears particularly adept at discriminating, cate-
gorizing and identifying faces. On one level, this is perhaps under-
standable. Face recognition represents a potent drive to processes
underlying natural selection, since it underpins appropriate inter-
action with the species most central to our survival, namely other
humans (Öhman and Mineka, 2001; LeDoux, 2003). Whether
it is in recognizing potential friendliness or threat from facial
expressions; or identifying family, friends, clansmen or foes; cor-
rect performance is central to what the evolutionary biologists
refer to as “fitness”. Whereas broad correct classification of ani-
mals, foods, tools and other objects might suffice for survival,
correct within-category discrimination is essential for a func-
tionally relevant face recognition system, since the behaviorally
relevant question is often not “what is that?” (a face), but rather
“who is that?”. From an evolutionary standpoint, then, faces may
merit neural resources beyond those dedicated to other object
classes. It turns out that there are numerous converging lines
of evidence from developmental, neuropsychological (patient),
behavioral and electrophysiological sources, that faces are indeed
processed separately and/or differently to other objects, leading
authors to argue that evolution has devoted specialist areas and
pathways in the brain to the task of face recognition (Kanwisher
et al., 1997; Öhman and Mineka, 2001; Tsao and Livingstone,
2008).

In this paper I discuss the evidence for face-specific process-
ing from numerous sources, and attempt to clarify what results
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of this type tell us about the representation and recognition of
faces. Using this preliminary review as a backdrop, I turn to
evidence from some labs that many of the known effects are actu-
ally a symptom of expertise rather than something immutably
unique to faces. I then go on to discuss a convergence in thinking
that exists between scientists working in the traditionally iso-
lated domains of face and object recognition, arguing that the
main missing ingredient has been a consideration of the effects of
learning. I argue that by turning to a more biologically relevant,
self-organizing, competitive system (one which allows the visual
diet of the observer to shape the classifiers that are formed), clas-
sic face-like properties such as holistic processing spontaneously
emerge as a function of visual experience.

Ultimately, the self-organizing model described here helps
explain how the many undeniable peculiarities of face recog-
nition represent emergent properties of a standard model of
object recognition in which a small subset of stimuli are highly
over-trained.

THE SPECIAL PROPERTIES OF FACES
There has long been a debate as to the “specialness” of faces
compared to other objects (Ellis and Young, 1989; Gauthier and
Logothetis, 2000; Bukach et al., 2006; McKone et al., 2007). But
for many working in the area, there remains little doubt that faces
are special in a number of ways, and that the debate is hence
more-or-less at an end (McKone et al., 2007). This is not simply
a view held by those working in the domain of face recognition.
Some of the world’s most senior theoreticians working in the area
of object recognition have argued that the processing of faces is
unlike that of other objects (Biederman, 1987; Biederman and
Kalocsai, 1997; Leibo et al., 2011).

One significant aspect of face processing often discussed is the
apparently holistic manner in which faces are processed (Tanaka
and Farah, 1993; Carey and Diamond, 1994; Schwarzer, 1997;
Farah et al., 1998; Peterson and Rhodes, 2003). Support for a
holistic model comes from a number of sources: First, jumbling
nameable parts (mouth, nose, eyes) leads to reductions in both
recognition speed and accuracy (Tanaka and Farah, 1993; Farah
et al., 1998). Second, discrimination based upon the upper half
of the head, say, is disrupted by the presence of the lower half of
another person’s head when the two halves are aligned, suggest-
ing an inability to process the two halves independently (a result
termed the “composite effect”) (Young et al., 1987; Hole, 1994).
Although there is some evidence that other objects of expertise
also reveal a composite effect, the studies remain controversial
(Rossion, 2013).

As well as being sensitive to the conjunction of nameable
parts, human observers are also sensitive to placement of those
parts within a face (Leder and Bruce, 1998; Maurer et al., 2002).
Any slight change in the distance between the eyes or between
nose and mouth etc. can greatly affect recognition performance
(termed the “configural effect”). Studies of this effect have tended
to argue that this is because configuration in and of itself mat-
ters (Maurer et al., 2002). However, this interpretation has been
challenged on technical grounds (McKone et al., 2007), and
more carefully controlled experiments have produced very dif-
ferent results (Riesenhuber et al., 2004; Sekuler et al., 2004;
Yovel and Duchaine, 2006). Where configural effects have been

demonstrated it may be safer to interpret them as evidence that
humans are sensitive to the configuration of nameable facial
parts—i.e., further evidence for holistic processing. Two very
recent studies which further corroborate the idea of cortically
localized holistic processing, come from patients subjected to cor-
tical stimulation. Both described periods of breakdown in the
facial whole in which features appear in the wrong places within
the face, an effect which rapidly ceased as soon as stimulation
stopped (Jonas et al., 2012; Parvizi et al., 2012).

Face recognition also generalizes very poorly across planar
rotation i.e., turning the face upside down (termed the “inversion
effect”) (Yin, 1969)1. In the past, some have claimed that the inver-
sion effect is due to a complete breakdown in holistic processing
when faces are inverted (Thompson, 1980; Leder and Bruce, 1998;
Maurer et al., 2002). However, more recent studies have argued
that the full story is unlikely to be that simple (Valentine and
Bruce, 1985; Sekuler et al., 2004; Talati et al., 2010).

There are certainly many other aspects of face processing
which are unusual, including developmental studies in babies
(based on preferential looking); the face-specific recognition
deficit prosopagnosia (Behrmann et al., 2005; Duchaine et al.,
2006; Yovel and Duchaine, 2006); the face-selective centers of
the brain (Fusiform-face area or FFA, see later), enhanced pro-
cessing of certain facial expressions (Öhman and Mineka, 2001;
Horstmann, 2007) [For a critical review and new data see Coelho
et al. (2010) and Calvo and Nummenmaa (2008)]. There are
also electrophysiological effects unique to faces. For example,
there is evidence for pronounced electrical activity associated
with seeing faces (called the N170, see Thierry et al. (2007) and
Boehm et al. (2011) for a critical review and new data). I will
say more about some of these effects in the coming sections,
but will restrict discussion to studies which speak directly to
how cortical representations are established and what form these
representations take.

THE REPRESENTATION OF FACES AND OBJECTS IN
TEMPORAL LOBE CORTEX
Current understanding of the primate visual system points to the
fact that the task of both face and object recognition is centered
on a pathway leading from primary visual cortex, in the occipi-
tal lobe, down into the inferior (lower) sections of the temporal
lobe (Ungerleider and Haxby, 1994; Logothetis and Sheinberg,
1996). Consistent with this hypothesis, damage to temporal lobe
cortex can lead to specific recognition deficits such as the asso-
ciative agnosias described in patient studies (Farah, 1990). This
in turn mirrors recording in the homologous region of monkeys
which has identified cells responsive to faces and other familiar
objects (Desimone, 1991; Rolls, 1992; Logothetis and Pauls, 1995;
Baker et al., 2002). Brain imaging studies in healthy humans have
likewise revealed selective activation of temporal lobe areas dur-
ing recognition tasks involving faces and other objects (Kanwisher
et al., 1997; Gauthier et al., 2000; Haxby et al., 2001). Recent work
looking at the single cell responses of humans in special patient

1Despite some early claims, the latest literature suggests that we share our sen-
sitivity to inversion with monkeys (Phelps and Roberts, 1994; Perrett, 1988;
Parr and Heintz, 2006; Tomonaga, 2007), although not all animals (Phelps
and Roberts, 1994).

Frontiers in Psychology | Perception Science August 2013 | Volume 4 | Article 497 | 2

http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science
http://www.frontiersin.org/Perception_Science/archive


Wallis Unifying face and object recognition

groups have served to further reenforce this picture (Quiroga
et al., 2009). The electrophysiological studies in particular, have
revealed that the further one looks along the object recognition
pathway, the larger the spatial extent over which individual neu-
rons respond, and the greater the tolerance they exhibit to changes
in an object’s location and size (Desimone, 1991; Rolls, 1992;
Perrett and Oram, 1993). On the basis of receptive field sizes and
neural response times, it appears that true view invariance comes
last of all, at a stage in which size- and location-tolerant neurons
are pooled to form view-invariant responses (Perrett et al., 1987,
1992; Logothetis and Sheinberg, 1996).

There have been a great deal of studies conducted looking at
the selectivity of temporal lobe neurons. Perhaps the best source
of information currently available comes from single cell record-
ing and optical imaging studies in the macaque, as well as recent
single unit studies in humans. This work has revealed cells which
can be effectively stimulated by sub-parts of a full object often
irrespective of precise size or location (Yamane et al., 1988; Tanaka
et al., 1991; Tsunoda et al., 2001). In a particularly revealing study
based on intrinsic imaging, Wang et al. (1996) describe groups
of neurons equally responsive to a feature (e.g., the silhouette of
a cat’s head) or any object containing that feature (cat); whereas
other neural centers appeared more integrative/holistic (only the
whole cat was an effective stimulus). There have been numerous
other reports of highly selective sensitivity in temporal lobe neu-
rons (Desimone, 1991; Tanaka et al., 1991; Logothetis and Pauls,
1995).

Despite the undeniably high levels of stimulus selectivity,
studies of within-category selectivity of face cells suggest that
even neurons from the most anterior parts of the temporal lobe
respond to many of the faces tested (Perrett et al., 1992; Young and
Yamane, 1992; Abbott et al., 1996). Scientists recording a decade
later made the same informal observation: “Although some cells
responded best to only one or a few faces, many cells were respon-
sive to a wide variety of face images, including familiar and
unfamiliar faces, human and macaque faces, and even cartoon
faces” (Tsao et al., 2006). Hence the overall conclusion appears to
be that cells in this region can be highly selective for a specific set
of stimuli, but that they rarely respond to a single stimulus, indi-
cating that the representation in this area falls short of becoming
completely holistic. Instead, the neurons appear to be sensitive to
specific pictorial subregions or broad shape cues such as the out-
line of a head. Some neurons do appear selective for nameable
parts (as predicted by Tanaka and Farah, 1993), but this appears
to be the exception rather than the rule.

The early studies in monkeys generally reported an inter-
mingled pattern of cell selectivity, with the relative density of
face cells peaking at around 20% (e.g., Perrett et al., 1982). Later
studies by Tanaka et al. (1991) tackled the task of characteriz-
ing responses of the other 80% of cells. The group went on to
describe the orderly clustering of these cells in terms of their pre-
ferred visual stimuli, while at the same time highlighting the rich
intermingling of these clusters (Fujita et al., 1992). It is worth
bearing in mind that this picture of inter-mingled neural selec-
tivity was based on cytoarchitectonic (anatomical) regions. More
recent work by Tsao et al. (Tsao et al., 2006, 2008b; Moeller
et al., 2008; Freiwald and Tsao, 2010) chose to define regions
of interest functionally, using fMRI. They reported very high

concentrations of face-selective cells, as well as interconnected,
face-selective “patches” running through occipital and ventral
cortex (see also Zangenehpour and Chaudhuri, 2005). As well
as appearing to link up more closely with the phenomena of
prosopagnosia, Tsao and colleagues’ work accords with functional
imaging work in humans which has repeatedly singled out a sub-
region of inferior temporal lobe (called the fusiform face area or
“FFA”) as being strongly activated by faces (Sergent et al., 1992;
Puce et al., 1995; Kanwisher et al., 1997). Beyond faces, there is
growing evidence for regional specialization of function in tem-
poral cortex for other visually acquired objects such as written
words (McCandliss, 2003; Glezer et al., 2009; Pegado et al., 2011)
and in tool use (Mahon et al., 2007) amongst others.

EVIDENCE FOR LEARNING IN VISUAL RECOGNITION
Although many aspects of face recognition have been carefully
characterized and we now know a great deal about the types
of cells that support recognition, the means by which they are
established remains a matter of debate. This section lays out the
evidence for learning by combining evidence from behavioral,
theoretical and electrophysiological sources.

BACKGROUND
At the cellular level there is little doubt that temporal lobe neurons
represent a significant substrate for learning in visual recogni-
tion. Rolls et al. (1989), for example, were able to demonstrate
rapid adaptation of a neuron’s selectivity for faces. In addition,
both Miyashita (1988) and Kobatake et al. (1998) found cells in
the temporal lobe responsive to artificial stimuli used in previ-
ous training, a fact which could not easily be explained by natural
biases or innate selectivity. Kobatake et al. (1998), in particular,
demonstrated that the number of cells selective for a trained stim-
ulus was significantly higher in a trained monkey than in the
cortex of naive monkeys and Baker et al. (2002) demonstrated
that the neural representations of novel objects become more spe-
cific and integrated with training. Logothetis and Pauls (1995)
trained monkeys to recognize particular aspects of a novel object
class (see Bülthoff and Edelman, 1992). After training, many neu-
rons were shown to have learned representations of particular
objects including some neurons that were selective to specific
views.

Learning in temporal lobe cells can be built up over many
months, but can also be almost instantaneous, reflecting behav-
ioral changes measured in human responses to stimuli. Tovee
et al. (1996), for example, presented camouflaged, two-tone
images of faces (“Mooney Faces”) to monkeys. Some neurons
which did not respond to any of the two-tone faces did so if once
exposed to the standard gray-level version of the face. This accords
with findings in humans, who often struggle to interpret two-tone
images at first, but then have no difficulty interpreting the same
image even weeks later.

Apart from the evidence for the experience-dependent modi-
fication of neural responses, there are also ample examples from
behavioral studies of face and object recognition. One important
development in the last years of the 1990’s was the introduction
of stimuli chosen from novel object classes. What emerged from
this work was that if two views of a novel object were learned,
recognition was better for new views oriented between the two
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training views, than for views lying outside them (Bülthoff and
Edelman, 1992; Edelman and Bülthoff, 1992). More recently,
studies based on functional imaging data have reported large-
scale changes to the organization and selectivity of temporal lobe
cortex in humans after training. They have also highlighted how
the changes are related not only to the stimuli used but also the
recognition task involved (Op de Beeck et al., 2006; Gillebert et al.,
2009; Wong et al., 2009b).

Although many models of object recognition deny (Olshausen
et al., 1993) or are indifferent to the precise mechanisms of
learning (Fukushima, 1980; Riesenhuber and Poggio, 1999), one
group of models predicts that all forms of tolerance to changes
in appearance are learnt (Földiák, 1991; Wallis, 1998; Wallis and
Bülthoff, 1999). Behavioral evidence to support the hypothe-
sis came originally from face recognition studies. The studies
looked at depth rotation (Wallis and Bülthoff, 2001; Wallis, 2002)
and later planar rotation and illumination changes (Wallis et al.,
2009), but related work has revealed parallels with non-face stim-
uli too (Stone, 1998; Vuong and Tarr, 2004; Liu, 2007). DiCarlo
et al. have also made progress discovering the neural substrates
of such learning in macaques, with reference to location and
size invariance learning (Cox and DiCarlo, 2008; Li and DiCarlo,
2008, 2010). Related effects have also recently been reported in
a study of spike dependent plasticity (McMahon and Leopold,
2012). The fact that both the face and object recognition sys-
tems are amenable to the same type of learning does not, of
course, necessarily imply that they are subserved by the same
system, but it does suggest that if separate systems exist, they
are subject to similar mechanisms of learning. Certainly, work
on other functionally defined areas in the temporal lobe, such
as the Visual Word Form Area (McCandliss, 2003; Cohena and
Dehaene, 2004), strongly suggest that regions of specialization
can emerge for “non-prepared” (i.e., manmade) stimuli, open-
ing the possibility that face specific regions emerge through
experience too.

THE ISSUE OF EXPERTISE
One of the most hard-fought, sometimes rancorous debates in the
field of object and face recognition literature, concerns the role of
learning in face recognition, and in turn the issue of visual exper-
tise. Few would disagree that there are regions of cortex filled with
face-selective neurons, or that the neurons supporting recogni-
tion learn from experience. Where agreement breaks down is on
the issue of how these representations are established and why.
Many researchers have taken the selectivity of FFA as evidence
for a face-specific system dedicated to the task of face process-
ing (Kanwisher et al., 1997; McKone et al., 2007; Liu et al., 2010),
whilst others have argued that there is no specialist region for face
processing per se. Instead, faces are seen an example of an object
category in which most of us are experts and that FFA is selec-
tive to any and all objects of expertise (Gauthier and Tarr, 2002;
Bukach et al., 2006; Gauthier et al., 2009).

Although this might appear to be a debate which would lend
itself to empirical test, the truth is that arguments about exper-
imental methods and the interpretation or reliability of specific
results have allowed the debate to rumble on. One early source
of evidence for the expertise hypothesis came from Diamond and

Carey (1986) who described the high sensitivity of dog experts to
picture-plane inversion compared to control subjects, suggesting
face-like sensitivity to a non-face category of expertise. However,
a recent study by Robbins and McKone (2007) has cast doubt over
those results after they failed to replicate the effects. The follow-
up debate to their article is worth reading because it highlights
numerous areas of disagreement between representatives of the
two sides of the debate (Gauthier and Bukach, 2007; McKone
and Robbins, 2007). One criticism which the Robins and McKone
study has to tackle is the fact that their dog experts performed rel-
atively poorly at the tasks they were set, relative to young naive
volunteers. The authors argue that one should look to the worse
performance of age-matched controls. Nonetheless, as the Busey
and Vanderkolk (2005) study of fingerprint experts shows, it is
possible for experts to outperform all-comers of all ages (even
academic trained, younger volunteers). It would be interesting to
find a task that the dog experts were truly good at. One candidate
task, mentioned in passing by the authors, might be the experts’
ability to correctly guess the country of origin of the dogs.

On a broader level, what the debate about expertise reveals
is that it can be hard to devise the right stimuli and tasks to
conduct meaningful human behavioral testing. This was a prob-
lem which hampered the object recognition debate for many
years. Those that argued for view-independent representations
pointed to results using between-category performance on famil-
iar objects, and those that advocated a view-sensitive repre-
sentation pointed to results from studies using within-category
discrimination of novel object classes (Biederman, 1987; Bülthoff
and Edelman, 1992; Biederman and Gerhardstein, 1993; Tarr and
Bulthoff, 1998). In the case of faces, one can look at the results
of Duchaine et al. (2006) on prosopagnosia. Their results reveal
that for a particular level of task difficulty a prosopagnosic may
appear to show relatively normal face discrimination ability, per-
haps based on local, diagnostic features (large eyes, distinctive
nose). Nonetheless, with appropriate controls and changes to
noise levels or view point, the prosopagnosic’s approach to face
discrimination fails, and performance rapidly drops off.

One important lesson to emerge from the debate on object
recognition was that in order to understand the current system
and its abilities it can be advantageous to take a stimulus set
which is completely novel, so as to permit monitoring of the
development of tolerance to changes in appearance over time.
This approach was adopted by Gauthier et al. in attempting to
understand the possible role of expertise in face recognition. They
created numerous novel stimulus sets including “Greebles” (non-
sense creatures made from simple geometric parts). Their studies
revealed how repeated exposure to these novel stimuli gradually
yielded sensitivity in their observers to image properties normally
regarded as specific to face processing, including configural and
composite effects (Gauthier and Tarr, 1997, 2002; Ashworth et al.,
2008). There is a wealth of behavioral evidence to support the idea
that holistic processing emerges only after high levels of exposure,
both in the object and developmental face recognition literature.
For a recent and extensive review of that evidence one can turn to
Crookes and McKone (2009), who then go on to explain why they
believe the majority of the results are unreliable because of a fail-
ure to match task difficulty across the different age ranges. Their
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work is not uncontroversial but it does, once again, highlight the
difficulties associated with choosing appropriate stimuli and tasks
for behavioral experiments.

A significant element of the expertise story has focussed on the
specificity of FFA. In a series of papers Gauthier et al. demon-
strated that the FFA of subjects also responded to objects of
expertise including an artificial object class (Gauthier and Tarr,
1997), and real-world object categories such as cars and birds
(Gauthier et al., 2000). A later study questioned whether FFA was
necessary for face categorization (Haxby et al., 2001), and high
resolution analysis of FFA indicates that the classically defined
FFA is actually selective to things other than just faces (Grill-
Spector et al., 2006). At the same time it would be fair to say that
the results of some of these earlier studies have been subjected
to close scrutiny, resulting in a partial retraction in one instance
(Grill-Spector et al., 2007). Also, new experiments have suggested
that it was actually facial elements of Gauthier and other’s “stim-
uli of expertise” which were responsible for activating FFA (Brants
et al., 2011). But the idea has certainly not disappeared (Gauthier
et al., 2009) as some might have wished (McKone and Robbins,
2007). Indeed, recent studies employing high field fMRI with
1 mm3 voxels, have again argued that FFA is linked to exper-
tise (McGugin et al., 2012) or at least contains multiple centers
responsive to multiple stimulus types (Weiner and Grill-Spector,
2012). Also, attempts to decode the representation in FFA suggest
that anterior IT may contain more useable information for face
discrimination (who is that?) than FFA, which was more attuned
to the task of categorization (face vs. non-face)(Kriegeskorte et al.,
2007).

Whatever the precise role of FFA in face processing, as Crookes
and McKone (2009) themselves point out, one fact in favor of
the expertise hypothesis in that the size of FFA increases substan-
tially throughout childhood and into early adulthood (Golarai
et al., 2007; Scherf et al., 2007). Apart from suggesting an expo-
sure driven model of cortical specialization, it also suggests that
the face and non-face specific areas are not so functionally distinct
as some compartmentalized models of temporal lobe selectivity
might suggest, since recruitment of non-face specific areas for face
selective activities is possible.

As mentioned in passing earlier, work on visually evoked
potentials (using EEG equipment) has provided evidence that
faces produce an enhanced negative potential at around 170 ms
post stimulus onset (Bentin et al., 1996). Of relevance to the
debate on expertise, a study of experts in fingerprint analysis
revealed a delay in their N170 responses to inverted fingerprints
which was not present in control subjects, apparently mirroring
the delay found for faces (Busey and Vanderkolk, 2005). It should
be added that the meaning of the N170 is a matter of force-
ful, ongoing debate (Thierry et al., 2007; Rossion and Jacques,
2008), but that debate is centered on the difficulty of comparing
stimulus responses across stimulus sets as heterogeneous as cars,
houses and faces. In the case of the Busey and Vanderkolk (2005)
study, the comparison is based on the same (fingerprint) stimuli,
making the difference all the more striking.

One of the best pieces of evidence for learning in the face
recognition system is the “other-race” effect (Chance et al., 1982).
This refers to the fact that observers are faster and more accurate

at discriminating faces from their own race than those belong-
ing to an unfamiliar race. On the basis of this single piece of
evidence alone, it seems that some aspects of face recognition
must be affected by levels of visual exposure and hence exper-
tise. Researchers have speculated in the past that our inability to
discriminate faces of races other than our own might be related
to a lack of holistic coding of other-race faces (Rhodes et al.,
1989), a proposal which has received recent empirical support
(Michel et al., 2006; Rossion and Michel, 2011). The plasticity of
these effects has been further enforced by reports of an “own-age”
effect, in which discrimination performance is biassed toward the
age-range of ones peers (Hills and Lewis, 2011; Hills, 2012).

MODELS OF VISUAL RECOGNITION
BACKGROUND
Having reviewed what is “special” about faces and what is known
about the neural basis of face and object recognition, it is time
to turn to more formal models of how faces and objects are rep-
resented, and how these representations are established. Models
from the two fields of object and face recognition have evolved
largely independently of one another but in this section I will
describe reasons for thinking that models in the two fields are in
fact intimately related.

We can begin the section by asking a question: How would a
self-organizing recognition system respond to seeing huge num-
bers of a single class of objects? One can test this easily enough
theoretically, but in order to seek parallels behaviorally, one would
have to ask volunteers to look at a specific stimulus for hours a day
over a period of weeks. To really test a system one might add the
constraint that participants could only look at upright versions of
those stimuli. Only then could one begin to truly assess the impact
of this type of biassed sampling of the input space. The only issue
is, who would want to do an experiment of this type? It turns
out, of course, that the experiment I am describing exactly paral-
lels our daily experiences with faces. Couched in these terms, face
recognition suddenly feels like a rare opportunity to test object
recognition theories to destruction. In the following sections I
will attempt to describe how over-learning of a specific class of
stimuli causes self-organizing systems to produce peculiarly spe-
cialized feature analysers. The analysers are more holistic than is
the case for analysers focussed on other everyday objects, with the
result that a sub-system emerges with relatively high sensitivity
to change (good discrimination performance) but also relatively
poor generalization, especially across novel transformations (such
as inversion).

OBJECTS
Classical approaches to object recognition have focussed on
deconstructing the retinal image into cues relating to 3D shape
such as depth and edge junctions (Marr and Hildreth, 1980;
Biederman, 1987). Other models posit the presence of neural
circuitry for conducting transforms of size and location on arbi-
trary forms (Graf, 2006), while others argue for the existence of
object prototypes (Edelman, 1995). An alternative model pro-
poses that recognition is based upon image matching (Poggio and
Edelman, 1990; Bülthoff and Edelman, 1992) and more recently,
abstract feature matching (Wallis and Bülthoff, 1999; Ullman,
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2006; Torralba et al., 2007). In its simplest form, the image-
based approach can be thought of as representing objects through
a series of snap-shots taken under varying viewing conditions
(lighting, viewing direction, size, location etc.). Recognition sim-
ply requires matching new images to any one of the stored images.
By switching to features, rather than whole views, experience with
one object can transfer immediately to other objects, allowing
novel objects to be recognized from untrained viewpoints (see
Wallis and Bülthoff, 1999).

Despite its ability to transfer experience to other views and
objects, one important aspect of the feature-based model is that it
predicts imperfect generalization across view changes. This actu-
ally accords perfectly well with a host of behavioral data on faces
and novel objects. For example, humans are less than perfect
at generalizing across depth rotations or across extreme light-
ing conditions (Patterson and Baddeley, 1977), and many aspects
of object recognition are not truly transform invariant for novel
object classes without training (see Edelman and Bülthoff, 1992;
Graf, 2006). This need for learning also accords with what we
know about face and body selective neurons in the temporal lobe
which do not natively generalize recognition across all object sizes
and locations (e.g., Ashbridge et al., 2000).

As well as its appeal in terms of biological plausibility, the
feature-based model has been shown to have explanatory power
for a number of well known behavioral phenomena in the field
of object recognition. For example, it has long been known that
the time required to recognize an object from a new viewpoint
correlates with the view’s disparity from a previously learned
view (Shepard and Cooper, 1982). Many have interpreted this
as evidence for the presence of a rotatable, internal 3-D model.
However, it turns out that such effects are also predicted by a
distributed, view-based representation (Perrett et al., 1998).

Despite the improvement in generalization which a feature-
based approach brings over the strictly view-based one, a signif-
icant problem that these models faced in the past was to explain
how to associate very different looking views of a single object
into a unified representation. Many models side-step the issue by
using supervised learning schemes (Poggio and Edelman, 1990;
Riesenhuber and Poggio, 1999). This is a problem that requires
solving however. A standard, self-organizing (e.g., Hebbian) sys-
tem associates on the basis of physical appearance. Associating
object views according to physical similarity can, at best, only
provide limited tolerance to variations in an object’s appearance
(a head can look quite different when seen from different direc-
tions). A plausible and robust solution appears to be that the
visual system associates views on the basis of their temporal prox-
imity as well as spatial similarity (Pitts and McCulloch, 1947;
Földiák, 1991; Miyashita, 1993; Wallis and Bülthoff, 1999; Wallis
et al., 2009). Temporal proximity is informative because images
streaming into our visual system are likely to be views belong-
ing to a single (possibly transforming) object. As we turn a box
in our hand, for example, it produces a stream of reproducible,
temporally correlated views. Associating views in this way has the
advantage that it is useful for invariance learning across all man-
ner of naturally occurring transformations including rotation in
depth, spatial shifts and in-plane rotations, size changes, illumina-
tion changes, non-rigid motion, and so on. Temporal association

appears to offer the missing ingredient for a system that can
operate and organize fully autonomously, being guided by the sta-
tistical regularity in time as well as space of the input it receives.
Network simulations have demonstrated how a minor modifica-
tion to standard Hebbian association (called the trace rule) can
produce view change tolerant representations in self-organizing
systems (Földiák, 1991; Becker, 1993; Wallis et al., 1993; Wallis,
1998)—see Rolls (2012) and Bart and Hegdé (2012) for recent
reviews. Subsequent electrophysiological studies have leant fur-
ther support to this theory (Cox et al., 2005; Cox and DiCarlo,
2008; Li and DiCarlo, 2008, 2010) which has prompted developers
of other hierarchical models of object recognition to experiment
successfully with trace-rule learning (Isik et al., 2012).

FACES
Despite the widespread use of feature-based models in object
recognition, it is apparent that their users have rarely had any-
thing specific to say about face recognition. Most of the theoretical
work on face processing has proceeded independently of progress
in the field of object recognition. Within the face literature,
debate has largely centered on norm-based, prototype, exemplar-
based, or configural models (Valentine, 1991; Maurer et al., 2002;
Rhodes and Jeffery, 2006). For many working in the area, evidence
points to a norm-based model in which faces are encoded rela-
tive to the central tendency of faces we are familiar with (see e.g.,
Leopold et al., 2006; Rhodes and Jeffery, 2006; Susilo et al.,
2010), but as Valentine (1991) pointed out, both exemplar and
norm-based models can account for a whole range of behavioral
phenomena including the other-race effect and the independence
of distinctiveness and familiarity. In the end he offered this telling
insight: “...difficulty in discriminating between the [norm-based
and exemplar-based] models arises because exemplar density is
assumed to be correlated to distance from the norm.” Crucially,
what I assume he means here is that the density of exemplars
decreases with distance from the mean, i.e., density is inversely
correlated with distance, which in turn means the density of clas-
sifiers also goes down, leading to a natural decrease in sensitivity
to changes in facial appearance (see Davidenko and Ramscar,
2006). In a subsequent paper in which Valentine directly manip-
ulated distinctiveness within the context of the other-race effect,
he felt able to conclude that the exemplar-based model offered a
more parsimonious explanation for the effects than a norm-based
one (Valentine and Endo, 1992; Valentine, 2001).

In practice, exemplar-based models like Valentine’s fell out of
favor in the face-recognition community for some years because
they appeared unable to explain the advantage afforded by car-
icatures to recognition performance, something a norm-based
model is well placed to explain. However, later developments of
exemplar models have successfully tackled these issues. Only a
few years after the release of Valentine’s seminal papers, a study
simultaneously manipulating race and caricatures and concluded
that an exemplar-based model better explained the interactions
measured (Byatt and Rhodes, 1998). A year later (Lewis and
Johnston, 1999) described an elegant reworking of the exemplar
idea based on an explicit connectionist model. While some details
were not addressed, such as the exact neural basis of the represen-
tations or how the representations are established, the strengths
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and consequences of an exemplar-based representation were now
clearly conveyed. Their results and simulations dovetail nicely
with work in my own lab on the prototype effect (Wallis et al.,
2008). In that paper, my colleagues and I reported evidence for
an abstract featured-based (multi-channel) model of face recog-
nition based on self-organizing principles which, despite being
derived from a model of object recognition, bears close analogy
to the face-space classifiers which (Lewis and Johnston, 1999)
describe. I have more to say about the caricature effect in the
Appendix section of this paper.

Like Valentine before him, Lewis and Johnston took their
results as evidence for an exemplar-based model of face repre-
sentation. For those supporting the norm-based model, there
remains significant evidence that exemplar-based models are
inadequate, because they cannot explain the face adaptation after-
effect (Leopold et al., 2006; Rhodes and Jeffery, 2006; Susilo et al.,
2010). Although beyond the scope of this paper to fully review,
there are multi-channel models which can account for this effect
too if one assumes that although adaptation is happening to the
multi-channel features, adaptation effects are filtered through a
subsequent, binary decision process (e.g., Ross et al., 2013).

Nonetheless, from the perspective of those working on face
recognition, the feature-based model simply cannot account
for several important behavioral effects. For example, because
observers are sensitive to the spacing between nameable parts
(eyes, nose, mouth, hairline etc.), some theorists have concluded
that we must represent faces using a code based on facial met-
rics, i.e., distances between facial landmarks such as the eyes, tip
of the nose etc. (Leder and Bruce, 1998; Maurer et al., 2002).
Although evidence for such a model has waned, the configu-
ral and composite effects still seems to speak against recognition
based on localized facial features. The crucial point to bear in
mind, however, is that the features being described here are not
simply nameable features. They are abstract, meaning they can
span nameable parts and will vary in physical extent across the
face. We know that some neurons respond to large-scale proper-
ties such as head shape, for example, whereas others respond to
something as specific as a mouth with appropriate texture and
color properties (Rolls, 1992; Tanaka and Farah, 1993). At the
same time, abstract features are not simple 2D templates in that
they often maintain their response across changes in viewpoint,
location and size. Overall, they are tuned to elements of a face in
such a way that they might respond to as many as 10% of all faces
tested (Rolls, 1992; Wallis and Bülthoff, 1999).

In the end, a closer inspection of the literature does find
examples of the use of exemplar-based models to explain face
recognition. Valentin et al. (1997), for example, explained how a
distributed, view-based system predicts the 3/4-view pose recog-
nition advantage for faces despite the predominance of cells
selective for front and profile views (Perrett et al., 1987). The
same team has offered experience- plus feature-based accounts for
the other-race effect as well, as I will describe later. Furthermore,
Brunelli and Poggio (1993) explicitly tested feature-based vs.
configuration-based classification for faces and found that their
feature-based algorithms consistently outperformed metrics-
based ones. In a more recent and more explicit attempt to
bridge the face-object divide, Jiang et al. (2006) showed how a

feature-based, biologically inspired model of object recognition
is capable of mimicking a number of aspects of face process-
ing including the inversion and configural effects. In practice,
through, their approach involved fitting model parameters to the
desired selectivity and hence it can be seen as a proof of concept,
but falls short of explaining how and why encoding takes on this
form for faces and not other objects.

UNIFYING MODELS OF FACE AND OBJECT RECOGNITION
So how might all of these strands be drawn together to form a
viable model of both object and face recognition? A useful start-
ing point is to consider how current models of object recognition
work. Inspired by the known hierarchical organization of visual
cortical areas (Rolls, 1992), many biologically relevant models of
object recognition incorporate a convergent hierarchy of neurons
organized into layers (Fukushima, 1980; Wallis and Rolls, 1997;
Riesenhuber and Poggio, 1999). Although initially restricted to
toy problems, recent simulations using this family of models have
demonstrated how well the system scales up to tasks that come
close to real-world scene analysis (Serre et al., 2007).

Irrespective of the precise implementation, one of several
design aspects which these models have in common is the idea
that each layer contains pools of mutually inhibitory neurons,
each striving to fire most strongly in response to a stimulus and to
actively suppress firing in neighboring neurons. If it is not imme-
diately clear why a neuron should want to maximize its firing,
not least in light of theories of coding based on sparseness or
efficiency (e.g., Baddeley et al., 1997), it is perhaps worth reflect-
ing on the impact of Hebbian association, characterized by the
phrase “fire together, wire together”. Hebbian association requires
a neuron to tune its input weights in such a way as to enhance
its response to inputs that caused it to fire in the past, hence it is
driven to respond more effectively and efficiently assuming inputs
repeat over some reasonable time interval. What constrains them
from firing all the time is the inhibitory input they receive from
their neighbors, and some presumed limited resource of synaptic
weight which has to be shared across their synapses (Hertz et al.,
1990).

Neurons satisfy their desire to be active by employing a mix-
ture of two strategies: (1) A neuron focuses in on a narrow region
of the input space in which only a few exemplars exist, but these
exemplars are seen relatively often. Despite the limited number
of stimuli which it can respond to, it is activated relatively often
because those few stimuli occur frequently. (2) A neuron may
choose to be less selective, responding to a broad range of stim-
uli which occur only occasionally. Although each of its preferred
stimuli appear relatively infrequently, the neuron fires regularly
because any one of a wide range of these occasional stimuli will
activate it. The choice of which strategy to employ is not the neu-
ron’s to make of course, but is instead governed by three factors:
(1) the statistical properties of the input it sees; (2) the neu-
ron’s initial selectivity; and, critically, (3) the selectivity of neurons
responding to neighboring regions of the input space.

In order to understand how face processing would proceed in
a competitive system, it is important to reflect on the effect of
regular exposure to a particular object class, i.e., the development
of expertise. Stimuli falling within an area of expertise are seen
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very often. This makes the associated feature inputs a prime target
for neurons within a competitive system. A neuron will adapt its
input selectivity so as to maximize its response to an input corre-
sponding to an oft repeated feature of that object class. However,
it is not alone. The sphere of interest of other neurons will also
tend to migrate toward the epicenter of input activity. In the end,
the relatively high density of inputs in a region of expertise draws
in large numbers of neurons and the resulting competition with
very similarly tuned neurons, drives these “expert” neurons to
integrate ever more aspects/features of their favored stimuli. As
a result of competition, these neurons start to develop selectivity
to information from across multiple dimensions/features of the
stimulus, resulting in a more holistic representation. In contrast,
neurons focussed on regions of the input space containing objects
which are seen less frequently, experience less crowding from
neighboring neurons. They remain relatively unselective across
many dimensions of the input space, perhaps focussing on a sin-
gle diagnostic feature. To illustrate this point see Figure 1 which
captures these ideas based on a hypothetical competitive system
exposed to inputs characterized by two feature dimensions.

For many readers the representation in the figure should be
relatively familiar. But for those of you less accustomed to look-
ing at such things, it is important that the concepts are made
clear as this type of representation will form the basis for the first
model described in this paper. In the figure, the two axes, labeled
“Dimensions”, represent two physical dimensions along which
faces can be represented. They might correspond to something

FIGURE 1 | A model of face space in which the physical appearance of

a set of 1000 faces is assumed to vary normally along two feature

dimensions. Each “Dimension” could correspond to nameable features
such as nose width, hair color, eye separation etc., but they might just as
well be complex combinations thereof and hence be hard to characterize in
words. The red “+” points represent the distribution of neural classifiers
which emerge from a self-organizing clustering algorithm exposed to the
faces. In other words the “+” markers indicate the neural weight vector of
neurons which serve as the set of abstract-feature classifiers. Light blue
dots represent locations of the individual faces and the black lines indicate
the boundaries of face space within which the enclosed neural classifier
fires most strongly—making this a Voronoi diagram similar to that used by
Lewis and Johnston (1999).

tangible, such as aspects of a person’s mouth or nose, but in prac-
tice they are likely to be more obscure combinations of multiple
properties of a face. Nonetheless, for sake of illustration let us
assume that they do indeed correspond roughly to the size of
two nameable parts: nose length (Dimension 1) and mouth width
(Dimension 2). In the figure, each of the light blue dots can be
thought of as a face which an observer has seen at some point
in her everyday life. Each person she encounters has a particular
length of nose and width of mouth, and these properties corre-
spond to a position in the two-dimensional space portrayed in
Figure 1. The red crosses represent the corresponding location of
a neural weight vector overlayed on the same pair of input dimen-
sions. One can think of it as a representation of the optimal nose
length and mouth width for producing the strongest activation
of the neuron in question. As we can see, some neurons learn to
respond strongly to faces bearing short noses and wide mouths,
whereas others respond well to wide mouths and big noses, etc.
The black lines represent the boundaries within which each neu-
ron “wins”. Any face corresponding to a location within the region
demarcated around a neuron’s weight vector (“+”) will cause that
neuron to fire the strongest of all.

Note that in this analogy, if a face appears that has a long nose
and narrow mouth (bottom right corner of the input space), there
are relatively few neurons covering the corresponding region. The
result is that minor changes to that face will not produce notice-
able changes in the neural response, because the same (broadly
tuned) neuron is likely to fire strongly to both versions of the
face. This implies poor discrimination of stimuli falling in this
region of input space. By contrast, a face falling in the middle of
Dimensions 1 and 2 will sit within a highly clustered zone with
lots of neurons vying to respond to it. Any minor changes in the
input are likely to be reflected in significant changes in the neu-
ral response of the system because the face is likely to move from
the “win zone” of one neuron into another. In other words dis-
crimination performance for faces falling into this zone will be
high.

In many respects the selectivity of the neurons echoes the
distribution of the faces in the input space, and hence echoes
Valentine’s description of face space and all of the associated
emergent properties which it brings (see later). For the moment
is sufficient to realize that zones of face-space containing lots of
faces generate lots of narrowly tuned neurons all tightly packed
together, whereas zones with fewer examples contain correspond-
ingly fewer, more broadly tuned neurons. As Jiang et al. (2006)
describe, a multi-channel model is capable of producing configu-
ral and inversion effects as long as the neurons are tightly tuned to
the input stimuli. High exposure to upright faces is likely to pro-
duce just this type of representation in face-sensitive neurons due
to the “crush” of many neurons focussed on the relatively small
region of the visual input space occupied by faces.

A HEBBIAN MODEL OF FACE SPACE
INTRODUCTION
As described in the introduction, the aim of this paper is to inves-
tigate whether the architectural and functional bases of object
and face recognition can be regarded as being fundamentally
the same. To make this more concrete, this section combines
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models of human object recognition (Wallis and Rolls, 1997;
Riesenhuber and Poggio, 1999) with the face space exemplar
approach of Valentine (1991) and its supervised neural imple-
mentation (Lewis and Johnston, 1999). The resultant model is
then used to explain behavioral phenomena specifically associated
with face processing.

The model is kept deliberately simple because in many ways,
the message is simple: Any self-organizing (unsupervised) com-
petitive system will produce holistic (high-dimensional) repre-
sentations of their preferred stimuli if the neurons are tuned for
stimuli which fall in an area of high exemplar exposure (an area of
expertise). There are many more sophisticated models of object
recognition which one could consider, but the simplicity of this
model is intended to demonstrate the generality of the proposal
that holistic processing, expertise, competitive neural processes,
and learning are intrinsically linked.

Before setting out to describe the model, it is worth elab-
orating that one problem with interpreting the output of any
self-organizing system is that the output does not correspond
to something easily interpretable. With a supervised system you
instruct certain neurons to recognize certain inputs (e.g., neu-
ron 1 should recognize images A to E). As a result you can assess
network performance by seeing how often the designated neuron
wins (e.g., how often neuron 1 responds most strongly to images
A to E). In the case of a self-organizing system, the requirement
is that the input space be divvied up in some useful manner, but
the precise details are left to the system itself. So how are we to
interpret the output of the system? Somehow or other we need
to reverse-engineer the solution to comprehend it. In this section
and next, various methods will be employed to achieve this and
to use the network’s representation of the input space to predict
classification performance in behaviorally relevant contexts.

THE MODEL
The model used in this initial set of simulations represents a
very simple form of self-organizing competitive network model,
a model which can be traced back to some of the earliest mod-
els of self-organizing neural classifier systems (von der Malsburg,
1973; Fukushima, 1975; Grossberg, 1976; Hertz et al., 1990). In its
current form, it was recently used to describe how a feature-based
system could explain the prototype effect (Wallis et al., 2008).

The network can be formally summarized as follows:

γij =
∑

k

xkwijk

μij = r

(
N − ηij

N − 1

)α

yij = γij − κγav

γmax − κγav

εijk = μijyijxk + (1 − μij)wijk

wijk = εijk√
(εij.εij)

where xk is the kth element of the input vector x, wij is the synaptic
weight vector of the ijth neuron, and γij is the neural activation

of the ijth neuron. N is the number of classifiers (i.e., neurons)
and ηij is the rank of the neural activation, such that the most
active neuron has rank 1 and the nth most active has rank n. μij

is a scaling factor based on a learning rate r, and the rank of the
neural firing, which implements one aspect of global competition
within the inhibitory pool of neurons. In the simulations that fol-
low α was set to N, which had the effect that the ratio of learning
in the second most active neuron was approximately one third
that of the most active neuron. yij is the neural output of the
ijth neuron, which is affected by the neural activation γij, γmax

which is the output of the most strongly firing neuron, and γav

which is the average activation of the top ten most active neurons
(excluding the neuron itself if it is in the top ten). Subtracting γav

introduces a small amount of activity specific inhibition which
further encourages neurons to select for inputs that are differ-
ent to those selected for by other neurons. The constant κ was
set at 0.3 in these simulations. Dividing by γmax normalizes activ-
ity across the network on each stimulus presentation, which has
the effect of ensuring that the amount of synaptic modification
of the most strongly firing neuron is roughly constant for each
image presented. This normalization step also implements a sec-
ond form of global competition. The last two equations describe
a form of standard Hebbian learning. The final equation normal-
izes the weight vector to unit length, the purpose of which is to
constrain the size of the synaptic input weights. In effect enhance-
ment of a specific input comes at a matched cost to other synaptic
input lines. Although the precise mechanism behind such weight
distribution are unknown there are theories suggesting that this

In this simple model the neurons are afforded just three inputs
(i.e., k = 1, 2, or 3) meaning the weight vectors lie on the surface
of a sphere of unit radius. As all weights are also constrained to be
positive, the weight vectors all lie in the positive octant of a unit
sphere. Note that a double subscript “ij” is applied to the output
neurons to afford them grid co-ordinates corresponding to their
placement within the cortical surface. Although not important in
this initial simulation, the importance of spatial neighborhoods
described by these coordinates will be become apparent in a later
section investigating the effects of lateral excitation.

More powerful models of associative behavior than Hebbian
are clearly possible (such as covariance learning). But in a sense,
if Hebbian learning suffices, we know the brain has more power
at its disposal since Hebbian association can be regarded as a sub-
set of what its neurons are really capable of. Overall, although
the network implementation may seem obscure, it is important
to bear in mind that this is a biologically relevant implemen-
tation of a system designed to divvy up a two-dimensional
input space in a manner exactly like that described in Figure 1.
That figure does, in fact, represent the output of this same
network.

HOLISTIC PROCESSING
As a first step it is important to reiterate how I am conceptual-
izing holistic processing. I, and many others, have argued for a
representation of objects and faces on the basis of abstract fea-
tures (Poggio and Edelman, 1990; Wallis and Rolls, 1997; Wallis
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and Bülthoff, 1999; Ullman, 2006; Torralba et al., 2007; Wallis
et al., 2008). I regard holistic processing as evidence for multi-
feature (i.e., multi-dimensional) selectivity. Rather than just being
interested in the presence of a nose, or the distance between
the eyes, or hair color, or any other (more abstract) single fea-
ture of a face, I am arguing that under certain circumstances
neurons will seek out multiple dimensions of the input, mak-
ing the neuron highly selective for a few stimuli and highly
sensitive to changes in any one of a number of features. This
approach differs from arguments based on strictly holistic fea-
tures such as those generated by principal component analysis
(O’Toole et al., 1991; Cottrell and Hsiao, 2011), since neurons
can be tuned to a single nameable feature and anything in
between.

If one accepts my characterization of holistic processing,
understanding how holistic processing comes about demands an
understanding of how neural classifiers in a competitive system
switch from low-dimensional to higher-dimensional selectivity.
The proposal I have been building to, is that it is governed by the
number of neurons competing to represent a particular region of
input space. To demonstrate this effect, simulations of the model
system described above were run.

Figure 2 depicts the outcomes of six simulation runs. In each
case 500 exemplar inputs were chosen which varied along two
orthogonal dimensions. The ratio of variance of the two input
dimensions was varied as well as the number of classifiers. The
figure shows the steady-state outcome of the simulation with
the following parameters: (r = 0.001, N = [4, 8, or 16], α = 4).
The main message of the simulation is that for small numbers of

FIGURE 2 | The emergence of multidimensional (holistic) selectivity in

neural classifiers. The six plots represent outcomes of the simulation.
From left to right the number of neural classifiers increases. From top to
bottom relative levels of variance in two orthogonal dimensions of face
space are tested. The variable “Ratio” controls the ratio of the standard
deviation of the less variable dimension (Dimension 1, running along lines
of longitude) to that of the fixed dimension (Dimension 2, running along
lines of latitude). For large discrepancies in variance and small numbers of
classifiers, the classifiers align with Dimension 2, completely ignoring
variation in the minor dimension. Increasing the number of classifiers or the
variance in Dimension 1, sees classifiers becoming sensitive to both
dimensions.

neural classifiers the tendency is for neurons to become selective
along a dimension of high variance. Of course this is a perfectly
valid means of dividing up the input space evenly, but it has the
interesting consequence that the neurons are indifferent to the
input dimension of lower variance. Once variance is matched
(Ratio = 1) the neurons spread out evenly across the two dimen-
sions, but it seems that when only few neurons are active in an
area of input space, even a modest discrepancy in the amount
of variance between dimensions of the input space can result in
neurons exhibiting low-dimensional (in this case single-feature)
sensitivity.

In contrast, even if the dimensions are mismatched, by increas-
ing the number of neural classifiers, mutual inhibition forces the
classifiers off the axis of highest variance, producing a broader
spread of classifiers tuned to multiple dimensions of the input.

To put this in more biologically relevant terms: in the absence
of competition a neuron will become tuned to a feature that it sees
regularly. If faces containing that feature are seen often enough,
other neurons will also seek to respond to that feature. In the end,
the feature will be shared by several neurons and, in the process,
the feature will lose its potency for driving learning, as its mere
presence will no longer guarantee that a neuron always fires (due
to competition with similarly tuned neurons). Neurons will then
tend to concentrate more of their resources (synaptic weight) on
other, less common features. This is the route to more integra-
tive, holistic processing. As the number of classifiers increases,
so the tendency increases to focus ever more resources on ever
more minor feature dimensions. In other words, the process of
recruiting ever more neurons to a region of face space leads to that
region being represented by neurons tuned to an ever more holis-
tic array of features of the face. Figure 3 presents the same results
but with the axis of maximum variation switched, to demonstrate
that the organization of classifiers is not in some way distorted by
the method of projection used (i.e., an orthographic projection of
a spherical surface).

FIGURE 3 | The emergence of multidimensional (holistic) selectivity in

neural classifiers. The figure is exactly comparable to Figure 2 except the
axis of maximum variation is switched from longitude to latitude to
demonstrate that the effect is not somehow being distorted or exaggerated
by plotting on the surface or a spherical under orthogonal projection.
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Note that the model yields holistically tuned neurons when
highly over-trained on a set of stimuli with small variance. This
can be seen as an explanation for why we have holistic represen-
tations of upright faces (seen often) and not inverted ones (rarely
encountered). But because these effects are a result of learning, the
model predicts that orientation-sensitivity effects can change with
appropriate experience. There are at least two relatively recent
papers that support this idea:

• The face inversion effect can be overcome with learning
(Laguesse et al., 2012).

• With sufficient training to a particular orientation, non-face
objects develop inversion effects (Husk et al., 2007).

In a similar vein, one study looking at face adaptation after-
effects was able to show that it is possible to obtain simulta-
neous and opposite adaptation to upright and inverted faces
in FFA, suggesting that the neurons representing the faces are
separate (Rhodes et al., 2004). The authors took this as evi-
dence for separate populations supporting the analysis of faces
in the two views. They went on to suggest that one popula-
tion performs featural analysis of inverted faces, whereas the
other performs holistic processing of upright images. This is con-
sistent with the model described here if one regards inverted
faces as somewhat akin to other-race faces, in the sense that
they are rarely encountered and hence sparsely and separately
represented from upright own-race faces. An alternative expla-
nation, perhaps more consistent with the data of Yovel and
Kanwisher (2005), is that inverted faces weakly activate incorrect
holistic representations in FFA which can be adapted indepen-
dently of the correct (and hence separate) holistic representations
activated when seeing the same face upright. An explanation
along these lines would also be consistent with the model being
proposed here.

A final point worth making about the model described here is
that there is no “simulated annealing” or other form of gradual
learning rate reduction used, as was common to many self-
organizing models in the past. As such the model is capable of
comprehensive restructuring as the distribution of inputs evolves
or suddenly changes. There is actually some evidence for this in
humans in the form of the changing size of the FFA (Golarai
et al., 2007; Scherf et al., 2007). Studies of monkey temporal lobe
cortex have likewise described how focussed training on a novel
stimulus set can generate large numbers of neurons selective for
the new stimulus class (e.g., Miyashita et al., 1993; Logothetis
and Sheinberg, 1996; Baker et al., 2002). As mentioned in the
introduction, some of the best behavioral evidence for contin-
ued restructuring and learning of face processing comes from the
study of recognition in same and other-race faces, and that is what
I turn to next.

THE OTHER-RACE EFFECT
For those who remain unmoved, this section forges a more
concrete link between the classifier network’s behavior and mea-
surable human behavior. As mentioned above, interpreting the
actions of a self-organizing system can be non-trivial, but this
section offers a means of directly testing how discrimination

performance varies as a function of the distribution of classifiers
which the system produces.

In the introduction I argued that if an observer spends a large
amount of time looking at a particular region of object input
space, more and more neurons become recruited to that region of
space and the observer will tend to develop ever more holistic rep-
resentations of the inputs as a result. Presumably, therefore, the
model should reflect the density of inputs in each region of input
space, as well as the relative frequency of their occurrence. One
way to test this with the model is to introduce two populations
of inputs with different centers of mass and different numbers
of exemplars, that is, two populations of faces which differ along
one or more feature dimensions and for which we have differing
levels of exposure. Far from an obscure theoretical thought exper-
iment, the situation I am describing is none other than the basic
ingredients of the other-race effect.

There are good reasons for thinking that the model described
here can explain the other-race effect because a related approach
has been successfully applied already. Over several years, O’Toole,
Abdi and collaborators have advocated an approach based on fea-
tures derived from principal component analysis (O’Toole et al.,
1991; Furl et al., 2002; Bartlett et al., 2003; Caldara and Abdi,
2006). In their model the classifier features are allowed to emerge
from the stimulus set in much the same way that the abstract fea-
tures promoted in this paper are. Their work then demonstrates
how such a feature-based representation, “warped” or “molded”
by the input, naturally generates an other-race effect (O’Toole
et al., 1991; Furl et al., 2002). The precise mechanisms by which
such a model might be implemented in cortex are left largely
unexplored (Cottrell and Hsiao, 2011), but in many ways that
is not the goal of the work. The authors generally use the PCA-
features as a front-end to a classification network trained using
supervised methods to prove the in-principle relation between
the other-race effect and a feature-based representation. As with
Lewis et al.’s work, such an approach raises the question of the
impact of this layer of supervised training in which the network is
externally forced to focus learning on same-race faces. The point
of the simulations described here is to take the next step and offer
a more biologically relevant, self-organizing system which also
speaks to recently reported links between holistic processing and
the other-race effect (Michel et al., 2006) which I discuss below.

But before reviewing that link, we can start by asking whether
different levels of dimensionality and sensitivity emerge in the sys-
tem when there are changes to the relative frequency with which
sub-regions of face space of faces are experienced. The results of
such a simulation are displayed in Figure 4A, which is the out-
come of a simulation of the same network with two distributions
of faces of equal variance but different rates of occurrence (50
neurons, 100 faces from a rarely encountered group of faces, and
1000 from a regularly encountered group of faces). If the number
of faces encountered in each race is matched, the sensitivity bias
disappears, see Figure 4B. Note that in this case I have elected
to transform the three-dimensional weights vectors and inputs
into two flat dimensions. It’s easier to read and interpret that way
and loses no information since the weights are restricted to two
degrees of freedom moving around the surface of a sphere. The
new dimensions correspond to the azimuth and elevation of each
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vector. This is like the projection of the world onto a flat surface,
much as the world map can be flattened onto a page2.

It is apparent from Figure 4A that the model system does
indeed produce the expected type of behavior. In the region of
many exemplars (same race) the network produces holistical clas-
sifiers with selectivity tightly tuned along both dimensions. In
contrast, the region of more sparse inputs (other race) produces
relatively few, more broadly tuned neurons.

What we can now do is check whether the network’s orga-
nization of the input has resulted in the types of behavior that
typify the other-race effect in humans, namely relatively poor
discrimination performance for other-race faces. To test this, a
series of new “distractor” faces can be generated which differ from
previously seen images by an objectively measured amount. The
prediction is that the model will be less able to distinguish the
distractors from a known face if it falls within the sparsely rep-
resented area of other-race faces, compared with performance on
distractor faces falling within the same-race region of space. To
test this the center point of the same race faces was measured
and the response of the network recorded. Then a new image
was presented which differed by 0.1 standard deviations from this
mean. If the same neuron responded most strongly to this face
as responded to the mean face, then this was taken as a failure of
the network to discriminate the two faces. A new distractor was
then presented to the network differing by 0.2 s.d. from the mean

2Note that as a result of the projection, the true decision boundaries (shown in
black in this and subsequent figures) are not straight, but are actually slightly
curved. Hence the voronoi tessellation algorithm used to plot the boundaries
is only approximately correct.

FIGURE 4 | Effects of differing levels of exposure to two subsets of

faces. Each “Dimension” could correspond to nameable features such as
nose width, hair color, head shape etc., but they might just as well be
complex combinations thereof, and hence be hard to characterize in words.
The “+” points represent the distribution of neural classifiers which
emerge from competitive learning of the faces. In other words the “+”
markers indicate the neural weight vector of the 50 neurons which serve as
the set of abstract-feature classifiers. Light blue dots represent the
locations of a frequently viewed category of inputs (e.g., own race faces) in
the space, and green dots those of inputs viewed less frequently (e.g.,
other race faces). (A) With 1000 faces from the observer’s own race and
100 from another race, the number of classifiers covering the space
occupied by own-race faces is much higher and much more compact
(holistic and highly discriminating) than in the other-race region of the input
space. (B) Balancing the numbers of exemplars in each race (1000 in each)
produces equivalent distributions of classifiers for the two races.

face, and again the response was checked to see if now a different
neuron was responding. This process was repeated until the
winning neuron changed, or 1 s.d. was reached. This process
was also repeated for all combinations of the two feature dimen-
sions, forming a series of trajectories through the space radiating
from the mean. The trajectories covered all 360◦ of a circle in
1◦ increments. The same process was then carried out on the
other-race faces, based on trajectories radiating from the mean
of the other-race faces. The results of the analysis appear in
Figures 5A,B3.

So, the network has replicated the fundamental result of the
other-race effect: discrimination is worse for other-race than
own-race faces. From these simulations it also becomes appar-
ent that the model predicts an intricate interplay between the
other-race effect and degree of holistic processing. For exam-
ple, because same-race faces are regarded as objects of exper-
tise they should be represented more holistically. The model
makes a number of predictions, many of which have indeed
been confirmed in the behavioral literature of the past 6 or
7 years:

• Observers process own-race faces more holistically than other-
race faces (Michel et al., 2006; Rossion and Michel, 2011;
DeGutis et al., 2013)4.

• The extent to which faces are processed holistically predicts face
discrimination performance (Richler et al., 2011).

• Observers show a discrimination advantage for
sub-populations other than those of their own race, such as

3Note that this assumes a winer-takes-all, single cell encoding scheme which
is clearly a gross simplification. In practice, a biologically more relevant, dis-
tributed code would produce similar results. Such an approach is used later in
the paper to analyze a more complex, high-dimensional model.
4Note that despite these promising links, holistic processing is probably only
part of what drives the other-race effect, and outcomes have not always been
consistent across all races (Mondloch et al., 2010; Crookes et al., 2013).

FIGURE 5 | Measuring face discrimination ability of the network.

(A) The original face space with distributions corresponding to same and
other-race faces (in light blue and green dots, respectively). The circles
represent 1 s.d. from the center of each of the two distributions of faces.
The arrows represent three example trajectories from the mean along
which discrimination performance was measured. (B) Distractor rejection
ability of the network measured as the number of steps taken (in 0.1 s.d.
steps) before the network was able to discriminate the new face from the
mean face image. The small amplitude of the cut-off for same race faces
across all trajectory orientations is indicative of better discrimination
performance by the network in the region corresponding to the same race
face.
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their own age-group (Hills and Lewis, 2011; Hills, 2012). The
model predicts this if one assumes people tend to mix with peo-
ple of their own age and hence are exposed to them more often
than faces of other age groups.

• Increased exposure to faces of any particular age (e.g., teach-
ers with children) produces more holistic processing of faces in
that age group (de Heering and Rossion, 2008).

• The other-race effect can be overcome with experience
(McGugin et al., 2011).

• Familiar other-race faces can be subject to holistic processing
(McKone et al., 2007).

• The other-race effect can be reversed by a complete change of
racial environment, at least in children (Sangrigoli et al., 2005).

Incidentally, Valentine (1991) suggests that exemplar-based mod-
els can also explain the “other race advantage”—i.e., that
observers are quicker and more accurate at detecting the race of
a face if it is taken from another race than from their own (see
also Valentine and Endo, 1992; Zhao and Bentin, 2008). On the
basis of the model as it stands, there are two potential sources of
explanation:

On the one hand, the effect may be due to the action of a deci-
sion layer subsequent to the level of representation described here.
This layer would support generic classification of the faces along
numerous dimensions (age, gender, race etc.). The issue of which
categories are most easily activated would be governed by which
categories a person most often accesses. To put this another way,
one can consider levels of categorization. The category entry level
for other-race faces is quite likely at the level of race, whereas for
own race faces it is at the level of the individual. It is well known
that accessing superordinate or subordinate representations takes
time (Rosch et al., 1976), hence it may be the case that it is the
matching of task to natural (entry-level) categorization that pro-
motes the task-specific, other-race recognition advantage. In favor
of this interpretation, we know the details of an observer’s task
affect the extent to which holistic processing develops. Basic-level
categorization of objects produces skill at dissociating at the level
of groups, whereas training on individuation enhances the holis-
tic nature of the representation and, with it, reduces performance
on group discrimination (Wong et al., 2009a), and several par-
allels have been found in face processing too (McGugin et al.,
2011). Note that this result suggests that the higher categorization
process may feed back to the recognition system, encouraging the
formation of holistic vs. less holistic representations according to
task demands. If so, that is something beyond the scope of the
current model.

An alternative explanation, which does not invoke the actions
of a later decision process, emerges from the fact that other-race
faces are represented by neurons with generic, less-holistic tun-
ing. Consider the fact that if a generic marker of race (such as
skin color or eye shape) exists; for other-race faces this single fea-
ture is likely to be adopted by a neuron sensitive to that region
of the input space. What is more, the neuron will tend to put
all of its neural resources into responding to that single feature
as it is the one feature which all faces in that area contain. In
the own-race face region of input space, that generic feature will
be available too, but due to the crush of neurons tuned to that

generic feature, it will not be sufficient, in and of itself, to produce
a reliably strong response in a single neuron. Hence in this case,
the neuron will distribute its neural resources over other, more
specific features, rather than the more generic, race-related one.
This type of explanation finds echoes in the ideas of Cottrell et al.
(Haque and Cottrell, 2005).

As a final aside, one might ask why I am arguing that high-
dimensional representations underlie the composite face effect,
when any number of single abstract but holistic feature (e.g., head
shape) would suffice. What my model offers is an explanation for
why holistic processing emerges in faces of expertise (own race
faces) and not in other races. Own-race face classifiers are multi-
dimensional (and so probably the vast majority include at least
one feature which spans the upper and lower halves of composite
faces), whereas other-race neurons will tend to be selective to only
a few features, increasing the likelihood that these happen to be
features which do not span the two face halves. Evidence for this
line of reasoning will be provided in the next section.

A MODEL OF FACE RECOGNITION
INTRODUCTION
The previous section has described a simple, self-organizing
model of object representation which was seen to be able to
explain the emergence of holistic and other-race effects in a cat-
egory of expertise. The main problem with models of this type
is that they are largely conceptual and their relevance to real-
world recognition tasks can appear obscure. In this section the
concepts developed above will be applied to a more biologically
relevant model of face processing, permitting testing of other
well-established behavioral effects.

In common with numerous models of recognition in infe-
rior temporal lobe cortex, the new model is an appearance-
based model, deriving input from abstract visual features tuned
to reflect the statistics of the visual environment (Wallis and
Bülthoff, 1999; Ullman, 2006; Wallis et al., 2009). Further, and
in common with numerous models of object recognition, the
model is organized into multiple layers of competitive net-
works (Fukushima, 1988; Wallis and Rolls, 1997; Riesenhuber and
Poggio, 2000). This section considers patterns of selectivity which
emerge in such a system after exposure to an array of facial images.

THE MODEL
The model itself is based loosely on biological principles,
although no attempt is made to explain object constancy i.e.,
view invariance. For solutions to that problem see the review
on temporal association learning referenced earlier (e.g., Wallis
et al., 2009). Instead, the input faces are all processed at the same
location and scale, and are then transformed into localized, edge-
based representations by passing the image through a Laplacian
of Gaussian filter followed by a Gaussian filter, to smooth the out-
put (s.d. = 5 pixels). The output is then amplitude normalized to
the range 0–1.

Edge detecting the images represents an attempt to mimic the
filtering properties of simple cells known to reside in primary
visual cortex (Hubel and Wiesel, 1977). This places the empha-
sis on differences in high-frequency content of the faces. As an
aside it is important to note that this is only part of the story. Real
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faces vary across many spatial scales and recent results from single
cell recording have highlighted the importance of contrast across
broad patches of the face (Ohayon et al., 2012). A more com-
plete description would include filters of differing spatial scales
like those found in primary visual cortex and already incorpo-
rated into hierarchical models of vision (e.g., Mel, 1996; Wallis
and Rolls, 1997; Itti and Koch, 2001). One important advantage
of processing images across spatial scales is that it allows later
neurons to discover frequency bands across which their primary
stimuli differ, which in the case of faces appears to be biassed
toward lower frequencies (Keil, 2008). Since these differences are
intrinsic to faces, a self-organizing system would naturally tune
face selective cells to lower frequency bandpass filters (Keil et al.,
2008). This low frequency bias is regarded by some as the driving
force behind the holistic processing of faces, a proposal which they
have backed up through behavioral experimentation (Goffaux
and Rossion, 2006; Awasthi et al., 2011). I would nonetheless
argue that although the bias may be a contributing factor, and
one which a self-organizing system could replicate, it does not
offer a simple explanation for why other-race faces are processed
non-holistically (Michel et al., 2006), since they should possess a
comparable spectral bias to own-race faces.

With this caveat aside, the rest of the model operates like many
other hierarchical models of object recognition. The filtered input
is sampled by groups of neurons operating in mutually-inhibitory
(competitive) pools, which act to divide up the limited extent
of the input to which they have access. In the subsequent deci-
sion layer, a fully connected system of neurons compete with one
another to represent the input space of faces. Central to the net-
work’s design are three core elements which it shares with all
self-organizing, competitive systems: (1) A mechanism for neural
integration of its inputs. (2) A rule for synaptic adaptation which
in this case is based on simple Hebbian principles. (3) A form
of mutual inhibition implementing competition between neural
classifiers within a mutually connected pool (Hertz et al., 1990;
Wallis and Rolls, 1997).

The network’s first layer is subdivided into 16 inhibitory pools
arranged in a 4 × 4 grid, with each pool containing N1 = 9 neu-
rons. Activation of the ith neuron γi within an inhibitory pool, is
the product of its corresponding weight vector wijk and the cur-

rent input vector xab
k . The neuron’s response yij is then a result

of its activation and the level of inhibition from other neurons
within the inhibitory pool. In layer 1 each neuron within a pool
samples from a 16 × 16 pixel array extracted from the corre-
sponding 16 × 16 pixel section of the input image. The second
layer contains a single, wholly laterally connected network of N2

neurons which sample the entire set of layer 1 neurons across all
16 inhibitory pools.

The network can be characterized by the following set of
equations:

γij =
∑

k

xab
k wijk

μij = r

(
N − ηij

N − 1

)α

yij = γij − κγav

γmax − κγav

εijk = μijyijx
ab
k + (1 − μij)wijk

wijk = εijk√
(εij × εij)

Overall the equations are identical to those used in the network
model described earlier. The superscript ab is attached to the
input x to indicate that only a subregion of the input is seen by
neurons within a specific pool. In this case there are 4 × 4 pools
meaning a and b vary in the range 1–4, corresponding to the 16
subregions of the input image. In layer 2 the input vector is simply
the entire output of layer 1 across all 16 inhibitory pools and all
nine neurons within each pool. In self-organizing systems graded
inhibition, of the type being used here, has been shown to encour-
age a smooth representation of the input space (Bennett, 1990).
In this case discontinuities may still arise due to discontinuities in
the input space itself (such as occur between object categories).
The general network architecture is depicted in Figure 6.

SIMULATIONS
The network was trained using faces taken from the Max Planck
database of 3D scanned heads, see Figure 7, and rendered at a
resolution of 256 × 256 pixels. Forty-three German and seven
Japanese female faces were presented. Each image was presented
once in pseudo-random order, and the process then repeated a
total of 100 times. During this initial exposure, only layer 1 neu-
rons altered their synaptic weights. The learning rate parameter r
was set to 0.001 and the ranking inhibition parameter α was set
to the pool size, i.e., 9. Once learning was complete in layer 1, the
same procedure was followed but now allowing layer 2 neurons
to learn, in this case with the same value of r but α set to 1.

FIGURE 6 | The network processes the input image in three stages. The
first stage performs edge detection. Output from this stage is then read by
the first neural stage. Processing in this stage is localized such that a pool
of interconnected neurons samples a corresponding patch of the
edge-detected image. The final stage is Layer 2, which contains a single
pool of interconnected neurons which all receive input from the entire array
of Layer 1 neurons.
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FIGURE 7 | Input face images. (A) German female faces. (B) Japanese
female faces.

Offsetting learning in the two layers was done mainly for conve-
nience. Allowing layer 1 to converge first ensured that learning in
layer 2 was conducted on a stable platform, allowing layer 2 learn-
ing to converge more quickly. Learning in layer 2 was run for 300
iterations of the complete stimulus set. The network was tested
with 5, 10, 25, 50, and 100 outputs, which all produced qualita-
tively similar results. The figures here all represent data from the
system for 10 classifiers, i.e., 10 output neurons.

Given the aforementioned difficulty of measuring perfor-
mance of a self-organizing system, how can we approach it in
this case? One possible starting point is provided by the fact that,
in this case, the system has been trained with a large number of
Caucasian faces, and relatively few S.E. Asian faces. We can begin
by asking how the neural responses of the output neurons differ
across stimuli and, specifically, race. To do this a standard clus-
ter analysis approach was applied to the output firing rates of
the layer 2 neurons for all 50 learnt faces, based on the Matlab
“dendrogram” function (using Ward linkage, Euclidean distances,
and six clusters). The results of the analysis appear in Figure 8.
Note that six of the seven Japanese faces cluster under two closely
related nodes. This emergent clustering behavior cannot simply
be ascribed to skin-tone differences or indeed any other trivial
luminance effects because the input images were high-pass fil-
tered and amplitude normalized before being provided as input
to layer 1 (see the earlier description of the edge detection phase).

The issue this type of analysis is trying to resolve is how best to
visualize the high-dimensional space described by the neural out-
put. An alternative method of visualizing high-dimensional data
is to conduct a principal component analysis. The responses of
the system to each of the 50 inputs can then be pictured, pro-
jected onto the major dimensions of variation within the output.
An analysis of this type is shown in Figure 9. The message from
this analysis is that the network has created one neuron which is
cornering a large region of space containing relatively few, related
images (which correspond mainly to the other-race faces). At the
same time the network has placed far more neurons in the more

FIGURE 8 | Cluster analysis of the neural output from the network

represented in graphical format. An example face from each of the six
major clusters appears along the horizontal axis. There is a clear tendency
for the system to produce consistent responses to subsets of the input
stimuli. Of particular note is the differentiation of German and Japanese
faces. The difference represents the primary bifurcation of the dendrogram,
suggesting little overlap in the groups of neurons responding to the two
racial groups.

densely packed region of space containing the 43 same-race faces.
As a small caveat, I should add that it is wise to be a little wary
about over-interpreting the figure. The output space is generated
by the network and does not correspond in any simple manner to
the original input space of images.

Another means of assessing performance of the network is to
check its ability to create a unique pattern of firing for each stim-
ulus, i.e., its powers of discrimination. In this case a unique code
can simply be defined as a pattern of neural activity in which
the ranked order of neural outputs is unique for that particular
input. With 25 output neurons the network was able to produce
a unique code for all 25 inputs. Even with as few as 10 neurons it
created unique output for 35 of the 50 stimuli. Interestingly, due
to the low coverage of the region of space corresponding to the
other-race faces, the network correctly discriminated just 28% of
the other-race faces in this case. In contrast, the rate for own-race
faces was 75%.

So, it appears that the system has learnt to represent the faces,
and in a manner that allows for image discrimination as well as
a sense of intrinsic image similarity. But how does this relate to
holistic processing for example? A more direct test of the sensitiv-
ity of the classifiers to holistic cues is to look at changes in their
response to disruptions in the holistic form of the input faces.
Examples of possible image manipulations appear in Figure 10.
Because I regard holistic processing as a function of expertise, I
am predicting that neurons responding to the Caucasian faces will
produce more holistic representations of their preferred stimuli
than the Japanese faces. In other words, the expectation is that
faces falling into the other-race category will exhibit less sensitiv-
ity to changes in appearance of the stimuli than those of the same
race, for which many more exemplars have been seen. To test this
hypothesis the trained network was exposed to two sets of manip-
ulated faces in which either the lower half of the image had been
deleted, or replaced with that of another face.
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FIGURE 9 | (A) Output of the network projected onto its principal
components. Outputs are labeled by a code corresponding to the specific
input image which generated the output. Image numbers 1–7 correspond to
the other-race faces. The colored “+” and corresponding subregions of
output space represent the region of the space for which a specific neuron
wins. Note that for the first two principal components, the other race faces
are strongly separate from the same-race ones, and a single neuron has
learnt to respond to any of these other-race faces. The subregion

corresponding to same-race faces is, by contrast, much more densely packed
and neural regions of selection heavily overlap, suggesting that other, higher
dimensions play an important role in determining which neuron dominates for
each input. Note that face 5 was the only other-race face to be included in a
branch of the dendrogram selective primarily for own race faces. The reason
becomes apparat from this figure in that face 5 lies on the boundary between
own and other-race faces. (B) The same output data projected onto
components three and four.

FIGURE 10 | Face manipulations designed to test the holistic

processing of learnt faces. (A) Face A. (B) Face B. (C) Face A lower half
deleted. (D) Face A, lower half horizontally offset. (E) Face A with the lower
half replaced with the lower half of Face B.

The question then arises, how can we assess the impact of these
image manipulations on the network? One possibility is to look
at the effect it has on the most active neurons (which presumably
encode the identity of that face). If the range of neurons which
are active remains the same pre and post image manipulation, the
system is tolerant to such manipulations and the representation
could be thought of as non-holistic. Conversely, if the pattern
of most active neurons changes a great deal, it suggests that the
neurons coding for the original (unmanipulated) face image are
sensitive to that manipulation. This, in turn, suggests that they are
sensitive to information from various parts of the face and hence
are encoding the face more holistically.

To test this, the output of layer 2 was analyzed to see how much
the response of the system was affected by two types of stimu-
lus manipulation. Analysis involved taking the top n most active
neurons and asking whether the same n neurons were active to

the manipulated version of the face. Results appear in Figure 11
divided between same and other races with data averaged over
seven faces selected at random from each race.

The model clearly produces classifiers of the more familiar
own-race faces that are, on average, more likely to be sensitive to
changes to the whole face than classifiers focussed on representing
the other-race faces.

A MODEL OF CORTICAL ORGANIZATION
INTRODUCTION
As a final stage to the modeling work, this section considers the
issue of cortical patterns of neural selectivity. Over the past 5 years
or so, more and more evidence has emerged supporting the view
that the ventral visual stream contains areas dedicated to the pro-
cessing of facial stimuli. As mentioned earlier, Doris Tsao et al.
have taken the lead in this endeavor, describing the presence of
an entire hierarchy of face selective “patches” which demonstrate
steadily increasing levels of tolerance to changes in viewpoint of
their preferred stimuli as a function of their location through the
visual hierarchy (Freiwald et al., 2009; Freiwald and Tsao, 2010)
(see also Rolls, 1992; Barlow, 1995). Although mainly focussed
on the study of monkeys, parallels with humans have also been
investigated and verified (Tsao et al., 2008a). This work broadly
supports earlier reports of clustering of neural selectivity across
faces and objects throughout the temporal lobe (Perrett et al.,
1984; Tanaka et al., 1991; Fujita et al., 1992; Wang et al., 1996;
Zangenehpour and Chaudhuri, 2005).

LATERAL ASSOCIATION
Up to this point, the models being proposed offer no explana-
tion for how such patches occur. However, this is easily remedied
through the introduction of short-range lateral excitation. It has
been known for many years that short-range lateral excitation can
produce large-scale smooth variations in selectivity similar to that
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described in many regions of visual cortex. Initially, lateral excita-
tion was used to produce self-organizing systems that mimicked
mappings found in early visual areas (e.g., von der Malsburg,
1973; Willshaw and von der Malsburg, 1976; Kohonen, 1982;
Olson and Grossberg, 1998), but they have also been successfully
applied to explaining the orderly arrangement of selectivity in
higher areas (Michler et al., 2009). In general, these systems gen-
erate smooth maps, but only because they are driven by a smooth
input space (disparity, spatial location etc.). Discontinuities in the
maps can occur if the input is discontinuous (left vs. right eye)
or if an uneven distribution of exemplars exists across the input
space, as is certainly the case for objects.

In the case of the models described earlier, local interactions
can be implemented by allowing neural activity to be influenced
by the activity of immediate neural neighbors. The expression for
neural firing becomes:

yij =
(

γij − κγav

γmax − κγav

+ h
∑

ab

γab − κγav

γmax − κγav

)

where h controls the relative contribution of the local horizontal
excitatory connections. The variables a and b iterate across the
immediate neighbors of the ijth neuron. In the simulations

FIGURE 11 | The stability of the network response to face stimuli

undergoing two types of image manipulation. The “exchange” condition
corresponds to the replacement of the lower half of a face with that of
another person. The “delete” condition corresponds to the blanking of the
lower half of the image. The vertical axis provides a measure of the overlap
in neural output activity between the control condition of the original
stimulus being presented and the particular manipulation, such that 1
indicates that exactly the same “n” neurons were most active after
manipulation of the image as were most active before. Analysis of just the
most active neuron is labeled “1”, the two most active neurons labeled “2”,
and so on up to the five. As one might expect, deletion is seen to produce
smaller changes in the output code from the control condition than
exchanging the lower half of the face with another. Significantly, the impact
of both manipulations is much more marked for the same race faces than
for the other race faces (output similarity drops well below 1.0).

described here, lateral excitation was received from the eight
nearest neighbors in the grid as a simple average. In other
words a varied in the range i − 1 ≤ a ≤ i + 1 and b in the range
j − 1 ≤ b ≤ j + 1. To demonstrate the impact of including local
excitation, a new series of simulations were run in which the
neurons were accorded a physical location across the cortical
surface in a 2D grid.

The results of a new set of simulations appear in
Figures 12–14. Within this space spanned by the two fea-
ture dimensions, five object categories were chosen on the
assumption that exemplars from a category tend to cluster along
the two input dimensions. Different numbers of exemplars in
each category are generated, representing differing levels of
exposure to the different categories (50, 40, 20, 50, and 100,
respectively). Figure 12 shows the neural selectivity generated by
the network when no lateral interaction is included. In the figure

FIGURE 12 | Selectivity preferences for 81 neurons exposed to five

object categories containing 50, 40, 20, 50, and 100, exemplars,

respectively. No lateral interaction between classifiers. (A) Each colored
square represents a classifier whose color encodes its relative position
across the 2D surface of cortex. The five circles represent the extent of the
five object categories. (B) The color-based encoding of classifier location in
cortex. Blue and yellow represent points on the cortical surface that are far
apart, as do red and green. Physically proximity is conveyed by the change
in color (hue). The number appearing on top of each neural classifier
represents the object category for which that particular neuron is selective.
Notice in this case that there is no evidence of any structure in the neural
selectivity, i.e., there is no link between category and the physical location
in cortex of the neuron.

FIGURE 13 | Selectivity preferences for 81 neurons exposed to five

object categories. The classifiers were subject to moderate local lateral
excitation (h = 0.3), but otherwise the simulation parameters were identical
to those shown in Figure 12. Notice in this case that there is evidence for
emerging structure in neural selectivity, i.e., object category and physical
location are now loosely related. (A) Neural selectivity within object space.
(B) Neural selectivity across the cortical surface.
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FIGURE 14 | Selectivity preferences for 81 neurons exposed to five

object categories. The classifiers were subject to strong local lateral
excitation (h = 1), but otherwise the simulation parameters were identical
to those shown in Figure 12. Notice in this case that there is evidence for
quite rigid structure in neural selectivity, i.e., object category and physical
location are now closely related. (A) Neural selectivity within object space.
(B) Neural selectivity across the cortical surface.

the color of the classifiers conveys their relative position in cortex,
with similar colors corresponding to neighboring regions of
cortex. In the absence of lateral interaction the neural classifiers
are seen to distribute themselves randomly within and between
the categories, suggesting no cortical clustering of neurons on the
basis of input sensitivity/object category.

By contrast, the effect of even moderate, very local excita-
tion is apparent in Figure 13. Now the structure of the cortical
neighborhood is reflected in the distribution of neural selectiv-
ity preferences. Neurons tend to be selective for exemplars from
the same object category as their immediate neighbors in cortex.
Note, however, that there remain strong and sudden discontinu-
ities in the patten of selectivity due to the clustering of objects in
the input space. This pattern of locally smooth, yet punctuated
stimulus preference, is broadly comparable to those described at
the microscopic level in monkeys (Fujita et al., 1992; Tsunoda
et al., 2001) and humans (Grill-Spector et al., 2006, 2007; Weiner
and Grill-Spector, 2012), or at the broader level of faces vs. other
objects (Zangenehpour and Chaudhuri, 2005; Kriegeskorte et al.,
2008; Tsao et al., 2008b).

Including local excitation may have several important effects.
In the lower layers of the network it may produce a local “asso-
ciation field”, of the type described by Field et al. (1993), and
may lead to cells responding to the forms of illusory contours
described in V2 neurons (Peterhans and von der Heydt, 1989;
von der Heydt and Peterhans, 1989). In later layers it may also
serve an important role in producing cells with similar response
properties which has been shown to aid the learning of full view
invariance (Tromans et al., 2012).

DISCUSSION
MISSING ELEMENTS
The purpose of this paper has been to demonstrate how a self-
organizing, competitive neural system can not only describe
recognition in biologically inspired models of object recognition,
but also in models of face recognition as well. The paper serves
to unite earlier work on appearance-based models of face pro-
cessing (Valentine, 1991; Valentine and Endo, 1992; Lewis and

Johnston, 1999), with models of abstract-feature based models
of face recognition (Bartlett et al., 2003; Jiang et al., 2006; Wallis
et al., 2008) and biologically inspired models of object recogni-
tion (Fukushima, 1980; Wallis and Rolls, 1997; Riesenhuber and
Poggio, 1999).

Nonetheless, as the title of the paper suggests, the mod-
els described here represent only a first step. The models do
not attempt to explain tolerance to transformations and they
ignore many details of what we know about early visual process-
ing involving areas such as LOC (Eger et al., 2008). They also
take early processing for granted. Thankfully there are excellent
descriptions of how the simple feature analysers of early visual
areas, such as “simple” and “complex” cell properties, can emerge
in a self-organizing system (Hoyer and Hyvärinen, 2002).

At the other end of the processing hierarchy, the model does
not explicitly model decision processes. This is a significant omis-
sion if one thinks that these higher areas almost certainly feed
back into higher recognition areas, causing task-specific tun-
ing of object-sensitive neurons (Wong et al., 2009b). There is
also no attempt to explain the regional division of tasks and
many regional specializations described in humans and primates
(Wachsmuth et al., 1994; Haxby et al., 2000; Hoffman and Haxby,
2000; Meng et al., 2012). Like Tarr and Cheng (2003), I would
argue that we have a core, self-organizing system that is picked
over by multiple, task-oriented systems. This paper serves to
explain how such a core system would operate, in terms of its
adaptive encoding of objects of expertise, but not how these other
systems come to extract information from it to solve specific tasks.

But why do we need multiple parallel systems you might ask?
One important thing to bear in mind is that full view-invariance
is only one possible goal of a visual system. Whether a person
is facing toward you or looking at you provides a highly sig-
nificant social cue which we care about, requiring us to retain
object orientation information at some level too. Indeed, cellular
recording provides ample evidence for neurons within the tempo-
ral lobe that are sensitive to head and eye gaze direction (Perrett
et al., 1985; Hasselmo et al., 1989)—(see also Haxby et al., 2000).
Needless to say, the importance of limiting view generalization
extends to non-face objects too. In the special case of letter recog-
nition it is important to know the difference between mirror and
rotationally related letters such as “d,” “b,” “p,” and “q”. There
is recent evidence that this may be the job of specific systems
(Pegado et al., 2011). In a broader sense, it has been suggested
that the diametrically opposing needs of systems aimed at answer-
ing “where” vs. “what” with respect to objects (e.g., Ungerleider
and Haxby, 1994), are what drove the division of primate cor-
tex into two separate streams (Wallis and Rolls, 1997). A fully
integrated model of object and/or face recognition will have to
understand these forms of regional specialization and multi-layer,
multi-sensory integration.

The purpose of this summary is simply to point out that we
might expect there to be numerous routes through the visual
system and different termination points aimed at tapping into
different multi-modal or view-specific sources of information
(Bukach et al., 2006; Riesenhuber, 2007). Recent modeling papers
from object recognition labs have also reflected this in their expla-
nation for separate object and face recognition streams (Leibo
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et al., 2011). In practice this may place the wrong emphasis
on what different streams are attempting to do. It may be the
case that different aspects of face processing tap different func-
tional streams. In other words, it may be the case that streams
are divided more along functional than domain specific lines.
As mentioned, some systems will be focussed on where a face
is looking whereas others will be concerned with identification,
for which viewing direction is irrelevant. The ability to extract
these different types of object-specific information is presumably
of interest when processing various aspects of non-face objects
too. I would tend to agree with Riesenhuber and Poggio (2000)
when they say that the different levels of representation required
to solve specific tasks (view-independent, view-specific, catego-
rization, identification) are all achievable through the action of
the same underlying computational principles. What may affect
the type of representation obtained in any one particular case will
be a function of factors such as: where in the hierarchy the infor-
mation is extracted, the degree to which temporal association of
inputs is allowed to impact the representation, the extent of lateral
excitation and/or inhibition, anatomical constraints, and the role
of feedback from higher areas. What remains to be seen is whether
such constraints are sufficient to explain the consistency as well as
regularity of neural selectivity described in humans and primates
(Kriegeskorte et al., 2008), which the model described here can,
currently, only partially explain.

CONCLUSION
The central message of this paper is that many phenomena related
to face processing and the cortical arrangement of stimulus
selectivity are all natural, emergent properties of a hierarchical,
competitive, (abstract) feature-based face recognition system, a
system which in essence, does not differ significantly from mod-
els describing human object recognition. The paper argues that
faces are represented as pictorial features in much the same way
as objects are. These features exhibit varying degrees of selec-
tivity, transformation tolerance and extent, as a direct result of
competitive processes within the visual processing stream. The
precise response properties are a product of an individual’s level
of exposure to the relevant stimulus class. More exposure leads
to greater numbers of neurons representing the stimuli with ever
finer sensitivity to changes in appearance. Increasing the concen-
tration of neural resources to a particular object class naturally
produces more integrated and specialized selectivity and hence an
ever more holistic representation. All of these phenomena emerge
naturally from a self-organizing model sharing all of the funda-
mental elements of self-organizing models of object recognition.
One can summarize the main messages of the paper as follows:

• To understand the sensitivity of neurons to objects and faces,
one has to consider the behavior of a learning, self-organizing
system.

• A system incorporating a hierarchy of competitive neural net-
works produces selectivity comparable to that known to exist
in primate cortex.

• Including lateral excitation allows the system to produce spatial
clustering of selection preferences similar to that described in
humans and other primates.

• A self-organizing system does not divide the input space (of
objects and faces) evenly. Neurons greedily cluster in areas of
the space in which many exemplars exist. This leads to discon-
tinuities in selectivity across the input space and the surface of
temporal lobe cortex.

• Holistic representations emerge spontaneously in self-
organizing competitive systems in regions of the input space
where many exemplars are seen (i.e., in areas of visual
expertise).

• Representations can be regarded as exemplar-based, abstract-
features whose dimensionality/complexity/degree of input
integration is driven by the proximity (in object space) of other
neural classifiers.

• This proximity is determined by three factors: the regularity
with which a stimulus in that region of input space is seen,
the degree of physical similarity between exemplars, and the
number of classifiers (neurons) active in that region of input
space.

• An abstract-feature based system can explain adaptation after-
effects and prototype effects if a final decision process is
added on top of the feature-based/multi-channel representa-
tion (Wallis et al., 2008; Ross et al., 2013). This final processing
layer would most likely lie in the frontal lobe, beyond the object
recognition centers of temporal lobe cortex (Riesenhuber and
Poggio, 2000).

As described above, there is plenty of debate and controversy
relating to face processing and, specifically, the basis for holis-
tic processing. Fundamental questions still exist relating to when,
or indeed if, learning is required for holistic effects to emerge,
and whether holistic effects map to other object classes, given
sufficient exposure. Clearly my model would argue that they
should. Evidence for the acquisition of holistic processing in the
other-race effect would seem to point to the potential for holis-
tic processing to be affected by experience. Whatever the link to
the broader issue of expertise, the model offers a means for holis-
tic face processing to emerge though learning in a system which
bears the hallmarks of an accepted model of object recognition.

So what, if anything, can this add to the debate on the issue
of whether face recognition is truly “special”, special in the sense
that it is subserved by unique mechanisms (configural/holistic)
and devoted neural hardware? The fact that the numerous behav-
iorally measured peculiarities of face recognition can be explained
by a model which is also suitable for the recognition of objects,
would seem to obviate the need for any specialist systems or path-
ways. In practice though, it is probably beyond the scope of this
work to draw conclusions on that issue. What the model tells us is
that despite the apparent peculiarity of responses to its preferred
stimuli, the face recognition system can be viewed as a carbon
copy of the object recognition system in terms of the associative
and competitive mechanisms involved in its construction.
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APPENDIX
CARICATURES
As a final aside, I would just like to describe how models of
the type described in this paper can also explain the “caricature
effect”. As described in the main text above, this effect was seen
as a challenge to exemplar-based models because even if a car-
icature has never been seen before, it often produces faster and
more accurate recognition than an image of the real person it
represents. Lewis and Johnston (1999) tackled this problem by
considering decision space around an exemplar rather than its
exact location in face space. The authors describe how the exact
exemplar sits slightly offset from the centroid of the face deci-
sion boundaries in which it is active (this offset is usually directed
approximately toward the grand mean of faces). The caricature,
they argued, lies closer to the center of the decision boundary
space. This captures the essence of why caricatures may be eas-
ier to recognize than the real face. Of course one may argue that
faces near the center of the distribution of familiar faces do not
have much room to move and so will show little or no carica-
ture effect. Possibly, but it is worth adding that if one considers
faces as being represented by a large number of dimensions, it
need only be the case that the face is an outlier on one of these
many dimensions for a caricature artist to be able to produce a
compelling effect. As Ross et al. (2013) describe when consider-
ing high-dimensional representations of a face, “[For] faces to
be clustered in the center of [all dimensions of a] multidimen-
sional space ... no face could ever have an extreme value along any
of [the] several hundred dimensions. The likelihood of that ever
happening is beyond remote.” A good caricature artist presum-
ably seeks to highlight the feature or features which are already
unusual (and hence outliers). A classifier associated with that fea-
ture should, therefore, occupy the edge of face space along that
dimension and hence be likely to be strongly activated by any fea-
ture which occupies that region or many more peripheral points
along that dimension.

In the context of a competitive network, the further from the
grand mean a face lies the less the noise/clutter/competition a
classifier experiences, and hence the greater its response. This
point is illustrated in Figure A1 which represents the outcome of
learning in a competitive system. The significant and counterin-
tuitive point I wish to make is that in a competitive scheme, as an
input exemplar moves away from the global mean it can produce
greater response from its associated classifier because that clas-
sifier experiences greatly reduced competition from neighboring
classifiers. In computational terms this means that a judiciously
chosen input vector pointing away from the direction of the neu-
ral weight vector may nonetheless be a more effective stimulus for
that neuron than one which exactly matches the neuron’s weight
vector.

Incidentally, papers that report the impact of adaptation on
discrimination performance, describe how exposure to the grand
mean of faces enhances discrimination performance across the
population (Rhodes et al., 2010). Although possible to link such
an effect to a norm-based model, it is apparent that effects of
this type are also predicted by a multi-channel model as well.
Adaptation effectively promotes the parts of each face that are
outliers. One can think of the adaptation process as driving
individuals to look more like their respective caricatures. The

FIGURE A1 | Outcome of a self-organizing system exposed to 500 face

images. The light blue dots represent the projection of the 500 faces into
two arbitrary dimensions of face space. If an individual’s face contains a
feature which activates the classifier “+” highlighted in pink, then
caricaturing (in this case increasing along Dimension 1 and decreasing along
Dimension 2) will form an effective caricature. Caricaturing can be thought
of as shifting the face along the trajectory of pink dots. Note that even at
large distances from the point corresponding to the classifier’s weight
vector (pink “+”), such images can be effective stimuli for the classifier
because it experiences reduced inhibition from its neighboring neurons. If
the face activates the classifier indicated in dark blue, neither dimension
offers good scope for caricaturing. Hence a caricature artist would do well
to choose an alternative dimension, of which there will be many.

same basic augment to the one I am making in this section has
been articulated in the past by Byatt and Rhodes (1998). In their
paper the authors simultaneously manipulated the other-race
and caricature effects in an attempt to tease apart norm-based
and exemplar-based codes. They went on to conclude that an
exemplar-based model best explained their results.

A recent set of data which also speaks to these types of effects
was conducted on neurons in the middle-face patch of monkeys
(Tsao et al., 2008a). In the study the authors reported how the
systematic linear shifting of specific facial features of a cartoon
face (e.g., inter-ocular distance, hair thickness, eyebrow angle etc.)
caused a linear shift in neural response (if it produced any sys-
tematic change at all). In a separate paper, the lead author of that
study argued that the results are consistent with a norm-based
representation of faces (Tsao and Livingstone, 2008). In prac-
tice, shifting features around in this way may represent a crude
form of caricaturing. If a neuron responds to the cartoon face
it is likely that along one of the many feature dimensions being
tested, one will prove to be a good feature for caricaturing. Hence
responses will increase as the feature is exaggerated. When pushed
in the opposite direction, the anti-caricature is formed and firing
is driven below normal background firing rates—as is apparent
in the data the authors report. One thing the data suggest is that
the classifier boundaries are not hard cut-offs, a neuron does not
cease to fire at the point the input matches the favored stimu-
lus of a neighboring neuron along that dimension of input space.
That need not be surprising as the stimulus remains an effec-
tive stimulus for that neuron along all other feature dimensions
(e.g., nose width, eye color etc.) and which are not currently being
altered.
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