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The direction of an association at the population-level may be reversed within the
subgroups comprising that population—a striking observation called Simpson’s paradox.
When facing this pattern, psychologists often view it as anomalous. Here, we argue
that Simpson’s paradox is more common than conventionally thought, and typically
results in incorrect interpretations—potentially with harmful consequences. We support
this claim by reviewing results from cognitive neuroscience, behavior genetics, clinical
psychology, personality psychology, educational psychology, intelligence research, and
simulation studies. We show that Simpson’s paradox is most likely to occur when
inferences are drawn across different levels of explanation (e.g., from populations to
subgroups, or subgroups to individuals). We propose a set of statistical markers indicative
of the paradox, and offer psychometric solutions for dealing with the paradox when
encountered—including a toolbox in R for detecting Simpson’s paradox. We show that
explicit modeling of situations in which the paradox might occur not only prevents incorrect
interpretations of data, but also results in a deeper understanding of what data tell us
about the world.
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INTRODUCTION
Two researchers, Mr. A and Ms. B, are applying for the same
tenured position. Both researchers submitted a number of
manuscripts to academic journals in 2010 and 2011: 60% of Mr.
A’s papers were accepted, vs. 40% of Ms. B’s papers. Mr. A cites
his superior acceptance rate as evidence of his academic qualifica-
tions. However, Ms. B notes that her acceptance rates were higher
in both 2010 (25 vs. 0%) and 2011 (100 vs. 75%)1. Based on these
records, who should be hired?2

In Simpson (1951) showed that a statistical relationship
observed in a population—i.e., a collection of subgroups or
individuals—could be reversed within all of the subgroups that
make up that population 3. This apparent paradox has signifi-
cant implications for the medical and social sciences: A treatment
that appears effective at the population-level may, in fact, have
adverse consequences within each of the population’s subgroups.
For instance, a higher dosage of medicine may be associated with

1

2010 2011 overall

Mr. A 0 of 20 60 of 80 60%

Ms. B 20 of 80 20 of 20 40%

2The years in this example are substitutes for the true relevant variable,
namely journal quality (together with diverging base rates of submission).
This variable is substituted here to emphasize the puzzling nature of the
paradox. See page 3 for further explanation of this (hypothetical) example.
3The same observation was made, albeit less explicitly, by Pearson et al.
(1899), Yule (1903) and Cohen and Nagel (1934); see also Aldrich (1995).

higher recovery rates at the population-level; however, within
subgroups (e.g., for both males and females), a higher dosage
may actually result in lower recovery rates. Figure 1 illustrates
this situation: Even though a negative relationship exists between
“Treatment Dosage” and “Recovery” in both males and females,
when these groups are combined a positive trend appears (black,
dashed). Thus, if analyzed globally, these data would suggest that
a higher dosage treatment is preferable, while the exact oppo-
site is true (the continuous case is often referred to as Robinson’s
paradox, 1950)4.

Simpson’s paradox (hereafter SP) has been formally analyzed
by mathematicians and statisticians (e.g., Blyth, 1972; Dawid,
1979; Pearl, 1999, 2000; Schield, 1999; Tu et al., 2008; Greenland,
2010; Hernán et al., 2011), its relevance for human inferences
studied by psychologists (e.g., Schaller, 1992; Spellman, 1996a,b;
Fiedler, 2000, 2008; Curley and Browne, 2001) and conceptu-
ally explored by philosophers (e.g., Cartwright, 1979; Otte, 1985;
Bandyoapdhyay et al., 2011). However, few works have discussed
the practical aspects of SP for empirical science: How might
researchers prevent the paradox, recognize it, and deal with it
upon detection? These issues are the focus of the present paper.

4Julious and Mullee (1994) showed such a pattern in a data set bearing on
treatment of kidney stones: Treatment A seemed more effective than treatment
B in the dataset as a whole, but when split into small and large kidney stones
(which, combined, formed the entire data set), treatment B was more effective
for both.
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FIGURE 1 | Example of Simpson’s Paradox. Despite the fact that there
exists a negative relationship between dosage and recovery in both males
and females, when grouped together, there exists a positive relationship.
All figures created using ggplot2 (Wickham, 2009). Data in arbitrary units.

Here, we argue that (a) SP occurs more frequently than com-
monly thought, and (b) inadequate attention to SP results in
incorrect inferences that may compromise not only the quest
for truth, but may also jeopardize public health and policy. We
examine the relevance of SP in several steps. First, we describe
SP, investigate how likely it is to occur, and discuss work show-
ing that people are not adept at recognizing it. Next, we review
examples drawn from a range of psychological fields, to illus-
trate the circumstances, types of design and analyses that are
particularly vulnerable to instances of the paradox. Based on this
analysis, we specify the circumstances in which SP is likely to
occur, and identify a set of statistical markers that aid in its iden-
tification. Finally, we will provide countermeasures, aimed at the
prevention, diagnosis, and treatment of SP—including a software
package in the free statistical environment R (Team, 2013) created
to help researchers detect SP when testing bivariate relationships.

WHAT IS SIMPSON’S PARADOX?
Strictly speaking, SP is not actually a paradox, but a counterintu-
itive feature of aggregated data, which may arise when (causal)
inferences are drawn across different explanatory levels: from
populations to subgroups, or subgroups to individuals, or from
cross-sectional data to intra-individual changes over time (cf.
Kievit et al., 2011). One of the canonical examples of SP concerns
possible gender bias in admissions into Berkeley graduate school
(Bickel et al., 1975; see also Waldmann and Hagmayer, 1995).
Table 1 shows stylized admission statistics for males and females
in two faculties (A and B) that together constitute the Berkeley
graduate program.

Overall, proportionally fewer females than males were admit-
ted into graduate school (84% males vs. 78% females). However,
when the admission proportions are inspected for the individ-
ual graduate schools A and B, the reverse pattern holds: In both
school A and B the proportion of females admitted is greater than
that of males (97 vs. 91% in school A, and 33 vs. 20% percent
in school B). This seems paradoxical: Globally, there appears to

be bias toward males, but when individual graduate schools are
taken into account, there seems to be bias toward females. This
conflicts with our implicit causal interpretation of the aggregate
data, which is that the proportions of the aggregate data (84%
males and 78% females) are informative about the relative like-
lihoods of male or female applicants being admitted if they were
to apply to a Berkeley graduate school. In this example, SP arises
because of different proportions of males and females attempt to
enter schools that differ in their thresholds for accepting students;
we discuss this explanation in more detail later.

Pearl (1999) notes that SP is unsurprising: “seeing magnitudes
change upon conditionalization is commonplace, and seeing such
changes turn into sign reversal (. . . ) is not uncommon either”
(p. 3). However, although mathematically trivial, sign reversals
are crucial for science and policy. For example, a (small) posi-
tive effect of a drug on recovery, or an educational reform on
learning performance, provides incentives for further research,
investment of resources, and implementation. By contrast, a neg-
ative effect may warrant recall of a drug, cessation of research
efforts and (when discovered after implementation) could gener-
ate very serious ethical concerns. Although the difference between
a positive effect of d = 0.5 and d = 0.9 may be considered larger
in statistical terms than the difference between, say, d = 0.15
and d = −0.15, the latter might entail a more critical difference:
Decisions based on the former are wrong in degree, but those
based on the latter in kind. This can create major potential for
harm and omission of benefit. Simpson’s paradox is conceptually
and analytically related to many statistical challenges and tech-
niques, including causal inference (Pearl, 2000, 2013), the eco-
logical fallacy (Robinson, 1950; Kramer, 1983; King, 1997; King
and Roberts, 2012), Lord’s paradox, (Tu et al., 2008), propensity
score matching (Rosenbaum and Rubin, 1983), suppressor vari-
ables (Conger, 1974; Tu et al., 2008), conditional independence
(Dawid, 1979), partial correlations (Fisher, 1925), p-technique
(Cattell, 1952) and mediator variables (MacKinnon et al., 2007).
The underlying shared theme of these techniques is that they
are concerned with the nature of (causal) inference: The chal-
lenge is what inferences are warranted based on the data we
observe. According to Pearl (1999), it is exactly our tendency to
automatically interpret observed associations causally that ren-
ders SP paradoxical. For instance, in the Berkeley admissions
example, many might incorrectly interpret the data in the fol-
lowing way: “The data show that if male and female students
apply to Berkeley graduate school, females are less likely to be
accepted.” A careful consideration of the reversals of conditional
probabilities within the graduate schools guards us against this
initial false inference by illustrating that this pattern need not
hold within graduate schools. Of course this first step does not
fully resolve the issue: Even though the realization that the condi-
tional acceptance rates are reversed within every graduate schools
has increased our insight into the possible true underlying pat-
terns, these acceptance rates are still compatible, under various
assumptions, with various causal mechanisms (including both
bias against women or men). This is important, as it is these
causal mechanisms that are the main payoff of empirical research.
However, to be able to draw causal conclusions, we must know
what the underlying causal mechanisms of the observed patterns
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Table 1 | A stylized representation of Berkeley admission statistics.

Male Female Proportion males Proportion females Summary

Accept Reject Accept Reject

Faculty A 820 80 680 20 0.91 0.97 More females

Faculty B 20 80 100 200 0.2 0.33 More females

Combined 840 160 780 220 0.84 0.78 More males

Total N 1000 1000

The counts in each cell reflect students in each category, accepted or rejected, for two graduate schools. The numbers are fictitious, designed to emphasize the key

points.

are, and to what extent the data we observe are informative about
these mechanisms.

SIMPSON’S PARADOX IN REAL LIFE
Despite the fact that SP has been repeatedly recognized in data
sets, documented cases are often treated as noteworthy excep-
tions (e.g., Bickel et al., 1975; Scheiner et al., 2000; Chuang
et al., 2009). This is most clearly reflected in one paper’s
provocative title: “Simpson’s Paradox in Real Life” (Wagner,
1982). However, there are reasons to doubt the default assump-
tion that SP is a rare curiosity. In psychology, SP has been
recognized in a wide range of domains, including the study
of memory (Hintzman, 1980, 1993), decision making (Curley
and Browne, 2001), strategies in prisoners dilemma games
(Chater et al., 2008), tracking of changes in educational per-
formance changes over time (Wainer, 1986), response strategies
(van der Linden et al., 2011), psychopathological comorbid-
ity (Kraemer et al., 2006), victim-offender overlap (Reid and
Sullivan, 2012), the use of antipsychotics for dementia (Suh,
2009), and even meta-analyses (Rücker and Schumacher, 2008;
Rubin, 2011).

A recent simulation study by Pavlides and Perlman (2009) sug-
gests SP may occur more often than commonly thought. They
quantified the likelihood of SP in simulated data by examining
a range of 2 × 2 × 2 tables for uniformly distributed random
data. For the simple 2 × 2 × 2 case, a full sign reversal—where
both complementary subpopulations show a sign opposite to
their aggregate—occurred in 1.67% of the simulated cases.
Although much depends on the exact specifications of the
data, this number should be a cause of concern: This sim-
ulation suggests SP might occur in nearly 2% of compara-
ble datasets, but reports of SP in empirical data are far less
common.

Simulation studies cannot be used, in isolation, to esti-
mate the prevalence of SP in the published literature, given
that there are several plausible mechanisms by which the pub-
lished literature might overestimate (empirical instances of SP
are interesting, and therefore likely to be published) or under-
estimate (datasets with cases of SP may yield ambiguous or
conflicting answers, possibly inducing file-drawer type effects)
the true prevalence of SP. Unfortunately, a (hypothetical) re-
analysis of raw data in the published literature to estimate the
“true” prevalence of SP would suffer from similar problems:
Previous work has shown that the probability of data-sharing is

not unrelated to the nature of the data (e.g., see Wicherts et al.,
2006, 2011).

Still, there are good reasons to think SP might occur more
often than it is reported in the literature, including the fact that
people are not necessarily very adept at detecting the paradox
when observing it. Fiedler et al. (2003) provided participants
with several scenarios similar to the sex discrimination example
presented in Table 1: Fewer females were admitted to fictional
University X; however, within each of two graduate schools
University X’s admission rates for females were higher. This sign
reversal was caused by a difference in base rates, with more
females applying to the more selective graduate school. Fiedler
and colleagues showed that it was very difficult to have peo-
ple engage in “sound trivariate reasoning” (p. 16): Participants
failed to recognize the paradox, even when they were explicitly
primed. In five experiments, they made all relevant factors salient
in varying degrees of explicitness. For instance, the difference in
admission base rates of two universities would be explicit (“These
two universities differ markedly in their application standards”)
as well as the sex difference in applying for the difficult school
(“women are striving for ambitious goals”). After such primes,
participants correctly identified: (1) the difference in graduate
schools admission rates, (2) the sex difference in application rates
to both schools and even (3) the relative success of males and
females within both schools. Nonetheless, they still drew incor-
rect conclusions, basing their assessment solely on the aggregate
data (i.e., “women were discriminated against”). The authors
conclude: “Within the present task setting, then, there is little evi-
dence for a mastery of Simpson’s paradox that goes beyond the
most primitive level of undifferentiated guessing” (p. 21).

However, other studies suggest that in certain settings sub-
jects do take into account conditional contingencies in order to
judge the causal efficacy of the fertilizer (Spellman, 1996a,b). In
an extension of these findings, Spellman et al. (2001) showed that
the extent to which people took into account conditional prob-
abilities appropriately depended on the activation of top-down
vs. bottom-up mental models of interacting causes. In a series of
experiments where participants had to judge the effectiveness of
a type of fertilizer, people were able to estimate the correct rates
when primed by a visual cue representing the underlying causal
factor. To demonstrate the force of such top-down schemas, let
us revisit our initial example, of Mr. A and Ms. B, presented
in a slightly modified fashion (but with identical numbers, see
Footnote 1):
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Mr. A and Ms. B are applying for the same tenured position. Both
researchers submitted a series of manuscripts to the journals Science
(impact factor = 31.36) and the Online Journal of Psychobabble
(impact factor = 0.001). Overall, 60% of Mr. A’s papers were
accepted, vs. 40% of Ms. B’s papers. Mr. A cites his superior accep-
tance rates as evidence of his academic qualifications. However, Ms.
B notes that her acceptances rates were significantly higher for both
Science (25 vs. 0%) and Online Journal of Psychobabble (100 vs.
75%). Based on their academic record, who should be hired?

Now, the answer is obvious. This is because the relevant factor
(the different base rates of acceptance, and the different propor-
tions of the manuscripts submitted to each journal) has been
made salient. Many research psychologists have well-developed
schemas for estimating the likelihood of rejection at different
journals. In contrast, “years” generally do not differ in acceptance
rates, so they did not activate an intuitive schema. When rely-
ing on intuitive schemas, people are more likely to draw correct
inferences. However, “sound trivariate reasoning” is not some-
thing that people, including researchers, do easily, which is why
SP “continues to trap the unwary” (Dawid, 1979, p. 5, see also
Fiedler, 2000). More recent work has discussed the origins and
potential utility, under certain circumstances, of cognitive heuris-
tics that may leave people vulnerable to incorrect inferences of
cases of Simpson’s paradox (pseudocontingencies, or a focus on
base-rate distributions, cf. Fiedler et al., 2009).

The above simulation and experimental studies suggest that
SP might occur frequently, and that people are often poor at rec-
ognizing it. When SP goes unnoticed, incorrect inferences may
be drawn, and as a result, decisions about resource allocations
(including time and money) may be misguided. Interpretations
may be wrong not only in degree but also in kind, suggesting
benefits where there may be adverse consequences. It is there-
fore worthwhile to understand when SP is likely to occur, how
to recognize it, and how to deal with it upon detection. First, we
describe a number of clear-cut examples of SP in different set-
tings; thereafter we argue the paradox may also present itself in
forms not usually recognized.

SIMPSON’S PARADOX IN EMPIRICAL DATA
Most canonical examples of SP are cases where partitioning into
subgroups yields different conclusions than when studying the
aggregated data only. Here, we broaden the scope of SP to include
some other common types of statistical inferences. We will show
that SP might also occur when drawing inferences from patterns
observed between people to patterns that occur within people
over time. This is especially relevant for psychology, because
it is not uncommon for psychologists to draw such inferences,
for instance, in studies of personality psychology, educational
psychology, and in intelligence research.

SIMPSON’S PARADOX IN INDIVIDUAL DIFFERENCES
A large literature has documented inter-individual differences in
personality using several dimensions (e.g., the Big Five theory
of personality; McCrae and John, 1992), such as extraversion,
neuroticism, and agreeableness. In such fields, cross-sectional
patterns of inter-individual differences are often thought to be
informative about psychological constructs (e.g., extraversion,

general intelligence) presumed to be causally relevant at the level
of individuals. That differences between people can be described
with such dimensions is taken by some to mean that these dimen-
sions play a causal role within individuals, e.g., “Extraversion
causes party-going” (cf. McCrae and Costa, 2008, p. 288) or that
psychometric g (hereafter, g: general intelligence) is an adapta-
tion that people use to deal with evolutionarily novel challenges
(Kanazawa, 2010, but see Penke et al., 2011).

However, this kind of inference is not warranted: One can
only be sure that a group-level finding generalizes to indi-
viduals when the data are ergodic, which is a very strict
requirement5. Since this requirement is unlikely to hold in many
data sets, extreme caution is warranted in generalizing across
levels. The dimensions that appear in a covariance structure anal-
ysis describe patterns of variation between people, not variation
within individuals over time. That is, a person X may have a posi-
tion on all five dimensions compared to other people in a given
population, but this does not imply that person varies along this
number of dimensions over time. For instance, several simula-
tion studies (summarized in Molenaar et al., 2003) have shown
that in a population made up entirely of people who (intra-
individually) vary along two, three, or four dimensions over time,
one may still find that a one-factor model fits the cross-sectional
dataset adequately. This illustrates that the structure or direc-
tion of an association at the cross-sectional, inter-individual level
does not necessarily generalize to the level of the individual. This
simulation received empirical support by Hamaker et al. (2007).
They studied patterns of inter-individual variation to examine
whether these were identical to patterns of intra-individual vari-
ation for two dimensions: Extraversion and Neuroticism. Based
on repeated measures of individuals on these dimensions, they
found that the factor structure that described the inter-individual
differences (which in their sample could be described by two
dimensions) did not accurately capture the dimensions along
which the individuals in that sample varied over time. Similarly,
a recent study (Na et al., 2010) showed that markers known to
differentiate between cultures and social classes (e.g., “indepen-
dent” vs. “interdependent” social orientations) did not generalize
to capture individual differences within any of the groups, illus-
trating a specific example of the general fact that “correlations at
one level pose no constraint on correlations at another level” (p.
6193; see also Shweder, 1973).

Similarly, two variables may correlate positively across a popu-
lation of individuals, but negatively within each individual over
time. For instance: “it may be universally true that drinking
coffee increases one’s level of neuroticism; then it may still be
the case that people who drink more coffee are less neurotic”

5Molenaar and Campbell (2009) have shown that a complete guarantee that
inference to within-subject processes on the basis of between-subjects data
can be justifiably made requires ergodicity. This means that all within-subject
statistical characteristics (mean, variance) are asymptotically identical to those
at the level of the group; e.g., the asymptotic between-subject mean (as the
number of subjects approaches infinity) equals the within-subject asymptotic
mean (as the number of repeated measures approaches infinity). Note that
ergodicity is extremely unlikely in psychological science (e.g., if IQ data were
ergodic, your IQ would have to be under 100 for half of the time, because half
of the people’s IQ at a given time point is below 100; Van Rijn, 2008).
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(Borsboom et al., 2009, p. 72). This pattern may come about
because less neurotic people might worry less about their health,
and hence are comfortable consuming more coffee. Nonetheless,
all individuals, including less neurotic ones, become more neu-
rotic after drinking coffee. The relationship between alcohol and
IQ provides an example of this pattern. Higher IQ has been asso-
ciated with greater likelihood of having tried alcohol and other
recreational drugs (Wilmoth, 2012), and a higher childhood IQ
has been associated with increased alcohol consumption in later
life (Batty et al., 2008). However, few will infer from this cross-
sectional pattern that ingesting alcohol will increase your IQ: In
fact, research shows the opposite is the case (e.g., Tzambazis and
Stough, 2000). This pattern (based on simulated data) is shown in
Figure 2.

A well-established example from cognitive psychology where
the direction is reversed within individuals is the speed-accuracy
trade-off (e.g., Fitts, 1954; MacKay, 1982). Although the inter-
individual correlation between speed and accuracy is generally
positive (Jensen, 1998), and associated with general mental abili-
ties such as fluid intelligence, within subjects there is an inverse
relationship between speed and accuracy, reflecting differential
emphasis in response style strategies (but see Dutilh et al., 2011).

An example from educational measurement further illustrates
the practical dangers of drawing inferences about intra-individual
behavior on the basis of inter-individual data. A topic of con-
tention in the educational measurement literature is whether or
not individuals should change their responses if they are unsure
about their initial response. Folk wisdom suggests that you should
not change your answer, and stick with your initial intuition (cf.
van der Linden et al., 2011). However, previous studies suggest
that changing your responses if you judge them to be inaccurate
after revision has a beneficial effect (cf. Benjamin et al., 1987). In
recent work, however, Van der Linden and colleagues showed that
the confusion concerning the optimal strategy is a case of SP. They
developed a new psychometric model for answer change behavior

FIGURE 2 | Alcohol use and intelligence. Simulated data illustrating that
despite a positive correlation at the group level, within each individual there
exists a negative relationship between alcohol intake and intelligence. Data
in arbitrary units.

to show that, conditional upon the ability of a test taker, changing
answers hurts performance within individual participants for the
whole range of ability, even though the aggregated data showed
that there were 8.5 times as many switches from wrong-to-right
than switches from right-to-wrong.

van der Linden et al. (2011) conclude that incorrect conclu-
sions are due to “interpreting proportions of answer changes
across all examinees as if they were probabilities that applied to
each individual examinee, disregarding the differences between
their abilities” (p. 396). That is, the causal interpretation one
might be tempted to draw from earlier research (i.e., because there
is an average increase in grades for answer changes, it is profitable
for me to change my answers when in doubt) is incorrect. A simi-
lar finding was reported by Wardrop (1995), who showed that the
“hot hand” in basketball—the alleged phenomenon that sequen-
tial successful free throws increase the probability of subsequent
throws being successful—disappears when taking into account
varying proportions of overall success—i.e., differences in indi-
vidual ability (see also Yaari and Eisenmann, 2011). Within players
over time, the success of a throw depended on previous successes
in different ways for different players, although the hot-hand pat-
tern (increased success rate after a hit) did appear at the level of
aggregated data.

SIMPSON’S PARADOX IN BIOLOGICAL PSYCHOLOGY
A study on the relationship between brain structure and intel-
ligence further illustrates this issue. Shaw et al. (2006) studied
a sample (N = 307) of developing children ranging from 7 to
18 years in order to examine potential neural predictors of gen-
eral intelligence. To this end, they catalogued the developmental
trajectory of cortical thickness, stratified into different age- and
IQ groups. In the overall population, Shaw and colleagues found
no correlation between cortical thickness and g. However, within
individual age groups, they did find correlations, albeit different
ones at different developmental stages. During early childhood,
they observed a negative correlation between psychometric g and
cortical thickness. In contrast, in late childhood they observed
a moderately strong positive correlation (0.3). Similar results—
where the direction and strength of the correlation between prop-
erties of the brain and intelligence change over developmental
time—have been found by Tamnes et al. (2011). This implies that
an individual, cross-sectional, study could have found a correla-
tion between cortical thickness and intelligence anywhere in the
range from negative to positive, leading to incomplete or incorrect
(if such a finding would be uncritically generalized to other age-
groups) inferences at the level of subgroups or individuals (see
also Kievit et al., 2012a).

Misinterpretations of the distinction between inter- and intra-
individual measurements can have far-reaching implications. For
instance, Herrnstein and Murray (1994)—authors of the con-
troversial book The Bell Curve—have argued that the high her-
itability of intelligence implies that educational programs are
unlikely to succeed at equalizing inter-individual differences in
IQ scores. As a justification for this position, Murray stated:
“When I—when we—say 60 percent heritability, it’s not 60
percent of the variation. It is 60 percent of the IQ in any
given person” (cited in Block, 1995, p. 108). This view is, of
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course, incorrect, as heritability measures capture a pattern of
co-variation between individuals (for an excellent discussion of
analyses of variance vs. analyses of causes, see Lewontin, 2006).
Here too it is clear that inferences drawn across different levels of
explanations (in this case, from between- to within-individuals)
may go awry, and such incorrect inferences may affect policy
changes (e.g., banning educational programs based on the invalid
inference that individuals’ intelligences are fully fixed by their
genomes).

A SURVIVAL GUIDE TO SIMPSON’S PARADOX
We have shown that SP may occur in a wide variety of research
designs, methods, and questions. As such, it would be useful to
develop means to “control” or minimize the risk of SP occur-
ring, much like we wish to control instances of other statistical
problems. Pearl (1999, 2000) has shown that (unfortunately)
there is no single mathematical property that all instances of SP
have in common, and therefore, there will not be a single, cor-
rect rule for analyzing data so as to prevent cases of SP. Based
on graphical models, Pearl (2000) shows that conditioning on
subgroups may sometimes be appropriate, but may sometimes
increase spurious dependencies (see also Spellman et al., 2001). It
appears that some cases are observationally equivalent, and only
when it can be assumed that the cause of interest does not influ-
ence another variable associated with the effect, a test exists to
determine whether SP can arise (see Pearl, 2000, chapter 6 for
details).

However, what we can do is consider the instances of SP
we are most likely to encounter, and investigate them for char-
acteristic warning signals. Psychology is often concerned with
the average performance of groups of individuals (e.g., grad-
uate students), and drawing valid inferences applying to that
entire group, including its subgroups (e.g., males and females).
The above examples show how such inferences may go awry.
Given the general structure of psychological studies, the oppo-
site incorrect inference is much less likely to occur: very few
psychological studies examine a single individual over a period
of time in the absence of aggregated data, to then infer from
that individual a population level regularity. Thus, the incor-
rect generalization from an individual to a group is less likely,
both in terms of prevalence (there are fewer time-series than
cross-sectional studies) and in terms of statistical inference (most
studies that collect time-series data—as Hamaker et al. (2007)
did—are specifically designed to address complex statistical
dynamics).

The most general “danger” for psychology is therefore well-
defined: We might incorrectly infer that a finding at the level of
the group generalizes to subgroups, or to individuals over time.
All examples we discussed above are of this kind. Although there
is no single, general solution even in this case, there are ways of
addressing this most likely problem that often succeed. In this
spirit, the next section offers practical and diagnostic tools to
deal with possible instances of SP. We discuss strategies for three
phases of the research process: Prevention, diagnosis, and treat-
ment of SP. Thus, the first section will concern data that has yet
to be acquired, the latter two with data that has been collected
already.

PREVENTING SIMPSON’S PARADOX
Develop and test mechanistic explanations
The first step in addressing SP is to carefully consider when it
may arise. There is nothing inherently incorrect about the data
reflected in puzzling contingency tables or scatterplots: Rather,
the mechanistic inference we propose to explain the data may be
incorrect. This danger arises when we use data at one explana-
tory level to infer a cause at a different explanatory level. Consider
the example of alcohol use and IQ mentioned before. The cross-
sectional finding that higher alcohol consumption correlates with
higher IQ is perfectly valid, and may be interesting for a variety
of sociological or cultural reasons (cf. Martin, 1981 for a similar
point regarding the Berkeley admission statistics). Problems arise
when we infer from this inter-individual pattern that an individ-
ual might increase their IQ by drinking more alcohol (an intra-
individual process). Of course in the case of alcohol and IQ, there
is little danger of making this incorrect inference because of strong
top-down knowledge constraining our hypotheses. But, as we saw
in the example of scientist A and B, in the absence of top-down
knowledge, we are far less well-protected against making incor-
rect inferences. Without well-developed top-down schemas, we
have, in essence, a cognitive blind spot within which we are vul-
nerable to making incorrect inferences. It is this blind spot that, in
our view, is the source of consistent underestimation of the preva-
lence of SP. A first step against guarding against this danger is by
explicitly proposing a mechanism, determining at which level it is
presumed to operate (between groups, within groups, within peo-
ple), and then carefully assessing whether the explanatory level at
which the data were collected aligns with the explanatory level of
the proposed mechanism (see Kievit et al., 2012b). In this manner,
we think many instances of SP can be avoided.

Study change
One of the most neglected areas of psychology is the analy-
sis of individual changes through time. Despite calls for more
attention for such research (e.g., Molenaar, 2004; Molenaar and
Campbell, 2009), most psychological research uses snapshot mea-
surements of groups of individuals, not repeated measures over
time. However, of course, intra-individual patterns can be stud-
ied; such fields as medicine have a long tradition of doing so (e.g.,
survival curve analysis). Moreover, many practical obstacles for
“idiographic” psychology (e.g., logistic issues and costs associ-
ated with asking participants to repeatedly visit the lab) can be
overcome by using modern technological tools. For instance, the
advent of smartphone technology opens up a variety of means
to relatively non-invasively collect psychological data outside of
the lab within the same individual over time (cf. Miller, 2012).
Moreover, time-series data also allows for the study of aggregate
patterns.

Intervene
If we want to be sure the relationship between two variables
at the group level reflects a causal pattern within individuals
over time, the most informative strategy is to experimentally
intervene within individuals. For instance, across individuals, we
might observe a positive correlation between high levels of testos-
terone and aggressive behavior. This still leaves open multiple

Frontiers in Psychology | Quantitative Psychology and Measurement August 2013 | Volume 4 | Article 513 | 6

http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement
http://www.frontiersin.org/Quantitative_Psychology_and_Measurement/archive


Kievit et al. Simpson’s paradox

possibilities; for instance, some people may be genetically predis-
posed to have both higher levels of testosterone and aggressive
behavior, even though the two have no causal relationship. If so,
despite the aggregate positive correlation within each individual
over time, we would not observe a consistent relationship. Of
course, it may be the case that there does exist a stable, consistent
positive association within every individual between fluctuations
in testosterone and variations in aggressive behaviors. But even
this pattern does not necessarily address the causal question: Do
changes in testosterone affect aggressive behavior?

To answer the causal question, we need to devise an exper-
imental study: If we administer a dose of testosterone, does
aggressive behavior increase; and, conversely, if we induce aggres-
sive behavior, do testosterone levels increase? As it turns out, the
evidence suggests that both these patterns are supported (e.g.,
Mazur and Booth, 1998). Note that the cross-sectional pattern
of a positive correlation between testosterone and aggression is
compatible (perhaps counter-intuitively) with all possible out-
comes at the intra-individual level following an intervention,
including a decrease in aggressive symptoms after an injection
with testosterone within individuals. To model the effect of some
manipulation, and therefore rule out SP at the level of the individ-
ual (i.e., a reversal of the direction of association), the strongest
approach is a study that can assess the effects of an intervention,
preferably within individual subjects.

DIAGNOSIS OF SIMPSON’S PARADOX
If we already collected data and want to know whether our data
might contain an instance of SP, what we want to know is whether
a certain statistical relationship at the group level is the same for
all subgroups in which the data may defensibly be partitioned,
which could be subgroups or individuals (in repeated measures
designs). Below we discuss various strategies to diagnose whether
this is the case.

VISUALIZE THE DATA
In bivariate continuous data sets, the first step in diagnosing
instances of SP is to visualize the data. As the above figures (e.g.,
Figures 1, 2) demonstrate, instances of SP can become appar-
ent when data is plotted, even when nothing in our statistical
analyses suggests SP exists in the data. Moreover, as the above
experiments have illustrated (e.g., Spellman, 1996a), under many
circumstances people are quite inept at inferring conditional rela-
tionships based on summary statistics. Visual representations in
such cases may, in the memorable words of Loftus (1993), “be
worth a thousand p values.” For these reasons, if a statistical test
is performed, it should always be accompanied by visualization in
order to facilitate the interpretation of possible instance of SP.

Despite being a powerful tool for detecting SP, visualization
alone does not suffice. First, not all instances of SP are obvious
from simple visual representations. Consider Figure 3A, which
visualizes the relationship of data collected by a researcher study-
ing the relationship between arousal and performance on some
athletic skill such as, say, tennis. This figure would be what is
available to a researcher on the basis of this bivariate dataset, and
based on a regression analysis, (s)he concludes that there is no
significant association. However, imagine that the researcher now

FIGURE 3 | Visualization alone does not always suffice. (A) shows the
bivariate relationship between arousal and performance of tennis players,
suggesting no relationship. However, after collecting new data on playing
styles (e.g., how many winning shots, how many errors) we perform a
cluster analysis yielding two types of players (“aggressive” and
“defensive”). By including this new, bivariate variable, two clear and
opposite relationships (B) emerge that would have gone unnoticed
otherwise.

gains access to a large body of (previously inaccessible) additional
data on the game statistics of each player: How many winning
shots do they make, how many errors, how often do they hit
with topspin or backspin, how hard do they hit the ball? Now
imagine that using this new data, (s)he performs a cluster (or
other type of classification) analysis on these additional vari-
ables, yielding two player types that we may label “aggressive” vs.
“defensive”6. By including this additional (latent) grouping vari-
able in our analysis, as can be seen in Figure 3B, we can see the
value of latent clustering: In the aggressive players, there is a (sig-
nificant) positive relationship between arousal and performance,
whereas in the defensive players, there is a negative relationship
between arousal and performance (a special case of the Yerkes-
Dodson law, e.g., Anderson et al., 1989). Later we discuss an
empirical example that has such a structure (Reid and Sullivan,
2012).

6E.g., a value such as the “aggressive margin” collected by MatchPro, http://
mymatchpro.com/stats.html, defined as “(Winners + opponent’s forced
errors − unforced errors)/total points played.”
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Second, not all data can be visualized in such a way that the
possibility of conditional reversals is obvious to practicing sci-
entists. Bivariate continuous data are especially suited for this
purpose, but in other cases (such as contingency tables), the data
can be (a) difficult to visualize and (b) the experimental evidence
discussed above (e.g., Spellman, 1996a) in section “Simpson’s
paradox in real life” suggests that, even when presented with
all the data and specifically reminded to consider conditional
inferences, people are poor at recognizing it.

A final reason to use statistics in order to detect SP is that
even instances that “look” obvious might benefit from a formal
test, which can confirm subpopulations exist in the data. In a
trivial sense, as with multiple regressions, any partition of the
data into clusters will improve the explanatory accuracy of the
bivariate association. The key question is whether the clustering
is warranted given the statistical properties of the dataset at hand.
Although the examples we visualize here are mostly clear-cut, real
data will, in all likelihood, be less unambiguous, and instead con-
tain gray areas. As there is a continuum ranging from clear-cut
cases on either side, we prefer formal test to make decisions in gray
areas. Agreed-upon statistics can settle boundary cases in a princi-
pled manner. Below, we discuss a range of analytic tools one may
use to settle such cases. However, a statistical test in and of itself
should not replace careful consideration of the data. For instance,
in the case of small samples (e.g., patient data), for lack of statisti-
cal power, a cluster analysis or a formal comparison of regression
estimates may not be statistically significant even in cases where
patterns are visually striking. In such cases, especially when a sign
change is observed, careful consideration should take precedence
over statistical significance in isolation.

In the next section, we will discuss statistical techniques that
can be used to identify instances of SP. We will focus on two
flexible approaches capturing instances of SP in the two forms
it is most commonly observed: First, we describe the use of a
conditional independence test for contingency tables; second,
we illustrate the use of cluster analysis for bivariate continuous
relationships.

Conditional independence
We first focus on the Berkeley graduate school case. In basic
form, it is a frequency table of admission/rejection, male/female
and graduate school A/graduate school B. The original claim
of gender-related bias (against females) amounts to the follow-
ing formal statement: The chance of being admitted (A = 1) is
not equal conditional on gender (G), so the conditional equality
P(A = 1 |G = m) = P(A = 1 |G = f) does not hold. If this equal-
ity does not hold, then the chance of being admitted into Berkeley
differs for subgroups, suggesting possible bias.

As an illustration, we first analyze the aggregate data in Table 1
using a chi-square test to examine the independence of acceptance
given gender. This test rejects the assumption of independence
(χ2 = 11.31, N = 2000, df = 1, p < 0.001)7, suggesting that the

7Note that although we here employ null-hypothesis inference, we do not
think that the presence of this and similar patterns is inherently binary.
Bayesian techniques that quantify the proportional evidence for or against
independence or clustering (e.g., computing a Bayes factor, e.g., Dienes, 2011)
can also be used for this purpose.

null hypothesis that men and women were equally likely to be
admitted is not tenable, with more men than women being admit-
ted. Given this outcome, we need to examine subsets of the data
in order to determine whether this pattern holds within the two
graduate schools. Doing so, we can test whether females are sim-
ilarly discriminated against within the two schools, testing for
conditional independence. The paradox lies in that within both
school A and school B the independence assumption is violated
in the other direction, showing that females are more likely to be
admitted within both schools (school A, χ2 = 23.42, N = 1600,
df = 1, p < 0.0001; school B: χ2 = 5.73, df = 1, N = 400, p <

0.05). A closer examination of the table shows that females try
to get into the more difficult schools in greater proportions, and
succeed more often. This result not only resolves the paradox, it is
also informative about the source of confusion: the differing pro-
portions of males and females aiming for the difficult schools. In
sum, if there exists a group-level pattern, we should use tests of
conditional independence to check that dividing into subgroups
does not yield conclusions that conflict with the conclusion based
on the aggregate data.

Homoscedastic residuals
Although the canonical examples of SP concern cross tables, it
might also show up in numeric (continuous) data. Imagine a pop-
ulation in which a positive correlation exists between coffee intake
and neuroticism. In this example, SP would occur when two
(or more) subgroups in the data (e.g., males and females) show
an opposite pattern of correlation between coffee and neuroti-
cism. For example, see Figure 4. The group correlation is strongly
positive (r = 0.88, df = 198, p-value < 0.001). The relationship
within males is also strongly positive (r = 0.86, df = 98 p-value
< 00.001). However, in the (equally large) group of females, the
relationship is in the opposite direction (r = −0.85, df = 98,
p-value < 0.001). This is a clear case of SP.

Given this example, researchers familiar with regressions
might think that the distribution of residuals of the regression

FIGURE 4 | Bivariate example where the relationship between coffee

and neuroticism is positive in the population, despite being strongly

negative in half the subjects. Data in arbitrary units.
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may be an informative clue of SP. A core assumption of a regres-
sion model is that the residuals are homoscedastic, i.e., that the
variance of residuals is equal across the regression line (homo-
geneity of variance). Inspection of Figure 4 suggests that these
residuals are larger on the “right” side of the plot, because the
regression of the females is almost orthogonal to the direction of
the group regression. In this case, we could test for homogene-
ity of residuals by means of the Breusch–Pagan test (1979) for
linear regressions. In this case, the intuition is correct: A Breusch–
Pagan test rejects the assumption that residuals in Figure 4 are
homoscedastic (BP = 18.4, df = 1, p-value < 0.001). However,
even homoscedastic residuals do not rule out SP. Consider the
previous example in Figure 3: Here, there are opposite patterns
of correlation for each group despite equal means, variances and
homoscedastic residuals and no significant relationship at the
group level. Fortunately, such cases are unlikely (Spirtes et al.,
2000).

Clustering
Cluster analysis (e.g., Kaufman and Rousseeuw, 2008) can be used
to detect the presence of subpopulations within a dataset based on
common statistical patterns. For clarity we will restrict our dis-
cussion to the bivariate case, but cluster analysis can be used with
more variables. These clusters can be described by their position
in the bivariate scatterplot (the centroid of the cluster) and the
distributional characteristics of the cluster. Recent analytic devel-
opments (Friendly et al., 2013) have focused on the development
of modeling techniques by using ellipses to quantify patterns in
the data.

In a bivariate regression, we commonly assume there is one
pattern, or cluster, of data that can be described by the param-
eters estimated in the regression analysis, such as the slope and
intercept of the regression line. SP can occur if there exists more
than one cluster in the data: Then, the regression that describes
the group may not be the same as the regressions within clusters
present in the data. In terms of SP, it may mean that the bivariate
relationship within the clusters might be in the opposite direc-
tion of the relationship of the dataset as a whole (also known as
Robinson’s paradox, 1950).

Complementary to formal cluster analysis, we recommend
always visualizing the data. This may safeguard against unnec-
essarily complex interpretations. For instance, a statistical (e.g.,
cluster) analysis might suggest the presence of multiple sub-
populations in cases where the interpretation of the bivariate
association is not affected (i.e., uniform across the clusters).
Consider Figure 5, which represents hypothetical data concerning
the relationship between healthcare quality and income. A statis-
tical analysis (given large N) will suggest the presence of multiple
latent clusters. However, visualization shows that although there
are separable subpopulations, the bivariate relationship between
income and healthcare quality is homogeneous. Visualization in
this case may lead a researcher to more parsimonious explana-
tions of clustering, for instance that it is an artifact of the sampling
procedure or of discontinuities in healthcare plan options.

To illustrate the power of cluster analysis, we describe an exam-
ple of a flexible cluster analysis algorithm called Mclust (Fraley
and Raftery, 1998a,b), although many alternative techniques
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FIGURE 5 | A case when visualizing the data illustrates that although

there are separate clusters, the inference is not affected: the

relationship between income and healthcare quality is

homogeneously positive. The clusters may have arisen due to a sampling
artifact or due to naturally occurring patterns in the population (e.g.,
discontinuous steps in healthcare plans).

exist. This procedure estimates the number of components
required to explain the covariation in the data. Of course, much
like in a multiple-regression where adding predictors will always
improve the explained variance of a model, having more than one
cluster will always describe the data better, as we use extra param-
eters to describe the observed distribution. For this reason, the
Mclust algorithm uses the Bayesian Information Criterion (BIC,
Schwarz, 1978), which favors a parsimonious description in terms
of the number of clusters. That is, additional clusters will only
be added if they improve the description of the data above and
beyond the additional statistical complexity.

As with all analytical techniques, cluster analysis and associ-
ated inferences should be considered with care. Within cluster
analysis there are different methods of determining the number
of clusters (Fraley and Raftery, 1998b; Vermunt and Magidson,
2002). Moreover, the number of clusters estimated on the basis
of the data is likely to increase with sample size, and violations
of distributional assumptions may lead to overestimation of the
number of latent populations (Bauer and Curran, 2003).

Moreover, by itself cluster analysis cannot reveal all possible
explanations underlying the observed data (nor can other statis-
tical methods by themselves). As Pearl explains (2000, Ch. 6; see
also MacKinnon et al., 2000) it is impossible to determine from
observational data only whether a third variable is a confound or
a mediator. The distinction is important because it determines
whether to condition on the third variable or not. At this point
background information about the directionality (causality) of
the relationship between the third variable and the other two vari-
ables is required. In the absence of such information, the issue
cannot be resolved. The contribution of a cluster analysis is that
it can suggest cases where there may be a confound or mediator,
without prior information about such variables.

Many similar analytical approaches to tackle the presence and
characteristics of subpopulations exist, including factor mixture
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models (Lubke and Muthen, 2005), latent profile models (Halpin
et al., 2011) and propensity scores (Rubin, 1997). We do not nec-
essarily consider cluster analysis superior to all these approaches
in all respects, but implement it here for its versatility in tackling
the current questions.

In short, analytical procedures that identify latent clustering
are no substitute for careful consideration of latent populations
thus identified: False positive identification of subgroups can
unnecessarily complicate analyses and, like cases of SP, lead to
incorrect inferences.

TREATMENT
The identification of the presence of clustering, specifically the
presence of more than one cluster, is a powerful and general tool
in the diagnosis of a possible instance of SP. Once we have estab-
lished the existence of more than one cluster, there may also be
more than one relationship between the variables of interest. Of
course, identification of the additional clusters is only the first
step: Next we want to “treat” the data in such a way that we can
be confident about the relationships present in the data. To do so,
we have developed a tool in a freeware statistical software package
that any interested researcher can use. Our tool can be run to (a)
automatically analyze data for the presence of additional clusters,
(b) run regression analyses that quantify the bivariate relationship
within each cluster and (c) statistically test whether the pattern
within the clusters deviates, significantly and in sign (positive or
negative) from the pattern established at the level of the aggre-
gate data. In the next section, we discuss the tool, and show how
it can be implemented in cases of latent clustering (estimated on
the basis of statistical characteristics as described above) or mani-
fest clustering (a known and measured grouping variables such as
male and female).

A PRACTICAL APPROACH TO DETECTING SIMPSON’S
PARADOX
As we have seen above, SP is interesting for a variety of concep-
tual reasons: It reveals our implicit bias toward causal inference, it
illustrates inferential heuristics, it is an interesting mathematical
curiosity and forces us to carefully consider at what explana-
tory level we wish to draw inferences, and whether our data are
suitable for this goal. However, in addition to these points of
theoretical interest, there is a practical element to SP: that is,
what can we do to avoid or address instances of SP in a dataset
being analyzed. Several recent approaches have aimed to tackle
this problem in various ways. One paper focuses on how to mine
associational rules from database tables that help in the iden-
tification and interpretation of possible cases of SP (Froelich,
2013). Another paper emphasized the importance of visualiza-
tion in modeling cases of SP (Rücker and Schumacher, 2008; see
also Friendly et al., 2013). A recent approach has developed a
(Java) applet (Schneiter and Symanzik, 2013) that allows users to
visualize conditional and marginal distributions for educational
purposes. An influential account (King, 1997) of a related issue,
the ecological inference problem8, has led to the development of

8“Ecological inference is the process of using aggregate (i.e., ecological) data
to infer discrete individual-level relationships of interest when individual-level
data are not available”—(King, 1997, p. xv).

various software tools (King, 2004; Imai et al., 2011; King and
Roberts, 2012) to deal with proper inference from the group to
the subgroup or individual level. This latter package complements
our current approach by focusing mostly on contingency tables.
The ongoing development of these various approaches illustrates
the increased recognition of the importance of identifying SP
for both substantive (novel empirical results) and educational
(illustrating invalid heuristics and shortcuts) purposes.

In line with these approaches, we have developed a package,
written in R (Team, 2013), a widely used, free, statistical program-
ming package9. The package is freely available, can be used to aid
the detection and solution of cases of SP for bivariate continuous
data (Kievit and Epskamp, 2012), and was specifically developed
to be easy to use for psychologists. The package has several bene-
fits compared to the above examples. Firstly, it is written in, R, a
language specifically tailored for a wide variety of statistical anal-
yses 10. This makes it uniquely suitable for automating analyses
in large datasets and integration into normal analysis pipelines,
something that is be unfeasible with online applets. It special-
izes in the detection of cases of Simpson’s paradox for bivariate
continuous data with categorical grouping variables (also known
as Robinson’s paradox), a very common inference type for psy-
chologists. Finally, its code is open source and can be extended
and improved upon depending on the nature of the data being
studied. The function allows researchers to automate a search for
unexpected relationships in their data. Here, we briefly describe
how the function works, and apply it to two simple examples.

Imagine a dataset with some bivariate relationship of interest
between two continuous variables X and Y. After finding, say a
positive correlation, we want to check whether there might exist
more than one subpopulation within the data, and test whether
the positive correlation we found at the level for the group also
holds for possible subpopulations. When the function is run for a
given dataset, it does three things. First, it estimates whether there
is evidence for more than one cluster in the data. Then, it esti-
mates the regression of X on Y for each cluster. Finally, using a
permutation test to control for dependency in the data (all clus-
ters are part of the complete dataset) it examines whether the
relationship within each cluster deviates significantly from the
correlation at the level of the group (corrected for different sample
sizes). If this is the case, a warning is issued as follows: “Warning:
Beta regression estimate in cluster X is significantly different com-
pared to the group!” If the sign of the correlation within a cluster
is different (positive or negative) than the sign for the group and
it deviates significantly, a warning states “Sign reversal: Simpson’s
Paradox! Cluster X is significantly different and in the opposite
direction compared to the group!” In this manner, a researcher
can check whether whatever effect is observed in the dataset as a
whole does in fact hold for possible subgroups.

For example, we might observe a bivariate relationship
between coffee and neuroticism. The regression suggests a

9Both the package and data examples are freely available in the CRAN
database as Kievit and Epskamp (2012). Package “Simpsons.”
10Note that the package “EI,” by King and Roberts (2012), is also written in
R. EI focuses mainly on contingency tables (and on more general properties
than just SP), complementing our focus on continuous data.
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FIGURE 6 | Using cluster analysis to uncover Simpson’s Paradox. The
cluster analysis (correctly) identifies that there are three subclusters, and that
the relationship in two of these both deviates significantly from the group
mean, and is in the opposite direction. Data in arbitrary units.

significant positive association between coffee and neuroticism.
However, when we run the SP detection algorithm a different pic-
ture appears (see Figure 6). Firstly, the analysis shows that there
are three latent clusters present in our data. Secondly, we discover
that the purported positive relationship actually only holds for
one cluster: for the other two clusters, the relationship is negative.

In some cases, the researcher may have access to the rele-
vant grouping variable such as “gender” or “political preference,”
in which case one can easily test the homogeneity of the sta-
tistical relationships at the group and subgroup level. Our tool
allows for an easy way to automate this process by simply specify-
ing the grouping variable, which automatically runs the bivariate
regression for the whole dataset and the individual subgroups.

A final application is to identify the clusters on the basis of
data that is not part of the bivariate association of interest. For
example, imagine that before we analyze the relationship between
“Coffee intake” and “Neuroticism,” we want to identify clus-
ters (of individuals) by means of a questionnaire concerning,
for example, the type of work people are in (highly stressful
or not) and how they cope with stress in a self-report ques-
tionnaire. We might have reason to believe that the pattern of
association between coffee drinking and neuroticism is rather
different depending on how people cope with stress. If so, this
might affect the group level analysis, as there may be more than
one statistical association depending on the classes of people.

Using our tool, it is possible to specify the questionnaire responses
as the data by which to cluster people. The cluster analysis of
the questionnaire may yield, say, three clusters (types) of peo-
ple in terms of how they cope with stress. We can then analyze
the relationship between coffee and neuroticism for these indi-
vidual clusters and the dataset as a whole. Comparable patterns
have been reported in empirical data. For instance, Reid and
Sullivan (2012) found such a pattern by studying the relationship
between being a previous crime victim and the likelihood of hav-
ing offended yourself. They showed, using a latent class approach
similar to the above example that there existed several patterns
of differing (positive and negative) associations with regards to
the relationship between victimization and offense, thus pro-
viding insight into the underlying causes of conflicting findings
in the literature. Such findings show complementary benefits to
analyzing data in this manner: It can help protect against incor-
rect or incomplete inferences, and uncover novel relationships of
interest.

CONCLUSION
In this article, we have argued that SP’s status as a statistical
curiosity is unwarranted, and that SP deserves explicit consid-
eration in psychological science. In addition, we expanded the
notion of SP from traditional cross-table counts to include a range
of other research designs, such as intra-individual measurements
over time (across development or experimental time scales), and
statistical techniques, such as bivariate continuous relationships.
Moreover, we discussed existing studies showing that, unless
explicitly primed to consider conditional and marginal probabil-
ities, people are generally not adept at recognizing possible cases
of SP.

To adequately address SP, a variety of inferential and practi-
cal strategies can be employed. Research designs can incorporate
data collection that facilitates the comparison of patterns across
explanatory levels. Researchers should carefully examine, rather
than assume that relationships at the group level also hold for sub-
groups or individuals over time. To this end, we have developed a
tool to facilitate the detection of hitherto undetected patterns of
association in existing datasets.

An appreciation of SP provides an additional incentive to care-
fully consider the precise fit between the research questions we
ask, the designs we develop, and the data we obtain. Simpson’s
paradox is not a rare statistical curiosity, but a striking illustra-
tion of our inferential blind spots, and a possible avenue into a
range of novel and exciting findings in psychological science.
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