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Language-mediated visual attention describes the interaction of two fundamental
components of the human cognitive system, language and vision. Within this paper we
present an amodal shared resource model of language-mediated visual attention that
offers a description of the information and processes involved in this complex multimodal
behavior and a potential explanation for how this ability is acquired. We demonstrate that
the model is not only sufficient to account for the experimental effects of Visual World
Paradigm studies but also that these effects are emergent properties of the architecture
of the model itself, rather than requiring separate information processing channels or
modular processing systems. The model provides an explicit description of the connection
between the modality-specific input from language and vision and the distribution of eye
gaze in language-mediated visual attention. The paper concludes by discussing future
applications for the model, specifically its potential for investigating the factors driving
observed individual differences in language-mediated eye gaze.
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INTEGRATIVE PROCESSING IN A MODEL OF
LANGUAGE-MEDIATED VISUAL ATTENTION
LANGUAGE-MEDIATED VISUAL ATTENTION
Within daily communicative interactions a vast array of infor-
mation sources have to be integrated in order to understand
language and relate it to the world around the interlocu-
tors. Such multimodal interactions within the speaker and lis-
tener have been shown to be vital for language development
(Markman, 1994; Bloom, 2000; Monaghan and Mattock, 2012;
Mani et al., 2013) as well as for adult sentence and dis-
course processing (Anderson et al., 2011; Huettig et al., 2011b;
Lupyan, 2012). Eye gaze has been used to demonstrate the
nature of the processes supporting online integration of lin-
guistic and visual information (Halberda, 2006; Huettig et al.,
2011a). Such observations of eye gaze have opened up the
possibility to investigate how multiple sources of information,
within the environment and within the language signal, inter-
act in the human cognitive system. We begin by describing the
observed properties of eye gaze behavior that have informed our
understanding of the representations and processes involved in
language—vision interactions. We then present a computational
model of language-mediated visual attention that implements
the representations and processes identified within a parsimo-
nious neural network architecture. Finally, we demonstrate that
many of the characteristic features of language-mediated eye
gaze can be captured by the emergent properties of this par-
simonious architecture and therefore do not necessitate sep-
arate information processing channels or modular processing
systems.

One influential paradigm for measuring language and vision
interactions is the Visual World Paradigm (VWP; Cooper, 1974;
Tanenhaus et al., 1995), in which participants are presented with
a visual display comprising a set of objects and/or actors whilst
hearing an auditory stimulus and during this period their eye
gaze is recorded. Although eye gaze is a measure of overt atten-
tion and thus not a direct reflection of linguistic processing, the
VWP has been utilized largely to investigate questions that explore
how the cognitive system processes spoken language (see Huettig
et al., 2011b, for review). A few studies, however, have investigated
multimodal interactions. Such studies tend to focus on how eye
gaze alters as the auditory stimulus unfolds and how varying the
relationships between objects in the display can highlight which
modalities of information are implicated at varying time points
in language processing.

Many visual world studies have demonstrated that eye gaze can
be modulated by phonological relationships between items pre-
sented in the visual display and spoken target words. Allopenna
et al. (1998), for instance, showed that when hearing a target word
(e.g., “beaker”) participants looked more toward items in the dis-
play whose names overlapped phonologically with the target word
either in initial (e.g., beetle) or final (e.g., speaker) positions,
than items that were not related phonologically (e.g., carriage)
to the spoken target word. They found that, relative to unrelated
items, there was increased fixation of phonological competitors.
Furthermore, fixations to onset competitors occurred earlier than
those to rhyme competitors and the probability of fixating onset
competitors was greater than the probability of fixating rhyme
competitors.
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Visual relationships between items have also been shown to
influence fixation behavior (Dahan and Tanenhaus, 2005; Huettig
and Altmann, 2007). Dahan and Tanenhaus (2005) presented
scenes containing a target (e.g., a snake), a visual competitor
(e.g., a rope) and two unrelated distractors (e.g., a couch and an
umbrella), while Huettig and Altmann (2007) presented scenes
without a visual depiction of the target but with a visual competi-
tor and three unrelated distractors. Thus, items within the display
that shared visual features associated with the spoken target word,
yet whose names did not overlap phonologically with the target
word, attracted greater fixation than unrelated items.

Another dimension in which relationships between visually
displayed items and spoken target words has been shown to mod-
ulate eye gaze is that of semantics. Huettig and Altmann (2005)
and Yee and Sedivy (2006) demonstrated that items that share
semantic (but not visual or phonological) relationships with tar-
get words are fixated more than unrelated items. Yee and Sedivy
(2006) presented displays containing a target item (e.g., lock),
a semantically related item (e.g., key) and two unrelated dis-
tractors. Similarly, Huettig and Altmann (2005) presented scenes
containing both a target (e.g., piano) and a semantic competitor
(e.g., trumpet) or scenes containing only a semantic competi-
tor (e.g., only the trumpet) and unrelated items. In both target
present and target absent conditions increased fixations of seman-
tically related items were observed. Post-hoc analyses revealed
that the likelihood of fixation was proportional to the degree
of semantic overlap as measured by feature production norms
(cf. Cree and McRae, 2003) and corpus-based measures of word
semantics (Huettig et al., 2006). Further evidence for a rela-
tionship between semantic overlap and eye gaze is provided by
Mirman and Magnuson (2009) who directly tested the graded-
ness of semantic overlap. They presented scenes containing a
target item (e.g., bus) paired with either a near semantic neigh-
bor (e.g., van) or a distant semantic neighbor (e.g., bike) and two
unrelated items (e.g., ball). The likelihood of fixating each item
was predicted by the level of semantic overlap, with near seman-
tic neighbors fixated with greater probability than far semantic
neighbors, while both were fixated with lower probability than
targets and greater probability than distractors (see Figure 1).

In order to probe the relationships between previously
observed phonological, visual and semantic word level effects in
the VWP, Huettig and McQueen (2007) presented scenes con-
taining phonological onset, semantic and visual competitors in
addition to an unrelated distractor. They observed distinct pat-
terns of fixation for each competitor type, with participants
initially looking more toward phonological onset competitors
before later displaying greater fixation of visual and semantic
competitors. From these results they concluded that language-
mediated visual attention is determined by matches between
information extracted from the visual display and speech signal
at phonological, visual and semantic levels of processing.

Taken together, this significant body of evidence shows that
visual, semantic and phonological information is co-activated
and integrated during spoken word processing. However, the
nature of the information and mechanisms involved in visual
world and language processing interactions are as yet under-
specified (Huettig et al., 2011a, 2012). How is information

FIGURE 1 | Figure adapted from Mirman and Magnuson (2009). Figure
displays approximate fixation proportions for targets, near semantic
neighbors, distant semantic neighbors and unrelated items displayed by
participants in Mirman and Magnuson (2009).

activated within one modality integrated with information acti-
vated within another, what form does this information take, how
does such information interact and how is this interaction con-
nected to eye gaze behavior? There are two principle possibilities
for interactions to occur: They may be a consequence of modal-
ity specific systems interacting via direct connections; alterna-
tively, interactions may occur as a consequence of amodal shared
resources facilitating interaction between the various informa-
tion modalities (Lambon Ralph and Patterson, 2008; Plaut, 2002).
Computational implementation of theoretical models offers a
means of testing their plausibility and often provides a means
of probing aspects of theoretical models that may lie beyond the
reach of behavioral studies. The VWP provides a high degree of
experimental control that offers a well constrained environment
in which models can operate. Models of the processes involved
in performing VWP tasks force researchers to define explicitly
how information carried in the visual and auditory stimuli is
connected to distributions of eye gaze.

In this paper, we first present previous modeling approaches
that have accounted for the various VWP results presented
above before elaborating the modular vs. shared-resource com-
putational approaches to multimodal information processing.
We then present our model of the shared resource account of
language-mediated visual attention and demonstrate that it is not
only sufficient to account for the experimental effects of VWP
studies but also that these effects are emergent properties of the
architecture of the model itself.

PREVIOUS MODELS OF LANGUAGE-MEDIATED VISUAL ATTENTION
Most previous models of the VWP have focused on explain-
ing interactions between vision and a single feature of language
processing. For instance, Allopenna et al. (1998) chose TRACE
(McClelland and Elman, 1986) to simulate the mechanisms driv-
ing differences in the effect of phonological onset and rhyme over-
lap. TRACE is a continuous mapping model of speech perception,
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implemented in an interactive activation network that hierarchi-
cally processes speech at the level of phonemic features, phonemes
and words. The model successfully replicated the contrasting
patterns of fixation displayed by participants toward onset and
rhyme competitors and offered explanation for contrasts between
the location of overlap and its influence on eye gaze. However,
the model focuses purely on phonological processing and there-
fore as a model of language-mediated visual attention it provides
no description of the role other information sources play in this
process.

Magnuson et al. (2003) further examined the mechanisms
underlying observed cohort and rhyme effects. They demon-
strated that differences in sensitivity to both cohort and rhyme
competitors displayed by adults over the course of word learn-
ing could be captured in the emergent behavior displayed by
an SRN (Elman, 1990) trained to map between phonetic fea-
tures and localist word level representations. Unlike TRACE, in
which connection weights were fixed by the modeler, connection
weights within the SRN were adjusted using an error based learn-
ing algorithm. This not only reduces the number of parameters
directly manipulated by the modeler and therefore the number
of assumptions underpinning the model but also allowed authors
to chart model behavior over the course of word learning. Using
this approach they were able to demonstrate that a fundamen-
tal difference between adult and child lexical representations was
not required to explain differences in sensitivity to rhyme and
cohort competitors. Instead such differences were captured by
their model due to the strengthening of lexical representations
over the course of word learning. Again, however, the focus of
this work is on aspects of phonological processing in the VWP.
Therefore, as a model of language-mediated visual attention it
ignores the role of other knowledge types in this process.

Similarly, Mirman and Magnuson (2009) used the attractor
network of Cree et al. (1999) to simulate the graded effect of
semantic competitors influencing eye gaze. The network con-
sisted of a word form input layer and semantic feature output
layer. The model was trained to map 541 words onto their corre-
sponding semantic features derived from feature norming studies.
However, as in the case of Magnuson et al. (2003) and TRACE,
such models offer representation of items from only a single
information source (phonological or semantic similarity) and
therefore are unable to account for the full range of intermodal
effects demonstrated in the VWP. Also, none of these models offer
a description of how information activated by distinct visual and
auditory sources can be combined to influence fixation behav-
ior. They therefore do not provide a comprehensive model of the
word level effects observed in the VWP.

There have, however, been some notable models of multi-
modal processing in VWP (Spivey, 2008; Mayberry et al., 2009;
Kukona and Tabor, 2011). Spivey (2008) extended TRACE to
incorporate visual processing, by connecting lexical activations in
TRACE to a normalized recurrent localist attractor network that
represented the presence or absence of items within the visual
environment. However, in using localist visual representations
the model lacks depth of representation in the visual modality
to capture subtle relationships between items known to influence
fixation behavior in VWP, such as visual similarity effects.

Mayberry et al. (2009) also provided a model of the interac-
tion between visual and linguistic information in the VWP. Their
connectionist model (CIANET) displays emergent properties that
capture sentence level effects such as case role interpretation. A
potential weakness of the model is its use of the same form of
representation to encode both visual and linguistic information,
thereby masking potential distinct effects of visual vs. linguis-
tic similarities. A further weakness of both CIANET and Spivey
(2008) is that neither provide representation at the word level in
a semantic dimension, although we know from previous VWP
studies that items can differ in both visual and phonological
dimensions yet still share semantic properties that influence eye
gaze behavior.

Finally, Kukona and Tabor (2011) presents a dynamical sys-
tems model of eye gaze in VWP in which localist representations
at phonological, lexical-semantic, cross-word and action-space
layers interact in a hierarchically structured network. Visual infor-
mation is modeled by the presence or absence of its corresponding
representations within the network. By representing items at this
level of abstraction their model is unable to capture complex rela-
tionships between representations in the same modality. It seems
then that none of the current multimodal models that have been
used to explicitly model VWP data offer sufficient depth of repre-
sentation in the multiple modalities involved to capture the subtle
relationships between items shown to influence eye gaze at the
word level in VWP.

Yet, previous models and their success in replicating indi-
vidual VWP data sets have provided valuable insight into the
type of architecture capable of supporting language-mediated
visual attention. The architecture must allow for competition
at multiple levels of representation (Allopenna et al., 1998),
allow both excitatory and inhibitory connections (Mirman and
Magnuson, 2009), facilitate parallel activation of representations
(Kukona and Tabor, 2011) and integrate information from mul-
tiple sources (Mayberry et al., 2009). Such integration could
be accomplished by connectivity between individual representa-
tional modalities, or via processing interconnectivity through a
shared resource.

MODULAR vs. SHARED-RESOURCE MODELS
A framework able to capture the architectural features of
language-mediated visual attention identified in the previous sec-
tion is the Hub-and-spoke (H&S) framework. H&S models are
defined by an amodal central resource (hub) that integrates and
translates information between multiple modality specific sources
(spokes). The framework arose as one side of a debate regard-
ing the neural structures that support human conceptual and
semantic knowledge. Lambon Ralph and Patterson (2008) com-
pared two alternative theoretical models to account for visual and
linguistic semantic processing in unimpaired and patient pop-
ulations. One consisted purely of modality specific processing
regions connected via direct connections, the second instead con-
nected regions via a modality invariant central hub, the H&S
model. The authors argue that although a web of direct connec-
tions may provide a simpler architectural solution, only a model
that contains a central connecting hub offers a system capable
of performing the multilevel non-linear computations required
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for semantic generalization and inference based on conceptual
structure rather than surface similarities. There is also converging
empirical evidence for both the existence of a semantic hub and
its implementation in specific neural populations in the anterior
temporal lobe (ATL). This evidence includes neuropsychologi-
cal studies of patients suffering from semantic dementia (SD)
(Lambon Ralph et al., 2010) who possess lesions in the ATL and
display deficits in performance on tasks requiring semantic gener-
alization. Similarly, non-patient groups that experience artificial
lesions in the ATL using rTMS (Pobric et al., 2007) have reported
similar deficits in performance on such tasks. Finally, neuroimag-
ing studies (Vandenberghe et al., 1996), have observed activity in
the ATL on tasks that require semantic generalization. These data
support the notion that a central resource that integrates modal-
ity specific information is a crucial component of the architecture
supporting semantic processing.

Models that postulate integrative processing from multiple
sources are embedded in a broader literature that has debated
the inherence of sensory and motor systems to conceptual rep-
resentations. Studies of “embodied cognition,” for instance, have
made the case for the importance of motor and sensory systems
for cognitive processing (e.g., Barsalou et al., 2003, but see Mahon
and Caramazza, 2008). An important debate concerns the format
of mental representations with some proponents of the embod-
ied cognition hypothesis suggesting that conceptual knowledge
consists entirely of “representational codes that are specific to
our perceptual systems” (Prinz, 2002, p. 119). This contrasts with
representational theories which assume that sensory and motor
knowledge is amodal and abstracted away from modality-specific
systems (e.g., Kintsch, 2008). A third view posits the existence of
both amodal and modal representations providing an explana-
tion of how we are able to acquire knowledge which goes beyond
sensory and motor experience (Goldstone and Barsalou, 1998;
Dove, 2009). This view is supported by recent demonstrations
that co-activation of multimodal systems can be effectively sim-
ulated by models with an amodal shared resource (Yoon et al.,
2002; Monaghan and Nazir, 2009). Given that activation in a
spoke of a H&S model represents modality specific processing of
an item, and activation within the hub captures an items amodal
properties, then the interaction of modal (spoke) and amodal
(hub) representations is a natural consequence of the architec-
ture of H&S models. A recent review of the mechanisms and
representations involved in language-mediated visual attention
(Huettig et al., 2012) concluded that the most promising the-
oretical model to date postulates that language-mediated visual
attention is dependent on a system in which both linguistic, non-
linguistic and attentional information are all instantiated within
the same coding substrate, which is required in order for infor-
mation to be bound across modalities. The H&S framework
offers a parsimonious solution by connecting modalities through
a central processing hub.

Research examining the plausibility of alternative theoretical
models of multimodal cognition has profited from testing their
predictions using explicit neural network implementations of the
H&S framework. In the following sections we detail the nature
of these studies and how they have contributed to our under-
standing of the mechanisms that support semantic processing.

We also identify the features of the Hub and Spoke framework
that make it a valuable tool for modeling various aspects of multi-
modal cognition. We then test the framework’s scope by using it as
a foundation for a model of language-mediated visual attention.

INSIGHTS FROM HUB AND SPOKE MODELS
The H&S framework offers a parsimonious architecture in which
single modality models can be drawn together to examine the
consequences of multimodal interaction. Producing an explicit
model of the mechanisms thought to underlie a given process
allows one to test theoretical positions and probe deeper the
mechanisms that may be involved in a controlled and tractable
manner.

The framework provides a single system architecture with
only minimal initial assumptions on connectivity. As the systems
architecture imposes minimal constraints on the flow of informa-
tion within the network, emergent behavior is largely driven by
(1) representational structure and/or (2) the tasks or mappings
performed by the system during the learning process. Therefore,
within the framework the scope of such factors in driving emer-
gent properties of complex multimodal systems can be examined
largely independent of modality specific architectural constraints.

Two alternative means of exploring the role of representa-
tional structure are presented in previous H&S models. Plaut
(2002) simulates impairments displayed by optic aphasics in an
H&S model that mapped between distinct vision, action (gestur-
ing), touch and phonological (naming) layers. The author takes
a fundamentalist approach (see Kello and Plaut, 2000) ensuring
he has total control over any relationships embedded in rep-
resentations within or across modalities. This allows the study
to isolate emergent properties driven by individual aspects of
representational structure. In Plaut (2002) the variable manipu-
lated was systematicity in representation between modalities. He
embedded systematic mappings between tactile, vision and action
representations while those between phonology and other modal-
ities were arbitrary. This feature of representations allowed the
model to capture key features of patient behavior with the lack
of systematicity in phonological representations leading to poor
performance on naming tasks post lesioning.

In contrast, Rogers et al. (2004) (approach replicated in
Dilkina et al., 2008, 2010) employs a realist approach with rep-
resentations derived from feature norming studies. Within the
study deficits in semantic processing displayed by SD patients
are modeled using an H&S framework. The model consisted of
a visual layer connected via a central resource to a verbal descrip-
tor layer comprising names, perceptual, functional, and ency-
clopaedic information about objects. Although a realist approach
requires the modeler to relinquish control over the structure
embedded within the corpus, the resulting structure aims to pro-
vide a closer representation of that available within the natural
learning environment. Consequently, this reduces the extent to
which emergent properties are determined by prior assumptions
of the modeler and provides a means of examining the content
of behavior determined by naturally occurring structure within
the environment. The model presented in Rogers et al. (2004),
generates the counterintuitive prediction that damaged semantic
systems are more likely to perform better at specific relative to

Frontiers in Psychology | Language Sciences August 2013 | Volume 4 | Article 528 | 4

http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences
http://www.frontiersin.org/Language_Sciences/archive


Smith et al. Modelling language-mediated visual attention

general sorting in the case of fruits. This subtle aspect of behavior
is captured as a result of the model implementing rich repre-
sentations of the structure of information available within the
environment.

With small corpora it is also possible to analyse the struc-
ture embedded within representations derived from natural data
to identify features that may have an influence on emergent
behavior. This is demonstrated in Dilkina et al. (2010), in which
individual differences displayed by SD patients were modeled in
an H&S framework that mapped between orthographic, action,
vision and phonological layers. The behavior of a subset of
SD patients whose performance on lexical and semantic tasks
did not correlate by item had been argued to result from two
functionally distinct systems (e.g., Coltheart, 2004). The study
demonstrated the compatibility of a single system model with the
empirical data and offered an alternative explanation based on
the role of spelling and concept consistency. The authors argued
that observed effects emerged due to the structure embedded
within representations rather than modality specific architectural
constraints.

Behavior is not only constrained by representational struc-
ture but also by the manner in which the system interacts with
representations, for example the form and quantity of map-
pings demanded by the learning environment. H&S models have
demonstrated how the framework is able to examine the con-
sequences of such environmental factors. Dilkina et al. (2010)
captures contrasts in mappings over the course of development.
Training is split into two stages, with mapping from orthography
to phonology only performed in the second stage. This aims to
reflect the fact that learning to read only occurs at a later stage
of development. The proportion and period in which certain
mappings such as vision to action occur may remain relatively
constant both over the course of development and populations.
However, it is also true that in many cases there will be varia-
tion in the form and quantity of mapping between individuals
and more broadly populations. Dilkina et al. (2008) uses this fea-
ture of the learning environment to explore one possible factor
driving individual difference in SD, that being the level of prior
reading experience. Within the study, prior reading experience
is modeled by manipulating the amount of training on ortho-
graphic to phonological mapping. Demonstrating the influence
of such factors, manipulation of this variable was able to account
for four of the five SD patients behavior. Clearly, such variation in
the type of mapping performed and stage at which it’s performed
can have dramatic consequences for emergent properties of the
system. However, predicting the nature of such properties in com-
plex multimodal systems is far from trivial. H&S offers a means of
examining the consequences of variation in such environmental
variables.

To conclude, behavioral data from the VWP suggests that
language-mediated visual attention is driven by the interaction of
information extracted from the visual environment and speech
signal at semantic, visual and phonological levels of process-
ing. The H&S framework provides a parsimonious architecture
within which the emergent properties of this complex interaction
can be modeled. Previous modeling of the VWP has identified
further properties of the architecture involved. These include

allowing competition at multiple levels of representation, paral-
lel activation of representations, the integration of information
from multiple sources and allowing inhibitory and excitatory
associations. A neural network architecture such as those used
in previous implementations of the H&S framework naturally
captures these characteristics.

INVESTIGATION GOALS
We next present a computational model of the various sources
of information contributing to eye gaze in the VWP. Our aims
were as follows. First, we tested whether a H&S model, with
minimal computational architectural assumptions, was sufficient
for replicating the effects of phonological and semantic influ-
ences on language processing in the VWP, or whether individual
models combining the modal-specific features of the models of
Allopenna et al. (1998) and Mirman and Magnuson (2009) would
be required to effectively simulate the range of effects across these
distinct modalities. Second, we tested whether the model could
further generalize to simulate effects of visual information sim-
ilarity in the VWP (Dahan and Tanenhaus, 2005; Huettig and
Altmann, 2007). Third, we tested whether the model was fur-
ther able to replicate sensitivity to the effects of presenting or not
presenting the object corresponding to the target word in the var-
ious VWP experimental manipulations of visual, phonological,
and semantic competitors. In each case, the model’s performance
is a consequence of the integrated processing of multimodal
information, resulting from specified properties of the represen-
tations themselves and also the computational properties of the
mappings between them.

The model we present connects visual, semantic and linguistic
information to drive eye gaze behavior. Specifically, the model was
tested on its ability to replicate the following features of language-
mediated visual attention demonstrated in Visual World studies:
(1) Fixation of onset and rhyme competitors above unrelated dis-
tractor levels in target present scenes (Allopenna et al., 1998); (2)
Fixation of visual competitors above unrelated distractor levels
in both target present (Dahan and Tanenhaus, 2005) and target
absent (Huettig and Altmann, 2007) scenes; and (3) Fixation of
semantic competitors above unrelated distractor levels and rela-
tive to semantic relatedness in both target present (Yee and Sedivy,
2006; Mirman and Magnuson, 2009) and absent (Huettig and
Altmann, 2005) scenes. We present two simulations—one with
no environmental noise, and one with background environmen-
tal noise. We later show that environmental noise is necessary for
replicating all aspects of behavioral data.

MODELING LANGUAGE-MEDIATED VISUAL ATTENTION IN A
NOISELESS LEARNING ENVIRONMENT
Method
Architecture. The architecture of the H&S neural network used
within this study is displayed in Figure 2. Akin to previous H&S
models it was composed of a central resource (integrative layer)
consisting of 400 units that integrated modality specific informa-
tion from four “visible” layers, which encoded input and output
representational information. The vision layer consisted of 80
units and modeled the extraction of visual information from
four spatial locations within the environment. It contained four
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slots each containing 20 units which extracted visual informa-
tion from each of four distinct locations in the visual field. The
phonological layer consisted of 60 units and encoded phonologi-
cal information from the speech signal. This layer comprised six
phoneme slots each represented by 10 units, such that words up
to 6 phonemes in length could be represented unfolding across
time. A semantic layer of 200 units represented semantic infor-
mation of items, with units representing semantic features of the
concept. The eye layer consisted of four units. Each unit within
the eye layer was associated with one of the four locations within
the model’s visual field. The level of activation of an eye unit rep-
resented the probability of fixating the spatial location with which
the unit was associated. All visible layers were fully connected to
the central integrative layer, and the central integrative layer was
in turn fully self-connected and fully connected to the eye and
semantic layers.

At each time step of the model’s processing, activation passed
between all layers of units in the model. During training, there
were 14 time steps to enable activation to cycle between rep-
resentations in the model. During testing, the number of time
steps was extended to enable insight into the time-course of

FIGURE 2 | Network Architecture.

representational information interacting between the modalities
within the model.

Artificial corpus. A fundamentalist approach (Kello and Plaut,
2000) was taken in construction of representations to ensure all
aspects of the representations were controlled within simulations.
Therefore, an artificial corpus composed of 200 items each with
unique phonological, visual and semantic representations was
constructed and used to train and test the model. Visual repre-
sentations were generated to represent visual features in different
spatial locations, with features representing both coarse (low fre-
quency) and fine (high frequency) visual features. Phonological
representations were encoded to create time-dependent slots
for the unfolding speech, with categorical representations of
phonemes shared across different words. Semantics in the model
were rich, in that they were distributed feature based represen-
tations with structured relationships between items. They were
also relatively sparse and discrete, reflecting behavioral studies of
semantic feature-based representations (Harm and Seidenberg,
2004).

Visual representations were encoded as 20 unit binary feature
vectors, with each unit representing the presence or absence of
a given visual feature. Features were assigned to items randomly
with p(active) = 0.5. Phonological representations consisted of a
fixed sequence of six phonemes. Words were constructed by ran-
domly sampling phonemes from a phoneme inventory containing
a total of 20 possible phonemes. Each phoneme was encoded by a
10 unit binary feature vector, with p(active) = 0.5. For seman-
tic representations, a unique subset of 8 semantic features was
randomly assigned to each item from the set of 200 possible
features.

The level of overlap between items in semantic, visual and
phonological dimensions was controlled (see Table 1). Within the
corpus were embedded 20 target items each with either visual,
near semantic, far semantic, phonological onset or rhyme com-
petitors. Competitors were defined by the increased number of
features shared with their assigned target in either a semantic,
visual or phonological dimension. A consistent level of repre-
sentational overlap was implemented across all modalities (other
than in the case of far semantic competitors) by ensuring that

Table 1 | Controls used in the construction of artificial corpora and mean cosine distance calculated between targets, competitors and

unrelated items all six randomly generated corpora used to train and test models.

Modality Item Artificial corpus

Constraint (Features shared with target) Cosine distance (x, σ)

Phonological Onset competitor First 3 phonemes 0.259 (0.026)

Rhyme competitor Final 3 phonemes 0.260 (0.028)

Unrelated Max. 2 consecutive phonemes 0.496 (0.052)

Semantic Near neighbor 4 of 8 functional properties 0.500 (0)

Far neighbor 2 of 8 functional properties 0.750 (0)

Unrelated Max. 1 functional property 0.959 (0.072)

Visual Competitor Min. 10 of 20 visual features 0.264 (0.040)

Unrelated Features shared with p = (0.5) 0.506 (0.068)
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the distance in terms of shared features between a target and
a competitor was on average half the distance of that between
a target and unrelated item in the modality that defined the
competitor type. Six randomly generated corpora were generated
using different initial random seeds, to ensure that no acciden-
tal correspondences between particular representations occurred
systematically.

Onset competitors shared the initial three phonemes with their
corresponding target word. No two words shared their initial four
phonemes. Rhyme competitors shared the final three phonemes
with their assigned target. No two words shared their final four
phonemes. No item within the corpus contained more than two
identical phonemes per word and no more than two consecu-
tive phonemes overlapped between two unrelated items. These
constraints resulted in a cosine distance between phonological
representations of 0.259 between onset competitors and targets,
0.260 between rhyme competitors and targets and 0.496 between
unrelated items and targets.

The length of vectors used to encode representations in both
semantic and visual dimensions was determined by the con-
straints placed on relationships between items in these modalities.
In the case of visual competitors, 10 of 20 visual features were
shared between the target and competitor with p(shared) = 1,
remaining features were shared with p(shared) = 0.5. For all
visually unrelated items features were shared with p(shared) =
0.5. Such controls resulted in a smaller visual feature cosine dis-
tance between visual competitors and target items than between
unrelated items and targets (see Table 1).

In the semantic dimension, near semantic competitors shared
4 of 8 semantic features with their corresponding target, while
2 of 8 were shared between far semantic competitors and tar-
gets. Controls ensured that unrelated items shared a maximum of
one semantic feature. Semantic feature cosine distance was least
between near neighbors and targets, medial between far neigh-
bors and targets and most between unrelated items and targets
(see Table 1).

Training. Model training simulated learning experience in the
natural environment that leads to the acquisition of associations
between representations across modalities. We assume that indi-
viduals acquire semantic, visual and phonological knowledge of
a given item through experience of repeated and simultaneous
exposure to these multiple forms of representation within the nat-
ural learning environment. The model was trained on four cross
modal tasks (see Table 2).

To simulate the events that lead to associations between an
item’s visual and semantic properties, the model was trained to
map from visual to semantic representations using the following
procedure. An example of such an event in the natural learning
environment may be viewing an item while simultaneously expe-
riencing some aspect of its function (e.g., seeing and eating from
a fork). At trial onset the model was presented with four visual
representations randomly selected from the corpus assigned to
the four spatial locations within the visual field. One of the four
items was then randomly selected as a target and the eye unit cor-
responding to its location fully activated. Throughout the entire
test trial small levels of variable noise was provided as input to

the phonological layer to simulate ambient background sound.
Once sufficient time has allowed for activation to pass from eye
and visual layers to the semantic layer (at time step 3) the item’s
semantic representation was provided as a target.

Models were also trained to map between phonological and
semantic representations, simulating the learning that occurs
through simultaneous exposure to the sound of a given word and
its semantic properties (i.e., hearing and observing the function of
“fork”). First, an item was randomly selected as a target from the
corpus. The phonological representation of the target was then
provided to the phonological input layer as a staggered input,
with one additional phoneme provided at each time step. Once
activation of the fourth phoneme (uniqueness point for phoneme
competitors and corresponding targets) had had sufficient time to
influence activation in the semantic layer (time step 5), the item’s
semantic representation was provided as a target.

Two further tasks trained the model to orientate toward a
visual representation of an item in a spatial location according
to given phonological or semantic information. As previously
stated we assume that in the natural learning environment indi-
viduals are repeatedly exposed simultaneously to the visual and
phonological or semantic form of an item. Consequently, the
learner determines the association between these representations.
Mapping from phonology to location was trained by randomly
selecting four items from the corpus, randomly assigning them
to four locations, and randomly selecting one as the target. The
visual representations relating to each of these items was pre-
sented as input to the visual layer at trial onset. At the same point
in time, input of the phonological representation of the target
item was initiated in the phonological layer with one additional
phoneme presented per time step. Once activation relating to the
fourth phoneme had had time to influence activation in the eye
layer (time step 5), the eye unit corresponding to the location of
the target was provided as the target.

For mapping from semantics to location, the trial was simi-
lar to the phonology to location task, except that all the semantic
features were simultaneously activated at time step 1 and time
variant noise was presented to the phonological layer for the
entire training trial. Once activation from the semantic and visual
layer had been provided sufficient time to influence eye layer
activation (time step 2), the training signal was provided.

Training tasks were randomly interleaved. Within the natu-
ral learning environment we assume that individuals orientate
toward or select items based on their semantic features far more
frequently than they orientate toward or select items in response
to hearing their name. To reflect the assumption that phonolog-
ically driven orienting occurs less frequently than semantically
driven orienting, training on phonologically driven orienting was
four times less likely to occur than all other training tasks.

All connection weights within the network were initially ran-
domized in a uniform distribution [−0.1, 0.1]. Weights were
adjusted using recurrent back-propagation with learning rate =
0.05. In order to simulate participants’ prior ability to orientate to
items based on their phonological and semantic form and identify
items’ semantic properties based on their visual or phonological
form, the models were required to perform with high accuracy
on all four of these tasks prior to testing. To obtain this level of

www.frontiersin.org August 2013 | Volume 4 | Article 528 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Language_Sciences/archive


Smith et al. Modelling language-mediated visual attention

Table 2 | Temporal organization of events in model training.

Task Vision Phonological Semantic Eye

Description Time

step

Description Time

step

Description Time

step

Description Time

step

Visual to
Semantic

4 visual
representations
randomly selected
from corpus, 1
assigned as target

0–14 Random time invariant
noise provided as input

0–14 Semantic
representation of
target provided post
display onset

3–14 Location of target
activated, all other
locations inactive

0–14

Phonological
to Semantic

Random time
invariant noise
provided as input
across all 4 input
slots

0–14 Speech signal of target
provided as a
staggered input

0–14 Semantic
representation of
target provided post
disambiguation

5–14 No constraints on
activation

Phonological
to Location

4 visual
representations
randomly selected
from corpus, 1
assigned as target

0–14 Speech signal of target
provided as a
staggered input

0–14 No constraints on
activation

Post disambiguation
location of target
activated, all other
locations inactive

5–14

Semantic to
Location

4 visual
representations
randomly selected
from corpus, 1
assigned as target

0–14 Random time invariant
noise provided as input

0–14 Semantic
representation of
target provided

0–14 Location of target
activated, all other
locations inactive post
functional onset

2–14

performance training was terminated after 1 million trials. In total
6 simulation runs of the model were trained and tested, using each
of the six artificial corpora.

Results
Pre-test. Following training all models were tested to assess per-
formance on each of the four training tasks for all items within the
training corpus. Noise was presented to visual and phonological
slots that did not receive target related input. For tasks present-
ing the target in the visual input, performance was recorded
with the target tested once in each of the four locations in the
visual field.

For mapping from visual to semantic representations, activa-
tion in the semantic layer was closer in terms of cosine similarity
to the target item’s semantic representation for all items within
the training corpus. When tested on mapping from phonological
to semantic representations activation in the semantic layer was
also most similar to that of the target’s semantic representation
for all items within the training corpus.

For the phonology to location mapping task, the location of
the target was selected on at least 3 of 4 test trials for 99.83%
of items in the training corpus. Averaging across all phonology
to location test trials the proportion of trials in which the eye
unit corresponding to the location of the target was most highly
activated was 92%.

For the semantics to location mapping task, the location of the
target was selected on at least 3 of 4 test trials for 99.92% of items
within the corpus. The overall proportion of successful semantic
to location test trials was 89%.

Simulation of visual competitor effects in the VWP. To sim-
ulate the conditions under which participants were tested in
Dahan and Tanenhaus (2005), the model was presented with a
visual display containing a target item, a visual competitor and
two unrelated distractors. Simulations of Huettig and Altmann
(2007) were conducted using a similar approach yet with tar-
gets replaced by an additional distractor. In both cases, the
visual input representing four items was presented at time step
0. Then onset of the phonology for the target item began at
time step 5, to enable pre-processing of the visual information.
There were 480 test trials, with each item (n = 20) occurring
with competitors in all possible spatial configurations (n = 24).
The model’s “gaze” was computed as the Luce ratio of the
eye layer units, for the target, competitor, and unrelated dis-
tractor item. Figure 3 displays the performance of the model
when presented with target present (Figure 3A: simulating Dahan
and Tanenhaus, 2005) and target absent (Figure 3B: simulat-
ing Huettig and Altmann, 2007) scenes, averaged over each of
the six simulation runs of the model. For analysis we calcu-
lated the mean fixation proportions [p(fix)] for each category of
item (i.e., target, competitor or unrelated distractor) from word
onset until the end of the test trial. The ratio was then calcu-
lated between the proportion of fixations toward item type A
and the sum of the proportion of fixations toward item type
A and B. A ratio above 0.5 would indicate greater fixation of
item A. Although we would not anticipate substantial variation
in model performance across instantiations for completeness this
mean ratio (by instantiation and by item) was compared to 0.5
using one sample t-tests (cf. Dahan and Tanenhaus, 2005) to
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FIGURE 3 | Proportion of fixations [p(fix)] directed toward items within

scenes containing (A) a target, visual competitor and two unrelated

distractors (B) a visual competitor and three unrelated distractors.

test for differences in fixation behavior toward each category of
item.

As can be observed from Figure 3, the model fixated target
items [mean ratio = 0.75, t1(5) = 22.42, p < 0.001; t2(19) =
78.50, p < 0.001] and visual competitors [mean ratio = 0.60,
t1(5) = 6.91, p = 0.001; t2(19) = 18.18, p < 0.001] more than
unrelated distractors when scenes contained a target, visual com-
petitor and two unrelated distractors (when by subjects and by
items ratios are identical, only one ratio is presented). In target
absent scenes, visual competitors were again fixated more than
unrelated distractors [mean ratio = 0.58, t1(5) = 5.37, p < 0.01;
t2(19) = 15.290, p < 0.001]. The model therefore replicates the
increased fixation of visual competitors observed in Dahan and
Tanenhaus (2005) and Huettig and Altmann (2007).

Simulation of semantic competitor effects in the VWP. We sim-
ulated conditions similar to those under which participants were
tested in Huettig and Altmann (2005), Yee and Sedivy (2006) and
Mirman and Magnuson (2009) by testing model performance
when presented with displays containing a near semantic neigh-
bor and a far semantic neighbor in addition to either the target’s
visual representation and a single unrelated distractor (Figure 4A:
simulating Mirman and Magnuson, 2009 and Yee and Sedivy,
2006) or two unrelated distractors (Figure 4B: Simulating Huettig

FIGURE 4 | Proportion of fixations [p(fix)] directed toward items within

scenes containing (A) a target, a near semantic neighbor (SemNear), a

far semantic neighbor (SemFar) and an unrelated distractor, (B) a near

semantic neighbor (SemNear), a far semantic neighbor (SemFar) and

two unrelated distractors.

and Altmann, 2005). As for the visual competitor effects, all items
were presented in all combinations of positions in the visual input
(480 trials in total), and again pre-processing of the visual fea-
tures of the display were enabled by commencing word onset after
a short delay (time step 5). Figure 4 presents the average fixa-
tion proportions over time displayed by the model toward each
category of item presented in both test conditions.

In target present trials, targets [mean ratio = 0.75, t1(5) =
25.89, p < 0.001; t2(19) = 79.61, p < 0.001], near semantic
neighbors [mean ratio = 0.58, t1(5) = 5.37, p < 0.01; mean ratio
= 0.57, t2(19) = 9.89, p < 0.001] and far semantic neighbors
[mean ratio = 0.52, t1(5) = 2.82, p < 0.05; mean ratio = 0.51,
t2(19) = 4.07, p < 0.01] were all fixated more than unrelated dis-
tractors. A similar pattern of behavior was observed when the
model was tested on target absent trials, with both near [mean
ratio = 0.58, t1(5) = 6.30, p < 0.01; mean ratio = 0.57, t2(19) =
10.67, p < 0.001] and far semantic neighbors [mean ratio =
0.53, t1(5) = 1.80, p > 0.1; mean ratio = 0.52, t2(19) = 7.04, p <

0.001] fixated more than unrelated items. Also in-line with behav-
ioral findings far semantic neighbors were fixated less than near
semantic neighbors, in both target absent [mean ratio = 0.44,
t1(5) = −3.36, p < 0.05; mean ratio = 0.45, t2(19) = −8.13, p <

0.01] and target present [mean ratio = 0.44, t1(5) = −3.36, p <

0.05; mean ratio = 0.44, t2(19) = −6.97, p < 0.001] conditions.
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The model therefore replicates the increased fixation of seman-
tic competitors in both target absent and target present scenes
as observed by Huettig and Altmann (2005) and Yee and Sedivy
(2006) respectively, in addition to the graded effect of semantic
similarity as reported in Mirman and Magnuson (2009).

Simulation of phonological competitor effects in the VWP. To
simulate the conditions under which participants were tested in
Allopenna et al.’s (1998) study, the model was presented with
scenes containing visual representations of a target item in addi-
tion to an onset competitor, a rhyme competitor and an unrelated
distractor. For completeness we also tested model performance in
a target absent condition (i.e., scenes containing onset competitor,
rhyme competitor and two unrelated distractors). In every other
way, simulations were conducted exactly as for the visual and
semantic competitor simulations. Figure 5 shows the average fix-
ation proportions over time displayed by the model toward each
category of item in test displays in both target present (Figure 5A)
and target absent (Figure 5B) conditions.

In target present trials, target items [mean ratio = 0.75,
t1(5) = 26.06, p < 0.001, t2(19) = 66.45, p < 0.001] and onset
competitors [mean ratio =0.58, t1(5) = 6.20, p < 0.01, t2(19) =
16.52, p < 0.001] were fixated more than unrelated distractors.
However, the model fixated rhyme competitors at levels similar to

FIGURE 5 | Proportion of fixations [p(fix)] directed toward items within

scenes containing (A) a target, an onset competitor, a rhyme

competitor and an unrelated distractor, (B) an onset competitor, a

rhyme competitor and two unrelated distractors.

unrelated distractors [mean ratio = 0.51, t1(5) = 1.75, p > 0.1,
t2(19) = 1.69, p > 0.1]. On target absent trials both onset [mean
ratio = 0.59, t1(5) = 8.29, p < 0.001; t2(19) = 15.62, p < 0.001]
and rhyme [mean ratio = 0.53, t1(5) = 5.62, p < 0.01; mean
ratio = 0.52, t2(19) = 3.05, p < 0.01] competitors were fixated
more than unrelated items. Allopenna et al. (1998) observed
increased fixation of both onset and rhyme competitors in target
present scenes. Model performance replicated the increased fix-
ation of onset competitors displayed by participants. The model
also displayed increased fixation of rhyme competitors although
this effect was only clearly observable on target absent trials.

Discussion
The model was able to replicate a broad range of single modality
word level effects described in the visual world literature, using
a single architecture, and incorporating a single shared resource
mapping between the modalities. The network replicates find-
ings displaying a bias toward fixating items that overlap with
spoken target words in either a visual, semantic or phonological
dimension in both target present and absent scenes.

Importantly, the model captures differences in the effect of
representational overlap between modalities. The model displays
a graded effect of semantic overlap with the probability of fix-
ating semantically related items proportional to the number of
semantic features shared between the target and competitor. In
a departure from the procedure used in Mirman and Magnuson
(2009), within the above simulations both near and far semantic
competitors were presented within the same display. Our simu-
lations indicate that far semantic neighbor effects are robust to
the additional competition that may result from the presence of
closer semantic neighbors within the same scene.

For phonological overlap, the effect was dependent on the tem-
poral location of overlapping features within the representation.
Phonological overlap in onsets had a greater influence on fixa-
tion behavior than in rhymes, with the latter resulting in only
marginal effects of overlap. Although many studies have demon-
strated their existence (see Allopenna et al., 1998; Desroches
et al., 2006; McQueen and Viebahn, 2007; McQueen and Huettig,
2012), rhyme effects tend to be weak and less robust than onset
effects. However, a recent study by McQueen and Huettig (2012)
provides evidence that the comparative onset effect is modulated
by the level of noise present in the speech signal. They argue
that the presence of noise influences the weight placed on initial
phonemes as a predictor of the intended word. For example, in a
noisy environment sounds heard may not necessarily relate to the
identity of the target. Therefore, to make a judgement regarding
an item’s identity the system benefits from examining evidence
from a larger portion of the auditory signal. This work high-
lights a weakness of current model training and testing, in that the
model’s learning environment always provided perfect perceptual
input of an item in both visual and phonological representations.
In the natural learning environment in which participants acquire
their knowledge of items, the cognitive system is frequently receiv-
ing impoverished representations. This is particularly true in the
case of speech, in which factors such as background noise or
between speaker variation means that the speech signal received is
likely to resemble only a very noisy version of the canonical form.
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The following simulations extend the model by adding noise to
the phonological representations to which the model is exposed
during training.

MODELING LANGUAGE-MEDIATED VISUAL ATTENTION IN A NOISY
LEARNING ENVIRONMENT
Method
To simulate exposure to noisy phonological input in the natu-
ral learning environment, the simulations were repeated but with
noise applied to the phonological input during the training stage
only. Noise was implemented by randomly switching the binary
value of each unit within the phonological representation with
p = 0.2. Noise was randomly generated for each training trial. To
ensure comparable levels of performance between fully trained
models on all four training tasks, the number of training trials
performed was increased by 50%. In all other respects the proce-
dure used to train and test the noisy model was identical to that
applied to the previously detailed noiseless model.

Results
Pre-test. The noisy model displayed the same high level of per-
formance on both visual to semantic mappings and phonological
to semantic mappings as displayed by the noiseless model. In
both cases, the noisy model produced activation in the semantic
layer most similar (cosine similarity) to the target item’s semantic
representation for all items within the training corpus.

Performance on orientation tasks was also similar for models
trained in both noise conditions. On phonological orienting test
trials, the noisy model selected the location of the target on at least
3 of 4 test trials for 99.75% of items in the training corpus. The
overall proportion of correct phonological orienting test trials
(trials in which the eye unit corresponding to the location of the
target was most highly activated) was 87% for the noisy model.
When comparing the proportion of correct trials across instan-
tiations between noise conditions, noiseless models performed
significantly better than noisy models on this task (p = 0.01).

Noisy models correctly selected the location of the target as
indicated by the presence of its semantic representation on at least
3 of 4 test trials for all items within the corpus. Overall accuracy
on semantic orienting tasks for the noisy model was 90% (σ =
0.02). The difference between noisy and noiseless models was not
significant on this task when comparing across instantiations.

Simulation of visual competitor effects. Figure 6 displays the
performance of the noisy model when tested on scenes containing
a visual competitor in addition to either the visual representa-
tion of the target and two unrelated distractors (Figure 6A) or
no target and three unrelated distractors (Figure 6B).

On target present trials, both the targets [mean ratio = 0.77,
t1(5) = 27.21, p < 0.001; t2(19) = 89.97, p < 0.001] and visual
competitors [mean ratio = 0.62, t1(5) = 7.60, p < 0.01; t2(19) =
22.22, p < 0.001] were fixated more than unrelated distractors.
Visual competitors were also fixated above distractor levels on
target absent trials [mean ratio = 0.60, t1(5) = 14.52, p < 0.001;
mean ratio = 0.59, t2(19) = 18.75, p < 0.001].

Simulation of semantic competitor effects. The fixation behav-
ior displayed by the noisy model on trials containing semantic

FIGURE 6 | Proportion of fixations [p(fix)] directed toward items within

scenes containing (A) a target, visual competitor and two unrelated

distractors (B) a visual competitor and three unrelated distractors; by

the model trained in a noisy learning environment.

competitors can be seen in Figure 7. The model was tested on
scenes containing a near and far semantic neighbor in addition
to either the target and a single unrelated distractor (Figure 7A)
or no target and two unrelated distractors (Figure 7B).

On target present trials, targets [mean ratio = 0.78, t1(5) =
29.48, p < 0.001; mean ratio = 0.76, t2(19) = 102.21, p <

0.001], near semantic neighbors [mean ratio = 0.62, t1(5) =
6.42, p < 0.01; mean ratio = 0.60, t2(19) = 18.389, p < 0.001]
and far semantic neighbors [mean ratio = 0.54, t1(5) = 2.31,
p < 0.1; mean ratio = 0.52, t2(19) = 5.934, p < 0.001] were all
fixated more than unrelated distracters. On target absent tri-
als, both near [mean ratio = 0.60, t1(5) = 13.78, p < 0.001;
mean ratio = 0.59, t2(19) = 22.51, p < 0.001] and far [mean
ratio = 0.53, t1(5) = 2.75, p < 0.05; mean ratio = 0.52, t2(19) =
7.13, p < 0.001] semantic neighbors were again more likely to
be fixated than unrelated items. When comparing between near
and far semantic competitors, far neighbors were fixated less
than near neighbors both in target present [mean ratio = 0.42,
t1(5) = −12.45, p < 0.001; t2(19) = −12.81, p < 0.001] and
absent [mean ratio = 0.43, t1(5) = −11.81, p < 0.001; t2(19) =
−15.84, p < 0.001] trials.

Simulation of phonological competitor effects. Finally, the
model was tested on scenes containing onset and rhyme
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FIGURE 7 | Proportion of fixations [p(fix)] directed toward items within

scenes containing (A) a target, a near semantic neighbor (SemNear), a

far semantic neighbor (SemFar) and an unrelated distractor, (B) a near

semantic neighbor (SemNear), a far semantic neighbor (SemFar) and

two unrelated distractors; by the model trained in a noisy learning

environment.

competitors in addition to either the target and a single unrelated
distractor (Figure 8A) or two unrelated distractors (Figure 8B).

In target present scenes, the model displayed increased fixa-
tion of target items [mean ratio = 0.77, t1(5) = 36.71, p < 0.001;
t2(19) = 76.149, p < 0.001], onset competitors [mean ratio =
0.60, t1(5) = 6.51, p < 0.01; mean ratio = 0.61, t2(19) = 18.11,
p < 0.001] and rhyme competitors [mean ratio = 0.54, t1(5) =
3.13, p < 0.05; t2(19) = 6.842, p < 0.001] in comparison to
unrelated distractors. Onset [mean ratio = 0.60, t1(5) = 11.09,
p < 0.001; t2(19) = 17.35, p < 0.001] and rhyme competitors
[mean ratio = 0.54, t1(5) = 3.13, p < 0.05; t2(19) = 8.90, p <

0.001] were also fixated more than distractors in target absent
scenes.

Discussion
The above results demonstrate that the model of language-
mediated visual attention presented in this paper is still able
to replicate a broad range of features of language-mediated
visual attention when trained in a noisy learning environment.
Further, and as predicted, by representing noise in the speech sig-
nal during training, we are able to replicate additional features
of language-mediated visual attention, specifically sensitivity to
rhyme competitors.

FIGURE 8 | Proportion of fixations [p(fix)] directed toward items within

scenes containing (A) a target, an onset competitor, a rhyme

competitor and an unrelated distractor, (B) an onset competitor, a

rhyme competitor and two unrelated distractors; by the model trained

in a noisy learning environment.

GENERAL DISCUSSION
The amodal shared resource model presented here offers
a description of the information and processes underlying
language-mediated visual attention and a potential explanation
for how it is acquired. The model accomplishes these effects with
minimal imposed constraints on information processing mod-
ules or channels, and performance in the model is thus driven
by representational structure and the different requirements of
forming mappings between the distinct types of information.
Language-mediated visual attention is simulated as a function
of the integration of past and current exposure to visual, lin-
guistic and semantic forms. The model thereby provides an
explicit description of the connection between the modality-
specific input from language and vision and the distribution of
eye gaze in language-mediated visual attention.

The model replicated the following features of language-
mediated visual attention demonstrated in VWP studies: Fixation
of onset and rhyme competitors above unrelated distractor lev-
els in target present scenes (Allopenna et al., 1998); (2) Fixation
of visual competitors above unrelated distractor levels in tar-
get present (Dahan and Tanenhaus, 2005) and target absent
(Huettig and Altmann, 2007) scenes; and (3) Fixation of semantic
competitors above unrelated distractor levels and relative to
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semantic relatedness in both target present (Yee and Sedivy, 2006;
Mirman and Magnuson, 2009) and absent (Huettig and Altmann,
2005) scenes. A summary of the effects replicated by the model is
presented in Table 3.

The results of the above simulations met the objectives of
our study as follows. First, the model demonstrates that a H&S
model, with minimal computational architectural assumptions,
was sufficient for replicating the word level effects of phonologi-
cal and semantic influences on language processing in the VWP.
The simulation results replicate a broad range of the word level
effects described within the VWP literature as features of this
complex cognitive ability, without requiring separate resources or
individually trained pathways between distinct representational
information. Second, the model further generalized to replicate
the effects of visual similarity in the VWP and sensitivity to the
effects of presenting or not presenting the target object in various
experimental manipulations of visual, phonological and semantic
competitors.

Within our model language-mediated visual attention is
described as an emergent property of the structure of represen-
tations present in the natural environment and the task demands
imposed on the system by that environment. Knowledge of an
item is acquired by repeated, simultaneous exposure to its multi-
ple forms. For example, hearing the name of an object while look-
ing at it, or experiencing the function of an item while hearing its
name. Such experience leads to associations between the proper-
ties defining an object in separate modalities. With repeated and
simultaneous exposure to their various forms inhibitory or exci-
tatory connections between such properties are strengthened in
order for the system to efficiently map between representations or
carry out a given task. In this way, the model provides an explicit
and detailed description of how multimodal knowledge of an item
is acquired and stored, in addition to how complex multimodal
behaviors such as selecting an item based on its function may be
achieved and acquired. Thus, the model argues that many word
level features of language-mediated visual attention are a neces-
sary consequence of developing multimodal knowledge of items
through such a mechanism.

Critically, the model captures contrasts in the effect of overlap
in differing modalities. For example, for items that only overlap
in a semantic dimension the probability of the model fixating an
item is directly proportional to the number of semantic features
the two items share. This replicates findings observed in the

VWP in which the probability of fixating items has been pre-
dicted by semantic norming data (Mirman and Magnuson, 2009)
and corpus-based measures of semantic similarity (Huettig et al.,
2006). However, in the case of phonological overlap, the temporal
location of the overlapping phonemes has a critical influence on
the resulting effect. The model replicates the effects of phonolog-
ical overlap observed in Allopenna et al. (1998) with items that
share initial phonemes fixated earlier and with greater probability
than items that share phonemes in final positions.

Within the model the level of overlap between target and com-
petitor was strictly controlled both across modalities and between
rhyme and onset competitors. Contrasts in fixation behavior
toward differing categories of competitor therefore arise as an
emergent property of differences in the structural characteristics
of representations in each modality. For example, speech unfolds
over time. Therefore, phonological representations have a tem-
poral, sequential component not possessed by semantic or visual
representations. As the speech signal gradually manifests, early
phonemes provide a good, or in the case of a noiseless learn-
ing environment they provide a perfect, predictor of the intended
word. Therefore, any item that shares the same initial sequence of
phonemes with the target is more likely to be fixated by the model.
By the time later phonemes are available, the system already has
sufficient information, in the case of the noiseless simulations, to
identify the target and therefore information provided by later
phonemes does not have the opportunity to exert influence on
target selection. It is for this reason increased sensitivity to rhyme
competitors is displayed by a model trained in a noisy environ-
ment compared to one trained in a noiseless environment in
which onset phonemes are perfect predictors of the unfolding
word. Behavior of the noisy model demonstrates that introduc-
ing a low level of noise to speech in the learning environment
is sufficient to allow the subtle influence of rhyme overlap to
emerge.

This line of argument overlaps with the explanation provided
in Magnuson et al. (2003) for the observed reduced sensitivity
over the course of word learning to rhyme competitors. They
argue that it takes time for the system to learn the value of
early phonemes as predictors of the unfolding word. Therefore,
at earlier stages of development other overlapping aspects of a
word’s phonology may exert equal or greater influence on target
selection. In a noiseless environment an optimal model should
display no influence of rhyme overlap, as sufficient information is

Table 3 | Table comparing the results of both noiseless and noisy simulations with behavioral results reported in the VWP literature.

Study Scene Effect A Effect B

References Item 1 Item 2 Item 3 Item 4 Behav. Noiseless Noisy Behav. Noiseless Noisy

Allopenna et al., 1998 Target Onset (A) Rhyme (B) Dist
√ √

(0.58)
√

(0.60)
√

X(0.51)
√

(0.54)
Dahan and Tanenhaus, 2005 Target Visual (A) Dist Dist

√
(0.7)

√
(0.60)

√
(0.62)

Huettig and Altmann, 2007 Visual (A) Dist Dist Dist
√ √

(0.58)
√

(0.60)
Yee and Sedivy, 2006 Target Sem (A) Dist Dist

√ √
(0.58)

√
(0.62)

Huettig and Altmann, 2005 Sem (A) Dist Dist Dist
√ √

(0.58)
√

(0.60)
Mirman and Magnuson, 2009* Target Near Sem (A) Far Sem (B) Dist

√ √
(0.58)

√
(0.62)

√ √
(0.52) (0.54)

The items displayed within scenes in each empirical study are listed with observed competitor effects highlighted in bold. Competitor-Distractor ratios (by sub-

ject/instantiation) in parentheses if reported;
√

, behavioral effect replicated; X, failure to replicate behavioral effect; *, Study presented near and far semantic

competitors on separate trials. Dist, distractor; Sem, semantic competitor; Onset, phonological onset competitor; Rhyme, phonological rhyme competitor.
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carried by initial phonemes to correctly identify the target item.
However, in a noisy environment the optimal model would dis-
play sensitivity to rhyme overlap proportional to the level of noise
in the environment, as this will dictate the probability that the
rhyme competitor is the true target given the initially perceived
input. Given this line of argument, it is not only external noise
that would dictate a system’s sensitivity to rhyme overlap but also
the level of noise or error within the system itself. For example,
noise simulated within the current model could equally reflect
errors in phonological perception or fluctuations in attention,
the contribution of which could possibly be examined through
further combined modeling and VWP studies.

Similar to TRACE (McClelland and Elman, 1986), our model
displays sensitivity to overlap in both phonological onsets and
rhyme. However, there are differences between the models in their
explanation for these effects. As in the model we present, TRACE
is able to exploit similarity at all points within the phonological
form of the word in terms of co-activating phonological competi-
tors. However, unlike some previous models (Marslen-Wilson,
1987, 1993; Norris, 1994; Magnuson et al., 2003) and the model
presented in this paper the disparity between sensitivity to cohort
and rhyme competitors in TRACE is not driven by bottom-up
mismatch but instead purely by onset competitors accumulat-
ing activation prior to rhyme competitors due to their inherent
temporal advantage (Magnuson et al., 2003).

Many similarities are shared between our computational
model and the theoretical model of language-mediated visual
attention proposed in Huettig and McQueen (2007). Both mod-
els argue that behavior in the VWP is driven by matches between
information extracted from visual and auditory input at phono-
logical, semantic and visual processing levels. However, they differ
subtly in how this is implemented. Huettig and McQueen sug-
gest that contrasts in fixation dynamics displayed toward each
category of competitor are driven by aspects of the systems archi-
tecture, specifically temporal contrasts in the nature of the cascade
of information between modalities. For example, they argue that
early fixation of phonological competitors reflects earlier activa-
tion of phonological representations in the speech-recognition
system, with activation then later cascading to semantic and visual
levels of processing, which in turn leads to the later increased fixa-
tion of visual and semantic competitors. In contrast, in the model
proposed in the current paper, eye gaze is a continuous measure
of the simultaneous integration of information activated across
all three modalities. Therefore, activation of an item’s phonologi-
cal representation cannot influence gaze independent of currently
activated visual and semantic representations.

Huettig and McQueen (2007) highlight the value of the VWP
as a tool for probing finer aspects of the architecture of the cog-
nitive system, as eye gaze offers a fine grained measure of the
information activated over time. By combining this rich behav-
ioral measure with the current model it may be possible to further
examine more subtle aspects of the systems architecture that have
so far proved difficult to isolate without implementation. We
hope to test whether the parsimonious architecture presented
in this paper is compatible with the data provided by Huettig
and McQueen (2007). It remains to be seen whether such an
architecture can also offer explanation for the complex time
course dynamics that emerge when competitors from multiple

modalities are presented simultaneously within the same display.
The results of our simulations establish the applicability of the
shared resource model to account for interactions between pairs
of modalities. We demonstrate its ability to replicate a range of
effects involving visual-semantic and visual-phonological inter-
actions (see Table 3), a necessary precursor before extending to
multiple interactive effects.

Within the model we present, noise is only applied to phono-
logical input. However, in the human cognitive system, perceptual
input from all modalities provides only a noisy representation of
the true nature of objects in the environment. It may therefore
be interesting to also extend the model to capture environmen-
tal noise in visual input. Unlike speech, visual descriptions of
objects can often be improved by gathering additional infor-
mation regarding its visual features over time. The literature
indicates that certain groups of visual features are activated
earlier than others, for example low spatial frequency informa-
tion has been shown to be recruited early and rapidly by the
visual system (Bar, 2003). A detailed implementation of such
features of visual processing is yet to be implemented within
the model. It is possible that such features may have interesting
consequences for language-mediated visual attention. The model
described in this paper potentially provides a means of exploring
such questions.

Further applications of the model can be found in on-going
experimental work that suggests that the relative influence of
representational overlap in semantic, visual and phonological
dimensions fluctuates over the course of child development
(Mani and Huettig, in preparation). As previously discussed,
model training simulates the interactions between the cogni-
tive system and the learning environment through which the
system acquires knowledge of objects in the world. Through
sampling performance of the model as it moves through the train-
ing process it is possible to extract measures of its behavior on
individual tasks across the course of development. It may there-
fore be possible, in this way, to explore the developmental story
of language-mediated visual attention and provide an explicit
description of the mechanism driving observed variation across
development.

The model also provides scope for modeling individual dif-
ferences in language-mediated visual attention observed between
mature populations. In a recent study conducted by Huettig et al.
(2011c), language-mediated visual attention varied as a conse-
quence of literacy training. Their results showed that whereas a
high-literate population demonstrated phonological competitor
effects similar to those previously discovered (Allopenna et al.,
1998), low-literates’ eye gaze did not display sensitivity to phono-
logical overlap between spoken target words and items presented
in a visual display. Instead low-literates’ gaze was strongly influ-
enced by semantic relationships between items. One explanation
for this difference that could be tested in the current model is
whether observed differences in language-mediated visual atten-
tion between low and high literates emerge a consequence of
finer grained processing of the speech signal that follows from
increased literacy training (cf. Ziegler and Goswami, 2005). The
modeling framework presented in this paper allows manipulation
of environmental variables such as the form of representations
processed and the tasks performed in the learning environment.
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By manipulating such variables, it becomes possible to test theo-
retical explanations for these observed individual differences (see
Smith et al., 2013).

As in previous H&S models, emergent properties of this style
of model are dictated by multiple factors including environmental
variables such as the structure of representations and the type and
frequency of mappings performed, in addition to resource-related
factors such as the number of units within the central resource.
With so many degrees of freedom open to the modeler with which
to fit H&S models to data sets, it is crucial that steps are taken
to avoid simply data fitting and instead develop a model able to
probe important theoretical questions (see Seidenberg and Plaut,
2006). Any assumptions made in the model development pro-
cess should be justifiable with clear theoretical motivation. One
effective method of model validation is to extract from a model
testable non-trivial predictions. Our model of VWP effects was
effective in simulating a broad range of behavior using a single set
of parameters. When noise was present in the training environ-
ment, we effectively simulated processing of visual, phonological
and semantic competitors and in differing situations—when tar-
gets were present or absent from the visual input to the model.
Furthermore, subtle patterns of fixations over time were demon-
strated by the model that were similar to behavioral data. Figure 1
illustrated the effect of semantic competitors in behavioral data,
with an emerging preference for the target, and a later, but smaller,
diverging effect of near and distant semantic competitors. A sim-
ilar pattern is illustrated in the model, as shown in Figure 4.
Data-fitting to such nuanced patterns of behavior is likely to
require many free parameters, and so our model’s dynamics are
effective in generalizing to a broad range of behavioral effects.

Connecting modalities via a central resource as in H&S does
not provide the only solution for connecting the various modali-
ties known to play a role in language-mediated visual attention.
Other models are possible in which one builds in additional
modalities separately. The advantage of the model presented
in this paper is that the effects reported are emergent. A crit-
ical feature of the model’s architecture is the amodal shared
resource that intervenes between modal-specific representational
systems. Such an architecture is characteristic of H&S mod-
els (Plaut, 2002; Rogers et al., 2004; Dilkina et al., 2010), and
ensures that no unnecessary assumptions about how mappings
are formed between distinct representations are included in the
model. Furthermore, the amodal shared resource in the model
appears to parsimoniously support the interactions between
multiple representations that are so characteristic of complex
language-processing behavior. Processing in each of the modali-
ties described within the model is likely to involve complex hierar-
chical systems (see Simmons and Barsalou, 2003; McNorgan et al.,
2011). However, the results of our study demonstrate that a par-
simonious H&S architecture is able to capture a diverse range of
effects reported in the language-mediated visual attention liter-
ature (see Table 3). We argue that the model presented operates
at a suitable level of abstraction to act as a meaningful proxy
for the cognitive system that supports language-mediated visual
attention. In doing so the model provides a valuable contribu-
tion in describing the nature of the representations and processes
involved in this complex multimodal behavior performed by indi-
viduals on a daily basis, and further it offers a tool through which
the factors driving individual differences in language-mediated
visual attention can be examined.
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