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We examined the brain activity underlying the development of our understanding of
negative numbers, which are amounts lacking direct physical counterparts. Children
performed a paired comparison task with positive and negative numbers during an
fMRI session. As previously shown in adults, both pre-instruction fifth-graders and
post-instruction seventh-graders demonstrated typical behavioral and neural distance
effects to negative numbers, where response times and parietal and frontal activity
increased as comparison distance decreased. We then determined the factors impacting
the distance effect in each age group. Behaviorally, the fifth-grader distance effect for
negatives was significantly predicted only by positive comparison accuracy, indicating that
children who were generally better at working with numbers were better at comparing
negatives. In seventh-graders, negative number comparison accuracy significantly
predicted their negative number distance effect, indicating that children who were better
at working with negative numbers demonstrated a more typical distance effect. Across
children, as age increased, the negative number distance effect increased in the bilateral
IPS and decreased frontally, indicating a frontoparietal shift consistent with previous
numerical development literature. In contrast, as negative comparison task accuracy
increased, the parietal distance effect increased in the left IPS and decreased in the right,
possibly indicating a change from an approximate understanding of negatives’ values to a
more exact, precise representation (particularly supported by the left IPS) with increasing
expertise. These shifts separately indicate the effects of increasing maturity generally in
numeric processing and specifically in negative number understanding.
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The development of numerical cognition includes a progression
from an innate approximate recognition of quantity (Xu and
Spelke, 2000; Lipton and Spelke, 2003; Xu et al., 2005; McCrink
and Wynn, 2007) to a sensitivity to quantity manipulations and
violations (Wynn, 1992; Barth et al., 2005, 2006, 2008; Gilmore
and Spelke, 2008), an understanding of precise values and the
symbols which represent them (Ansari et al., 2005; Gilmore et al.,
2007; Roux et al., 2008; Holloway and Ansari, 2009; Lyons and
Ansari, 2009; Cantlon et al., 2009), and eventually the ability to
perform symbolic arithmetic (Menon et al., 2000; Rivera et al.,
2005) and a knowledge of higher-order mathematics (Anderson
et al., 2011). These steps reflect increasing expertise with tangi-
ble quantities, or symbols representing such concrete amounts.
In contrast, understanding negative numbers involves conceptu-
alizing and manipulating abstract quantities that are worth less
than nothing yet have value, requiring acceptance of amounts
lacking direct physical counterparts. While we have gained mas-
tery of these numbers as adults, negatives remain difficult (Gullick
and Wolford, 2013), and the process of conceptual acquisition
is unclear. Learning how we come to understand this concept,
and whether the brain regions supporting their understanding are
similar to or different from those for easier positive numbers, can

inform our knowledge of how we come to understand similarly
difficult abstract ideas in both mathematics and other domains,
and may be able to eventually inform educational practice and
strategies.

Research has recently begun to investigate the behavioral
and neural processes supporting our understanding of negative
numbers. Studies with adults have indicated that we may have
quantitative representations of negatives similar to those for pos-
itives (Fischer, 2003; Ganor-Stern and Tzelgov, 2008; Tsang and
Schwartz, 2009; Tzelgov et al., 2009; Varma and Schwartz, 2011),
and may draw on neural primary number areas for negatives, even
if in a slightly less precise or mature manner (Blair et al., 2012;
Chassy and Grodd, 2012; Gullick et al., 2012). However, adults
have had years of practice and experience with negative numbers
and much time to build these positive-like representations. No
work has so far described the brain activity underlying children’s
use of negatives, either before or soon after school instruction on
the topic.

Negative numbers are usually introduced into the mathematics
curriculum at some point between fourth (Varma and Schwartz,
2011) and sixth (Education, 2010) grade, after years of instruction
on and practice with positive numbers. While limited research
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has explored children’s processing of positive numbers, even less
has aimed to examine their negative number understanding. A
few works have qualitatively described children’s informal ver-
bal explanations of negative numbers, which demonstrate the
counterintuitive nature of these items. Negatives seem to be dif-
ficult to learn (Streefland, 1996): upon introduction, students
may ignore signs (Vlassis, 2004), may inappropriately apply signs
(Davis and Maher, 1993), and may order the negative end of the
number line backwards (Widjaja et al., 2011). Borba and Nunes
(1999) determined that while children had some ability to use
negative numbers after a short introduction to the multiple mean-
ings of the minus sign, their explanations and demarcations were
idiosyncratic and most were unable to use manipulable materi-
als in their explanations, preferring only oral descriptions. After
two years of instruction, though, Varma and Schwartz (2011)
demonstrated that sixth-grade children showed behavioral effects
similar to those for adults for negative number comparisons. As
such, children may not initially understand negative numbers, but
come to use them fluently after some practice and experience. We
here specifically investigate the neural systems supporting nega-
tive number use, compared to those involved in positive number
processing, in pre- and post-instruction children in an effort to
better understand the trajectory of the acquisition of negative
number knowledge from initial processing strategies to eventual
adult expertise.

Most often, investigations of adult negative number process-
ing have examined the presence and direction of the distance
effect, a typical positive-number processing result. First described
by Moyer and Landauer (1967), the distance effect describes an
inverse relationship between comparator distance and reaction
times: comparisons involving numbers that are further apart (at
a greater distance) are responded to faster and more accurately
than those with numbers that are closer together. This effect
has been taken to reflect the possible representational overlap
between neighboring numbers on a mental number line, as order-
ing and choosing the greater of two numbers becomes more
difficult to resolve if the items are closer together (Van Opstal
et al., 2008; Holloway and Ansari, 2010; Holloway et al., 2010).
Neurally, the distance effect is reflected in gradations of IPS activ-
ity: close-distance numeric comparisons elicit more IPS activity
than far comparisons (Pinel et al., 2001; Ansari et al., 2006), pos-
sibly reflecting the increased effort and neural activity needed to
resolve the more difficult closer comparisons.

The distance effect is conserved in children, though there are
developmental changes in scale and localization. Behaviorally,
while overall response times are slowed, children still demonstrate
faster and more accurate responses to farther than closer com-
parisons (Holloway and Ansari, 2008). The size of the effect also
decreases with age, as children show a greater distance effect than
adults (Holloway and Ansari, 2008), and may also be related to
mathematics achievement, with the effect becoming smaller and
less dramatic with increasing math skill (De Smedt et al., 2009;
Holloway and Ansari, 2009; but see Schneider et al., 2009).

Like adults, children may also demonstrate a significant effect
of distance neurally, but the pattern of responses differs by age.
The IPS demonstrates a distance effect to non-symbolic numbers
from at least age four (in an adaptation paradigm; see Cantlon

et al., 2006) or age six or seven (in a comparison paradigm; see
Ansari and Dhital, 2006; Cantlon et al., 2009). Comparison effects
for symbolic numbers, though, may not be IPS-based. Instead,
children (ages 8–12) may show only a frontal distance effect, par-
ticularly in the dorsolateral prefrontal cortex and inferior frontal
gyrus. The IPS does demonstrate significant activity during com-
parisons, but is not distance modulated (Ansari et al., 2005).
Temple and Posner (1998) did note a parietal distance effect for
both symbolic and non-symbolic comparisons in five-year-olds
using event-related potentials, indicating that parietal number
areas may be responsive to symbolic numbers even from a young
age, but the spatial resolution of ERPs makes source localiza-
tion difficult. At some point, the distance effect may shift to be
both frontal and parietal, then to the adult parietal-only effect,
but the trajectory of these changes has not been fully described.
Generally, though, these shifts are consistent with the develop-
mental finding wherein activity related to mathematics processing
shifts posteriorly with age (Rivera et al., 2005).

Behaviorally, several studies have tested adult responses to
negative numbers, most often in paired comparison paradigms.
Negative pairs have consistently demonstrated a typical distance
effect in both simultaneous (Varma et al., 2007; Tzelgov et al.,
2009; Varma and Schwartz, 2011) and sequential (Ganor-Stern
et al., 2010) single-digit negative number paired comparisons.
Recently, Gullick, Wolford, and Temple (Gullick et al., 2012) also
tested the adult brain activity supporting paired comparisons
with positive and with negative numbers. First, across compari-
son distances, negative numbers showed increased parietal-lobe
activity, including in the IPS, relative to positive pairs, along
with increased caudate and decreased frontal-lobe activity. This
overall parietal increase may be due to differences in difficulty
between the signs (Gobel et al., 2004; Blair et al., 2012; Chassy and
Grodd, 2012). Importantly, though, Gullick et al. (2012) found
that negatives also showed typical distance-modulated responses
both behaviorally and neurally, including in the IPS, which was
also greater for negative than for positive pairs in each case; posi-
tive comparisons again demonstrated a stronger effect of distance
frontally than did negatives. This difference indicates that while
processing abstract negative numbers strongly engages primary
number areas, it may less draw on frontal secondary regions than
concrete positive numbers. As a greater distance effect has been
taken to indicate a less mature representation of number (De
Smedt et al., 2009; Holloway and Ansari, 2009), the representa-
tion of negative numbers was proposed to be less precise than that
for positives, leading to this more dramatic distance effect.

Adults may thus understand negative numbers as individ-
ual quantities arranged along the leftward end of a bidirectional
number line. These representations seem to be supported by sim-
ilar activity in the same quantity-sensitive regions as positive
numbers. This mature usage, though, may stem from years of
experience and practice with negatives. How do children, who
have little or no formal experience with these concepts, respond
to negative numbers?

In summary, numeric negativity appears to be a difficult
concept to acquire. Children may be able to use negatives in
some limited situations even before instruction, but such knowl-
edge is typically limited to informal situations (Mukhopadhyay
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et al., 1990) and is unstable (Borba and Nunes, 1999). After
some instruction, children may demonstrate a typical behavioral
distance effect to negative comparisons, (Varma and Schwartz,
2011), but whether children also show a typical neural distance
effect for negatives, or after what amount of practice such an effect
may appear, is not known.

We here aimed to examine whether children showed a neu-
ral distance effect for negative number comparisons similar to
that for positive numbers. In our area (New Hampshire and
Vermont), negative numbers are formally introduced in the sixth
grade (2010). As such, fifth-graders were used as a pre-instruction
group, and seventh-graders as a post-instruction cohort. Fifth-
graders were not expected to be completely naïve to negatives, so
should be able to perform simple comparisons but not able to
use negatives in arithmetic or more complex situations. Seventh-
graders, who should have at least one year of formal experience
with negatives, were expected to show a greater proficiency with
negatives, including in comparisons.

A distance effect for positive number comparisons was
expected in certain neural locations within each age group. In
line with Ansari et al. (2005), the ten- to eleven-year-old fifth-
graders were expected to demonstrate a frontal distance effect for
positive-number comparisons. The 12- to 13-year-old seventh-
graders were at or beyond the upper limit of Ansari et al. (2005),
and could show both frontal and parietal distance effects for
positive number comparisons. The presence, direction, and loca-
tion of a negative number comparison distance effect was then
explored within each age group. This method allows determina-
tion of whether effects “match” across signs, even as the effect
location shifts between age groups, and thus whether negative
numbers are processed using the same neural mechanisms as
positives at each instructional stage (e.g., whether negative com-
parisons evoke the same frontal or parietal distance effect as
positive pairs).

METHODS
PARTICIPANTS
Participants were 16 (6F) fifth-graders, ages 9;11–11;9 (mean =
10;8 years), and 15 (5F) seventh-graders, ages 11;9–13;5 (mean
= 12;8 years; see Table 1 for demographic information). All
were right-handed, as assessed by the Edinburgh Handedness
Inventory (Oldfield, 1971), with no history of learning disor-
der or neurological damage. Nine additional participations were
excluded, 4 due to artifact from braces, 2 due to response record-
ing problems, 2 due to excessive movement, and 1 due to use of
drugs affecting white matter integrity. Participants were paid $25
and given several small prizes.

STIMULI
Stimuli were the same as used by Gullick et al. (2012) with adults.
Briefly, stimuli used pairs of numbers from −20 to 20, excluding
zero. Comparison pairs were created in three main sign cate-
gories (20 positive, 20 negative, and 60 mixed comparisons), for
a total of 80 unique pairs (see Table 2 for example pairs from
each included category; we here focus on only positive and only
negative comparison pairs, and so mixed pairs are not further dis-
cussed). Half the comparisons in each sign type were closer in

Table 1 | Demographic characteristic of each age group.

Fifth-graders Seventh-graders

N 16 15

Age 10;8 (7.66
months)

12;8 (5.89 months) p < 0.001

Age range 9;11–11;9 11;9–13;5

KTEA-II Math Concepts
and Applications
standard score

114.06 (17.48) 120.73 (9.71) p > 0.2

Integer Knowledge
Test (out of 62)

36.81 (7.34) 51 (7.55) p < 0.001

Stroop interference
standard score

52 (6.53) (14
participants)

50.47 (9.01) p > 0.6

Table 2 | Example stimuli.

Distance groupings: Sign category

Positive Negative

Closer (distances 1–8) 3 <> 5 −3 <> −5

Farther (distances 12–19) 3 <> 16 −3 <> −16

distance (between 1 and 8) and used two single-digit compara-
tors, while half were farther apart (between 12 and 19) and used
one single- and one double-digit comparator. Positive and nega-
tive number comparisons used the same digits, but different signs.

Half the comparisons involved two presented digits, and half
used thermometers. While fifth-graders were not expected to have
formal experience with negatives as abstract digits, they could
recognize negatives as representing very cold temperatures, given
their geographic location. As such, comparisons were presented
in half the runs as digits, and in half as temperatures on a ther-
mometer. Thermometers were created using a blank canonical
shape, with unlabeled side tics and red filling up to half-height.
Temperature was labeled in red to the left of the thermometer by
the middle tic. These thermometers were meant to invoke and
reinforce the context of a temperature comparison, but not to
test thermometer-reading skill. To keep participants from ignor-
ing the numbers presented and simply visually comparing the
amount of “red stuff” (mercury) in each thermometer, filling
height and digit position were kept constant, making it impossible
to base the comparison off area or relative vertical number-line
position. As this comparison, and indeed the range of tempera-
tures presented, was possible in either Celsius or Fahrenheit, no
specific scale was given for the thermometers: participants were
simply instructed to think of the numbers as temperatures and
choose the warmer (or colder) temperature. We here focus on
responses collapsed across presentation format.

Baseline control trials presenting a blank screen were also used.

PROCEDURE
After obtaining informed consent, participants completed a sur-
vey testing their knowledge of signed number usage and opera-
tions (see Appendix), which included questions requiring partic-
ipants to order numbers, choose the larger number, and perform
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simple arithmetic with and complete word problems involv-
ing negative numbers. Participants were also given the Math
Concepts and Applications subtest of the Kaufmann Test of
Educational Achievement-II (KTEA-II; Kaufman and Kaufman,
2004), which tests the ability to apply mathematics knowledge
to solve problems. A color-word Stroop test standardized for
children (Golden et al., 2003) was also administered to all the
seventh-graders, and 14 of the 16 fifth-graders. The Stroop test
was administered in the same testing session as the fMRI scan for
20 of the included participants (9 5th graders and 13 7th graders),
and in a separate second session between 2.5 and 4 months later
for the remaining participants. Two fifth-graders could not return
for a second testing session, and so Stroop scores are reported for
only the 14 available participants. Scores were normed to age of
test administration.

After a short practice session, fMRI data was acquired in four
event-related functional runs. One half of the experimental ses-
sion asked participants to choose the larger number (or warmer
temperature), the other half asked participants to choose the
smaller number (or colder temperature). Question and format
order were counterbalanced across participants. Run lists con-
sisted of 100 experimental trials, using one instance (left- or
right-greater) of each unique comparison. Thirty-two baseline
control trials were also included in each run (including three at
the end of each run) at jittered intervals. Each run was ∼5.5 min
in length. Stimulus pairs were presented in pseudorandom order.
Each unique comparison was thus presented in eight variations
(within each context, in each question version, with the greater
number on the left vs. right).

In each comparison trial, one item was presented on the left
side of the screen, and one on the right, separated by a “<>”
symbol. Digit comparison pairs were presented for 1.5 s, followed
by a 1 s blank screen, and thermometer comparison pairs for 2 s,
followed by a 500 ms blank screen (see Figure 1). Participants
could respond at any point within the display time, but were
encouraged to respond quickly and accurately. Behavioral pilot-
ing determined that these presentation periods gave participants
ample time to answer on each trial while continuing to encour-
age speeded responses; longer presentation times for digits may
have resulted in decreased task attention and less pressure to
respond immediately. Stimulus presentation, trial timing, and
response recording was achieved using E-Prime presentation soft-
ware (Psychological Software Tools, Pittsburgh, PA). Stimulus
pairs were presented using a Panasonic DT-4000U DLP projector,

FIGURE 1 | Trial schematic. Trials presented paired comparisons of either
two digits or two thermometers. In both contexts, 1 TR = 2.5 s.

and each functional run was synchronized with the onset of the
first trial to ensure accuracy of event timing. Response times
and accuracy were measured using fiber optic button press boxes
(Cedrus Lumina response pads; San Pedro, CA).

DATA ACQUISITION
Functional images were acquired in a 3T Philips Achieva Intera
MRI scanner at the Dartmouth Brain Imaging Center. In each of
the four functional imaging runs, we acquired 132 whole-brain
T2∗-weighted echoplanar images (EPI). 41-slice whole-brain EPI
image volumes were acquired using Philips interleaved sequence
maximizing the distance between neighboring slices; here, slices
were acquired in intervals of 6. The following parameters were
used for acquisition: slice thickness = 3 mm, no skip; repetition
time (TR) = 2.5 s; echo time (TE) = 35 ms; flip angle = 90◦;
matrix = 80 × 80; field of view (FOV) = 240 mm; transverse
plane. Two additional volumes were discarded at the beginning of
each run to allow for equilibrium effects. In addition, a high res-
olution, magnetization-prepared rapid-acquisition gradient echo
(MPRAGE) image was acquired at the end of the session, but was
not used for analysis.

ANALYSIS
Behavioral analyses
Behavioral data were analyzed to determine response accuracy
and ensure task attention, as well as examine the presence and
direction of a distance effect, in each age group. Comparison sign
types (positive, negative) were first examined for overall response
time and accuracy differences. The presence and direction of any
distance effects in each sign type was examined through a series
of linear regressions, performed on each participant’s correct
response data, to determine whether response times were sig-
nificantly predicted by comparison distance. The unstandardized
beta coefficient for the distance regressor for each individual was
then extracted, and compared across sign types using ANOVAs,
with a statistical threshold of p < 0.05.

fMRI analyses
All functional data were examined for artifact by creating
signal to noise maps in MATLAB (version 7.7.0 R2008b; The
MathWorks, Inc., Natick, MA) with a modified script available
at http://dbic.dartmouth.edu/wiki/index.php/Noise_Detection.
fMRI data were processed using SPM8 (Welcome Department
of Cognitive Neurology, London, UK, http://www.fil.ion.ucl.
ac.uk/spm). Preprocessing steps for each participant included
the following steps. Reorientation: The center of each functional
image was reoriented such that the origin was at the midsagittal
anterior commissure. Slice Timing Correction: Differences in
image acquisition time between slices were corrected using the
first slice as reference using SPM8’s Fourier phase shift interpola-
tion. Realignment: Head motion was realigned to the mean image
using the least-squares approach and a 6-parameter rigid-body
spatial transformation. Estimation was performed at 0.9 quality,
4 mm separation, 6 mm FWHM smoothing kernel, using second
degree B-Spline interpolation. Reslicing was performed using
fourth degree B-Spline interpolation. The realignment param-
eters were examined for excessive motion (defined as >1 mm
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motion in any direction). Two participants were excluded for
head position drift exceeding 4 mm and multiple occurrences
of movement spikes exceeding 2 mm. Smoothing: Images were
smoothed using a 6 mm FWHM Gaussian kernel.

First-level individual statistics. All runs from each individual
were analyzed together using a mass-univariate approach based
on the general linear model. Two factors were modeled: compar-
ison context (digits, thermometers), and comparison pair sign
type (positive, negative, mixed polarity sensitive, mixed polarity
insensitive), along with baseline control trials and the six realign-
ment parameters from motion correction as parameters of no
interest for each run. Control trials were thus modeled explicitly
(see Poline et al., 2003). Error trials were included as a condi-
tion in individual analysis. A first-order parametric modulator
was also included for each comparison pair sign type, mark-
ing the distance between comparators (1–19) on each trial. A
high-pass filter of 128 s was used to remove slow signal drift.
Summary contrast maps were created for each individual to take
to second-level group analysis. Based on the specific planned
group-level tests, normalized contrasts of each experimental con-
dition versus the modeled baseline control were performed (e.g.,
positive > baseline, negative > baseline, etc.). The contrast for
each stimulus class’ parametric modulator was also created (e.g.,
positive distance effect > baseline). Contrasts using this mod-
ulator determined areas of the brain whose activity changes
linearly in accordance with changes in distance. Mask images
for each individual were examined to ensure full brain cover-
age. This analysis is thus the same as that used with adults
(see Gullick et al., 2012).

Data from all participants was normalized to the standard
(adult) SPM8 EPI template using a trilinear interpolation, writing
3 mm3 voxels. While pediatric templates could be used, several
factors argued against their implementation in this study. First,
the children included here were easily over 7 years of age, con-
sidered to be the point when the brain reaches ∼95% of its
adult size (see Caviness et al., 1996): fifth- and seventh-graders
can thus be considered to have nearly volumetrically-mature
brains, though cortical thickness and mylenation continue to
develop and change. Further, previous work has demonstrated
that the differences between activity localization in 7- and 8-
year-old children and adults may be negligible, given the voxel
sizes and smoothing kernels used in conventional fMRI analy-
sis (Burgund et al., 2002; Kang et al., 2003). Last, some analyses
compare activation across age groups. Such contrasts are best
conducted on data that has all been normalized to the same
space, as warping to different templates may result in system-
atic misregistrations and activity mislocalizations (see page 68 in
Poldrack et al., 2011).

Second-level group statistics. A randomized effects model was
used for group analysis. All analyses were performed within a
mask of frontal (IFG, MFG, SFG) and parietal (IPL, SPL) cor-
tex (see Figure 2). This mask was created by combining the WFU
pickatlas definitions of these regions, as implemented through
the SPM8 toolbox. Comparisons between stimulus classes were
first performed to examine differences in brain activity based on

FIGURE 2 | Parietofrontal mask for fMRI analyses. All fMRI analyses
were performed within a mask of the frontal (IFG, MFG, SFG) and parietal
(IPL, SPL) lobes.

sign type. These results are reported at thresholds of peak voxel
level p < 0.005 (uncorrected), cluster p < 0.05 (FDR corrected),
cluster size k > 30.

Comparisons were then made examining areas that showed
increasing activity in response to decreasing comparison distance
(i.e., a typical distance effect), or in response to increasing dis-
tance (a reversed distance effect), as found with the behavioral
distance effect analyses, for each comparison sign type. These
analyses examined brain activity associated with the parametric
modulator of distance for each sign type. The parametric modu-
lator function looks for areas of the brain that show a significant
relationship between the modulator (here, distance) and brain
activity, beyond any activity variance accounted for by the main
effects (here, comparison sign type). Distance was thus used as a
continuous measure, not binned into distance categories. As such,
this represents a further and more stringent analysis, as some vari-
ance has already been accounted for by sign type, and thus results
are not as strongly significant as with the main effects. Given
this difference, the results for activity related to the modulator of
distance are reported at thresholds of peak voxel level p < 0.05,
cluster size k > 10.

Co-ordinates are MNI using ICBM152. Anatomical regions
were assigned by a combination of xjview (Cui et al., 2011),
visual inspection, and Talairach daemon after transformation
to Talairach space (Lancaster et al., 1997, 2000; Brett, 2006).
The anatomical region listed is for the peak voxel location. In
all cases, IPS activity was confirmed by hand if the analyses
demonstrated significant activity peaks in the inferior or superior
parietal lobules.

RESULTS
BEHAVIORAL TESTING
Independent samples t-tests demonstrated that seventh-
graders were significantly older than fifth-graders [t(29) = 9.67,
p < 0.001]. Neither KTEA-II standard scores [t(29) = 1.301,
p = 0.204] nor Stroop interference standard scores
[t(27) = 0.522, p = 0.606] were significantly different between
age groups, but seventh-graders performed significantly better
than fifth-graders on the Integer Knowledge Test [t(29) = 5.304,
p < 0.001] (see Table 1 for group scores and means): no fifth-
graders were able to perform multiplication or division with
negative numbers, and all but three could not perform addition
or subtraction, while all seventh-graders were at least able to
perform addition and subtraction.
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EFFECTS OF SIGN AND AGE
A 2 (sign) × 2 (age group) Repeated Measures ANOVA was
first performed on accuracy data. Between subjects, there was no
significant effect of age [F(1, 29) = 1.71, p > 0.2, MSE = 0.019],
indicating that fifth-grader (mean = 84.8%) and seventh-grader
(mean = 88.3%) performance was similar on the task. Within
subjects, there was a significant effect of sign, F(1, 29) = 38.238,
p < 0.001, MSE = 0.130, η2

p = 0.569, where responses to posi-
tive number comparisons (mean = 91.1%) were more accurate
than to negative number comparisons (mean = 81.9%), but no
significant sign × group interaction was found [F(1, 29) = 3.166,
p = 0.086, MSE = 0.011].

A 2 × 2 Repeated Measures ANOVA was then performed on
response time data. Between subjects, there was a significant
main effect of age, F(1, 29) = 4.777, MSE = 221550, p = 0.037,
η2

p = 0.141. Within subjects, there was a significant main effect

of sign, F(1, 29) = 98.822, MSE = 272424, p < 0.001, η2
p = 0.773,

and a significant interaction between sign and age, F(1, 29) =
8.247, p = 0.008, η2

p = 0.221. Seventh-grader responses (mean
= 967.75 ms) were faster than fifth [mean = 1087.37 ms; t(29) =
2.186, p = 0.037], and positive number comparison responses
(mean = 961.24 ms) were faster than negative [mean = 1093.88;
t(30) = −9.009, p < 0.001]. Fifth- and seventh-grader response
times did not differ for positive number comparisons [t(29) =
1.527, p > 0.1], but seventh-grader responses were significantly
faster than fifth for negative number comparisons [t(30) = 2.664,
p = 0.012].

DISTANCE EFFECTS
The presence and direction of a distance effect in participant
response times was assessed using linear regressions. Response
times for each comparison pair type were used as the dependent
variable, and numeric comparison distance as the independent, to
determine whether response time was significantly predicted by
distance. Unstandardized beta coefficients for the distance regres-
sor were extracted for each participant, once for the positive
pair comparisons and once for the negative. The beta coefficients
reflect the predicted change in response time (in milliseconds)
for a one-unit change in distance; negative beta coefficients indi-
cate a typical distance effect, as response times should decrease
as distance increases, and positive beta coefficients a reversed dis-
tance effect. This analysis thus allows examination of the effect of
distance on response time, but also removes the effect of over-
all response time differences between the sign categories. This
analysis is the same as that used with adults (see Gullick et al.,
2012). These beta-weights were then entered into one-sample t-
tests to determine whether they were significantly different from
zero, and thus showed a significant effect of distance on response
times across individuals.

Fifth-graders demonstrated a typical distance effect for nega-
tive number comparisons [mean = −6.05, t(15) = −3.565, p =
0.003], but no significant effect for positive number comparisons
[mean = −1.72, t(15) = −1.253, p = 0.229]. Seventh-graders
demonstrated a typical distance effect for negative number com-
parisons [mean = −5.36, t(14) = −5.238, p < 0.001], but no sig-
nificant effect for positive number comparisons [mean = −2.19,
t(14) = −1.516, p = 0.152] (see Figure 3). These beta coefficients

FIGURE 3 | Behavioral distance effects. Both fifth- and seventh-graders
demonstrated typical direction response time distance effects for negative
number comparisons, but no significant effects for positive pairs.
∗p < 0.05, ∗∗p < 0.005, ∗∗∗p < 0.001. Error bars indicate one standard error
of the mean.

were then compared between age groups using a 2 (sign) × 2 (age
group) Repeated Measures ANOVA. Between subjects, there was
no significant main effect of age (F < 1). There was a significant
main effect of sign, F(1, 29) = 10.445, MSE = 217, p = 0.003,
η2

p = 0.265, but no interaction between sign and age [F < 1].
Negative comparison pairs thus demonstrated a stronger distance
effect than positive in each age group.

Positive number comparisons thus did not demonstrate a
significant distance effect in these context-collapsed analyses,
though negative number comparisons did. To further investi-
gate this situation, we conducted separate analyses for each sign
within each presentation context. Fifth-graders demonstrated a
marginally significant typical distance effect for digit-context pos-
itive number comparisons [mean = −5.94, t(15) = −2.063, p =
0.057], but not for negative numbers [mean = −2.42, t(15) =
−1.044, p > 0.3]. However, temperature-context comparisons
showed a significant distance effect for negative number com-
parisons [mean = −11.11, t(15) = −5.406, p < 0.001] but not
positive [mean = 2.94, t(15) = 1.700, p > 0.1]. Seventh-graders
demonstrated significant distance effects for both signs in the
digit context [positive number pairs: mean = −4.62, t(14) =
−3.158, p = 0.007; negative number pairs: mean = −3.59,
t(14) = −2.585, p = 0.022]. Similarly to the younger subjects,
temperature-context comparisons showed a significant distance
effect for negative number comparisons [mean = −7.79, t(14) =
−3.886, p = 0.002] but not positive [mean = 0.64, t(14) = 0.316,
p > 0.7]. As such, positive numbers always demonstrated a typ-
ical distance effect in digit-format presentations, but not when
presented as thermometers, for both age groups. Negative num-
bers showed a significant distance effect when presented as ther-
mometers in both groups, but a significant digit-format effect was
found only for seventh graders. Despite these context-dependent
outcomes, there were insufficient trials to separately analyze other
potential digit- vs. thermometer-format trial effects. Thus, all
further analyses collapse across presentation context, combining
digit- and thermometer-format pairs within each sign.

PREDICTING THE SIZE OF THE DISTANCE EFFECT
We then investigated the factors predicting the size of the dis-
tance effect (beta coefficient) for negative number comparisons
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across individuals within each age group using stepwise linear
regressions. In each regression, the negative number compari-
son beta coefficient was entered as the dependent variable, and
negative comparison accuracy, negative response time, positive
comparison accuracy, positive response time, positive compar-
ison beta coefficient, age (in months), KTEA-II standardized
score, Integer Knowledge Test score, and Stroop interference score
(where applicable) were included as independent variables.

In fifth-graders, only positive comparison accuracy signifi-
cantly predicted the size of the negative number comparison
distance effect, t(14) = −3.45, p = 0.004. In seventh-graders, the
size of the negative number comparison distance effect was pre-
dicted first by negative comparison accuracy, t(14) = −3.24, p =
0.007, then additionally by Stroop interference score, t(14) = 3.28,
p = 0.007 (see Figure 4).

fMRI RESULTS
EFFECTS OF SIGN AND AGE
As with the behavioral analyses, data was first compared between
sign types, across comparison distances, to determine areas dif-
ferentially involved in processing positive and negative numbers
within each age group (see Table 3, Figure 5). In fifth-graders,
positive number comparisons showed greater activity than neg-
ative comparisons in the bilateral parietal lobe, including the IPS,
as well as the bilateral inferior and superior frontal gyri; nega-
tive comparisons evoked more activity than positive in one cluster
in the right inferior parietal lobule, though not in the IPS. In
seventh-graders, negative comparisons evoked more activity than
positive in one cluster in the left inferior frontal gyrus. No further
differences were seen.

DISTANCE EFFECTS
fMRI data was then analyzed to determine brain areas showing
a linear increase in activity as comparison distance increased,
or decreased, within each sign category. Significant clusters were
identified at a height threshold of p < 0.05 and cluster size of
10 voxels. In fifth-graders, positive comparisons demonstrated a
typical distance effect both frontally (including the left inferior

FIGURE 4 | Predicting the size of the negative number distance effect.

Fifth-graders (red) demonstrated a significant negative relationship between
positive comparison accuracy and negative comparison distance effect.
Seventh-graders (blue) demonstrated a significant negative relationship
between negative comparison accuracy and negative comparison distance
effect. In each case, participants with higher comparison accuracies
showed a more negative (typical) distance effect.

frontal and right precentral gyri) and parietally (including the
left IPS). Negative comparisons also showed a typical distance
effect across the frontal and parietal lobes, though in only the
right IPS. This effect was greater for positive comparisons in the
parietal lobe, including the right IPS, but was greater for negative

Table 3 | Positive versus negative comparisons, within each age

group.

Location of peak voxel MNI coordinates Cluster Peak

size t
x y z

FIFTH GRADERS POSITIVE > NEGATIVE NUMBERS

R inferior frontal gyrus 12 38 −20 89 5.92

R superior frontal gyrus 18 38 58 54 5.7

L superior, middle frontal gyrus −21 38 58 148 5.61

L inferior frontal gyrus −60 29 −2 121 5.6

L superior frontal gyrus −12 −10 67 122 5.46

R inferior parietal lobule 42 −70 46 58 5.3

L superior frontal gyrus −18 44 −17 101 4.97

R middle frontal gyrus 48 56 10 54 4.69

R inferior, middle frontal gyrus 60 14 31 214 4.51

R superior frontal gyrus −9 62 1 68 4.01

L inferior parietal lobule −42 −64 40 49 3.76

FIFTH GRADERS NEGATIVE > POSITIVE NUMBERS

R inferior parietal lobule 42 −34 28 49 5.2

SEVENTH GRADERS POSITIVE > NEGATIVE NUMBERS

None

SEVENTH GRADERS NEGATIVE > POSITIVE NUMBERS

L inferior frontal gyrus −33 23 −11 47 4.01

FIGURE 5 | Brain activity for positive vs. negative number comparisons

in each age group. For fifth-graders, positive number comparisons (cool
colors) showed greater activity in the left IPS. For seventh graders, negative
number comparisons (warm colors) demonstrated greater activity in only
the left inferior frontal gyrus. All fMRI figures show left-hemisphere activity
on the left side. All figure colorbars indicate t-test contrast values.
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Table 4 | Fifth-grader neural distance effects for positive, negative

number comparisons.

Location of peak voxel MNI coordinates Cluster Peak

size t
x y z

FIFTH GRADERS POSITIVE DISTANCE EFFECT

L middle, inferior frontal gyrus −36 35 40 372 5.69
R superior, middle frontal gyrus 24 50 1 615 4.6
L superior, middle frontal gyrus −27 53 1 85 4.33
R superior frontal gyrus 9 26 61 26 2.75
R middle, inferior frontal gyrus 24 26 −20 23 2.71
R middle frontal gyrus 45 −1 61 18 2.68
L superior parietal lobule −33 −58 58 11 2.59
L inferior frontal gyrus −57 14 19 23 2.38
L inferior frontal gyrus −42 44 1 27 2.38
FIFTH GRADERS NEGATIVE DISTANCE EFFECT

Bilateral superior, right middle 0 14 55 304 4.51
frontal gyrus
L superior frontal gyrus −18 50 34 123 4.14
R inferior frontal gyrus 36 23 −11 141 3.93
R superior frontal gyrus 24 53 −11 75 3.67
L superior, middle frontal gyrus −9 29 61 320 3.66
R superior frontal gyrus 6 8 67 54 3.33
R middle frontal gyrus 54 38 22 43 3.25
R inferior parietal lobule 51 −55 43 79 3.15
L inferior frontal gyrus −48 −1 22 43 3.13
R inferior frontal gyrus 51 2 25 89 2.98

L middle, superior frontal gyrus −24 59 −11 248 2.96

R inferior frontal gyrus 45 35 7 159 2.9

L superior frontal gyrus −18 −19 70 73 2.75

R superior frontal gyrus 12 44 49 15 2.64

R middle, superior frontal gyrus 24 50 25 126 2.55

L inferior parietal lobule −42 −43 22 22 2.45

R superior frontal gyrus 9 −19 73 10 2.39

L inferior frontal gyrus −54 23 4 19 2.32

L inferior frontal gyrus −48 29 16 15 2.16

FIFTH GRADERS POSITIVE > NEGATIVE DISTANCE EFFECT

R inferior parietal lobule 45 −67 37 29 3.1

R inferior frontal gyrus 18 20 −20 21 2.79

R middle frontal gyrus −36 56 25 11 2.56

R superior frontal gyrus 3 62 1 10 2.34

R superior frontal gyrus 24 65 22 11 2.07

FIFTH GRADERS NEGATIVE > POSITIVE DISTANCE EFFECT

L middle frontal gyrus −33 2 49 61 4.36

L superior frontal gyrus −6 5 55 48 4.07

R inferior, middle frontal gyrus 51 44 −14 153 3.65

L inferior frontal gyrus −39 20 −14 168 3.37

L superior frontal gyrus −12 38 52 84 3.2

R middle frontal gyrus 24 −4 49 73 3.17

R superior frontal gyrus 15 17 49 16 3.01

L inferior frontal gyrus −39 38 10 43 2.77

R inferior frontal gyrus 45 38 4 23 2.54

L superior frontal gyrus −9 −4 70 13 2.52

R superior frontal gyrus 15 53 31 31 2.43

R superior frontal gyrus 12 −1 70 29 2.4

L inferior parietal lobule −45 −37 46 24 2.33

R inferior frontal gyrus 60 11 28 10 2.22

FIGURE 6 | Fifth-grader neural distance effects. Both positive (A) and
negative (B) number comparisons showed a typical distance effect in the
frontal and parietal lobes, though for negative pairs this was only in the
right IPS. This effect was greater for positive comparisons in the parietal
lobe, but greater for negative pairs in the frontal lobe (C).

comparisons in the frontal lobe (including the bilateral precentral
and inferior frontal gyri) (see Table 4, Figure 6).

In seventh-graders, positive comparisons demonstrated a typi-
cal distance effect both frontally (including the bilateral precentral
gyrus and left inferior frontal gyrus) and parietally (including
the bilateral IPS). Negative comparisons showed a typical dis-
tance effect in the parietal lobe (including the bilateral IPS). This
effect was greater for negative comparisons in the left IPS, but was
greater for positive pairs in the frontal lobe (including the bilat-
eral inferior frontal gyrus and left precentral gyrus, see Table 5,
Figure 7).

The interaction between age group and the distance effect
in each sign was then investigated using a 2 (sign) × 2 (age
group) ANOVA (see Table 6, Figure 8). There were significant
effects in the bilateral parietal lobule, including the IPS, as well
as the bilateral frontal lobes, especially the inferior and middle
frontal gyri (see Figure 8A). Differences in the distance effect in
each sign between age groups were then investigated by com-
paring positive greater than negative number distance effects for
fifth-greater than seventh-graders. Fifth-graders showed a greater
difference between positive and negative number distance effects
than seventh-graders in the bilateral IPS and inferior frontal gyrus
(see Figure 8B).
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Table 5 | Seventh-grader neural distance effects for positive, negative

comparisons.

Location of peak voxel MNI coordinates Cluster Peak

size t
x y z

SEVENTH GRADERS POSITIVE DISTANCE EFFECT

R inferior frontal gyrus 12 38 −20 89 5.92

Bilateral superior frontal
gyrus

15 −16 76 59 4.95

L middle, superior frontal
gyrus

−39 29 52 122 4.15

L inferior frontal gyrus −57 38 4 17 3.07

R middle frontal gyrus 45 −4 58 39 2.89

L superior, inferior parietal
lobule

−36 −67 43 53 2.84

L inferior parietal lobule −63 −34 34 32 2.76

R inferior parietal lobule 42 −43 46 27 2.47

L middle frontal gyrus −42 56 4 28 2.45

L inferior parietal lobule −45 −40 40 16 2.43

L inferior frontal gyrus −33 26 −14 10 2.35

L middle frontal gyrus −36 50 34 14 2.22

SEVENTH GRADERS NEGATIVE DISTANCE EFFECT

R inferior parietal lobule 45 −49 28 38 3.37

L inferior parietal lobule −63 −28 31 63 3.22

L inferior parietal lobule −42 −49 52 60 3.21

R inferior parietal lobule 36 −34 40 56 3.08

R middle frontal gyrus 51 17 43 95 2.71

R middle frontal gyrus 30 −10 49 18 2.71

R superior frontal gyrus 18 17 58 14 2.65

R superior parietal lobule 39 −43 58 31 2.3

R superior parietal lobule 45 −52 52 11 2.22

SEVENTH GRADERS POSITIVE > NEGATIVE DISTANCE EFFECT

L inferior, superior parietal
lobule

−39 −73 43 77 4.84

L inferior frontal gyrus −33 35 −17 245 4.16

L inferior frontal gyrus −60 17 31 66 4.09

L middle, superior frontal
gyrus

−48 5 55 201 4.01

R superior frontal gyrus 24 65 −8 20 2.94

R superior frontal gyrus 15 −16 79 10 2.78

R inferior frontal gyrus 57 38 −11 11 2.5

L superior frontal gyrus −12 65 4 10 2.39

R inferior frontal gyrus 54 17 25 13 2.27

SEVENTH GRADERS NEGATIVE > POSITIVE DISTANCE EFFECT

L inferior parietal lobule −60 −28 28 17 3.29

R middle frontal gyrus 48 26 43 79 3.18

R inferior frontal gyrus 18 11 −20 11 2.72

R superior frontal gyrus 9 53 37 24 2.57

R inferior parietal lobule −39 −43 52 18 2.22

COVARIATE EFFECTS ON NEGATIVE NUMBER NEURAL DISTANCE
EFFECTS
As comparison accuracy was found to be predictive of the
size of the negative number distance effect behaviorally, these
relationships were investigated neurally. The impacts of age and

FIGURE 7 | Seventh-grader neural distance effects. Both positive (A) and
negative (B) comparisons demonstrated a typical distance effect in the
parietal lobe. This effect was greater for positive comparisons in the right
IPS and frontal lobe, but greater for negative pairs in the left IPS (C).

task accuracy on the negative number neural distance effect
were assessed by including fifth- and seventh-grader negative
number distance effect contrasts in the same regression analy-
sis. Participant age (in months) and negative number compari-
son response accuracy were added as covariates of interest; age
and accuracy were not significantly correlated (r = 0.299, p >

0.1), and so separable effects may be discussed. Across groups,
there was a significant neural distance effect for negative num-
ber comparisons, with the bilateral IPS demonstrating increasing
activity given decreasing comparison distance. As participant age
increased, activity increased in the bilateral IPS and decreased in
the bilateral inferior parietal lobule and bilateral inferior frontal
gyrus and precentral gyrus. As task accuracy increased, activity
increased in the left IPS, and decreased in the right IPS and bilat-
eral caudate (see Table 7, Figure 9). As such, maturation may
promote the frontoparietal shift previously noted, but increased
task accuracy may either indicate or cause a laterality shift (right
to left) within the parietal lobe.

DISCUSSION
The goal of this study was to begin to describe the neural systems
involved in negative number processing before, and soon after,
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Table 6 | Interaction between sign and age group on the distance

effect.

Location of peak voxel MNI coordinates Cluster Peak

size t
x y z

INTERACTION SIGN × AGE GROUP

R middle frontal gyrus 42 −4 49 128 32.9

R inferior, middle frontal
gyrus

60 20 25 321 23.04

R middle, superior frontal
gyrus

24 62 −11 19 20.29

L inferior, middle frontal
gyrus

−48 14 −2 308 18.94

R inferior frontal gyrus 51 38 −14 45 17.41

R superior frontal gyrus 9 −19 76 76 16.88

R middle frontal gyrus 42 53 1 343 16.71

L superior frontal gyrus −6 29 49 66 15.26

R superior, inferior
parietal lobule

24 −64 46 62 15.13

R middle frontal gyrus −24 8 49 78 14.35

R inferior frontal gyrus −33 23 −11 67 14.31

Bilateral superior frontal
gyrus

0 11 55 46 13.62

R inferior frontal gyrus 21 17 −23 45 13.4

R middle frontal gyrus 27 35 49 58 12.25

L inferior parietal lobule −60 −28 34 17 12.16

R superior parietal lobule 33 −49 58 35 11.49

R inferior parietal lobule 39 −37 25 46 9.93

R superior frontal gyrus 12 62 28 14 9.93

R superior, inferior
parietal lobule

−30 −70 43 65 9.53

R superior frontal gyrus 21 68 10 33 8.89

R middle frontal gyrus 33 20 37 48 6.13

L middle frontal gyrus −39 17 40 13 5.57

FIFTH > SEVENTH GRADERS POSITIVE > NEGATIVE NUMBER
DISTANCE EFFECT

L inferior parietal lobule −63 −34 43 282 4.44

Bilateral superior frontal
gyrus

9 5 61 69 4.37

R superior frontal gyrus 24 −7 55 37 4.06

Bilateral superior frontal
gyrus

−9 −1 73 129 3.92

R middle frontal gyrus 48 2 43 122 3.86

L middle, inferior frontal
gyrus

−60 −1 46 41 3.64

R inferior parietal lobule 45 −49 28 341 3.64

L inferior parietal lobule −36 −49 25 19 3.59

R inferior frontal gyrus 57 23 −11 14 3.34

R superior parietal lobule 24 −46 64 19 3.22

L superior parietal lobule −18 −67 55 23 3.19

R superior parietal lobule 27 −64 52 28 3.08

R inferior frontal gyrus 42 56 −5 28 3.01

R inferior frontal gyrus 30 23 −23 20 2.89

L middle frontal gyrus −33 −1 49 49 2.47

L inferior frontal gyrus −39 11 −17 10 2.34

L inferior frontal gyrus −45 17 −8 30 2.21

FIGURE 8 | Age by sign neural distance effect interaction. (A) The
bilateral intraparietal sulcus and parts of the inferior and middle frontal gyri
were sensitive to the interaction of age group and comparison sign
distance effects. (B) Fifth-graders showed a greater difference between
positive and negative number distance effects in the bilateral IPS and
bilateral inferior frontal gyrus than did seventh-graders.

formal instruction on the topic. Pre-instruction fifth-graders
and post-instruction seventh-graders were included to exam-
ine the effects of age and knowledge level on negative number
use. Examinations were primarily conducted between positive
and negative number comparison effects to determine whether
negative number processing used the same systems, in the same
manner, as positives, in each age group.

POSITIVE VERSUS NEGATIVE NUMBER COMPARISONS
Generally, children’s behavioral performance was similar to that
of the adults previously reported in Gullick et al. (2012): the
pattern of positive responses being better (faster, more accurate)
than negatives was conserved across ages. Pre-instruction fifth-
graders showed reasonable task accuracies and response times for
negative numbers, which may indicate some ability to sequence
and work with negative numbers even before formal school
experience.

The neural contrasts between positive and negative
comparisons showed quite different effects across age groups.
Seventh-graders showed similar activities for positive and neg-
ative comparisons across distances: negative pairs evoked more
activity in the left inferior frontal gyrus and bilateral superior
temporal gyri, but few other differences were seen, potentially
indicating similar representations of the two signs after some
instruction. Fifth-graders, though, showed significantly more
parietal primary number area activity, including the IPS, for
positive than for negative comparisons, and more frontal activity
for negatives than positives. This reversed effect demonstrates
that the parietal differences seen may not be due simply to
difficulty discrepancies between the signs: negative comparisons
were harder (slower, less accurate) for fifth-graders, and yet
showed decreased parietal activity relative to the easier positive
comparisons. Instead, fifth-graders may not yet treat negative
numbers as fully “numeric” or quantitatively meaningful, thus
limiting their activity in primary quantity-sensitive regions.
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Table 7 | Covariate effects on the negative number distance effect

across children.

Location of peak voxel MNI coordinates Cluster Peak

size t
x y z

NEGATIVE DISTANCE EFFECT ACROSS PARTICIPANTS

L middle frontal gyrus −36 8 52 117 3.85

R middle frontal gyrus 27 −7 52 357 3.59

R middle, superior frontal gyrus 24 50 −11 90 3.34

R inferior parietal lobule 57 −52 46 182 3.2

R superior frontal gyrus 12 2 70 94 3.03

R inferior parietal lobule 48 −46 25 52 2.96

L inferior parietal lobule −39 −46 49 82 2.79

R superior frontal gyrus 18 14 49 59 2.75

R inferior frontal gyrus 33 23 −11 163 2.75

L inferior parietal lobule −42 −46 22 33 2.7

L inferior frontal gyrus −48 −1 22 29 2.58

L superior frontal gyrus −9 −19 70 23 2.57

L superior frontal gyrus −6 −4 70 33 2.57

L superior frontal gyrus −57 11 43 10 2.56

R superior frontal gyrus 15 53 34 42 2.54

R inferior parietal lobule 45 −25 28 10 2.36

L superior, middle frontal gyrus −15 44 34 59 2.29

R inferior frontal gyrus 48 −1 25 14 2.25

L inferior frontal gyrus −48 14 −2 24 2.1

INCREASING ACTIVITY WITH INCREASING AGE

L superior parietal lobule −12 −67 58 28 2.85

R middle frontal gyrus 36 8 37 24 2.72

R inferior parietal lobule 39 −40 34 23 2.72

L inferior, superior parietal lobule −39 −52 55 46 2.53

R inferior parietal lobule 30 −43 58 35 2.28

R superior frontal gyrus 18 14 58 14 2.23

DECREASING ACTIVITY WITH INCREASING AGE

L superior, middle frontal gyrus −12 59 −11 273 3.97

R middle, superior frontal gyrus 21 65 −11 53 3.7

L middle, superior frontal gyrus −27 8 49 273 3.37

R inferior frontal gyrus 51 41 −14 35 3.04

R inferior frontal gyrus 57 17 25 61 2.78

R superior, middle frontal gyrus 15 17 49 115 2.77

R middle frontal gyrus 24 −1 49 31 2.69

L superior frontal gyrus −21 59 19 54 2.68

L inferior parietal lobule −48 −37 22 25 2.66

L inferior parietal lobule −54 −58 40 32 2.64

L middle frontal gyrus −39 −1 61 16 2.44

L inferior frontal gyrus −54 17 4 20 2.4

R inferior frontal gyrus 33 11 −20 12 2.36

L middle, superior frontal gyrus −21 50 34 19 2.35

R middle frontal gyrus 48 56 −2 12 2.25

R inferior frontal gyrus 39 38 7 10 2.02

INCREASING ACTIVITY WITH INCREASING NEGATIVE NUMBER
ACCURACY

R superior frontal gyrus 18 65 −11 23 3.5

R inferior parietal lobule 54 −64 40 49 2.7

L middle frontal gyrus −42 56 10 12 2.46

(Continued)

Table 7 | Continued

Location of peak voxel MNI coordinates Cluster Peak

size t
x y z

L middle frontal gyrus −30 62 −14 18 2.44

R middle frontal gyrus 45 56 10 12 2.38

L inferior parietal lobule −42 −67 43 72 2.34

DECREASING ACTIVITY WITH INCREASING NEGATIVE NUMBER
ACCURACY

L superior frontal gyrus −18 50 4 61 4.04

R middle, superior frontal gyrus 51 38 −2 479 3.99

R middle, superior frontal gyrus 36 35 22 237 3.62

L inferior frontal gyrus −57 41 7 19 3.07

R inferior parietal lobule 42 −40 34 55 3.02

R superior, middle frontal gyrus 21 32 46 108 2.99

L inferior, middle frontal gyrus −24 29 −5 142 2.89

L middle frontal gyrus −42 23 52 15 2.87

L superior frontal gyrus −15 59 31 63 2.64

L middle frontal gyrus −36 14 43 25 2.51

R inferior parietal lobule 39 −49 52 26 2.45

L inferior frontal gyrus −30 11 −14 23 2.42

R inferior frontal gyrus 63 11 25 30 2.28

R superior frontal gyrus 24 −13 64 20 2.22

L superior frontal gyrus −12 41 37 10 2.13

FIGURE 9 | Negative number neural distance effects across

children. Fifth- and seventh-graders together demonstrated a
bilateral IPS distance effect for negative number comparisons. (A)

A frontoparietal shift was seen with increasing age (B), and a
right-to-left laterality shift was seen in the IPS with increasing
negative comparison accuracy (C).
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POSITIVE AND NEGATIVE NUMBER DISTANCE EFFECTS
Both age groups demonstrated typical-direction behavioral dis-
tance effects for negative number comparisons. Developmentally,
the size of the distance effect decreases with age, and a smaller
distance effect may indicate a more mature representation of
number (Holloway and Ansari, 2008). The negative number dis-
tance effect in adults has been previously demonstrated to be
larger than that for positive, demonstrating that even after years
of practice the left side of the mental number line is not quite
as mature as the right (Gullick et al., 2012). The increased effect
seen in children may also support this idea, as these participants
have received only limited instruction or informal practice with
negatives.

Behaviorally, positive number comparisons did not demon-
strate a significant distance effect in the context-collapsed
analyses; however, context-specific analyses demonstrated a
typical distance effect for digit-format comparisons. While
thermometer-format presentations appeared to aid processing of
negative numbers, especially for the relatively naïve fifth graders,
they seemed to interfere with positive number processing for
both age groups. Unfortunately, we did not have enough statis-
tical power to compare fMRI data between presentation contexts,
and instead collapsed across digit- and thermometer-format tri-
als. As such, there may be interesting neural differences between
thermometer and digit comparison processing, especially given
the context by age effects on negative number behavioral dis-
tance effects, but we cannot investigate these questions here.
Further work is needed to better understand the impact of
presentation context on number processing for both already-
known positive numbers and recently-introduced negative
numbers.

Neurally, all age groups demonstrated a typical distance effect
for positive comparisons in the IPS, as well as in the precen-
tral and inferior frontal gyrus. Previously, Ansari et al. (2005)
noted only a right-lateralized frontal distance effect for chil-
dren ages 8–12; while parietal regions were sensitive to number,
their activity did not significantly differ between close and far
comparison distances. Distance effects were proposed to shift
at some point from the child-like frontal regions to the adult-
like parietal regions, but the timeline of this shift was not
more specifically defined. The children included in the cur-
rent study fall in the upper end of this age range, and did
show a parietal distance effect, as well as a right-lateralized
precentral gyrus effect similar to that noted by Ansari et al.
(2005) and a left-lateralized inferior frontal gyrus effect. Further,
Ansari et al. (2005) categorized comparison distance as “close”
or “far” and contrasted the two, whereas the present study
used distance as a continuous parametric regressor, which may
be more sensitive to small but important changes in pro-
cessing. This study thus helps to better track the develop-
mental trajectory of the frontoparietal shift even for positive
number usage.

Similarly, both age groups demonstrated a typical distance
effect for negative comparisons in the IPS and the precentral
and inferior frontal gyri. Negative numbers thus draw on
quantity-sensitive regions in a manner similar to that for positive

comparisons, even in pre-instruction children. However, posi-
tive number comparisons demonstrated a greater distance effect
in the IPS than negative comparisons in pre-instruction chil-
dren; post-instruction children showed fewer neural differences
between positive and negative number distance effects. As such,
fifth-graders showed a greater difference between distance effects
in each sign than did seventh-graders. These results may again
indicate that while negative numbers may use primary number
regions, it is not to the same degree as positives, at least before for-
mal instruction and practice have occurred. This difference may
again imply a less mature representation of negative numbers’
quantities before instruction.

INDIVIDUAL VARIABILITY IN THE NEGATIVE NUMBER DISTANCE
EFFECT
While on average fifth-grade children demonstrated a particularly
immature distance effect for negative numbers, there was a large
amount of individual variability within the group: some children
did not show any consistent effect of distance on negative com-
parison response time, and some showed a large effect. Though
a larger distance effect may indicate relative immaturity of or
decreased precision in numeric representations, no distance effect
for negative number comparisons at all may more indicate that
negatives are not ordered or sequentially arranged. Fifth-graders’
negative number distance effect was predicted only by their accu-
racy on positive number comparisons: children with low positive
comparison accuracy tended to show a very small or reversed
distance effect for negatives (implying a lack of organization),
but higher-accuracy children were more likely to show a typical-
direction distance effect. More broadly, children who were better
at working with numbers generally were better at working with
negative numbers specifically. A better understanding of quantity
overall may provide a stronger base from which to work with dif-
ficult concepts like negative numbers, leading to a more mature
effect. This finding suggests that, before instruction on this dif-
ficult concept, use of negatives may rely on one’s ability to work
with positives.

In contrast, seventh-graders’ negative number comparison
distance effect was predicted by negative comparison accuracy
and Stroop interference score. First, children with higher negative
comparison accuracies were more likely to show a typical dis-
tance effect for negative numbers. After instruction on negative
numbers, then, the ability to use negatives may be based more on
one’s understanding of negatives themselves, and not on positive
numbers. This difference between ages may represent a shift in
understanding, though the mechanism behind this change cannot
yet be discerned.

Second, the impact of the Stroop interference score on
seventh-grader negative number distance effects may indicate
the inhibition necessary in responding to negative numbers: to
choose the greater number, participants must pick the smaller
digit, which may be especially difficult in closer comparisons
with a smaller difference between the values. However, the
restriction of this effect to only the seventh-graders may indicate
the prerequisite of some knowledge of negatives for inhibition to
differentially effect responses across comparison distances.
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As this study is cross-sectional, and occurred in a specific
area where negative numbers are taught in the same grade across
schools, it necessarily confounds participant age with instruction.
Only the older seventh-grade children had learned about negative
numbers in school, while none of the younger fifth-graders had.
Luckily, the experimental sample included a range of ages and
abilities within each grade group, making it possible to separately
examine the impact of these two factors on brain activity and neg-
ative number performance. Both groups together demonstrated
an expected parietal (IPS) and frontal (inferior frontal gyrus, pre-
central gyrus) distance effect for negative number comparisons.
Changes in participant age were associated with the frontoparietal
shift previously noted: negative number frontal distance effects
decreased and parietal distance effects increased as participant
age increased. This finding may again reflect the general devel-
opmental trend of a frontoparietal shift in numerical cognition
(Ansari et al., 2005; Rivera et al., 2005). Interestingly, Rosenberg-
Lee et al. (2011) reported a non-linear increase in both frontal and
parietal activity in children from second to third grade in arith-
metic problem solving, perhaps similar to the non-linear shifts
seen here.

Alternately, the increased frontal distance effect for fifth-
graders may be the result of relatively heightened strategy imple-
mentation. Pre-instruction children may primarily understand
negatives through the use of rules, such as sign changes, which
transform unfamiliar negative numbers into known positive val-
ues (see Varma and Schwartz, 2011); these rules may be espe-
cially important in solving close-distance pairs. With further
instruction and experience, though, these rules may become less
necessary, giving rise to the age-related differences seen.

Changes in participant accuracy on negative number compar-
isons, though, were associated with a right- to left-hemisphere IPS
change. As participants’ ability to work with negative numbers
and to treat them as quantitative values increases, the distance
effect for negatives seems to increase in the left IPS and decrease
in the right. This pattern is also seen between age groups in the
transition from a right IPS only negative number distance effect
in fifth-graders to the bilateral effect seen in seventh-graders.
This laterality shift may align with previously proposed sepa-
rations within the mental number system. The right IPS has
been noted to be more responsive to non-symbolic than sym-
bolic number representations, and has been hypothesized to
particularly support approximate quantitative processing. The left
IPS, in contrast, is responsive to quantitative information across
notations but is especially sensitive to practiced, enculturated
symbolic numbers (Ansari, 2007; Kadosh et al., 2007; Piazza et al.,

2007) and thus may be more able to represent exact amounts via
symbolic cognition.

Within this comparison task, then, low performers may be
more likely to understand negative numbers approximately, rep-
resenting them as approximately small values via the right IPS,
and thus also demonstrating larger behavioral distance effects.
High-performers (and adults) may be more able to represent neg-
ative numbers as precise values, thus demonstrating increased
distance-related activity in the left IPS and more mature distance
effects. Whether the ability to represent negative values precisely
causes or follows the shift cannot be determined from this study,
but it does at least appear to be related.

SUMMARY
This study thus presents a first examination of the neural corre-
lates of negative number processing in pre- and post-instruction
children. As younger participants were expected to demonstrate
a more frontal-based distance effect, and older possibly a more
parietal-focused effect, neural analyses were first conducted sep-
arately within each age group to better directly compare the
activities found in positive and negative pairs. Pre-instruction
fifth-grader responses were, on average, reasonably accurate,
demonstrating some knowledge of negative numbers even before
formal instruction, and showed similar behavioral response
patterns to older participants, indicating typical number line
arrangement and use. All participants demonstrated a significant
neural distance effect for both positive and negative number com-
parisons in the IPS, though frontal effects were also seen. Even
before instruction, then, children may be able to treat negative
numbers as representations of quantitative values and draw on
number-related brain regions, even if in a relatively immature
manner. Increasing age demonstrated a significant frontoparietal
shift consistent with previous developmental numerical cogni-
tion work, but increasing negative comparison accuracy showed
a right IPS to left IPS shift, possibly indicating a change from
approximate to precise negative quantity representations. These
shifts and changes illustrate the process of incorporation of neg-
ative numbers as quantitative entities into the mental number
system across years of practice and experience.
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APPENDIX
Integer Knowledge Test.

Write these numbers with the opposite sign:
1. −7 ________________________ 2. 11 ________________________ 3. 137 ________________________

4. 4 ________________________ 5. −22 ________________________ 6. −13 ________________________

Place these numbers on a number line:
1. 4 3. −2

2. 1 4. −5

Order these numbers from least to greatest:
1. 0, −4, 4 _______________________________________ 2. −2, −5, 6, 1 _____________________________________

3. −3, 24, 17, −6, 2, 1 _________________________________________________________________________________

4. 19, 17, −17, −19, 0 _________________________________________________________________________________

Circle the greater number:
1. 5 or 9 2. −3 or −8 3. −19 or −12

4. −2 or 6 5. 17 or −14 6. 16 or −21

Add the following integers:
1. 13 + 1 = ____________________________________ 2. −4 + −6 = _________________________________

3. −2 + −12 = _________________________________ 4. −6 + 8 = __________________________________

5. −11 + 8 = ___________________________________ 6. 2 + −11 = _________________________________

Subtract the following integers:
1. 7 − 3 = _____________________________________ 2. −10 – 4 = _________________________________

3. 5 − 2 = _____________________________________ 4. −12 – −5 = _______________________________

5. −6 − 3 = ___________________________________ 6. 4 – −9 = __________________________________

Multiply these integers:
1. 6 × 7 = ____________________________________ 2. −4 × −9 = _________________________________

3. −8 × −3 = _________________________________ 4. −10 × 5 = _________________________________

5. 6 × −9 = ___________________________________ 6. −2 × 7 = __________________________________

Divide these integers:
1. 36 ÷ 2 = ___________________________________ 2. −12 ÷ −4 = _______________________________

3. −45 ÷ −5 = ________________________________ 4. −18 ÷ 6 = _________________________________

5. 24 ÷ −3 = __________________________________ 6. −90 ÷ 10 = ________________________________
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Solve for x in each case:
1. x − 3 = 12 _________________________________ 2. 48 − x = 31 _______________________________

3. x ÷ −11 = 2 ________________________________ 4. x/ − 5 = −8 _______________________________

5. x + 8 > 18 _________________________________ 6. x − 1 < 3 _________________________________

7. x + 8 > −4 _________________________________ 8. x ÷ 4 < 3 _________________________________

9. −5x > 25 __________________________________ 10. −6x < −42 _______________________________

11. −5 < x/4 __________________________________ 12. x/4 < −1/4 _______________________________

Write an equation describing each of these word problems, then solve it:

1. Maggie owes the candy store $35. Five of her friends will help her pay off her debt. How much will each friend pay? (Maggie has
no money to help pay).

2. The temperature at noon on a winter day was 8◦C. At midnight, the temperature had dropped by 15◦. What was the temperature
at midnight?

3. A drawing of a building shows the elevation of the basement floor to be 12 feet below ground level (–12 feet). The elevation of the
roof is 32 feet. What is the total distance from the roof to the basement?
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