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INTRODUCTION

It is widely believed that orthographic processing implies an approximate, flexible coding
of letter position, as shown by relative-position and transposition priming effects in
visual word recognition. These findings have inspired alternative proposals about the
representation of letter position, ranging from noisy coding across the ordinal positions
to relative position coding based on open bigrams. This debate can be cast within
the broader problem of learning location-invariant representations of written words, that
is, a coding scheme abstracting the identity and position of letters (and combinations
of letters) from their eye-centered (i.e., retinal) locations. We asked whether location-
invariance would emerge from deep unsupervised learning on letter strings and what
type of intermediate coding would emerge in the resulting hierarchical generative model.
We trained a deep network with three hidden layers on an artificial dataset of letter
strings presented at five possible retinal locations. Though word-level information f(i.e.,
word identity) was never provided to the network during training, linear decoding from
the activity of the deepest hidden layer yielded nearperfect accuracy in location-invariant
word recognition. Conversely, decoding from lower layers vyielded a large number of
transposition errors. Analyses of emergent internal representations showed that word
selectivity and location invariance increased as a function of layer depth. Word-tuning and
location-invariance were found at the level of single neurons, but there was no evidence
for bigram coding. Finally, the distributed internal representation of words at the deepest
layer showed higher similarity to the representation elicited by the two exterior letters
than by other combinations of two contiguous letters, in agreement with the hypothesis
that word edges have special status. These results reveal that the efficient coding of
written words—which was the model's learning objective—is largely based on letter-level
information.

Keywords: orthographic coding, open-bigrams, connectionist modeling, hierarchical generative models, deep
unsupervised learning

letters aligned according to a fixed template (e.g., left-justified

Visual word recognition and reading aloud is one of the cog-
nitive domains where connectionist modeling has achieved its
greatest success. Following seminal studies published in the 1980s
(McClelland and Rumelhart, 1981; Rumelhart and McClelland,
1982; Seidenberg and McClelland, 1989), recent modeling work
has produced highly detailed simulations of skilled reading, read-
ing development, and dyslexia (e.g., Plaut et al., 1996; Zorzi et al.,
1998; Harm and Seidenberg, 1999; Coltheart et al., 2001; Perry
et al., 2007, 2010, 2013; Zorzi, 2010; Ziegler et al., in press; see
Zorzi, 2005, for a review). Nevertheless, despite an impressive up-
scaling of connectionist models of reading in recent years (e.g.,
Perry et al., 2010, 2013), most of these models remain largely
underspecified with regard to the “visual front-end” of the read-
ing system. That is, most models stipulate that the identity and
position of individual letters is coded in a way that is abstracted
from the retinal input both in terms of shape and spatial location
with respect to eye fixation. In particular, the latter assumption
implies a location-invariant word-centered representation, with

slot-based coding). The issue of how location-invariance might
be computed from the native retinotopic (eye-centered) code has
recently attracted much interest (Dehaene et al., 2005; Dandurand
et al., 2010; Hannagan et al., 2011), because it is closely tied to
a lively debate on the nature of orthographic coding and more
specifically on the coding of letter position during visual word
recognition (e.g., Whitney, 2001; Grainger and van Heuven, 2003;
Davis and Bowers, 2006; Gomez et al., 2008; Davis, 2010; Grainger
and Ziegler, 2011).

The theoretical debate on letter position coding was triggered
by studies that reported relative-position and transposition prim-
ing effects in visual word recognition using the masked priming
paradigm (e.g., Humphreys et al., 1990; Peressotti and Grainger,
1999; Perea and Lupker, 2003; Schoonbaert and Grainger, 2004;
Grainger et al., 2006). The first phenomenon refers to the finding
that word recognition is facilitated when primes are composed
of a subset of letters constituting the target word, but only when
relative positions are respected. Transposition priming, instead,
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refers to the finding that when primes share all the constituent let-
ters of the target words, priming still persists when small changes
in letter order is performed (e.g., transposing two adjacent let-
ters). It is widely believed that these priming effects stem from
a level of orthographic processing where some form of approxi-
mate, flexible coding of letter positions operates (Grainger, 2008)
and have inspired alternative models of letter position coding
(Grainger and Whitney, 2004; Gomez et al., 2008; Davis, 2010).
All models share the assumption that visual word recognition is
built upon parallel processing of the constituent letters, in con-
trast to an holistic word-shape representation (see Pelli et al.,
2003; Grainger, 2008; Grainger et al., 2012). From the compu-
tational point of view, holistic word-shape coding is extremely
costly because it requires to solve shape invariance for each word
rather than for each letter of the alphabet. However, the mod-
els differ in terms of how approximate letter position coding
is achieved. For example, the Overlap model of Gomez et al.
(2008) assumes a noisy coding of letter position within the clas-
sic slot-based coding scheme used in the interactive-activation
model (IAM) of McClelland and Rumelhart (1981). In the IAM
model, words are processed in parallel from a set of letter detec-
tors that are length-dependent and position-specific. Uncertainty
about letter positions is implemented in the Overlap model as a
Gaussian distribution of activation across the ordinal positions in
the word. Letter position uncertainty is also a central feature of
Davis” (2010) spatial coding model.

A different theoretical perspective is that orthographic cod-
ing is based on combinations of contiguous and non-contiguous
ordered letter pairs, in a way to code relative rather than abso-
lute letter positions (Whitney, 2001; Grainger and van Heuven,
2003). For instance, the word WITH would be coded with the set
of bigrams [WI, WT, WH, IT, IH, TH], a scheme known as Open-
bigram coding (Grainger and Whitney, 2004). Open-bigrams are
an intermediate coding between the representation of single let-
ters and whole-words. Grainger and van Heuven (2003) propose
the existence of a bank of letter detectors performing parallel letter
identification, independently from the physical characteristics of
the letters (i.e., shape and size) but not from the spatial location.
Therefore, the activity of letter detectors is an abstract represen-
tation of letters conveying information about letter identity at
a specific locations. In the next stage, a more abstract “relative
position map” is formed, coding for the relative position of let-
ter identities within the word, independently from their shape
and size, and independently from the spatial location of the word
(i.e., location invariance). According to the open-bigram model,
this is possible through a bank of open-bigram units, receiving
the input from the letter detectors: the open bigram for a spe-
cific ordered letter pair (e.g., A_C) is activated by all the possible
location combinations in the letter detectors for the given letter
order. Open-bigrams then send their activations to all compatible
word representations. In this way a flexible relative-position code
mediates the processing of reading words as a whole.

The idea that visual word recognition might involve a number
of intermediate and progressively more abstract levels of ortho-
graphic coding is the key aspect of Dehaene et al’s (2005) local
combination detector (LCD) model. Though not implemented
as a computer simulation, the LCD model is inspired by the

neurophysiology of the primate visual object recognition system.
Specifically, object recognition is based on hierarchical process-
ing of basic local features that are gradually integrated into more
complex and abstract features (through increasing size of recep-
tive fields) to progressively achieve invariance for size, shape,
and location (see Riesenhuber and Poggio, 1999, for a compu-
tational model). Given that reading is a recent cultural invention,
it is unlikely that the brain contains a specific neural mechanism
for visual word recognition. Thus, learning to recognize printed
words independently from their location, font, size, etc. might be
achieved by recycling the cortical machinery for object recogni-
tion (Dehaene and Cohen, 2011). According to the LCD model,
part of the occipito-temporal “what” pathway is organized into
a hierarchy of neuronal levels, each composed of local combi-
nation detectors that are gradually sensitive, through increasing
complexity and size of their receptive fields, to larger fragments of
words. Besides the well-known finding that the occipito-temporal
cortex of skilled readers contains a “visual word form area”
(Cohen et al., 2002; Cohen and Dehaene, 2004 ), recent functional
neuroimaging studies support the LCD model by showing that
perception of written words involves the sensitivity to increas-
ingly larger visual units along a posterior-to-anterior gradient in
the ventral visual stream (Vinckier et al., 2007). Notably, open
bigrams are important intermediate-size units in the LCD model.

The problem of learning a location-invariant orthographic
representation of printed words was recently tackled by
Dandurand et al. (2010) with connectionist simulations. They
used error backpropagation to train a feedforward neural net-
work with one layer of hidden units on the mapping from
location-specific letter identities to location-invariant localist
word representations. The phenomena of transposed-letter and
relative-position priming were investigated in the network by pre-
senting stimuli obtained by transposing two letters or removing
one letter from a trained target word. The transposed letter stim-
uli, compared to control stimuli in which the two letters were
replaced by non-constituent ones, produced an activation pat-
tern that was more similar to that produced by the target word.
In the same vein, stronger similarity to the target word activation
was obtained when the input stimuli maintained the letter order
(e.g., ABC for ABCD) with respect to controls in which the let-
ter order was reversed (e.g., CBA for ABCD). Moreover, when the
order was maintained, stimuli composed of non-contiguous let-
ters yielded a stronger similarity to the target word in comparison
to stimuli containing only the contiguous letters (e.g., ABD vs.
ABC for ABCD). These findings suggested that the network had
learned a code for contiguous and non-contiguous letter combi-
nations. Hannagan et al. (2011) further investigated the neural
network model of Dandurand et al. (2010) by analyzing its hid-
den layer activity. They found that no knowledge about bigrams
was learned by the network. Instead, the network learned letter
identities almost independently from their locations (in a “semi-
location-invariant” way). This information allowed to compute
constituent bigrams and words without the explicit coding of let-
ter combinations. These results are in line with the overlap model
of Gomez et al. (2008).

While the connectionist studies of Dandurand et al. (2010)
and Hannagan et al. (2011) represent a first important attempt
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to understand how a location-specific letter-based code could
be mapped onto location invariant word representations, the
plausibility of the model is hindered by its network architecture
and by the use of supervised learning by error backpropagation.
Besides the well-known lack of biological plausibility of the back-
propagation algorithm (O’Reilly, 1998), the supervised learning
regimen is problematic because it implies that orthographic
learning requires an external, explicit teaching signal at each word
encounter. Moreover, the classic feedforward network with one
layer of hidden units used by Dandurand and colleagues does not
capture the hierarchical organization of the visual system, which
is a key feature for achieving invariant object recognition in bio-
logically inspired computational models of vision (Riesenhuber
and Poggio, 1999).

In this article we present a connectionist model of location-
invariant visual word recognition that can be cast within the
broader theoretical framework of Dehaene et al’s (2005) LCD
model. The assumption that orthographic learning exploits the
cortical machinery for object recognition leads to the predic-
tion that perceptual invariance for visual words might emerge
from unsupervised generative learning in a neural network with a
hierarchical architecture, that is a “Deep Belief Network” (DBN;
Hinton, 2007; Stoianov and Zorzi, 2012; Zorzi et al., 2013). DBNs
are stochastic recurrent neural networks with many layers of hid-
den units that encode increasingly more complex features of the
sensory input across layers (Hinton and Salakhutdinov, 2006;
Hinton, 2007, 2013). In practice, a DBN is a stack of Restricted
Boltzmann Machines (RBMs; Hinton, 2002) trained in a layer-
wise fashion. RBMs are stochastic networks with one layer of
visible neurons encoding the input patterns and one layer of hid-
den neurons connected through bidirectional symmetric links.
Learning in RBMs is unsupervised and its objective is to build
internal representations of the sensory input by fitting a genera-
tive model to the data. Therefore, after training all RBM layers in
succession, the DBN is a hierarchical generative model in which
the latent causes of the data are represented through distributed
non-linear representations across hidden layers (HLs). DBNs rep-
resent the state-of-the-art in machine learning but they are also
particularly appealing for connectionist modeling of cognition
because they learn multiple levels of representation without any
supervision or reward and they have a sound probabilistic for-
mulation (see Zorzi et al., 2013, for a tutorial review). Crucially,
the analyses of the internal representations can reveal an emer-
gent coding strategy that closely mirrors single-cell recording
data (e.g., Lee et al., 2008; De Filippo De Grazia et al., 2012a;
Stoianov and Zorzi, 2012). In the present work we trained a DBN
on an artificial dataset of letter strings presented at five possi-
ble retinal locations. We asked whether location-invariant word
recognition would emerge from unsupervised deep learning and
what type of intermediate coding would support the transition
between location-specific (i.e., eye-centered) letter coding and
location-invariant word representations.

MATERIALS AND METHODS

We employed a DBN with three HLs for learning a generative
model of written words. In the following subsections, we describe
the training dataset and the network architecture. The code

(Matlab/Octave) used for the simulation and the training set is
available at http://ccnl.psy.unipd.it/deeplearning.

TRAINING DATASET

We used an artificial dataset constructed ad hoc in order to inves-
tigate orthographic learning in a restricted but tightly controlled
way (also see Dandurand et al., 2010). The dataset was composed
of 120 3-letter words presented at 5 different eye-centered loca-
tions (one central and two locations on each side of the central
one), for a total of 600 (120 words x 5 locations) input pat-
terns. An artificial lexicon was generated by considering all simple
permutations of three letters without repetitions from a partial
alphabet composed of six letters (i.e., AB C D E F). In this way, it
was possible to balance the frequency of each letter in the lexicon
and to avoid letter repetition. Indeed, including letter repetition
within the same word could introduce a possible confound in
identifying the contribution of open bigrams to the orthographic
coding for visual word recognition.

INPUT CODING

We used a sparse coding (i.e., slot coding) for representing the
training words (see also Dandurand et al., 2010). Input words
were coded by the pattern of activity over 7 location-specific (i.e.,
eye-centered) letter slots (see Figure 1) and each word could be
coded at 5 different locations. Each letter within a word was coded
by the activation of a specific letter unit (over a set of 26 units, one
for each letter of the alphabet!), at a specific eye-centered location.

INote that using a more compact representation with only six letter units
(for letters A-F) at each slot does not change the results presented here.
Conversely, the use of a full set of letter units allows to readily extend the
model’s training set.

visible layer
(N =182)

location-specific letter detectors

FIGURE 1 | Architecture of the deep network model. Letter strings are
presented to the visible (i.e., input) layer using a bank of location-specific
letter detectors within slots encoding 7 different spatial locations. Activity
of the visible layer is fed to three hierarchically organized layers of feature
detectors (hidden neurons). All connections are bidirectional and
symmetric. Note that word-level information is not explicitly represented in
the network and it is not supplied during training.
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Blank locations were coded using zeros for all units of a slot. Thus,
the input pattern was a vector of 182 binary values.

NETWORK ARCHITECTURE

The deep network had one visible layer encoding the input data
and three hierarchically organized HLs (see Figure 1). A charac-
teristic of deep networks is that adding HLs generally increases
the complexity of the features that can be detected during learn-
ing. There is a point, however, where adding further layers does
not improve global performance (see Hinton, 2012 for a practical
guide). We measured the global performance of the network by
linearly decoding training words from the activity of the deepest
layer (see Zorzi et al., 2013, for discussion). Thus, we empirically
determined the number of layers, starting from a first hidden layer
of 30 neurons (approximately corresponding to the square root
of the total number of training patterns), then we increased the
number of layers, doubling the number of hidden neurons with
respect to the previous layer (i.e., 60 and 120 neurons for layer
2 and 3, respectively). Performance did not improve with more
than three HLs.

Learning proceeded layer-wise (i.e., one layer at a time) for
computational efficiency. For the first hidden layer, the input was
the activity of the visible layer. For the other layers, the input was
the activity of the previously trained layer. Each RBM (one for
each layer), was trained with the Contrastive Divergence (CD)
learning algorithm (Hinton and Salakhutdinov, 2006) to learn a
generative model of the input data without supervision (i.e., max-
imizing the likelihood of reconstructing the data). Crucially, no
word level information was provided to the network. For each
RBM, learning involves two phases: a “positive” and a “negative”
phase. During the positive phase the visible units are clamped to
the data pattern and their activity (Vi+) spreads to the hidden neu-
rons (hj+). In the negative phase, a stochastically selected binary

state of the hidden neurons (using their state hj+ as probability

to turn them on) feeds back to the visible units (v; ) through
the top-down weights (i.e., reconstruction of the input vector)
and then feeds forward again to the hidden neurons (hj_) (see
Zorzi et al., 2013, for a more detailed discussion). The weights
wij are updated with a small learning fraction (n) of the differ-
ence between pairwise correlations measured in the positive and
negative phases:

AW =n(vTht —vTh7)

We trained the deep network for a maximum number of 1000
epochs, using a learning rate of 0.1, and an increasing momentum
ranging between 0.5 and 0.9. To ensure robustness of the results,
we trained 10 versions of the same network using different initial
random weights.

Unsupervised deep learning was carried out on a multi-core
high-performance cluster using an Octave/Open-MPI paralleliza-
tion (De Filippo De Grazia et al., 2012b; Testolin et al., 2013).
Note that Testolin et al. (2013) provide code for a variety of
parallel solutions and show that learning time can be further
reduced by exploiting the GPUs of low-cost graphic cards on a
desktop PC.

RESULTS

DECODING FROM ACTIVITY OF HIDDEN LAYERS

After training, we investigated the quality of the representation
generated within each HL. We used a linear classifier for decoding
the input words from each of the three HLs; the classifier weights
were computed using the pseudo-inverse method (Hertz et al.,
1991), which is equivalent to using the delta rule but more effi-
cient and parameter-free (see Zorzi et al., 2013). Only at this level
of analysis we introduced word-level information for learning a
linear association between the activity of each hidden layer, com-
puted presenting an input word on the visible layer, and the same
word used as target. Each target word was coded into a binary
output unit, independently from the location at which it was pre-
sented. The presence of a corresponding word was marked by
a value of 1, its absence by a value of 0. There were 120 out-
put units, each corresponding to a training word, independently
from its location. For instance, with 4 target words (e.g., ABC,
ABD, ABE, ABF) the input word ##ABC## (as well as ####ABC)
would be coded as 1 0 0 0, whereas the word ###ABE# (as well as
ABE####) would be coded as 0 0 1 0. Recognition performance
was expressed in terms of the percentage of input words correctly
decoded, independently from the location.

We hypothesized that decoding accuracy would increase across
layers, thereby indexing that internal representations become
more abstract with the increasing of the network’s depth. The
percentage of correctly decoded words is shown in panel (A)
of Figure2 as a function of the layer used as input to
the classifier. Indeed, decoding accuracy significantly increased
with layer depth [F(; 19, 10.73) = 1872.01, p < 0.0001, n; =0.99,
Greenhouse-Geisser corrected for sphericity] and it reached near-
perfect accuracy (M = 99.43 £ 0.14 s.e.m.) at the deepest hidden
layer (HL3). Panel (B) of Figure 2 shows decoding accuracy as
a function of location of the input words. Notably, location-
invariance increased as a function of layer depth: that is, decoding
accuracy in HL1 and HL2 varied among locations (with a ten-
dency for higher accuracy at the two outer locations), whereas
accuracy in HL3 was near-perfect across all locations.

The distribution of decoding errors can provide insights about
how orthographic information is encoded within the different
layers of the deep network. We therefore analyzed the decod-
ing error distribution as a function of the orthographic dis-
tance between the input word and the incorrectly decoded word,
indexed by the Levenshtein Distance (LD) (Yarkoni et al., 2008).
For example, the word ABC has a distance of 1 from the words
*BC, A*C, AB* (where the symbol * means a letter that does not
belong to it), a distance of 2 from the words with transposed let-
ters (i.e., ACB, BAC, CBA, BCA, and CAB) as well as from the
words A**, *B*, **C, and a distance of 3 from all words contain-
ing letters that do not belong to it (e.g., DEF, EFD). Note that the
LD measure was computed independently from the location of
the input word. The error distribution is shown in panel (C) of
Figure 2 as function of LD and layer depth. Note that the major-
ity of errors consisted in producing words at a distance of 2. The
finding that a large proportion of decoding errors do not involve
words at the closest orthographic distance (LD = 1) but are con-
centrated on a distance of 2 suggests that most errors might be
in fact transposition errors. Splitting the error distribution for
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FIGURE 2 | Word decoding from the Hidden Layers (HLs). (A) Mean
decoding accuracy, expressed in terms of the percentage of correctly
recognized words, as a function of layer depth. Decoding accuracy
significantly increased across layers and was nearperfect at the deepest
layer (i.e., HL3). (B) Decoding accuracy as a function of word location.
Decoding accuracy in HL1 and HL2 varied among locations, with higher
accuracy at the two outer locations, whereas accuracy in HL3 was
nearperfect across all locations. (C) Decoding error as a function of the
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of 2, which include transposition errors. (D) Error distribution for LD =2,
after splitting it between transposition and other errors, as a function of
layer depth. Transposition errors were predominant and they accounted
for virtually all errors in HL2 and HL3. Error bars in all graphs indicate
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LD = 2 between words with transposed letters and other words
showed that this was indeed the case (see Figure2D). Finally,
we also assessed whether the distribution of transposition errors
varied across locations. The results are shown in Figure 3. For
HL1 and HL2, transposition errors were mainly and almost sim-
ilarly distributed across the three inner locations. This result is
complementary to the distribution of decoding accuracy across
locations (see Figure 2B), which was higher at the two outer loca-
tions. This advantage can be readily explained by the fact that
training implies less position uncertainty for letters in the outer
slots. For example, during training of the word ABC the only
letter presented in slot 1 is A, whereas slot 3 can contain the let-
ters A, B, or C. Thus, letter A in the leftmost (or rightmost) slot
provides unambiguous evidence for words starting (or ending)
with A, whereas letter A in slot 3 may belong to any word that
contains A.

ANALYSIS ON SINGLE NEURONS

To further characterize the information encoded into the trained
network, we analyzed the activity of each neuron within each HL.
This analysis was performed on a single network (i.e., the first
network trained). Borrowing the classic method used in single-
cell recording studies (also see Stoianov and Zorzi, 2012; Zorzi

100 +
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mHL1
mHL2
mHL3

Mean transposition error (%)

FIGURE 3 | Mean transposition errors as a function of layer depth and
word location. For HL1 and HL2, transposition errors were mainly and
almost similarly distributed across the three inner locations. Error bars
indicate standard error across ten simulations.

et al., 2013), we sought to establish whether and how the activity
of each neuron is modulated by two key factors: (i) word selec-
tivity; (ii) location invariance. Finally, a further analysis on single
neurons allowed us to assess whether knowledge about bigrams
had emerged in the network.
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WORD SELECTIVITY

We fixed the preferred location of each neuron, choosing the
location that maximized its activity across all trained words.
We then fixed its preferred word, on the basis of its maximum
activity at the preferred location. Finally, we performed a linear
regression on its normalized activity in response to the train-
ing words (presented at the preferred location) using LD as
predictor (3 levels: 0, 1, and 2; note that LD = 0 indexes the
preferred word). We discarded the words at an orthographic
distance LD = 3 from the input word, which are those words
composed of all letters that did not belong to the input word.
After False Discovery Rate (FDR) correction for multiple com-
parisons, we selected all the neurons for which the regression
was significant. No word selectivity was found in HL1. In con-
trast, word selectivity emerged in 95% of HL2 neurons (FDR p =
0.037) and in 97.5% of HL3 neurons (FDR p = 0.037). Activity
of these neurons was modulated in a monotonically decreasing
way by the orthographic distance of the input words from the
preferred word.

WORD LOCATION INVARIANCE

We fixed the preferred word of each neuron, choosing the
training word that maximized its activity. Then, we used a
pattern matching procedure for assessing the degree of invari-
ance to the spatial location of the preferred word. In partic-
ular, we defined a set of binary location vectors, each encod-
ing the preference for one or more specific locations (e.g., 0
0 1 0 0, coding the preference for the central location; 1 1
1 1 1, coding an equal preference for all the available loca-
tions). For instance, for a neuron with a preferred word ABC,
we collected its activity as a function of the location at which
the input word ABC was presented. Then, we selected the
more similar location vector using the Euclidean Distance as
similarity index. This procedure revealed the number of loca-
tions for which the neuron activity was highly similar, that is,
the number of neuron’s preferred locations. A single preferred
location indexes location-specific word coding, whereas 5 pre-
ferred locations (i.e., equal preference across locations) indexes

location-invariant word coding. Figure 4 shows the distribution
of neurons as a function of the number of preferred locations
and the word selectivity index (B coefficient of the LD predic-
tor). Notably, location invariance emerged only in the deepest
layer (30.83% of HL3 neurons), where word recognition was also
near-perfect.

BIGRAM CODING

To assess whether tuning to bigrams had emerged in the net-
work, we presented all possible sub-word units (i.e., letters and
bigrams) to the network and recorded the activation of each
neuron within each layer. Letters were presented at all the 7
possible locations, whereas bigrams were divided between con-
tiguous (e.g., AB for ABC) and non-contiguous (e.g., A_C for
ABC) and were presented at the 6 and 5 possible locations,
respectively. The activity of each neuron across sub-word units
was normalized, so that it had a maximum of 1 for its pre-
ferred stimulus. We then determined the preferred bigram for
each neuron, choosing the bigram that maximized its activity,
and performed three diagnostic tests. First, we assessed whether
the neuron’s responses to both constituent letters were smaller
than the response to the bigram by at least 10% (i.e., the
neuron’s response to AB should be larger than the response
to A and to B presented in isolation). Note that we chose a
lenient criterion because assuming additivity of the response
to the constituent letters (i.e., response to AB as sum of the
responses to A and B) is unwarranted for non-linear neurons.
Second, we assessed whether it was maximally active for all the
words containing the preferred bigram, in order to exclude that
the neuron was tuned to specific words. Finally, the candidate
bigram neuron was assessed for its sensitivity to letter order.
Indeed, a neuron might respond to the co-occurrence of two
letters (e.g., A and B), but to be qualified as bigram detec-
tor, its response to the transposed letter pair should be smaller
(i.e., response should be stronger for AB than for BA). Thus,
we computed an index of order sensitivity as the difference
between the response to the preferred bigram and to its trans-
posed version presented at the same location. Values close to
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FIGURE 4 | Analysis on single neurons. The distribution of neurons in HL2
(left panel) and HL3 (right panel) is shown as a function of the number of
preferred locations and the word selectivity index (regression weight of the
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LD predictor). Only neurons showing a significant modulation of activity in the
regression analysis are plotted. Location invariance emerged only in 30.83% of
HL3 neurons (circled in black), where word recognition was also nearperfect.
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zero would index lack of order sensitivity, whereas values close
to one would show that the neuron does not respond at all
to the bigram with the opposite letter order. A neuron pass-
ing the first two tests and showing high sensitivity to order
would be classified as bigram detector, thereby providing evi-
dence that sensitivity to bigrams has emerged as intermediate
coding strategy in the network. This analysis showed that there
were no neurons, across the three layers, that could be clas-
sified as bigram detectors—indeed, no neuron passed the first
two tests.

ANALYSIS ON ACTIVATION PATTERNS

The contribution of sub-word orthographic units to the repre-
sentation of words can also be assessed at the level of distributed
representations over the hidden neurons of the deepest layer
(where word recognition is near-perfect). We therefore, ana-
lyzed the similarity between activation patterns produced by
training words and those produced by the different types of sub-
word units. This analysis was performed on the same network
selected for the single neuron analysis (i.e., the first network
trained). More specifically, we presented letters and bigrams to
the trained network and recorded the pattern of activation of
the deepest layer (HL3). Letters and bigrams were presented at
all the possible input locations; bigrams were divided between
contiguous (e.g., AB and BC for ABC) and non-contiguous
(e.g., A_C for ABC). Moreover, letters and bigrams (both con-
tiguous and non-contiguous) could be constituent (e.g., A, B,
C, AC, etc. for ABC) or non-constituent (e.g., D, E, F, DE,
etc. for ABC). We computed the cosine distance > between the
activation pattern produced by each word presented at a ran-
domly selected location and those produced by open bigrams
and letters. Note that after fixing the position of the training
word, letters and bigrams were presented in the correspond-
ing locations within the word. We then performed a repeated
measure analysis of variance on the mean cosine distance, with
Unit (3 levels: letters, contiguous bigrams, and non-contiguous
bigrams) and Type (2 levels: constituent vs. non-constituent) as
factors. Results (see Figure5) showed significant main effects
of Unit, Fp, 238 = 78.09, p <0.0001, 17 = 0.4, and Type,
Fa, 119) = 23271.38, p < 0.0001, 7112, = 0.99. The interaction was

also significant, F(j.92, 228.62) = 395.31, p < 0.0001, né =0.77
(Huynh-Feldt corrected for sphericity). Paired ¢-tests (Bonferroni
corrected) showed that, for each of the sub-word units, there
was a higher similarity with constituent than non-constituent
units [letters: t(119) = —52.39, p < 0.0001; contiguous bigrams:
t(119) = —118.86, p < 0.0001; non-contiguous bigrams, #119) =
—95.93, p < 0.0001]. For constituent units, non-contiguous
bigrams had higher similarity to the target words with respect
to both single letters [£(119) = 39.49, p < 0.0001] and contigu-
ous bigrams [f(119) = 3.86, p < 0.0001]. Contiguous bigrams
had higher similarity than letters [¢(1;9) = 42.109, p < 0.0001].
For non-constituent units, only single letters showed a sig-
nificant difference from the other sub-word units [contiguous
bigrams, #(119) = —6.64, p < 0.0001; non-contiguous bigrams,
t19) = —4.28, p < 0.0001].

2Cosine distance between patterns X and Y is calculated as 1-cosine (X, Y).
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FIGURE 5 | Pattern analysis on HL3. Mean cosine distance between
internal representations for each word and sub-word units (i.e., letters,
contiguous bigrams, and non-contiguous bigrams). Note that smaller values
index higher similarity between activation patterns. The sub-word unit
showing the highest similarity to the corresponding word was the
non-contiguous bigram, that is the combination of exterior letters (word
edges).

In summary, the activation pattern of each word was more
similar to those of the constituent rather than those of non-
constituent sub-word units. Importantly, among constituent
units, non-contiguous bigrams (i.e., those formed by the first
and last letter) produced an activation pattern that was more
similar to that of the corresponding word in comparison
to both letters and contiguous bigrams. For constituent let-
ters and contiguous-bigrams we performed a further analysis
(i.e., two-tailed paired t-tests, Bonferroni corrected), in order
to establish whether the position of the constituent stimuli
within the word was important. Results revealed no signifi-
cant differences among positions for both letters (first letter:
M = 0.31 £ 0.005 s.e.m., second letter: M = 0.30 % 0.005 s.e.m.,
third letter: M = 0.30 £ 0.004s.e.m.; all ts < 2.01) and con-
tiguous bigrams (first bigram: M = 0.14 £ 0.003 s.e.m., second
bigram: M = 0.13 £ 0.002s.e.m.; ¢t = 1.55). We also assessed
whether the higher similarity of the non-contiguous bigram
pattern to the word pattern with respect to the continuous
bigram patterns would persist when the leftmost and rightmost
word locations (1 and 5) were excluded from the analysis. The
results did not change [non-contiguous vs. contiguous bigrams:
ta19) = 3.71, p < 0.0001].

DISCUSSION

Models of orthographic coding (e.g., Grainger and van Heuven,
2003; Grainger and Whitney, 2004; Gomez et al., 2008; Davis,
2010) share the assumption that visual word recognition is per-
formed through the processing of constituent letters but dif-
fer on how letter position information is coded and whether
the mapping between location-specific (eye-centered) letter cod-
ing and location-invariant word representations requires the
computation of an intermediate orthographic code, such as
open bigrams. A prior attempt to tackle these issues through
a connectionist approach has led to contrasting results. After
training a feedforward neural network with one hidden layer
(using error back-propagation) on the mapping between a
location-specific letter code and location-invariant localist word
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representations, Dandurand et al. (2010) showed computational
evidence supporting the bigram coding hypothesis. However,
subsequent analyses of the hidden layer representations car-
ried out by Hannagan et al. (2011) suggested that in this
network model the mapping does not imply the extrac-
tion of information about letter combinations but it is
based on semi-location-invariant letter representations that are
broadly consistent with the overlap model of Gomez et al.
(2008).

Our current attempt to use connectionist simulations for
cracking the orthographic code is tied to a more general frame-
work suggesting that perceptual invariance can emerge from
unsupervised learning in a hierarchical processing architecture
that extracts increasingly more complex and abstract features
(Hinton, 2007, 2013; Stoianov and Zorzi, 2012; Zorzi et al,,
2013), as well as to the hypothesis that visual word recog-
nition recycles the cortical machinery used for visual object
recognition (Dehaene and Cohen, 2011; Dehaene et al., 2005).
Accordingly, we exploited deep neural networks (Hinton and
Salakhutdinov, 2006) to investigate whether location-invariant
word recognition might emerge from unsupervised learning of
a hierarchical generative model of location-specific letter pat-
terns. Although word-level information (i.e., word identity) was
never provided to the network during training, linear decoding
from the activity of the deepest hidden layer yielded near-perfect
accuracy in location-invariant word recognition. In contrast,
decoding accuracy from lower HLs showed a sharp and pro-
gressive decrease, with a pattern of errors suggesting that letter
position information was not coded in a location-invariant way.
Indeed, the majority of the word decoding errors, especially
at the second hidden layer, consisted of transposition errors.
This finding is consistent with the transposition priming effect,
as predicted by both letter-based (e.g., Gomez et al., 2008;
Davis, 2010) and open bigram (e.g., Grainger and van Heuven,
2003; Grainger and Whitney, 2004) models of orthographic
coding.

We then carried out a series of analyses to investigate the
nature of the orthographic representations emerged at the dif-
ferent HLs. Analysis on single neurons showed that only the
deepest layer of the deep network contained neurons that
were both word selective and location-invariant. Interestingly,
some word-selective neurons found at the second hidden layer
were tuned to specific word locations. These results are in
line with those provided by the decoding analysis and con-
firm that linear decoding of hidden layer activity is an helpful
method for investigating the internal representations emerged
in a deep network model. Notably, the single neuron anal-
ysis showed that bigrams did not emerge as unit of repre-
sentation in the network. This finding fits well the results of
Hannagan et al. (2011) in their re-analysis of the Dandurand
et al. (2010) model and it is broadly consistent with letter-
based models of orthographic coding (Gomez et al., 2008;
Davis, 2010). It is worth noting that learning a generative
model is equivalent to discovering efficient ways of coding the
input data (Ghahramani et al, 1999); this suggests that the
information carried by bigrams is not necessary for efficient

orthographic coding, at least in the context of the highly con-
strained training set employed in the present study (see further
discussion below).

In a final set of analyses, we recorded the activation patterns
over the deepest hidden layer produced by each word and com-
pared them to those produced by letters and bigrams. This anal-
ysis provides a measure of similarity between internal represen-
tations that can be readily interpreted in terms of priming effect.
Not surprisingly, constituent letters and bigrams (including non-
contiguous bigrams) had an advantage over non-constituent
ones. Moreover, constituent bigrams had an advantage over con-
stituent letters, which is also expected due the increasing ortho-
graphic overlap (i.e., two letters vs. one letter). Interestingly, we
also found a significant greater similarity for non-contiguous
bigrams (i.e., those formed by the first and last letter) over con-
tiguous bigrams. The advantage for non-contiguous bigrams per-
sisted when the extreme word locations (1 and 5) were excluded
from the analysis. The superiority of non-contiguous bigrams
with respect to the other constituent stimuli might be interpreted
as an index of the edge effect (Fischer-Baum et al., 2011), that
is the superiority of the first and last letters for coding words as
a sequence of ordered letters, observed using the illusory word
paradigm. Fischer-Baum and colleagues argued that the edge
effect supports an orthographic coding scheme in which the
beginning and the end letters of a word act as anchoring points.
Though several models assume that the exterior letters have spe-
cial status in orthographic coding (e.g., Gomez et al., 2008; Davis,
2010), our model shows that this aspect is an emergent prop-
erty that does not require additional mechanisms or specific
parameters.

In conclusion, our study shows that location-invariant visual
word recognition can emerge from unsupervised learning in a
neural network with a deep (hierarchical) architecture. Our deep
network model extracted increasingly more complex and abstract
orthographic features across layers. Moreover, our analyses show
that the emergent orthographic code is not based on bigrams
and it assigns special status to the exterior letters (word edges).
Although restricting our simulations to an artificial dataset of 3-
letter strings is indeed an important limit of the current study,
this allowed us to investigate orthographic coding in a simpli-
fied and tightly controlled way. Future extensions of this work
will therefore focus on scaling-up the training dataset and on
testing the model on a corpus of real words. For example, it
cannot be excluded that the distributional statistics of letters in
real words, whereby some letter combinations have higher fre-
quency than others, might lead to the emergence of sub-word
units like bigrams (see Dandurand et al., 2011, for analyses of
English, French and Spanish word corpora). Nevertheless, we
believe that our preliminary findings pave the way for a better
understanding of how orthographic representations can emerge
through unsupervised learning within a sound probabilistic
framework.
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