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This article presents a quantitative model comparison contrasting the process predictions
of two prominent views on risky choice. One view assumes a trade-off between
probabilities and outcomes (or non-linear functions thereof) and the separate evaluation
of risky options (expectation models). Another view assumes that risky choice is based
on comparative evaluation, limited search, aspiration levels, and the forgoing of trade-offs
(heuristic models). We derived quantitative process predictions for a generic expectation
model and for a specific heuristic model, namely the priority heuristic (Brandstätter et al.,
2006), and tested them in two experiments. The focus was on two key features of
the cognitive process: acquisition frequencies (i.e., how frequently individual reasons are
looked up) and direction of search (i.e., gamble-wise vs. reason-wise). In Experiment 1, the
priority heuristic predicted direction of search better than the expectation model (although
neither model predicted the acquisition process perfectly); acquisition frequencies,
however, were inconsistent with both models. Additional analyses revealed that these
frequencies were primarily a function of what Rubinstein (1988) called “similarity.” In
Experiment 2, the quantitative model comparison approach showed that people seemed
to rely more on the priority heuristic in difficult problems, but to make more trade-offs in
easy problems. This finding suggests that risky choice may be based on a mental toolbox
of strategies.
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In human decision making research, there are two major views
on how people decide when faced with risky options (see Payne,
1973; Lopes, 1995). According to the first view, people evaluate
risky options in terms of their expectation, that is, the weighted
(by probability) average of the options’ consequences. Prominent
theories of risky choice (both past and present) such as expected
value (EV) theory, expected utility (EU) theory, and prospect
theory (Kahneman and Tversky, 1979) all belong to the fam-
ily of expectation models. According to the second view, people
choose between risky options using heuristics. A heuristic is a
cognitive strategy that ignores part of the available information
and limits computation. The heuristics view acknowledges that
the decision maker is bounded by limits in his or her capacity
to process information (Simon, 1955) and therefore often relies
on simplifying principles to reduce computational demands (e.g.,
Tversky, 1969; Coombs et al., 1970; Payne et al., 1993). Following
this view, Brandstätter et al. (2006) proposed the priority heuris-
tic as an alternative account for several classic violations of EU
theory (see below), which have usually been explained by modi-
fying EV theory but retaining the expectation calculus. Whereas
expectation models assume the weighting and summing of all
information, the priority heuristic assumes step-wise comparison

processes and limited search (for a discussion, see Vlaev et al.,
2011)1.

How well do these two views—expectation models vs. mod-
els of heuristics—fare in capturing how people choose between
risky options? Payne and Venkatraman (2011) have pointed out
that the traditional focus in economics and in much psychologi-
cal research has been on what decisions are made rather than how

1In this article we assume a deliberate decision process, as process studies
of risky choice as well as most comparative tests of the priority heuristic
have focused on models based on deliberate and serial information pro-
cessing (Payne and Braunstein, 1978; Rieger and Wang, 2008; Birnbaum,
2008a; Glöckner and Betsch, 2008a). However, note that some recent analy-
ses have also considered the possible role of automatic integration processes
in risky choice. One such model is decision field theory (DFT; Busemeyer and
Townsend, 1993). DFT also generates an expectation-based evaluation, but
does so based on a sequential sampling process, rather than by weighting. In a
study involving time pressure, Glöckner and Herbold (2011) found some pro-
cess evidence supporting the predictions of automatic models. As quantitative
process predictions—the focus of this article—have not yet been elaborated
for these models, however, we refrain from considering them here. We fur-
ther elaborate on models assuming automatic integration in the General
Discussion.
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they are made. They listed several benefits of a better understand-
ing of the processes involved (see also Svenson, 1979; Einhorn
and Hogarth, 1981; Berg and Gigerenzer, 2010): for instance, one
of the most important findings in behavioral decision research—
the dependency of people’s choices on task and context variations
(e.g., Payne, 1976; Thaler and Sunstein, 2008)—will be better
understood based on process models that predict how the order
of reasons and other task features influence a choice (Payne et al.,
1993; Todd et al., 2012). Relatedly, the prediction of individual
differences in decision making will be enhanced if their model-
ing is not restricted to the behavioral level, but encompasses the
process level as well. Finally, having accurate process models is
crucial for improving decision making (cf. Schulte-Mecklenbeck
et al., 2011).

In order to investigate the relative merits of the expectation
and the heuristics views in describing the cognitive processes, we
suggest two important methodological principles. First, because
all models are idealizations and inevitably deviate from real-
ity, model tests should be comparative (e.g., Lewandowsky and
Farrell, 2010). Comparative tests enable researchers to evalu-
ate which of several models fares better in accounting for the
data (Neyman and Pearson, 1933; see also Gigerenzer et al.,
1989; Pachur, 2011). Second, in addition to testing qualitative
model predictions, it can also be informative to test quantitative
predictions (Bjork, 1973), thus increasing the models’ empiri-
cal content (Popper, 1934/1968). In this article, we provide an
illustration of how quantitative process predictions of compet-
ing models of risky choice can be derived and pitted against each
other.

In the following, we describe the expectation and heuristic
approaches to modeling risky choice, summarize previous process
investigations—including evidence for expectation models and
heuristics—and finally derive quantitative process predictions for
a generic expectation model and for a specific heuristic model, the
priority heuristic. These predictions are then pitted against each
other in two experiments. To preview one of our major findings:
The results of the process tests indicate that one frequently used
process measure, namely acquisition frequencies (defined as the
frequency with which different reasons are inspected), appears to
be only weakly (if at all) linked to how much weight people put
on the reasons. In additional analyses, we found that acquisition
frequencies are instead a function of the similarity of the options
in a problem (cf. Rubinstein, 1988; Mellers and Biagini, 1994).

TWO VIEWS TO RISKY CHOICE: EXPECTATION MODELS vs.
HEURISTICS
Since the Enlightenment, a key concept for understanding deci-
sion making under risk has been that of mathematical expec-
tation, which at the time was believed to capture the nature
of rational choice (Hacking, 1975). Calculating the expectation
of a risky option involves examining the options’ consequences
and their probabilities, as well as weighting (multiplying) each
consequence with its probability. This view is implemented in
EV theory as well as in EU theory (which assumes the same
process as EV theory, but replaces objective monetary amounts
with subjective values). The view that people make risky choices
based on expectation has been embraced by both normative and

descriptive theories of risky choice (e.g., Kahneman and Tversky,
1979; Tversky and Kahneman, 1992; Birnbaum and Chavez, 1997;
Mellers, 2000). Henceforth, we refer to models in this tradition as
expectation models (see Payne, 1973).

Although the most time-honored expectation models—EV
theory and EU theory—were soon found to be descriptively
wanting, model modifications were proposed that are able to
accommodate people’s behavior while maintaining the core of
expectation models (for an overview, see Wu et al., 2004)—for
instance, (cumulative) prospect theory (Kahneman and Tversky,
1979; Tversky and Kahneman, 1992), the transfer-of-attention-
exchange model (Birnbaum and Chavez, 1997), and decision-
affect theory (Mellers, 2000). Expectation models have sometimes
been interpreted as being mute as regards the processes under-
lying choice (e.g., Edwards, 1955; Gul and Pesendorfer, 2005).
When taken at face value, however, they do have process impli-
cations that can be and have been spelled out (e.g., Russo and
Dosher, 1983; Brandstätter et al., 2008; Cokely and Kelley, 2009;
Glöckner and Herbold, 2011; Su et al., 2013). At the very least,
expectation models imply two key processes: weighting and sum-
ming. Payne and Braunstein (1978) described the weighting
(multiplication) and summing (adding) core of EV as follows:

Each gamble in a choice set is evaluated separately. For each
gamble, the probability of winning and the amount to win are
evaluated (multiplicatively) and then the probability of losing and
the amount to lose are evaluated (multiplicatively), or vice versa.
The evaluations of the win and lose components of the gamble
are then combined into an overall value using an additive rule, or
some simple variant. (p. 554).

Although modifications of EV theory such as prospect theory
have introduced psychological variables such as reference points
and subjective probability weighting, all of these modifications
retain EV theory’s assumption that human choice can or should
be modeled based on the exhaustive weighting and summing pro-
cesses that give rise to a compensatory decision process (e.g., in
which a low probability of winning can be compensated by a high
possible gain).

An alternative view of risky choice starts with the premise that
people often do not process the given information exhaustively,
but rely on simplifying heuristics (Savage, 1951; Tversky, 1969;
Payne et al., 1993). Indeed, there is considerable evidence for peo-
ple’s use of heuristics in inferences under uncertainty (e.g., Pachur
et al., 2008; García-Retamero and Dhami, 2009; Bröder, 2011;
Gigerenzer et al., 2011; Pachur and Marinello, 2013), in deci-
sions under certainty (e.g., Ford et al., 1989; Schulte-Mecklenbeck
et al., in press), as well as in decisions under risk (e.g., Slovic and
Lichtenstein, 1968; Payne et al., 1988; Cokely and Kelley, 2009;
Venkatraman et al., 2009; Brandstätter and Gussmack, 2013;
Pachur and Galesic, 2013; Su et al., 2013). This evidence is consis-
tent with the argument that people find trade-offs—the very core
of expectation models—difficult to execute, both cognitively and
emotionally (Hogarth, 1987; Luce et al., 1999).

Many (but not all) heuristics forego trade-offs. One class
of heuristics escapes trade-offs by statically relying on just one
reason (attribute, cue). The minimax heuristic is an example: it
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chooses the option with the better of the two worst outcomes,
ignoring its probabilities as well as the best outcomes (Savage,
1951). A second class of heuristics processes several reasons in
a lexicographic order (Menger, 1871/1990). Unlike minimax,
these heuristics search through several reasons, stopping at the
first reason that enables a decision (Fishburn, 1974; Thorngate,
1980; Gigerenzer et al., 1999). The priority heuristic (Brandstätter
et al., 2006), which is related to lexicographic semi-orders (Luce,
1956; Tversky, 1969), belongs to this class. Its processes include
established psychological principles of bounded rationality (see
Gigerenzer et al., 1999), such as sequential search, stopping rules,
and aspiration levels. The priority heuristic assumes that prob-
abilities and outcomes are compared between options, rather
than integrated within options (as the weighting and summing
operations suggest). For choices between two-outcome options
(involving only gains), the priority heuristic proceeds through the
following steps:

PRIORITY RULE
Go through reasons in the order of: minimum gain, probability
of minimum gain, and maximum gain.

STOPPING RULE
Stop examination if the minimum gains differs by 1/10 (or more)
of the maximum gain; otherwise, stop examination if probabili-
ties differ by 1/10 (or more) of the probability scale. (To estimate
the aspiration level, numbers are rounded up or down toward the
nearest prominent number; see Brandstätter et al., 2006).

DECISION RULE
Choose the option with the more attractive gain (probability).

For losses, the heuristic remains the same, except that “gains”
are replaced by “losses.” The heuristic has also been generalized to
choice problems with more than two outcomes (with the proba-
bility of the maximum outcome being included as the fourth and
final reason) and to mixed gambles (see Brandstätter et al., 2006).

Due to its stopping rule, the priority heuristic terminates
search after one, two, or three reasons (see the priority rule),
depending on the choice problem. Henceforth, we will refer to
choice problems where the heuristic stops after one, two, or three
reasons as one-reason choices, two-reason choices, and three-reason
choices, respectively (see Johnson et al., 2008).

EMPIRICAL EVIDENCE FOR EXPECTATION MODELS AND
HEURISTICS IN RISKY CHOICE
How successful are the two views—models in the expectation
tradition and heuristics—in capturing how people make risky
choices? Expectation models have been successful in accounting
for several established phenomena in people’s overt choices (e.g.,
Kahneman and Tversky, 1979; but see Birnbaum, 2008b). For
instance, they can account for classic violations of EV theory and
EU theory, such as the certainty effect, the reflection effect, the
fourfold pattern, the common consequence effect, and the com-
mon ratio effect. Moreover, they have proved useful in mapping
individual differences (Pachur et al., 2010; Glöckner and Pachur,
2012).

Nevertheless, when researchers turned to examining the pro-
cesses underlying risky choice, the common conclusion was that
people do not comply with the process predictions of expecta-
tion models. For instance, “search traces in general were far less
complex than would be expected by normative models of deci-
sion making. Instead, we found many brief search sequences”
(Mann and Ball, 1994, p. 135; for similar conclusions, see Payne
and Braunstein, 1978; Russo and Dosher, 1983; Arieli et al.,
2011; Su et al., 2013). Moreover, whereas expectation models
predict that transitions should occur mainly between reasons
within an option (to compute its expectation), empirical find-
ings have shown that transitions between options and across
reasons are rather balanced and that the latter are sometimes
even more prevalent—indicative of heuristic processes (Rosen
and Rosenkoetter, 1976; Payne and Braunstein, 1978; Russo and
Dosher, 1983; Mann and Ball, 1994; Lohse and Johnson, 1996).
In addition, past research often observed variability across gamble
problems in the amount of information examined, which has also
been interpreted as hints at people’s use of non-compensatory
heuristics (e.g., Payne and Braunstein, 1978; Russo and Dosher,
1983; Mann and Ball, 1994; cf. Slovic and Lichtenstein, 1968). In
a recent eye-tracking investigation of risky choice, Su et al. (2013)
observed that people’s information acquisition patterns deviated
strongly from those found when they followed a weighting-and-
adding process and were instead more in line with a heuristic
process.

Consistent with these findings, several analyses have pro-
vided support for the priority heuristic as a viable alterna-
tive to expectation models. First, it has been shown that the
priority heuristic logically implies several classic violations of
EU theory—including the common consequence effect, com-
mon ratio effects, the reflection effect, and the fourfold pat-
tern of risk attitude (see Katsikopoulos and Gigerenzer, 2008,
for proofs). In addition, Brandstätter et al. (2006) showed
that the priority heuristic can account for the certainty effect
(Kahneman and Tversky, 1979) and intransitivities (Tversky,
1969). Second, across four different sets with a total of 260
problems, the priority heuristic predicted the majority choice
better than each of three expectation models (including cumu-
lative prospect theory) and ten other heuristics (Brandstätter
et al., 2006). Further, in verbal protocol analyses Brandstätter and
Gussmack (2013) found that people most frequently mentioned
the reason that determines the choice according to the priority
heuristic.

Nevertheless, several studies have also found clear evidence
conflicting with the predictions of the priority heuristic (e.g.,
Birnbaum and Gutierrez, 2007; Birnbaum, 2008a; Birnbaum
and LaCroix, 2008; Rieger and Wang, 2008; Rieskamp, 2008;
Ayal and Hochman, 2009; Glöckner and Herbold, 2011). Fiedler
(2010), for instance, observed that people’s preferences between
options were sensitive to information that according to the prior-
ity heuristic should be ignored. Moreover, Glöckner and Pachur
(2012) reported that the priority heuristic was outperformed
by cumulative prospect theory in predicting individual choice
(rather than majority choice, as in Brandstätter et al., 2006).
Furthermore, it has been argued that people do not prioritize
their attention in the way predicted by the priority heuristic
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(Glöckner and Betsch, 2008a; Hilbig, 2008). Based on a fine-
grained process analysis, Johnson et al. (2008) reported 28 tests
of the priority heuristic; 11 were in the direction predicted by the
heuristic, whereas 3 were in the opposite direction and 14 were
not significant (see their Tables 1 and 2 on p. 268 and p. 269,
respectively). From this result, Johnson et al. concluded that the
priority heuristic fails to predict major characteristics of people’s
acquisition behavior.

What do these findings mean for the heuristics view of risky
choice? Many authors reporting findings inconsistent with the
predictions of the priority heuristic have concluded that peo-
ple follow a compensatory mechanism (e.g., Johnson et al.,
2008; Rieskamp, 2008; Ayal and Hochman, 2009; Glöckner and
Herbold, 2011; but see Fiedler, 2010)—even though authors such
as Slovic and Lichtenstein (1971) long ago concluded that people
“have a very difficult time weighting and combining information”
(p. 724). Importantly, however, only few previous process tests of
the priority heuristic have directly compared the priority heuristic
with the predictions of a compensatory mechanism (Brandstätter
et al., 2008; Glöckner and Herbold, 2011). Moreover, as no
model can capture psychological processes perfectly, the ques-
tion is not so much whether a precise process model deviates
from the observed data—it always will—but how large the devi-
ation is relative to an alternative model. Therefore, the priority
heuristic and expectation models should also be tested in a quan-
titative model comparison (Lewandowsky and Farrell, 2010).
To make progress toward this goal, we next demonstrate how
quantitative process predictions can be derived from the prior-
ity heuristic and expectation models and then test them against
each other2.

MODELING RISKY CHOICE: QUANTITATIVE PROCESS
PREDICTIONS
Previous investigations of the cognitive processes underlying
risky choice have rarely derived quantitative predictions for dif-
ferent models and tested them comparatively (for an excep-
tion, see Payne et al., 1988). Instead, process data have been
related to existing models in a qualitative rather than quanti-
tative fashion, focusing on relatively coarse differences (such as
reason-wise or gamble-wise information search, and compen-
satory or non-compensatory information processing; e.g., Rosen
and Rosenkoetter, 1976; Ford et al., 1989; Mann and Ball, 1994; Su
et al., 2013). It is only recently that process data have been directly
used to test specific models of risky choice (Johnson et al., 2008),
and few investigations have pitted the predictions of several mod-
els against one another (Brandstätter et al., 2008; Glöckner and
Herbold, 2011).

What are the process implications of expectation models
and the priority heuristic? The deliberate determination of an
expectation requires weighting and summing processes of all
information, as described by Payne and Braunstein (1978; see

2Extending previous process tests of the priority heuristic, our tests include
both gain and loss problems (Glöckner and Betsch, 2008a; Johnson et al.,
2008; Glöckner and Herbold, 2011, used only gain problems) and problems
representing one-, two-, and three-reason choices according to the priority
heuristic (Johnson et al. focused on one- and three-reason choices).

above). This holds across all models that have an expectation core;
in this article, we therefore compare the process predictions of a
generic expectation model against those of the priority heuris-
tic. The priority heuristic does not weigh and sum, but assumes
a sequential search process that is stopped once an aspiration
level is met. The key differences between the priority heuristic
and the expectation model can be operationalized in terms of
two commonly examined features of cognitive search: frequency
of acquisition and direction of search. [In the following analysis,
we consider the priority heuristic without the preceding step of
trying to find a no-conflict solution (Brandstätter et al., 2008).
Including that step would require auxiliary assumptions about
cognitive processes that need to be based on evidence. This evi-
dence is currently not available]. We measure both features of
cognitive search using the widely used process-tracing method-
ology Mouselab (Payne et al., 1993; Willemsen and Johnson,
2011). Information about the options (i.e., outcomes and prob-
abilities) is concealed behind boxes on a computer screen, but
can be rendered visible by clicking on those boxes. As a cau-
tionary note, we should emphasize that current process models
of risky choice are underspecified with regard to the memory,
motor, and attention processes. Therefore, the predictions derived
here are based on simplifications and should be regarded as a
first step toward a complete account of the cognitive processes
involved.

FREQUENCY OF ACQUISITION
The frequency of acquisition of a reason is measured as the num-
ber of times people inspect the information (e.g., by opening
the respective box in Mouselab). To derive quantitative predic-
tions, we assumed for all models an initial reading phase during
which all boxes are examined once. Such an initial reading phase,
in which the stimuli are encoded, is a common assumption
in models of risky choice (e.g., Kahneman and Tversky, 1979;
Goldstein and Einhorn, 1987). We calculated for each reason (e.g.,
minimum gains, probability of minimum gains) the relative fre-
quency of acquisitions: the absolute number of acquisitions as
predicted by the expectation model and the priority heuristic,
respectively, divided by the total number of acquisitions, sepa-
rately for one-, two-, and three-reason choices. As we collapsed
across gain and loss problems, maximum gains and maximum
losses will be referred to as “maximum outcomes,” and mini-
mum gains and minimum losses as “minimum outcomes.” The
predicted acquisition frequencies for each reason are shown in
Appendix A. For instance, the priority heuristic predicts that 20%
of all acquisitions in one-reason choices apply to the maximum
outcomes (all of which are due to the reading phase), relative
to 40% to the minimum outcomes. The expectation model, in
contrast, predicts that the acquisition frequencies for the two
reasons—or, more generally, for all reasons—are the same (25%;
see Brandstätter et al., 2008; Glöckner and Herbold, 2011). As
found by Su et al. (2013), people indeed inspect all information
equally frequently when following an expectation-based strategy.
The priority heuristic predicts five systematic deviations from this
uniform distribution of acquisition frequencies (Table 1). Here,
we focus on those following directly from the priority heuristic’s
stopping rule.
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Table 1 | Tests of the relative acquisition frequencies predicted by the Priority Heuristic (PH) and modifications of expected utility theory

(Expectation Model; EM) in Experiment 1.

Acquisition frequencies compared Prediction Data Model supported

PH EM Ms (%) Test statistic

O vs. P Or = 1 > Pr = 1 Or = 1 = Pr = 1 57.1 > 42.9 t(479) = 12.7, p = 0.001 Priority heuristic

Or = 3 > Pr = 3 Or = 3 = Pr = 3 55.5 > 44.5 t(239) = 6.8, p = 0.001 Priority heuristic

Omax vs. Omin Omax
r = 1 < Omin

r = 1 Omax
r = 1 = Omin

r = 1 28.2 = 28.8 t(479) = −0.81, p = 0.42 Expectation model

Omax
r = 2 < Omin

r = 2 Omax
r = 2 = Omin

r = 2 30.3 > 25.2 t(239) = 4.8, p = 0.001 Neither

Pmax vs. Pmin Pmax
r = 2 < Pmin

r = 2 Pmin
r = 2 = Pmax

r = 2 25.5 > 19.0 t(239) = 4.7, p = 0.001 Neither

Pmax
r = 3 < Pmin

r = 3 Pmin
r = 3 = Pmax

r = 3 24.2 > 19.6 t(239) = 3.3, p = 0.001 Neither

Omax
r = 1, Omax

r = 2 vs. Omax
r = 3 Omax

r = 1 < Omax
r = 3 Omax

r = 1 = Omax
r = 3 28.2 < 31.2 t(718) = −3.8, p = 0.001 Priority heuristic

Omax
r = 2 < Omax

r = 3 Omax
r = 2 = Omax

r = 3 30.3 = 31.2 t(478) = −1.0, p = 0.30 Expectation model

Pmin
r = 1 vs. Pmin

r = 2, Pmin
r = 3 Pmin

r = 1 < Pmin
r = 2 Pmin

r = 1 = Pmin
r = 2 22.7 > 19.0 t(718) = 3.5, p = 0.001 Neither

Pmin
r = 1 < Pmin

r = 3 Pmin
r = 1 = Pmin

r = 3 22.7 > 19.6 t(718) = 2.9, p = 0.004 Neither

O, outcomes; P, probabilities. Maximum and minimum outcomes and their probabilities are denoted as Omax , Omin, Pmax , and Pmin, respectively. The rs in the

subscripts refer to one- (r = 1), two- (r = 2), and three-reason (r = 3) choices.

First, the heuristic predicts that, in one- and three-reason
choices, outcomes are looked up more frequently than proba-
bilities. More precisely, the relative acquisition frequencies for
outcomes should be 60/40 = 1.5 times higher than for proba-
bilities in one-reason choices, and 57.2/42.9 = 1.33 times higher
in three-reason choices. Second, in one- and two-reason choices,
the acquisition frequencies for the minimum outcomes are pre-
dicted to be higher (specifically, twice as high) than those for the
maximum outcomes. The reason is that in one- and two-reason
choices maximum outcomes are not examined after the reading
phase. This also implies that, third, the relative acquisition fre-
quencies for the maximum outcomes are predicted to be higher
in three-reason than in one- and two-reason choices (1.4 and
1.7 times higher, respectively). Fourth, the acquisition frequencies
for the probabilities of the minimum outcomes should be higher
than those for the probabilities of the maximum outcomes in two-
and three-reason choices (twice as high). This follows from the
fact that whereas the probabilities of the minimum outcomes are
looked up in two- and three-reason choices, the probabilities of
the maximum outcomes are examined only in choice problems
with more than two outcomes. Finally, the acquisition frequen-
cies for the probabilities of the minimum outcomes are predicted
to be higher in two- and three- than in one-reason choices (1.7
and 1.4 times higher, respectively).

Note that we did not consider the hypothesis Omin
r = 1 < Omin

r = 3
tested by Johnson et al. (2008; see their Table 2) because the pri-
ority heuristic in fact does not make that prediction. As one-
and three-reason choices differ only in terms of the acquisitions
(in the choice phase) of the maximum outcome and the prob-
ability of the minimum outcome, the priority heuristic predicts
that the absolute acquisition frequencies for the minimum out-
comes do not differ between one- and three-reason choices (as
does the expectation model). For the relative number of acquisi-
tions of the minimum outcome, the priority heuristic predicts a
decrease across one-, two-, and three-reason choices, respectively
(see Appendix A).

DIRECTION OF SEARCH
Direction of search is defined by the sequence of transitions
between subsequent acquisitions. The priority heuristic and the
expectation model differ in their predictions of how search
proceeds through the reasons. The priority heuristic searches
sequentially in a particular order, compares the gambles on the
respective reasons, and stops after one, two, or three reasons
(depending on the structure of the choice problem). The expec-
tation model, in contrast, looks up all information for each
gamble and integrates them. Therefore, it predicts more tran-
sitions within each gamble than the priority heuristic. Table 2
lists both models’ exact quantitative transition probabilities (sep-
arately for one-, two-, and three-reason choices), as derived
by Brandstätter et al. (2008). As for the acquisition frequen-
cies, an initial reading phase is assumed in which all boxes are
examined once (the predictions in Table 2 are collapsed across
the reading phase and the choice phase; see Appendix A for
the derivation of the predictions in greater detail). The predic-
tions are formulated in terms of the percentages of outcome-
probability transitions (i.e., transitions from an outcome to its
corresponding probability), other within-gamble transitions, and
within-reason transitions (e.g., from the minimum outcome of
Gamble A to the minimum outcome of Gamble B) that the pri-
ority heuristic and the expectation model, respectively, expect to
occur.

As pointed out by Johnson et al. (2008), predictions about
transition probabilities are sensitive to the assumptions made.
Specifically, Brandstätter et al. (2008) made the simplifying
assumption that people initially read each piece of information
once, first for gamble A, then for gamble B. The alternative would
be that information is always read from left to right, indepen-
dently of how the gambles are presented. In additional analyses
reported in Appendix B, we tested this alternative assumption and
found that the performance of the expectation model and the pri-
ority heuristic decreased. Therefore, the original assumption is
retained here.
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Table 2 | Predicted and observed transition percentages for the

reading and choice phases combined in Experiments 1 and 2 (for

Experiment 2, percentages are given separately for easy/difficult

problems).

r = 1 r = 2 r = 3

OUTCOME-PROBABILITY TRANSITIONS

Predictions

Priority heuristic 50 50 42
Expectation model 57 57 57
Random search 14.29 14.29 14.29

Results

Experiment 1 36.2 37.5 35.4
Experiment 2 – 43.2/42.8 –

OTHER WITHIN-GAMBLE TRANSITIONS

Predictions

Priority heuristic 25 20 25
Expectation model 29 29 29
Random search 28.57 28.57 28.57

Results

Experiment 1 19.0 19.4 17.2
Experiment 2 – 18.8/16.4 –

WITHIN-REASON TRANSITIONS

Predictions

Priority heuristic 25 30 33
Expectation model 14 14 14
Random search 14.29 14.29 14.29

Results

Experiment 1 24.4 23.2 25.6
Experiment 2 – 18.9/21.7 –

See Appendix A for detailed description of the derivation. r = number of reasons

inspected by the priority heuristic. Note that the observed transition percent-

ages do not add up to 100 as participants also made transitions that were

both between-reasons and between-gambles. Such transitions, which could, for

instance, be due to noise, are not predicted by the models. For the derivations of

the predictions under random search, it was assumed that transitions between

all boxes were equally likely. This yielded 42.86% transitions that were both

between-reasons and between-gambles.

We employed the search measure (SM) proposed by
Böckenholt and Hynan (1994) to combine the transition percent-
ages into an aggregate measure:

SM =
√

N((GR/N)(ngamble − nreason) − (R − G))√
G2(R − 1) + R2(G − 1)

, (1)

where G is the number of gambles in a choice problem (two in
our experiments), R is the number of reasons (four in our experi-
ments), N is the total number of transitions, nreason is the number
of reason-wise transitions, and ngamble is the number of gamble-
wise transitions (see Appendix C for details). A negative value of
SM indicates predominantly reason-wise search, and a positive
value predominantly gamble-wise search. Figure 1 shows the pre-
dicted SM values for the expectation model (thick gray line) and
the priority heuristic (thick black line), separately for one-reason,
two-reason, and three-reason choices (also shown are the pre-
dictions under random search, to which we turn below). As can
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FIGURE 1 | Predicted and observed SM index (for reading and choice

phases combined) in Experiments 1 and 2, separately for one-reason

(r = 1), two-reason (r = 2), and three-reason (r = 3) choices. The error
bars represent standard errors of the mean.

be seen, there are two SM predictions. First, the priority heuris-
tic predicts systematically lower SM values (i.e., less gamble-wise
processing) than does the expectation model. Second, the pri-
ority heuristic predicts SM values to decrease as more reasons
are looked up: As more reasons are inspected, the contribution
of the mainly gamble-wise reading phase to the overall direction
of search decreases in relation to that of the mainly reason-wise
choice phase.

In the following, we report two experiments that test these
process predictions derived from the priority heuristic and the
expectation model. In Experiment 1, participants were presented
with “difficult” choice problems—that is, choice problems with
options having similar expected values (we will define choice dif-
ficulty below). In Experiment 2, each participant was presented
with both difficult and easy choice problems, allowing us to exam-
ine the hypothesis (Brandstätter et al., 2006; cf. Payne et al., 1993)
that people use different strategies depending on characteristics
of the environment.

EXPERIMENT 1: HOW WELL DO THE PRIORITY HEURISTIC
AND THE EXPECTATION MODEL PREDICT PROCESS DATA?
METHODS
Participants
Forty students (24 female, mean age 27.4 years) from Berlin uni-
versities participated in the experiment, which was conducted at
the Max Planck Institute for Human Development. Participants
received a fixed hourly fee of C10. One of the gambles cho-
sen by the participants was randomly selected, played out at the
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conclusion of the experiment and the average outcome was con-
verted into a cash amount (with a factor of 10:1). On average, each
participant received an additional amount of C4. Participants
took around 55 min to complete the experiment.

Material
We used 24 binary choice problems consisting of two-outcome
gambles (Appendix D). In each problem, the two gambles had
similar expected values. Six of the 24 problems were taken from
Kahneman and Tversky (1979), five from Brandstätter et al.
(2006); the rest were constructed such that there were (i) the same
number of gain and loss problems, and (ii) 12 of the 24 prob-
lems represented one-reason choices (i.e., problems for which
the priority heuristic predicts that only the first reason will be
looked up), 6 represented two-reason choices, and 6 represented
three-reason choices.

Design and procedure
In a programmed Mouselab task (Czienskowski, 2006), each par-
ticipant was presented with the 24 choice problems one at a
time and in randomized order. Information about the options
(i.e., the four reasons) was concealed behind boxes (Figure 2).
Labels placed next to the boxes indicated the type of information
available, such as “higher value”, “lower value”, and “probabil-
ity 3.” For gain gambles, the higher and lower values were the
maximum and minimum gains, respectively. For loss gambles,
the higher and lower values were the minimum and maximum
losses, respectively. Participants could open a box by clicking
on it, and the information was visible for as long as the mouse

3Note that in some Mouselab studies on risky choice only the alternatives
were labeled, but not the reasons (Johnson et al., 2008), potentially gener-
ating a bias toward alternative-wise search. To avoid such a bias, we followed
the procedure used in the large majority of Mouselab-type studies on multiat-
tribute choice (e.g., Bettman et al., 1990; Franco-Watkins and Johnson, 2011)
and probabilistic inference (e.g., Newell and Shanks, 2003), in which both the
alternatives and the reasons were labeled.

FIGURE 2 | Screenshot of the Mouselab program used in the

experiments.

was pressed. Participants were informed that they could acquire
as much information as they needed to make a choice. The
experimental protocol used can be found in Appendix E. We
counterbalanced the different locations of the boxes on the screen
across participants. Five participants were randomly assigned to
each of eight presentation conditions (i.e., horizontal vs. verti-
cal set-up × higher vs. lower value presented first × outcome
information first vs. probability information first). There were
no monetary search costs. Participants familiarized themselves
with the Mouselab paradigm by performing nine practice trials.
To examine the reliability of individual choice behavior, we pre-
sented participants with a subset of the gamble problems (see
Appendix D) again, using a paper-and-pencil format. An interval
of around 45 min separated the Mouselab and the paper-and-
pencil tasks, during which participants performed an unrelated
experiment.

RESULTS
In a first step, we examine the ability of the priority heuristic and
the expectation model to predict people’s choices. We then test
the models’ process predictions against the observed acquisition
frequencies and direction of search.

Choices
Each individual’s choices in those problems that were included
in both the Mouselab and the paper-and-pencil tasks showed
an average (Fisher transformed) correlation between the two
measurements of r = 0.26, t(39) = 4.61, p = 0.001 (one-sample
t-test using the z-transformed individual rs). Note, however, that
given that this analysis was based on only a subset of the prob-
lems used in the Mouselab task and different methods were
used to collect people’s preferences (computer vs. paper-and-
pencil) this estimate of people’s choice reliability might only be
approximate. Next, we tested three expectation models [cumu-
lative prospect theory (Tversky and Kahneman, 1992), security-
potential/aspiration theory (Lopes and Oden, 1999), and the
transfer-of-attention-exchange model (Birnbaum and Chavez,
1997)], and, in addition to the priority heuristic, 10 other heuris-
tics (equiprobable, equal-weight, better-than-average, tallying,
probable, minimax, maximax, lexicographic, least-likely, and
least-likely; see Brandstätter et al., 2006, for a detailed description
of each model). Following previous comparisons of expectation
models and heuristics, we determined the proportion of choices
correctly predicted by each model (e.g., Brandstätter et al., 2006;
Glöckner and Pachur, 2012). As described in Appendix F, to
derive the choice predictions of the expectation models we used
parameter sets obtained in previous published studies, which
is a common approach in the literature on risky choice (e.g.,
Brandstätter et al., 2006; Birnbaum and Bahra, 2007; Birnbaum,
2008b; Glöckner and Betsch, 2008a; Su et al., 2013) 4. A more

4An alternative approach would be to estimate the free parameters of the
expectation models and to compare all models using a model selection mea-
sure such as the Bayesian Information Criterion (BIC), which takes into
account the higher flexibility of the expectation models due to the free param-
eters. We did not use this approach because the calculation of a BIC requires
probabilistic model predictions. The heuristics, however, have been proposed
as deterministic models and it is currently rather little explored how best to
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detailed description of the analysis and results can be found in
Appendix F. The main result is that none of the three expecta-
tion models predicted individual choice better than the priority
heuristic. Specifically, the priority heuristic achieved, on average
(across participants), 62.6% correct predictions, somewhat bet-
ter than the best expectation model, cumulative prospect theory
(based on the parameter set by Tversky and Kahneman, 1992),
at 58.9%, t(39) = 2.34, p = 0.025 [both models’ predictions were
better than chance, t(39) > 5.12, p < 0.001] 5. The equiprobable
and the equal-weight heuristics also achieved 58.9%; the transfer-
of-attention-exchange model and security-potential/aspiration
theory made 57.4% and 53.6% correct predictions, respectively.

Frequency of acquisition
On average, there were 12.7 (SD = 7.6) acquisitions per prob-
lem (or 1.6 per box) 6. Inconsistent with the priority heuristic,
the average (across gamble problems) number of acquisitions
did not increase, but in fact decreased slightly across one-reason
(M = 13.2), two-reason (M = 12.8), and three reason-choices
(M = 11.9), F(2, 959) = 2.35, p = 0.096. Note, however, that the
effect was rather small, thus giving some support to the predic-
tion of the expectation model (according to which the number
of acquisitions should not be affected by problem type). Next,
we determined for each reason its relative acquisition frequency
(i.e., the percentage of acquisitions). To quantify the deviation of
the models’ predictions (Appendix A) from the observed acqui-
sition percentages, we used the root mean squared deviation
(RMSD), a simple and popular discrepancy measure (see Juslin
et al., 2009; Lewandowsky and Farrell, 2010). Specifically, we
calculated for each participant each model k’s RMSD between
the observed relative frequency of acquisitions, o, and the pre-
diction, p, of the model across all N(= 24) gamble problems
and J(= 4) different reasons (note that, as in Johnson et al.,
2008, we thus used the individual choice problems as the unit of
analysis):

RMSDk =

√√√√
∑J

j = 1

∑N
n = 1

(
ojn − pjn, k

)2

JN
. (2)

The average (across gamble problems) RMSD was lower for
the expectation model than for the priority heuristic (indicat-
ing a lower discrepancy), Ms = 9.8 vs. 12.5 (bootstrapped 95%

translate them into probabilistic ones (for some suggestions, see Rieskamp,
2008). We further discuss this issue in the General Discussion.
5A repeated-measures ANOVA showed that the priority heuristic’s per-
formance differed between problem types, F(2, 78) = 4.73, p = 0.012, and
predicted choices better in three-reason (M = 70.4, SD = 21.8) than in one-
reason (M = 61.3, SD = 13.4) and two-reason choices (M = 57.5, SD =
20.3). It thus seems unlikely that the larger proportion of one-reason choices
among the gamble problems (see Appendix D) gave an advantage to the
priority heuristic.
6Participants thus made considerably fewer acquisitions than in Johnson et al.
(2008), who reported a mean number of 26.7 acquisitions per problem. One
possible reason for this discrepancy is that in Johnson et al. participants only
had to move the mouse over a box to open it, whereas our participants had to
click on the box (but we cannot exclude that other methodological differences
between the studies may also have contributed to the difference in the number
of acquisitions).

confidence interval of the difference CIdiff = [−3.02, −2.48]),
thus supporting the former 7. Note that random search would
make the same prediction as the expectation model, namely equal
distribution across all reasons.

In addition, we tested the five directed predictions derived
above concerning the relations of acquisition frequencies (see
Table 1). Findings showed, for instance, that consistent with the
priority heuristic’s first prediction, outcomes were looked up
more frequently than probabilities for one- and three-reason
choices (ratio = 1.33 and 1.28, respectively). This focus on
outcomes is inconsistent with the expectation model. Overall,
participants more frequently acquired information about the
maximum outcomes than about the minimum outcomes, Ms =
29.5% vs. 27.0%, t(959) = 4.77, p = 0.001. Consistent with the
expectation model, but inconsistent with the priority heuristic’s
second prediction, the acquisition frequencies for the minimum
outcomes in two- and three-reason choices were not higher than
those for the maximum outcomes. Overall, few of either model’s
predictions were supported: in five out of ten cases, neither model
was supported; in two cases, the expectation model was sup-
ported, and in three cases, the priority heuristic (see Table 1).
Note again that random search would make the same predictions
as the expectation model.

Direction of search
For each participant, we determined the percentage of transi-
tions for the three predicted transition types—that is, how many
transitions were an outcome-probability transition, a different
type of within-gamble transition, or a within-reason transition.
Predicted and mean actual percentages are shown in Table 2. The
priority heuristic predicted the transition percentages consistently
better than the expectation model. Each of the nine observed per-
centages (3 transition types × 3 problem types) was closer to the
predictions of the priority heuristic than to those of the expec-
tation model. To quantify the overall discrepancy between the
observed, o, and the predicted transition percentages, p, for each
model k, we calculated for each participant the RMSD across all
Q(= 3) transition types and M(= 3) problem types:

RMSDk =

√√√√
∑Q

q = 1

∑M
m = 1

(
oqm − pqm, k

)2

QM
. (3)

The priority heuristic showed a lower average (across partici-
pants) RMSD than did the expectation model, Ms = 5.39 vs. 6.20,
bootstrapped 95% CIdiff = [−1.48, −0.12], supporting the for-
mer. The priority heuristic showed a lower RMSD than a baseline
model assuming random search, M = 6.84, bootstrapped 95%
CIdiff = [−2.11, −0.82] (the predicted choice proportions under
random search and details about their derivation can be found
in Table 2). The expectation model’s RMSD, by contrast, did not

7We use bootstrapped confidence intervals of the mean here because the mod-
els’ RMSDs may not be normally distributed (all conclusions were robust,
however, when using parametric methods for statistical inference). For the
bootstrapping we used the normal approximation method, based on 1,000
samples, and sampling with replacement.
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differ from the RMSD of the baseline model, bootstrapped 95%
CIdiff = [−1.86, 0.56].

We next summarized the observed transition percentages
using the SM index. There was no difference between the
horizontal and the vertical set-ups of the boxes, M = 0.117,
SD = 6.221 vs. M = 1.637, SD = 4.276, t(33.68) = −0.901,
p = 0.374. Figure 1 shows the average SM values separately for
one-reason, two-reason, and three-reason choices (broken gray
line), as well as the SM index assuming random search (thin
gray line; based on the transition percentages under random
search in Table 2). There are three key results. First, the observed
values of the index were consistently lower than predicted by
either the expectation model or the priority heuristic; in fact,
they were relatively close to the prediction under random search,
arguably resulting from noise in the acquisition process. Second,
as can be seen from Figure 1, the values were clearly closer to the
predictions of the priority heuristic than to those of the expec-
tation model. Third, the direction of search differed between
one-, two-, and three-reason choices, F(2, 78) = 3.62, p = 0.031
(using a repeated-measures ANOVA with problem type as a
within-subject factor), thus contradicting the expectation model
and the pattern based on random search (which predicts an SM
value of 0.54 irrespective of problem type). The priority heuristic,
by contrast, predicts the direction of search to differ between
one-, two-, and three-reason choices, though the linear trend
predicted by the priority heuristic captured the pattern of SM
values less accurately than did a quadratic trend, F(1, 39) = 2.29,
p = 0.139 vs. F(1, 39) = 4.89, p = 0.033.

SUMMARY
We evaluated the expectation model and the priority heuristic in
terms of their ability to predict two key features of the cognitive
process. The picture provided by the tests of acquisition frequen-
cies was inconclusive: Although the overall deviations between
observed and predicted acquisition frequencies were smaller for
the expectation model than for the priority heuristic, the tests of
the ordinal predictions did not clearly favor one model over the
other. We return to this issue shortly. The nine tests of direction of
search (Table 2), by contrast, consistently supported the priority
heuristic. Inconsistent with the expectation model, the direction
of search as summarized in the SM index differed between one-,
two-, and three-reason choices. Although the priority heuristic
does predict the SM value to differ across problems types, it did
not predict the observed pattern perfectly.

EXPERIMENT 2: CHOICES AND PROCESSES IN EASY AND
DIFFICULT PROBLEMS
We next apply the quantitative model comparison approach to
investigate a central assumption of the adaptive toolbox view of
risky choice (Payne et al., 1993; Brandstätter et al., 2008), namely,
that strategy use is a function of the statistical characteristics of
the environment (for support of this assumption in probabilistic
inference, see, e.g., Rieskamp and Otto, 2006; Pachur et al., 2009;
Pachur and Olsson, 2012). Specifically, we tested the hypothesis
that different processes are triggered depending on the choice dif-
ficulty of a problem. Brandstätter et al. (2006, Figure 8; 2008,
Figure 1) observed that how well various choice strategies can

predict majority choice depends on the ratio of the expected val-
ues of the two options. This ratio can be understood as a proxy for
the difficulty of the problem, with ratios between 1 and 2 repre-
senting “difficult problems” and ratios larger than 2 representing
increasingly “easy problems.” As Brandstätter et al. (2008) pointed
out, gaining a sense of how difficult a choice is does not require an
explicit calculation of the expected values, but could be achieved,
for instance, by a simple dominance check.

Brandstätter et al. (2006) found that several modifications
of EU theory—security-potential/aspiration theory, cumulative
prospect theory, the transfer-of-attention-exchange model, as
well as the simplest expectation model, EV theory—predicted
majority choice better for easy than for difficult problems. In con-
trast, the priority heuristic predicted majority choice better for
difficult than for easy problems. This could mean that, as hypoth-
esized by Brandstätter et al. (2006, 2008), easy problems elicit
more trade-offs than difficult problems.

To test this hypothesis, we now compare the priority heuristic
and cumulative prospect theory/EV theory (as explained below,
the latter two always made the same prediction for the gamble
problems used). Participants were presented with easy and diffi-
cult problems (using a within-subjects design); the problems were
selected such that the priority heuristic and cumulative prospect
theory predicted opposite choices. We therefore expected larger
differences in the predictive abilities of the two models, relative to
Experiment 1, in which the predictions of the two models often
overlapped (in either 50% or 75% of the problems, depending
on whether the parameter set of Erev et al. (2002), or Kahneman
and Tversky (1979), is used for cumulative prospect theory).
As in Experiment 1, we recorded participants’ search behavior
using the Mouselab methodology and compared the data to the
process predictions of the priority heuristic and the expectation
model (recall that on the process level, cumulative prospect the-
ory and a generic expectation model imply the same weighting
and summing processes).

METHODS
Participants
Forty students (28 female, mean age 24.4 years) participated in
this experiment, which was conducted at the University of Basel.
The payment schedule was very similar to Experiment 1 (i.e.,
participants received CHF 15 per hour, plus a bonus that was
determined by their choices; one problem was randomly selected
and the chosen gamble played out at the end of the session).

Material, design, and procedure
Each participant was presented with 48 choice problems, using
a programmed Mouselab environment (the experimental proto-
col was very similar to that used in Experiment 1). Half of the
problems represented difficult problems and the other half easy
problems (based on the definition described above). Within easy
and difficult problems, half were gain and half were loss problems.
The problems were taken from Mellers et al. (1992). We sampled
the problems as follows: First, we restricted the original set of 900
problems to those where the ratio of the gambles’ expected val-
ues was between either 1 and 2 or 5 and 6. Next, we restricted
the remaining problems to those in which the priority heuristic
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and cumulative prospect theory [irrespective of whether Tversky
and Kahneman’s (1992), or Lopes and Oden’s (1999), parame-
ter values were used] predicted opposite choices (for an example,
see Appendix D). One hundred problems met these criteria, and
for all problems cumulative prospect theory predicted the same
choice as EV theory. We then randomly sampled from this set 24
gain problems—12 easy problems (with EV ratios between 5 and
6) and 12 difficult problems (with EV ratios around 1). Using the
same constraints, we also sampled 24 loss problems (see Appendix
D for a complete list of the problems). Note that in the Mellers
et al. problem set, all minimum outcomes are zero, and the prior-
ity heuristic always based its choice on the second-ranked reason
(i.e., the probability of the minimum outcomes). The forty-eight
problems were presented in random order and participants were
informed that they could acquire as much information as they
needed to make a choice.

RESULTS
As in Experiment 1, we first examine participants’ choices before
analyzing the two process measures (i.e., acquisition frequency
and direction of search).

Choices
Figure 3 shows the percentages of correctly predicted individual
choices for the priority heuristic and cumulative prospect theory
(and, as explained before, EV theory). Replicating Brandstätter
et al.’s (2006, 2008) analyses, the expectation-based models—
cumulative prospect theory and EV theory—predicted choices in
easy problems much better than the priority heuristic did (M =
74.9%, SE = 2.7 vs. M = 24.5%, SE = 2.7 correct predictions).
In contrast, the priority heuristic predicted choices in difficult
problems markedly better than cumulative prospect theory and
EV theory did (M = 61.7%, SE = 3.1 vs. M = 37.9%, SE = 3.1).
In both easy problems and difficult problems, the predictions
of the best-performing model were better than chance, t(39) >

3.78, p < 0.001. The differential model performance between
easy and difficult problems was corroborated statistically by a sig-
nificant interaction (using a repeated-measures ANOVA) between

FIGURE 3 | Correct predictions of the individual choices in

Experiment 2. CPT, cumulative prospect theory, EV, expected value theory.
The error bars represent standard errors of the mean.

choice difficulty (high vs. low) and model (priority heuristic
vs. cumulative prospect theory/EV theory), F(1, 39) = 112.63,
p = 0.0018.

One interpretation of these results is that easy and difficult
problems trigger different strategies. When problems are easy,
participants tend to make choices consistent with expectation
models, whereas when problems are difficult, they tend to make
choices consistent with the priority heuristic. Our analysis of indi-
vidual choices converges with Brandstätter et al.’s (2006, 2008)
analyses of majority choices. Is there also process evidence for the
use of different strategies in easy vs. difficult problems?

Frequency of acquisition
Across all eight boxes there were, on average, 14.3 (SD = 8.4)
acquisitions (or 1.8 per box) before a choice was made (again,
many fewer than in Johnson et al., 2008; see Footnote 6).
Participants made fewer acquisitions in easy than in difficult
problems, Ms = 13.4 vs. 15.2, F(1, 1916) = 26.4, p = 0.001. As in
Experiment 1, we calculated for each reason its relative acqui-
sition frequency (i.e., the percentage of acquisitions). Figure 4
shows the mean relative acquisition frequencies for each of the
four reasons. Concerning the deviations of the predicted acqui-
sition frequencies (see Appendix A) from the empirical ones,
the expectation model showed, overall, a lower RMSD than
did the priority heuristic, Ms = 10.2 vs. 17.1, bootstrapped
95% CIdiff = [−6.99, −6.77]. This held for both easy problems

8Additional analyses suggested by an anonymous reviewer showed that, when
assuming a very high level of risk aversion, CPT can predict choices in both
easy and difficult problems. With the set of parameter values obtained by
Erev et al. (2002)—α = β = 0.33 and γ = 0.75 [which according to Fox and
Poldrack’s (2008), overview are very uncommon], CPT’s performance in the
difficult problems increased from M = 37.9% to 61.7%, matching that of the
priority heuristic in this problem set (based on the Erev et al. parameters,
CPT’s performance in the easy problems was M = 68.1%). We see no a priori
reason, however, to expect a high level of risk aversion in Experiment 2. Holt
and Laury (2002) demonstrated that high levels of risk aversion emerge when
large amounts of money are at stake (e.g., $10,000; see also Stott, 2006). The
gamble problems in Experiment 2, however, involved only small outcomes.

FIGURE 4 | Obtained relative acquisition frequencies for reading and

choice phases combined in Experiment 2. The error bars represent
standard errors of the mean.
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(Ms = 9.8 vs. 16.6, bootstrapped 95% CIdiff = [−7.00, −6.69])
and difficult problems (Ms = 10.6 vs. 17.5, bootstrapped 95%
CIdiff = [−7.07, −6.77]). Note that, like the expectation model,
random search predicts an equal distribution of acquisitions
across all reasons.

Experiment 2 included only choice problems for which the
priority heuristic predicts that examination is stopped after the
second reason (i.e., two-reason choices); therefore, only two of
the five predictions in Table 1 can be tested. The results con-
cerning the first prediction were inconsistent with both the
priority heuristic and the expectation model: Maximum out-
comes were looked up more frequently than minimum outcomes,
Ms = 33.6% vs. 18.1%, F(1, 1916) = 2067.2, p = 0.001 (Figure 4).
Likewise, the results concerning the third prediction were incon-
sistent with both the priority heuristic and the expectation model:
the probabilities of the maximum outcomes were looked up more
frequently than those of the minimum outcomes, Ms = 31.5%
vs. 16.7%, F(1, 1916) = 1159.2, p = 0.001. Surprisingly, the quali-
tative pattern of the acquisition frequencies did not differ between
easy and difficult problems, apparently at odds with the con-
clusion from the choices that people switch strategies between
easy and difficult problems (Figure 4). We return to this issue
shortly.

Direction of search
As in Experiment 1, we calculated for each participant and
separately for difficult and easy problems the RMSD for each
model. Consistent with the hypothesis that compensatory pro-
cesses as represented by the expectation model are more likely
to be triggered by easy than by difficult problems, the aver-
age RMSD for the expectation model was smaller for easy than
for difficult problems, Ms = 7.73 vs. 8.34, bootstrapped 95%
CIdiff = [−0.99, −0.23]. Consistent with the hypothesis that a
non-compensatory process is more likely to be triggered in dif-
ficult than in easy problems, the average RMSD for the prior-
ity heuristic was smaller for difficult than for easy problems,
Ms = 7.10 vs. 7.62, bootstrapped 95% CIdiff = [−0.96, −0.06].
Moreover, the priority heuristic had a smaller RMSD than the
expectation model for the difficult problems (Ms = 7.10 vs.
8.34, bootstrapped 95% CIdiff = [−2.44, −0.09]), but not for
the easy ones (Ms = 7.62 vs. 7.73, bootstrapped 95% CIdiff =
[−1.29, 1.09]). For difficult problems, the mean RMSD expected
under random search was 12.34, which was higher than the
expectation model’s (bootstrapped 95% CIdiff = [2.73, 6.13])
and the priority heuristic’s RMSD (bootstrapped 95% CIdiff =
[3.51, 5.69]). For easy problems, the mean RMSD expected under
random search was 12.19, and also this was higher than the
expectation model’s (bootstrapped 95% CIdiff = [3.02, 6.25])
and the priority heuristic’s RMSD (bootstrapped 95% CIdiff =
[4.19, 6.30]).

There was no difference in direction of search, as indicated
by the SM index, between the horizontal and vertical set-ups of
the boxes, Ms = 2.68 vs. 1.89, t(39) = 0.56, p = 0.58. As Figure 1
shows, the SM index was smaller in difficult than in easy prob-
lems, Ms = 1.89 vs. 2.75; t(39) = −4.43, p = 0.001. In other
words, search was less gamble-wise (suggesting the operation of
a strategy foregoing trade-offs, such as the priority heuristic) in

difficult than in easy problems. Thus, measures of people’s direc-
tion of search support the view that properties of the task—here
choice difficulty—elicit different choice strategies.

SUMMARY
The results obtained in Experiment 2 suggest that people recruit
different strategies depending on choice difficulty. First, the pri-
ority heuristic predicted participants’ choices better than cumu-
lative prospect theory (and EV theory) in the context of difficult
problems, whereas for easy problems, the pattern was reversed.
These results are consistent with findings by Brandstätter et al.
(2006, 2008) based on majority choices for data by Mellers et al.
(1992) and Erev et al. (2002). Consistent with the findings on
the outcome level, on the process level the direction of search
proved to be less gamble-wise in difficult than in easy problems.
In contrast to overt choices and direction of search, the other pro-
cess measure, acquisition frequencies, did not reflect the apparent
contingency between choice difficulty and strategy use. Moreover,
recall that the pattern of acquisition frequencies in Experiment 1
had been inconsistent with both the expectation model and the
priority heuristic. How can these findings on acquisition frequen-
cies be interpreted? A pessimistic view would be that this common
process measure simply lacks sensitivity to reflect the choice pro-
cess. Alternatively, frequencies of acquisition could be sensitive to
undervalued properties of choice problems and could thus help
us to develop a better understanding of the underlying processes.
It is to this interpretation that we turn next.

ACQUISITION FREQUENCIES IN RISKY CHOICE: WHAT DO
THEY REFLECT?
In Experiments 1 and 2, the observed acquisition frequencies
proved highest for the maximum outcomes (e.g., Figure 4), a pat-
tern that is not predicted by either the priority heuristic or the
expectation model. What underlies this pronounced attention to
maximum outcomes?

DO ACQUISITION FREQUENCIES REFLECT THE IMPACT OF INDIVIDUAL
REASONS ON CHOICE?
Acquisition frequencies are usually interpreted as reflecting the
weight (or priority) that a piece of information receives in the
decision process (e.g., Payne et al., 1988; Wedell and Senter,
1997). Based on this common interpretation, one should expect
strategies assigning the highest priority to the maximum (rather
than the minimum) outcomes to be better descriptive models
than the priority heuristic or the expectation model. To test this
possibility, we examined how well models that use the max-
imum outcomes as the top-ranked reason are able to predict
the participants’ individual choices in Experiment 1, and to
predict majority choices in the large and diverse set of 260 gam-
ble problems analyzed in Brandstätter et al. (2006). Among the
models was a version of the priority heuristic with a modified
priority rule (i.e., going through the reasons in the following
order: maximum outcome, probability of maximum outcome,
and minimum outcome), the maximax heuristic (which con-
siders only the maximum outcomes and takes the gamble with
the highest outcome), and two sequential strategies that priori-
tize maximum outcomes and integrate outcome and probability
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information 9. In both test sets, none of these four models pre-
dicted choices better than chance. This suggests that the higher
acquisition frequencies for the maximum outcomes, relative to
the minimum outcomes, are not indicative of their actual weight
(or priority) in the choice process. Moreover, prioritizing maxi-
mum outcomes would imply risk-seeking for gains and increasing
marginal utility within EU theory—consequences for which little
empirical evidence exists.

If acquisition frequencies do not seem to reflect the weight
given to the individual reasons in the choice process, what do
they reflect instead? In the next section, we provide evidence that
acquisition frequencies seem to be a function of properties of the
choice problem rather than of the choice process.

DO ACQUISITION FREQUENCIES TRACK SIMILARITY RELATIONS?
Rubinstein (1988) highlighted a property of choice problems that
may be critical in the processing of reasons: similarity (see also
Mellers and Biagini, 1994). He proposed that if the gambles’ val-
ues on a reason are similar, and those of the remaining reasons are
dissimilar and all favor the choice of the same gamble, then this
gamble will be chosen (see also Leland, 1994). Rubinstein, how-
ever, did not define similarity quantitatively. For the purpose of
the following analysis, we define similarity as the relative differ-
ence between two gambles on a given reason. Specifically, for the
similarity of the maximum and minimum outcomes, similarity
was calculated as

�Omax =
∣∣Omax

A − Omax
B

∣∣
max

{∣∣Omax
A

∣∣ , ∣∣Omax
B

∣∣} (4a)

and

�Omin =
∣∣Omin

A − Omin
B

∣∣
max

{∣∣Omin
A

∣∣ , ∣∣Omin
B

∣∣} . (4b)

For the probabilities, similarity was calculated as

�p = |PA − PB| . (5)

9The sequential models were motivated by the finding reported in a later sec-
tion (see Table 3) that both the maximum outcomes and their probabilities
are examined more if the maximum outcomes are dissimilar; and that min-
imum outcomes and their probabilities are examined more if the minimum
outcomes are dissimilar. The first model starts by examining the maximum
outcomes and checks whether their difference exceeds an aspiration level. If
it does, the probabilities of the maximum outcomes will also be examined.
These two reasons are then combined by tallying. If both reasons favor the
same gamble, this gamble will be chosen. If the two reasons favor different
gambles, or if the difference between the maximum outcomes does not exceed
the aspiration level, the minimum outcomes will be examined following the
same logic. That is, if they exceed the aspiration level, the probabilities of the
minimum outcomes will be examined. These two reasons are then combined
by tallying. If both reasons favor the same gamble, this gamble will be chosen.
If the two reasons favor different gambles, one of the gambles will be cho-
sen randomly. The second sequential model differs from the first in that the
outcome and the probabilities are combined multiplicatively rather than by
tallying.

Table 3 | Results for the similarity analyses of the relative acquisition

frequencies in Experiment 1.

Dependent variable Predictors R2

�O
max �O

min �p

fOmax 0.49 −0.30 −0.14 0.43

fOmin −0.38 0.46 −0.08 0.54

fPmax 0.43 −0.17 0.14 0.34

fPmin −0.55 −0.01 0.01 0.30

Shown are standardized regression coefficients when the relative acquisition fre-

quencies (f) for outcomes and probabilities are regressed on how similar the two

gambles in a given choice problem are on the four reasons. Note that �P is iden-

tical for Pmax and Pmin; therefore, only one number is shown. Omax , Omin, Pmax ,

and Pmin refer to the maximum and minimum outcomes and their probabilities,

respectively. Significant regression coefficients (p = 0.05) are in bold.

The lower the � of a reason, the more similar two gambles
are on this reason. We determined for each of the 24 problems in
Experiment 1 the average relative acquisition frequency for each
reason. In addition, we calculated for each problem the relative
differences between the gambles on each reason (i.e., similarity).
Are acquisition frequencies related to similarity, thus defined?

Our data indicate some evidence that they are. In the 14 (out
of 24) problems in which the maximum outcomes were inspected
more frequently than the minimum outcomes, the maximum
outcomes were less similar than the minimum outcomes (mean
�s = 0.28 vs. 0.23). Conversely, in the eight problems in which
the minimum outcomes were inspected more frequently than the
maximum outcomes, the minimum outcomes were less similar
than the maximum outcomes (mean �s = 0.50 vs. 0.06). This
suggests that the acquisition frequencies are driven (at least in
part) by the similarity structure of the problem: The more dissim-
ilar the corresponding outcome values are, the more frequently
they are inspected. Conversely, the more similar they are, the less
frequently they are inspected. In fact, the difference between the
�s of the maximum and minimum outcomes were strongly cor-
related with their difference in acquisition frequencies r = 0.49
(p = 0.01). These results are consistent with Rubinstein’s (1988)
hypothesis that similar outcomes are ignored.

To further examine the hypothesis that acquisition frequen-
cies are driven by similarity, we regressed the observed relative
acquisition frequencies on similarity, separately for each of the
four reasons. (Because the relative differences for the probabil-
ities of the maximum outcomes are identical to those of the
minimum outcomes, only one was used in the regression mod-
els). The beta weights for the three predictors are reported in
Table 3, as well as the R2s for each of the four regression mod-
els. As can be seen, variability in similarity indeed accounted for a
considerable amount of variability in the acquisition frequencies
across problems. In particular, the similarity on the maximum
outcomes was related to the acquisition frequencies of all four
reasons. As indicated by the positive regression coefficients in the
first column of Table 3, both for the maximum outcomes and the
probabilities of the maximum outcomes, there were more acquisi-
tions the less similar the maximum outcomes were (i.e., the larger
�Omax). For the minimum outcomes and the probabilities of the
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minimum outcomes, by contrast, there were fewer acquisitions
the less similar the maximum outcomes were (as indicated by
the negative regression coefficients). The similarity of the mini-
mum outcomes showed the same pattern (although with a less
pronounced effect). In particular, there were more acquisitions
for the minimum outcomes, and fewer acquisitions for the maxi-
mum outcomes and the probabilities of the maximum outcomes,
the less similar the minimum outcomes were.

Taken together, different process measures seem to reflect dif-
ferent characteristics of the problems. Specifically, direction of
search is sensitive to choice difficulty (Experiment 2), whereas
acquisition frequencies appear to be a function of similarity. Our
results suggest that acquisition frequencies might be a less useful
indicator of the weight (or priority) given to the reasons than has
been previously assumed [at least in risky choice; see (Wedell and
Senter, 1997; Körner et al., 2007)].

GENERAL DISCUSSION
We investigated the cognitive processes underlying risky choice
using a quantitative model comparison between the priority
heuristic and a generic expectation model [focusing on the tra-
ditional notion that an expectation is calculated deliberately; for
an alternative approach, see Busemeyer and Townsend (1993)].
Previous investigations had concluded from findings showing
that people’s search processes conflicted with those predicted by
the priority heuristic that people instead follow a compensatory
process; however, the predictive power of the alternative accounts
were not tested against each other based on quantitative pro-
cess predictions. Here, we conducted such a comparative test; our
major findings are as follows: First, people’s direction of search
was more in line with the predictions derived from the prior-
ity heuristic than with those derived from the expectation model
(although neither model predicted the observed direction of
search perfectly). Second, the cognitive process measures (direc-
tion of search, frequency of acquisition) were contingent on prop-
erties of the choice task, such as choice difficulty and similarity.
When we employed problems in which the priority heuristic
and cumulative prospect theory (EV theory) predicted opposite
choices (Experiment 2), the priority heuristic captured individual
choice and process better in difficult problems, whereas trade-off
models did so in easy problems. Therefore, our results support
Payne et al.’s (1993) conclusion that “it seems necessary to dis-
tinguish multiple decision strategies; one generic strategy with a
variation in parameters is not sufficient” (p. 103). An important
issue for future inquiry concerns the reasons underlying people’s
differential strategy use between easy and difficult choice prob-
lems. For instance, it could be that a conflict-resolution strategy
(i.e., one that avoids trading off conflicting reasons) such as the
priority heuristic is employed only if a clearly superior option
cannot be identified from an approximate assessment of the gam-
bles’ values (for a more extended discussion, see Brandstätter
et al., 2008). Third, our analysis of the acquisition frequencies
suggests, however, that in order to distinguish between multi-
ple strategies, we need to better understand the extent to which
a given process measure in Mouselab and other process-tracing
methodologies track properties of the task (e.g., similarity) or of
the cognitive process.

EXAMINING DIRECTION OF SEARCH IN RISKY CHOICE
Compared with previous process tests of the priority heuristic,
we found some striking discrepancies with regard to the abso-
lute degree of gamble-wise and reason-wise search. We know of
three published process tests of the priority heuristic that have
investigated direction of search using Mouselab or eye track-
ing (Glöckner and Betsch, 2008a; Johnson et al., 2008; Glöckner
and Herbold, 2011). Our results deviate from all three. In these
previous experiments, search was considerably more gamble-
wise than in ours. For instance, we calculated the SM index
from Johnson et al.’s data (two-outcome problems) and found
much higher values than ours: 5.1 and 4.5 vs. 0.87 and 0.31
(see Figure 1) for one-reason and three-reason choices, respec-
tively. Why did Glöckner and Betsch (2008a), Johnson et al.
(2008), Franco-Watkins and Johnson (2011), and Glöckner and
Herbold (2011) find more gamble-wise search than we did?
One possibility is that seemingly incidental features of their pre-
sentation encouraged more gamble-wise search. Johnson et al.
separated the two gambles by a line (see their Figure 1), as did
Glöckner and Betsch and Glöckner and Herbold. In addition,
the latter two studies as well as Franco-Watkins and Johnson
graphically grouped outcome and probability of each branch
within a gamble (see Figure 5 in Glöckner and Betsch, or
Figure 1 in Franco-Watkins and Johnson). Although we can
only speculate at this point, these design features may have
nudged participants to search more within a gamble than did our
graphical set-up, which avoided such artificial grouping features
(Figure 2).

WHY DOES SIMILARITY IMPACT ACQUISITION FREQUENCIES?
Our analyses of the role of acquisition frequencies suggest that
the more dissimilar the values of gambles on an outcome rea-
son, the more often the outcome (and its probabilities) will be
inspected. Why is that? One possible explanation relates acqui-
sition frequencies to memory (rather than informational value).
Two very similar values can be “chunked” into one and thus eas-
ily kept in memory (e.g., both options have a maximum loss of
around 800). With two dissimilar values (e.g., maximum losses
of 800 and 1200), however, such chunking does not work and
both values need to be stored separately (such memory costs may
be amplified somewhat in Mouselab studies, where information
acquisition is rather costly). Any forgetting of these values will
thus increase the likelihood of re-acquisition of values. This expla-
nation would be consistent with our observation that acquisition
frequencies are not predictive of people’s choices, but reflect the
similarity structure of the choice problem.

DECISION MAKING WITH AND WITHOUT TRADE-OFFS
When trade-offs are made, such as when choice is easy
(Experiment 2), how are they made? There are at least two
possibilities. First, they could be made via the weighting and sum-
ming operations embodied by expectation models. Alternatively,
they could be implemented by heuristics that make trade-
offs. Consider the first alternative. The simplest version of
weighting and summing is EV theory. Alternatively, trade-offs
could be made via compensatory but simple processes, such
as the equiprobable heuristic, the equal-weight heuristic, or
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the better-than-average heuristic (see Brandstätter et al., 2006,
for a detailed description). Consistent with this possibility,
Cokely and Kelley (2009) concluded from their verbal pro-
tocol study that “expected-value choices rarely resulted from
expected-value calculations” (p. 20). Rather, respondents often
reported simple processes such as ordinal comparisons of the
values within one reason (e.g., “$900 is a lot more than $125”)
or the evaluation of a single probability (e.g., “30% just won’t
happen”).

In order to evaluate the hypothesis that trade-offs are made
based on simple heuristics, in Experiment 2 we tested the abil-
ity of various trade-off heuristics to predict individual choice in
easy and difficult problems. It emerged that, in easy problems,
three of the trade-off heuristics—the equiprobable heuristic, the
equal-weight heuristic, and the better-than-average heuristic—
reached the highest level of performance (74.9% correct pre-
dictions). Figure 5 shows that the three heuristics showed the
same performance as cumulative prospect theory and EV theory
(the equiprobable heuristic and the equal-weight heuristic always
made the same prediction and are therefore depicted together in
Figure 5). They predicted choice better than the priority heuristic
did when choice was easy, whereas the priority heuristic predicted
choice better when choice was difficult (replicating results from
Experiment 1). Moreover, note that the equiprobable heuristic,
the equal-weight heuristic, and the better-than-average heuristic
predicted gamble-wise direction of search—consistent with our
finding that direction of search is more gamble-wise in easy than
in difficult choice (Experiment 2).

LIMITATIONS
Some possible limitations of our experimental procedure are
acknowledged. First, we cannot exclude that labeling in our
Mouselab set-up the outcomes as “higher value” and “lower
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FIGURE 5 | In easy problems, heuristics that make trade-offs can

account for choices equally well as cumulative prospect theory (CPT)

and expected value (EV) theory. Data are from Experiment 2.

value” might to some extent have influenced people’s search
direction; future studies could use more neutral labels such as
“Outcome 1” and “Outcome 2.” Second, although neither the
priority heuristic nor the expectation model predict processes
to differ between gains and losses, it should be noted that in
Experiment 1 gain and loss problems were not equally distributed
across one-, two-, and three-reason choices (see Appendix D).
A third possible objection is that in the gamble problems from
Mellers et al. (1992) that we used in Experiment 2, one of the out-
comes was always zero; this might have led participants to simplify
their choice strategy to some extent. Fourth, it has been argued
that compared to less obtrusive process-tracing technologies such
as eye tracking, Mouselab might encourage more controlled cog-
nitive operations (Glöckner and Betsch, 2008b). However, note
that systematic comparisons of Mouselab and eye tracking in
risky choice have found little evidence for systematic discrep-
ancies (Lohse and Johnson, 1996; Franco-Watkins and Johnson,
2011). Fifth, in Experiment 1 the estimated choice reliability
was relatively low and did not achieve common test-retest reli-
ability standards. Finally, one reviewer pointed out that the use
of gamble problems with gambles that have the same expected
value might constrain the performance of the expectation mod-
els, as in such problems these models would often have to guess.
However, prominent expectation models (e.g., prospect theory)
were specifically developed to account for systematic choices in
problems with gambles having the same expected values [for
many examples, see (Kahneman and Tversky, 1979)]. In addition,
the expectation models did not have to guess for any of the gam-
ble problems used in our experiments (including those with high
choice difficulty).

FUTURE DIRECTIONS
We have focused on models of risky choice that assume (at
least implicitly) a deliberate decision process, as these mod-
els have been the key contestants in previous tests of the
priority heuristic (e.g., Birnbaum, 2008a; Brandstätter et al.,
2008; Glöckner and Betsch, 2008a; Rieger and Wang, 2008).
Recently, however, some authors have highlighted the possible
contribution of mechanisms involving more automatic informa-
tion processing in risky choice, such as decision field theory
(Johnson and Busemeyer, 2005; Rieskamp, 2008) and parallel
constraint satisfaction (Glöckner and Herbold, 2011). In a model
comparison investigation based on people’s risky choices, for
instance, Scheibehenne et al. (2009) found supporting evidence
for decision field theory. Despite these encouraging results, it
is currently unclear how these models can give rise to several
classical empirical regularities such as the fourfold pattern, the
common ratio effect, or the common consequence effect—all of
which have been critical in the evolution of models of risky choice.
Some expectation models (e.g., cumulative prospect theory) and
the priority heuristic, by contrast, have been shown to be able to
account for these patterns (e.g., Kahneman and Tversky, 1979;
Tversky and Fox, 1995; Katsikopoulos and Gigerenzer, 2008).
In light of the fact that models of automatic processing seem
able to accommodate some aspects of process data that are not
predicted by current models assuming more deliberate processes
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(e.g., Glöckner and Herbold, 2011), future analyses should elab-
orate how (and whether) these models could give rise to the
empirical regularities in choice.

Another important avenue for future research is to develop
a better understanding of the considerable heterogeneity in
findings on the processes underlying risky choice. In addition to
influences of subtle features in the display of information (see
Footnote 6), our findings concerning the influence of the sim-
ilarity structure on process measures indicate that the type of
choice problems used might have an as yet neglected impact on
the results obtained.

A final task for future investigations is to refine ways to
compare heuristics and multiparameter expectation models
(e.g., cumulative prospect theory, transfer-of-attention-exchange
model) in terms of their ability to predict people’s choices.
Following previous work, in our analyses we accounted for differ-
ences in the number of free parameters between the expectation
models and the priority heuristic by using previously published
parameter sets for the former; then we compared the models in
terms of the percentage of correct predictions. As pointed out in
Footnote 4, however, an alternative approach would be to fit the
multiparameter models to the data and use more sophisticated
model-selection measures, such as BIC or AIC (e.g., Wasserman,
2000), which punish a model depending on the number of free
parameters. Because these measures are a function of a model’s
log-likelihood, applying them to heuristics requires, however, the
development of probabilistic versions of the heuristics. Currently
it is unclear which of the various choice rules proposed in the lit-
erature (i.e., logit, probit, Luce, constant error; see Stott, 2006)
is most appropriate for this purpose, also in light of the fact
that some heuristics (e.g., the priority heuristic) assume differ-
ence thresholds whereas other do not. Rieskamp (2008) has made
several suggestions for how to turn deterministic heuristics into
probabilistic models and this work might thus serve as a useful
starting point.

CONCLUSION
How do people make decisions when facing risky prospects?
More than 30 years ago, Payne (1973) pointed out that “the
earliest research efforts in the area of decision making under
risk were conducted by mathematicians and economists. The
psychological study of risky decision making has just begun to
move away from the influence of these early efforts” (p. 451).
Many subsequent studies on the psychology of risky choice using
process tracing tools concluded that people rely on heuristic
processes rather than on the mathematical principle of expec-
tation (Rosen and Rosenkoetter, 1976; Payne and Braunstein,
1978; Russo and Dosher, 1983; Mann and Ball, 1994; Cokely
and Kelley, 2009; Venkatraman et al., 2009; Su et al., 2013).
Nevertheless, tests of specific model predictions have been rare.
The priority heuristic makes precise process predictions based
on the principles of bounded rationality. Recent empirical evi-
dence inconsistent with the predictions of the priority heuristic
has prompted several researchers to return to the hypothesis
that people rely on compensatory strategies based on the notion
of expectation. In this article, we illustrated how a quantitative
model comparison approach can be used to evaluate the extent
to which people’s cognitive processes follow the predictions of
the priority heuristic and the expectation model, respectively.
Although the process predictions are necessarily based on simpli-
fying assumptions, our results offer, so we believe, some impor-
tant insights for future comparative tests of quantitative process
predictions.
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APPENDIX A

Table A1 | Derivation of the predicted relative acquisition frequencies.

Reason Reading

phase

Choice phase Choice and reading phases

Priority heuristic Expectation Priority heuristic Expectation

model model

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

No. % No. % No. % No. %

Minimum outcome 2 2 2 2 2 4 40 4 33.3 4 28.6 4 25

Maximum outcome 2 0 0 2 2 2 20 2 16.7 4 28.6 4 25

Probability of minimum outcome 2 0 2 2 2 2 20 4 33.3 4 28.6 4 25

Probability of maximum outcome 2 0 0 0 2 2 20 2 16.7 2 14.3 4 25

Total number of acquisitions 8 2 4 6 8 10 12 14 16

Example: There are eight acquisitions (two for each reason) in the reading phase. In the choice phase, for r = 1, the priority heuristic predicts two further acquisitions,

of the minimum outcomes. Thus, across the reading and choice phases, there are a total of 10 acquisitions, in four of which minimum outcomes are examined. r =
1, one-reason choices; r = 2, two-reason choices; r = 3, three-reason choices.

Table A2 | Derivation of the predicted transitions (cf. Brandstätter et al., 2008).

Type of transition Reading

phase

Choice phase Choice and reading phases

Priority heuristic Expectation Priority heuristic Expectation

model model

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

No. % No. % No. % No. %

Outcome-probability 4 0 1 1 4 4 50 5 50 5 42 8 57

Other within-gamble 2 0 0 1 2 4 25 2 20 3 25 4 29

Within-reason 1 1 2 3 1 2 25 3 30 4 33 2 14

Other 0 0 0 0 0 0 0 0 0 0 0 0 0

Total number of transitions 7 1 3 5 7 8 10 12 14

r = 1, one-reason choices; r = 2, two-reason choices; r = 3, three-reason choices.

APPENDIX B
DERIVATION OF PREDICTED TRANSITIONS BASED ON ALTERNATIVE
ASSUMPTIONS ABOUT THE READING PHASE
Because predictions about transition probabilities are sensitive
to assumptions about the reading phase, we also calculated the
predictions using an alternative reading order. Specifically, we
assumed that rather than reading within gambles [as assumed
by Brandstätter et al. (2008)], people follow the natural reading

direction (i.e., from left to right). Table B1 shows the predicted
number of transitions for the outcome-probability, other within-
gamble transitions, and within-reason transitions. Table B2
shows the resulting predicted SM values, which diverge consid-
erably more from the data than do the predictions reported in
Table 2, for both the priority heuristic and the expectation model.
This suggests that people are more likely to read within gambles
than according to the natural reading direction.
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Table B1 | Derivation of the predicted transitions based on alternative assumptions for the reading phase.

Types of transitions Reading

phase

Choice phase Choice and reading phases

Priority heuristic Expectation Priority heuristic Expectation

model model

r = 1 r = 2 r = 3 r = 1 r = 2 r = 3

No. % No. % No. % No. %

Outcome-probability 2 (0/4) 0 1 1 4 2 25 3 30 3 25 6 42.9

Other within-gamble 1 (0/2) 0 0 1 2 1 12.5 1 10 2 16.7 3 21.4

Within-reason 2 (4/0) 1 2 3 1 3 37.5 4 40 5 41.7 3 21.4

Other 2 (3/1) 0 0 0 0 2 25 2 20 2 16.7 2 14.3

Total number of transitions 7 1 3 5 7 8 10 12 14

r = 1, one-reason choices; r = 2, two-reason choices; r = 3, three-reason choices. The second column shows the expected number of transitions averaged across

both set-up orientations, the numbers in the brackets show the expected number of transitions separately for the vertical and horizontal set-ups, respectively.

Table B2 | Predicted SM index based on alternative assumptions

for the reading phase, separately for one-reason (r = 1), two-reason

(r = 2), and three-reason (r = 3) choices.

r = 1 r = 2 r = 3

SM INDEX

Predictions

Priority heuristic −0.38 −0.38 −0.38

Expectation model 6.11 6.11 6.11

APPENDIX C
FURTHER DETAILS ON THE SM INDEX
The SM index is a function of the difference between the num-
ber of gamble-wise and the number of reason-wise transitions.
Reason-wise transitions were defined as transitions between boxes
belonging to the same reason; gamble-wise transitions were

defined as transitions between boxes belonging to outcomes and
those belonging to the outcomes’ probabilities, as well as other
transitions between reasons within a gamble. Note from Equation
1 that transitions that occur both between gambles and between
different reasons are not specifically quantified, although they are
included in the total number of transitions, N. The percentage
of transitions of this type was, on average, 20.7% in Experiment 1
and 19.1% in Experiment 2. As pointed out by Payne and Bettman
(1994), the SM index is sensitive not only to the sequence of
information search, but also to the number of pieces of infor-
mation acquired. To address this problem and also to ensure
comparability with the model predictions (which were based on
percentages; see Table 2), the empirical SM values were normal-
ized such that N was set to 100. The values used for ngamble and
nreason (for each participant) were thus the percentages of gamble-
wise and reason-wise transitions, respectively, of all transitions
(= 100%).
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APPENDIX D

Table D1 | Gamble problems used in Experiment 1 and the obtained choice proportions.

Problem type Gamble A Gamble B EV ratio Choice proportions

for gamble A (in %)

Source

r = 1 2000, 0.6; 500, 0.4 2000, 0.4; 1000, 0.6 1a 42.5 BGH

4000, 0.2; 2000, 0.8 3000, 0.7; 1000, 0.3 1a 35 BGH

800, 0.8; 500, 0.2 820, 0.6; 600, 0.4 1.01 50 PHGB

5000, 0.7; 100, 0.3 5000, 0.65; 1000, 0.35 1.02 37.5 PHGB

−500, 0.4; −2000, 0.6 −1000, 0.6; −2000, 0.4 1a 60 BGH

−2000, 0.7; −5000, 0.3 −2800, 0.9; −4800, 0.1 1.04 62.5 PHGB

−500, 0.2; −800, 0.8 −600, 0.4; −820, 0.6 1.01 47.5 PHGB

−50, 0.3; −3500, 0.7 −600, 0.35; −3400, 0.65 1.02 72.5 PHGB

−100, 0.3; −5000, 0.7 −1000, 0.35; −5000, 0.65 1.02 82.5 PHGB

−50, 0.1; −900, 0.9 −400, 0.15; −880, 0.85 1.01 70 PHGB

−2000, 0.6; −2350, 0.4 −1700, 0.55; −2500, 0.45 1.04 37.5 PHGB

−150, 0.7; −2500, 0.3 −650, 0.9; −2400, 0.1 1.04 72.5 PHGB

r = 2 2000, 0.5; 0, 0.5 4000, 0.2; 300, 0.8 1.04 42.5 PHGB

1600, 0.3; 1000, 0.7 1300, 0.5; 1000, 0.5 1.03 42.5 PHGB

1800, 0.2; 200, 0.8 1000, 0.4; 200, 0.6 1 42.5 PHGB

6000, 0.45; 0, 0.55 3000, 0.9; 0, 0.1 1a 20 KT

−1000, 0.7; −1600, 0.3 −1000, 0.5; −1300, 0.5 1.03 37.5 PHGB

0, 0.55; −6000, 0.45 0, 0.1; −3000, 0.9 1a 70 KT

r = 3 6000, 0.3; 2500, 0.7 8200, 0.25; 2000, 0.75 1a 20 BGH

3000, 0.4; 2000, 0.6 3600, 0.35; 1750, 0.65 1.001a 52.5 BGH

6000, 0.001; 0, 0.999 3000, 0.002; 0, 0.998 1a 72.5 KT

4000, 0.2; 0, 0.8 3000, 0.25; 0, 0.75 1.07a 70 KT

0, 0.8; −4000, 0.2 0, 0.75; −3000, 0.25 1.07a 27.5 KT

0, 0.999; −6000, 0.001 0, 0.998; −3000, 0.002 1a 20 KT

r = 1, one-reason choices; r = 2, two-reason choices; r = 3, three-reason choices. The last column indicates whether the gamble problem is from Brandstätter et al.

(2006) (BGH),or from Kahneman and Tversky (1979) (KT), or were created for the current article (PHGB).
aIncluded in the paper-and-pencil task in Experiment 1.
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Table D2 | Gamble problems used in Experiment 2 and the obtained choice proportions.

Choice difficulty, domain Gamble A Gamble B EV ratio Choice proportions

for gamble A (in %)

Easy, gains 3, 0.17; 0, 0.83 56.7, 0.05; 0, 0.95 5.6 32.5
3, 0.29; 0, 0.71 56.7, 0.09; 0, 0.91 5.9 51.3
56.7, 0.05; 0, 0.95 3, 0.17; 0, 0.83 5.6 70.0
56.7, 0.09; 0, 0.91 3, 0.29; 0, 0.71 5.9 55.0
5.4, 0.52; 0, 0.48 56.7, 0.29; 0, 0.71 5.9 15.0
3, 0.94; 0, 0.06 56.7, 0.29; 0, 0.71 5.8 32.5
31.5, 0.29; 0, 0.71 3, 0.52; 0, 0.48 5.9 89.7
56.7, 0.29; 0, 0.71 5.4, 0.52; 0, 0.48 5.9 82.5
3, 0.94; 0, 0.06 31.5, 0.52; 0, 0.48 5.8 10.0
5.4, 0.94; 0, 0.06 56.7, 0.52; 0, 0.48 5.8 22.5
31.5, 0.52; 0, 0.48 3, 0.94; 0, 0.06 5.8 72.5
56.7, 0.52; 0, 0.48 5.4, 0.94; 0, 0.06 5.8 77.5

Easy, losses 0, 0.83; −3, 0.17 0, 0.95; −56.7, 0.05 5.6 61.6
0, 0.71; −3, 0.29 0, 0.91; −56.7, 0.09 5.9 57.5
0, 0.95; −56.7, 0.05 0, 0.83; −3, 0.17 5.6 32.5
0, 0.91; −56.7, 0.09 0, 0.71; −3, 0.29 5.9 27.5
0, 0.48; −3, 0.52 0, 0.71; −31.5, 0.29 5.9 82.1
0, 0.06; −3, 0.94 0, 0.71; −56.7, 0.29 5.8 80.0
0, 0.71; −31.5, 0.29 0, 0.48; −3, 0.52 5.9 18.0
0, 0.71; −56.7, 0.29 0, 0.48; −5.4, 0.52 5.9 17.5
0, 0.06; −3, 0.94 0, 0.48; −31.5, 0.52 5.8 87.5
0, 0.06; −5.4, 0.94 0, 0.48; −56.7, 0.52 5.8 80.0
0, 0.71; −56.7, 0.29 0, 0.06; −3, 0.94 5.8 15.4
0, 0.48; −31.5, 0.52 0, 0.06; −3, 0.94 5.8 12.5

Difficult, gains 17.5, 0.52; 0, 0.48 56.7, 0.17; 0, 0.83 1.1 72.5
9.7, 0.52; 0, 0.48 31.5, 0.17; 0, 0.83 1.1 77.5
5.4, 0.29; 0, 0.71 9.7, 0.17; 0, 0.83 1.1 57.5
31.5, 0.29; 0, 0.71 56.7, 0.17; 0, 0.83 1.1 70.0
3, 0.29; 0, 0.71 5.4, 0.17; 0, 0.83 1.1 67.5
3, 0.52; 0, 0.48 9.7, 0.17; 0, 0.83 1.1 65.0
17.5, 0.17; 0, 0.83 3, 0.94; 0, 0.06 1.1 22.5
9.7, 0.17; 0, 0.83 5.4, 0.29; 0, 0.71 1.1 35.0
56.7, 0.17; 0, 0.83 17.5, 0.52; 0, 0.48 1.1 27.5
9.7, 0.17; 0, 0.83 3, 0.52; 0, 0.48 1.1 23.1
5.4, 0.17; 0, 0.83 3, 0.29; 0, 0.71 1.1 30.0
31.5, 0.17; 0, 0.83 5.4, 0.94; 0, 0.06 1.1 20.0

Difficult, losses 0, 0.48; −3, 0.52 0, 0.83; −9.7, 0.17 1.1 43.6
0, 0.71; −5.4, 0.29 0, 0.83; −9.7, 0.17 1.1 55.0
0, 0.48; −17.5, 0.52 0, 0.83; −56.7, 0.17 1.1 45.0
0, 0.71; −9.7, 0.29 0, 0.83; −17.5, 0.17 1.1 61.5
0, 0.06; −5.4, 0.94 0, 0.83; −31.5, 0.17 1.1 37.5
0, 0.06; −3, 0.94 0, 0.83; −17.5, 0.17 1.1 40.0
0, 0.83; −9.7, 0.17 0, 0.71; −5.4, 0.29 1.1 42.5
0, 0.83; −17.5, 0.17 0, 0.48; −5.4, 0.52 1.1 65.0
0, 0.83; −17.5, 0.17 0, 0.71; −9.7, 0.29 1.1 42.5
0, 0.83; −56.7, 0.17 0, 0.48; −17.5, 0.52 1.1 61.5
0, 0.83; −5.4, 0.17 0, 0.71; −3, 0.29 1.1 57.5
0, 0.83; −31.5, 0.17 0, 0.48; −9.7, 0.52 1.1 47.5

As an illustration of the priority heuristic and cumulative prospect theory predicting opposite choices in these gamble problems, take the first problem, A (3, 0.17;
0, 0.83) vs. B (56.7, 0.05; 0, 0.95). The priority heuristic would base a choice on the probability of the minimum outcomes (as the minimum outcomes do not
discriminate) and predict the choice of gamble A because it has the lower probability of yielding the minimum outcome. Cumulative prospect theory (based, for
instance, on the parameter set by Tversky and Kahneman, 1992) would assign a subjective valuation of 0.634 to gamble A and a subjective valuation of 4.597 to
gamble B. Therefore, cumulative prospect theory predicts the choice of gamble B.
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APPENDIX E
INSTRUCTIONS USED IN EXPERIMENT 1
Dear participant,

Thank you very much for taking part in this study. We
are interested in how people make decisions between options
with risky outcomes. We have constructed a task in which you
are asked to choose between two gambles. Each gamble has
two possible outcomes. Each outcome occurs with a certain
probability.

Each gamble is thus characterized by two types of information:

(a) the possible outcomes,
(b) the probability that each outcome will occur.

You will be presented with several trials, each involving two gam-
bles. Your task is to decide which of the two gambles you would
prefer. Here is an example:

Gamble A: You win C10 with a probability (p) of 0.2 or
C1 with a probability (p) of 0.8

Gamble B: You win C4 with a probability (p) of 0.4 or
C3 with a probability (p) of 0.6

Each gamble thus involves the chance to obtain two different,
mutually exclusive outcomes, and each outcome is character-
ized by different amounts to win or lose (note that within each
gamble you can only win or lose). The outcomes occur with
certain probabilities (varying between 0.01 und 0.99). Each gam-
ble is thus characterized by two possible outcomes—a larger
amount or a smaller amount—as well as probability (indi-
cated by “p”) that the outcome will occur. Within each gamble,
the probabilities of the larger and the smaller amount always
add up to 1.

The information about the gambles (i.e., their outcomes and
their probabilities) is hidden; you have to click on the information
box to uncover it. The information remains visible as long as you
press the mouse button.

In other words, you have to search for the information you
need to make a decision. Once you have acquired sufficient infor-
mation to make a decision, please press either “Choose A” if you
prefer gamble A or “Choose B” if you prefer gamble B. You will
be presented with a total of 33 trials with different gambles. At
the end of the experiment, one of the gamble problems will be
selected randomly and the gamble you chose will be played out.
You will win (or lose) an amount proportional to the payoff
obtained.

Please turn to the experimenter for further assistance.

Table F1 | How well do expectation models and heuristics capture

participants’ choices in Experiment 1?

Proportion of correct

predictions (M)

EXPECTATION MODELS

Cumulative prospect theory (LO) 0.51
Cumulative prospect theory (TK) 0.59
Security-potential/aspiration theory 0.54
Transfer-of-attention-exchange model 0.57
HEURISTICS

Priority heuristic 0.63
Equiprobable 0.59
Equal-weight 0.59
Minimax 0.47
Maximax 0.56
Better-than-average 0.50
Most-likely 0.51
Lexicographic 0.57
Least-likely 0.41
Probable 0.50
Tallying 0.41

The table shows the average (across participants) proportion of correct predic-

tions for each model. LO, using parameter estimates reported by Lopes and

Oden (1999); TK, using parameter estimates reported by Tversky and Kahneman

(1992).

APPENDIX F
ANALYSIS OF PARTICIPANTS’ CHOICES IN EXPERIMENT 1
To derive the choice predictions for cumulative prospect the-
ory (CPT), we used the two sets of parameter estimates from
Tversky and Kahneman (1992) and Lopes and Oden (1999),
which represent the values obtained in other studies rather well
(e.g., Glöckner and Pachur, 2012; for an overview, see Fox and
Poldrack, 2008). For security-potential/aspiration theory, we used
the parameter estimates from Lopes and Oden (1999); for the
transfer-of-attention-exchange model, we used the parameters
proposed by Birnbaum (2004). We acknowledge that constrain-
ing the flexibility of multiparameter models by using parameters
obtained in other studies—though employed not only in risky
choice (e.g., Brandstätter et al., 2006; Birnbaum, 2008a; Glöckner
and Betsch, 2008a) but also in other areas of cognitive science,
such as memory (e.g., Anderson et al., 2004; Oberauer and
Lewandowsky, 2008)—may underestimate the descriptive accu-
racy of the expectation models as compared to when they are
fit to data. The mean (across participants) percentage of correct
predictions of the different models is reported in Table F1.
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